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ABSTRACT

Data Augmentation (DA) has become an essential tool to improve robustness
and generalization of modern machine learning. However, when deciding on DA
strategies it is critical to choose parameters carefully, and this can be a daunting
task which is traditionally left to trial-and-error or expensive optimization based on
validation performance. In this paper, we counter these limitations by proposing
a novel framework for optimizing DA. In particular, we take a probabilistic view
of DA, which leads to the interpretation of augmentation parameters as model
(hyper)-parameters, and the optimization of the marginal likelihood with respect to
these parameters as a Bayesian model selection problem. Due to its intractability,
we derive a tractable Evidence Lower BOund (ELBO), which allows us to optimize
augmentation parameters jointly with model parameters. We provide extensive
theoretical results on variational approximation quality, generalization guarantees,
invariance properties, and connections to empirical Bayes. Through experiments
on computer vision and NLP tasks, we show that our approach improves calibration
and yields robust performance over fixed or no augmentation. Our work provides a
rigorous foundation for optimizing DA through Bayesian principles with significant
potential for robust machine learning.

1 INTRODUCTION

Data Augmentation (DA) (Van Dyk & Meng, 2001) is an essential element behind the success of
modern machine learning (see, e.g., Shorten & Khoshgoftaar, 2019, and references therein). In
supervised learning, DA amounts to creating copies of the data in the training set, and perturbing
these with sensible transformations that preserve label information. The success of DA is connected
with the current trend of employing over-parameterized models based on neural networks, which
require large amounts of data to be trained effectively (Alabdulmohsin et al., 2022). It has been
shown that DA has strong connections with regularization (Zhang et al., 2017; Dao et al., 2019), and
it can provide a better estimation of the expected risk (Shao et al., 2022; Chen et al., 2020; Lyle et al.,
2020; Deng et al., 2022). Therefore, it is expected for DA to enhance generalization.

For a given problem, once transformation for DA are chosen, it is then necessary to decide on their
parameters. For example, in image classification, if we choose to apply transformations in the form of
rotations, what range of angles should we choose? Careful choices of DA parameters are important to
obtain performance improvements. For example, in the case of rotations applied to the popular MNIST
dataset, large rotation angles can turn a ’9’ into a ’6’, negatively impacting training. In the literature,
DA parameters are often suggested after some trial-and-error. Direct optimization of DA parameters
could also be approached via grid-search or Bayesian optimization by recording performance on a
validation set, but this is very costly due to the need to perform a large number of training runs.

In this paper, we propose a novel approach to optimize DA which counters these limitations. In
particular, we take a probabilistic view of DA, whereby we treat DA parameters as model (hyper-
)parameters. We then consider the optimization of such parameters as a Bayesian model selection
problem. Due to the intractability of the Bayesian model selection objective (i.e., the marginal
likelihood), we derive a tractable ELBO, which allows us to optimize DA parameters jointly with
model parameters, bypassing the need to perform expensive cross-validation or grid search. We
provide an extensive theoretical analysis, which indicates robust predictive performance and low
Expected Calibration Error (ECE) as demonstrated by the experiments (see, e.g., Fig. 1). Our main
contributions are as follows:
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Figure 1: OPTIMA obtains the best calibration. Example of ResNet-18 on CIFAR10; see details
in Appendix F.1.

Methodology: We introduce OPTIMA (OPTImizimg Marginalized Augmentations), a novel
framework to learn DA parameters grounded on Bayesian principles. We then provide a tractable
variational approximation which allows for the optimization of both model parameters and DA param-
eters, yielding a practical and fast alternative to manual tuning or expensive black-box optimization
of DA parameters.

Theory: We provide a comprehensive theoretical analysis, establishing a cohesive framework to
understand our Bayesian approach to DA, highlighting its principled nature. Our analysis includes: (i)
The analysis of the variational approximation’s quality, guiding DA distribution design (§ 4.1). (ii)
A derivation of PAC-Bayes generalization guarantees (§ 4.2) and demonstration on how OPTIMA
promotes model invariance and smoother decision boundaries (§ 4.3). (iii) A demonstration of im-
proved uncertainty quantification and calibration through proper marginalization over DA parameters
(§ 4.4). (iv) The establishing of empirical Bayes optimality (§ 4.5) for data-driven DA strategies,
complemented by information-theoretic insights (§ 4.6) into how learned DA enhances inference.

Empirical Validation: We support OPTIMA and the theoretical developments with rigorous
empirical validation on various tasks (§ 5), including regression, image classification on standard
benchmarks (e.g., CIFAR10 and IMAGENET), and an additional natural language classification task
(SST-5). Across all these settings—spanning both continuous geometric transformations and discrete
text perturbations—our experiments consistently demonstrate that OPTIMA improves generalization,
model calibration, and robustness to out-of-distribution data compared to models trained with fixed
or no augmentation strategies.

Overall, our work demonstrates how Bayesian principles, specifically through a (partial or full)
variational treatment of both model and augmentation parameters, can be effectively leveraged to
develop a practical, scalable, and principled framework for optimizing DA, moving beyond expensive
trial-and-error or validation-based procedures for optimal DA.

2 BACKGROUND AND RELATED WORK

We consider supervised learning tasks, where mappings from inputs x ∈ RD to labels y ∈ RO are
learned from N training observations D = {(xi,yi)}Ni=1. A common approach is to find a loss
minimizing point estimates, which is equivalent to maximizing a log likelihood log p(Y |θ,X),
where X and Y denote all inputs and labels, respectively.

Marginal likelihood and ELBO. In the Bayesian approach we choose a prior p(θ), and infer the
posterior distributions over parameters and predictive distribution for a new data point x⋆ as:

p(θ | D) =
p(Y |θ,X)p(θ)

p(Y |X)
, (1) p(y⋆ |x⋆,D) =

∫
p(y⋆ |x⋆,θ)p(θ | D)dθ. (2)

The denominator of Eq. 1 is the marginal likelihood, representing the data likelihood under the prior:

p(Y |X,ϕ) =

∫
p(Y |θ,X,ϕ)p(θ |ϕ)dθ, (3)

where we made explicit the dependence on continuous hyper-parameters ϕ. We can perform model
selection by choosing the one with highest log-marginal likelihood, also known as model evidence.
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The intractability of this objective motivates us to employ variational inference to obtain a tractable
lower bound to be optimized with respect to a parametric surrogate posterior q(θ),

log p(Y |X,ϕ) ≥ Eq(θ)

[
log p(Y |θ,X,ϕ)

]
− KL

[
q(θ) ∥ p(θ |ϕ)

]
=: ELBO (4)

Data augmentation in neural Networks. In DA, we apply transformations Tγ(x) parameterized
by γ to the inputs at training time. In image classification common transformations include rotations,
translations, flips, and color manipulations, while in natural language popular augmentations involve
word substitutions and syntactic transformations (Shorten & Khoshgoftaar, 2019; Feng et al., 2021).
During training, for each sample in a mini-batch, we first sample a transformation parameter γ and
then apply Tγ(x). This approach has proven highly effective in improving generalization in deep
learning (Shorten & Khoshgoftaar, 2019).

Augmentations overcount evidence. Naïvely replicating augmented examples {(Tγ(xi),yi)} as
if fully independent effectively multiplies the evidence (3), overcounting the likelihood (Wilson &
Izmailov, 2020). For a single data point (xi,yi), this yields a likelihood

∏K
k=1 p(yi | Tγk

(xi),θ),
equivalent to raising p(yi | xi,θ) to the power K. This overcounting can artificially shrink posterior
uncertainty and degrade calibration, undermining a key advantage of Bayesian methods.

2.1 RELATED WORKS

Data augmentation optimization. Optimizing data augmentation (DA) parameters has been ap-
proached via computationally expensive reinforcement learning (AutoAugment (Cubuk et al., 2019)),
made more efficient by population-based training (Ho et al., 2019). Others formulate it as density
matching, often using black-box search like Bayesian optimization (Snoek et al., 2012), or differen-
tiable policy search (Lim et al., 2019; Cubuk et al., 2020; Hataya et al., 2020), or as gradient matching
(Zheng et al., 2022). Bi-level optimization has also been used, but remains expensive and often relies
on strong relaxations (Liu et al., 2021; Li et al., 2020; Hataya et al., 2022; Mounsaveng et al., 2021).
These methods typically rely on heuristics and complex search pipelines. More recently, DA has been
framed as invariance-constrained learning with regularized objectives (Benton et al., 2020) or via
non-parametric models solved with costly Markov chain Monte Carlo (MCMC) (Hounie et al., 2023).

Probabilistic perspectives of DA. Probabilistic views of DA have shown perturbed inputs can
induce degenerate (Izmailov et al., 2021) or tempered likelihoods (Kapoor et al., 2022), informing
studies on DA’s role in the cold-posterior effect (Wenzel et al., 2020; Bachmann et al., 2022).
Nabarro et al. (2022) proposed an integral likelihood similar to ours using a Jensen lower bound,
and Heinonen et al. (2025) recently defined an augmented likelihood via label smoothing and input
mollification (Tran et al., 2023). Kapoor et al. (2022) analyzed augmentations through a Dirichlet
likelihood. Related latent-variable formulations also appear in work such as Chen et al. (2020)
and Chatzipantazis et al. (2023), which consider probabilistic transformations but do not optimize
augmentation parameters within a joint Bayesian model. However, these approaches generally use
fixed, unoptimized augmentation parameters. In contrast, Wang et al. (2023) modeled DA with
stochastic output layers and auxiliary variables for MAP optimization via expectation maximization,
while Wu & Williamson (2024) applied MixUp (Zhang et al., 2018) for martingale posteriors (Fong
et al., 2023). Broader connections link DA to kernel methods for task-specific invariances (Dao
et al., 2019), though not directly to Bayesian inference. More directly, van der Wilk et al. (2018)
learned invariances via marginal likelihood for Gaussian processes (Williams & Rasmussen, 2006),
an idea Immer et al. (2022) extended to BNNs (Neal, 1996; Tran et al., 2022) using the Laplace
approximation (MacKay, 1992; Daxberger et al., 2021; Immer et al., 2021), but without theoretical
generalization guarantees.

PAC-Bayes generalization bounds. PAC-Bayes bounds (McAllester, 1999; Catoni, 2007; Alquier,
2024) offer theoretical guarantees for Bayesian methods, including in deep learning (Dziugaite
& Roy, 2017; Lotfi et al., 2022; Wilson, 2025). However, prior work rarely treats augmentation
parameters as latent variables within this framework. We unify these directions by making the
augmentation distribution a key component of the model’s likelihood, deriving novel theoretical
results that characterize its benefits.
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3 AUGMENTATION OPTIMIZATION THROUGH BAYESIAN MODEL SELECTION

Augmentation as Marginalization. In this section we treat the optimization of DA parameters as
Bayesian model selection. To do so, we start by defining a transformation-augmented likelihood:

p(y |x,θ,ϕ) = Ep(γ |ϕ)

[
p
(
y |Tγ(x),θ

)]
, (5)

where Tγ(x) is the transformed input under augmentation distribution γ ∼ p(γ |ϕ) parameterized
by ϕ. This formulation treats augmentation as marginalization over transformations rather than data
replication. This method averages over transformations to contribute each original example exactly
once, as opposed to the overcounting effect in the case of naïve augmentation. As we will see, this
yields a more calibrated posterior with appropriate uncertainty quantification.

The data likelihood given model parameters θ and augmentation parameters ϕ is

p(D |θ,ϕ) =
N∏
i=1

Ep(γ |ϕ)

[
p(yi |Tγ(xi),θ)

]
. (6)

Taking a fully Bayesian treatment, we assign a prior p(ϕ) on the augmentation parameters ϕ,
making ϕ a latent variable alongside θ. The joint distribution over all variables is p(D,θ,ϕ,γ) =
p(θ)p(ϕ)p(γ |ϕ)p(D|θ,ϕ). Our goal is to approximate the posterior p(θ,ϕ | D), which is typically
intractable. To address this challenge, we employ variational inference (Jordan et al., 1999).

Augmented Evidence Lower Bound. For variational inference, we introduce a variational dis-
tribution q(θ,ϕ) = q(θ)q(ϕ) to approximate the posterior p(θ,ϕ | D). The standard ELBO is a
lower bound on the log marginal likelihood L := log p(D) = log

∫∫∫
p(D,θ,ϕ,γ) dθ dϕ dγ. Us-

ing Jensen’s inequality with q(θ,ϕ) and with standard manipulations, we obtain the ELBO, which
consists of a data-fitting term and two regularization terms KL(q(θ)∥p(θ)) and KL(q(ϕ)∥p(ϕ)):

L ≥ Eq(θ)q(ϕ)p(γ |ϕ)

[
N∑
i=1

log p(yi |Tγ(xi),θ)

]
− KL(q(θ)∥p(θ))− KL(q(ϕ)∥p(ϕ)). (7)

Optimization of the ELBO. The augmented ELBO presented in Eq. 7 is optimized by jointly
updating the parameters of the variational distributions q(θ) and q(ϕ) using stochastic gradient-based
methods. This involves sampling from these distributions (often via reparameterization) and from
the DA distribution p(γ |ϕ) to compute Monte Carlo estimates of the expectation term, and then
backpropagating through the objective. A detailed algorithm, specific choices for parameterizing
p(γ |ϕ) and q(ϕ) for continuous and discrete transformations, and other practical implementation
aspects are discussed in Appendix D.

4 THEORETICAL ANALYSIS

We present a comprehensive analysis of the proposed DA approach based on Bayesian model selection,
analyzing its properties from multiple perspectives: variational approximation quality, generalization
guarantees, invariance properties, and connections to empirical Bayes. Our analysis includes a
direct comparison with naïve DA, which amounts in treating augmented samples as training samples.
This analysis provides a rigorous foundation for OPTIMA while yielding practical insights for
implementation.

4.1 VARIATIONAL APPROXIMATION WITH AUGMENTATION

We begin by analyzing the quality of our variational approximation when incorporating DA.
Proposition 4.1 (Jensen Gap Bound). The augmentation distribution variance and model sensitivity
control the Jensen gap introduced by our lower bound approximation. If f(γ) = log p(y | Tγ(x),θ)
is L-Lipschitz in γ, and γ ∼ p(γ|ϕ) is sub-Gaussian with variance proxy σ2, then:

logEγ

[
p(y |Tγ(x),θ)

]
− Eγ

[
log p(y |Tγ(x),θ)

]
≤ L2σ2

2
. (8)

Also, this bound is tight when f(γ) is approximately linear in the high-probability region of p(γ|ϕ).
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The proof is presented in Appendix B.1. This result has important implications for optimizing the
augmentation distribution p(γ|ϕ):

Corollary 4.2 (Optimal Augmentation Variance). The optimal variance σ2
ϕ for the augmentation

distribution balances two competing factors:

1. Increasing σ2
ϕ improves exploration of the augmentation space.

2. Decreasing σ2
ϕ tightens the variational bound.

For models with high sensitivity to augmentations (large L), smaller variance is preferred to
maintain bound tightness.

This corollary provides practical guidance for setting augmentation distribution parameters, suggest-
ing that highly sensitive models benefit from more conservative augmentation strategies.

4.2 GENERALIZATION GUARANTEES

To analyze the generalization of our Bayesian-optimized DA, we leverage the PAC-Bayes framework
(McAllester, 1999; Catoni, 2007); see Appendix C for a primer. PAC-Bayes theory provides high-
probability upper bounds on the true risk (generalization error) of a learning algorithm that outputs a
distribution over hypotheses (a “posterior”). These bounds typically depend on the empirical risk
observed on the training data and a complexity term, often expressed as the KL divergence between
this posterior and a data-independent prior distribution. By extending this framework to our setting,
we can formally quantify how well the model with learned DA parameters will perform on unseen
data. We first present a PAC-Bayes bound for OPTIMA, then provide a theorem that explicitly
compares OPTIMA to naïve DA, demonstrating superior generalization.
Definition 4.3 (True and Empirical Risks). Given the transformation function Tγ(x), we define:

• True risk: R(θ,ϕ) = E
(x,y)∼ P

[
− logEp(γ|ϕ)p(y | Tγ(x),θ)

]
.

• Our empirical risk: R̂(θ,ϕ) = − 1
N

∑N
i=1 logEp(γ|ϕ)p(yi | Tγ(xi),θ).

• Empirical risk for naïve augmentation (K samples per datapoint):

R̂naïve(θ) = − 1

N

1

K

N∑
i=1

K∑
k=1

log p(yi | Tγk
(xi),θ), γk ∼ p(γ | ϕ)

Theorem 4.4 (PAC-Bayes with Augmented Likelihood). For an i.i.d. dataset D = {(xi,yi)}Ni=1
drawn from an unknown distribution P , any prior p(θ,ϕ), and any posterior q(θ,ϕ) = q(θ)q(ϕ)
over the hypothesis space θ × ϕ, with probability at least 1− δ over the draw of D:

Eq(θ,ϕ)

[
R(θ,ϕ)

]
≤ Eq(θ,ϕ)

[
R̂(θ,ϕ)

]
+

√
KL(q(θ,ϕ)∥p(θ,ϕ)) + log 2

√
N

δ

2N
, (9)

where KL(q(θ,ϕ)∥p(θ,ϕ)) = KL(q(θ)∥p(θ)) + KL(q(ϕ)∥p(ϕ)) if p(θ,ϕ) = p(θ)p(ϕ).

To explicitly demonstrate that OPTIMA generalizes better than naïve DA, we now compare the
PAC-Bayes bounds of both methods, showing that OPTIMA yields a tighter bound due to proper
marginalization over transformations. We encourage reader refer to Appendix C for further discussion.

Remark. As usual with Monte Carlo estimates, the naïve risk R̂naive is a consistent approximation of
the true marginalization when K is large enough, which is the setting assumed in Theorem 4.5.
Theorem 4.5 (Generalization Advantage of Bayesian-Optimized Augmentation). Consider a model
parameterized by θ ∈ Θ, and let ϕ ∈ Φ parameterize an augmentation distribution p(γ | ϕ), where
γ defines transformations Tγ(x).

We consider the following assumptions:

1. The transformation distribution p(γ | ϕ) is such that Ep(γ|ϕ)p(y | Tγ(x),θ) can be computed
or approximated accurately.

5
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2. The variational posteriors q(θ,ϕ) and q(θ) are optimized to minimize their respective bounds.

3. The KL divergences KL(q(θ,ϕ)∥p(θ,ϕ)) and KL(q(θ)∥p(θ)) are comparable, i.e., the com-
plexity penalties are similar.

Under these assumptions, the PAC-Bayes bound for OPTIMA is tighter than that for naïve DA:
Eq(θ,ϕ)[R(θ,ϕ)] ≤ Eq(θ)[R(θ)]−∆, (10)

where ∆ = Eq(θ,ϕ)

[
1
N

∑N
i=1 ∆ϕ(xi,yi)

]
≥ 0, and ∆ϕ(xi,yi) = logEp(γ|ϕ)p(yi |

Tγ(xi),θ) − Ep(γ|ϕ) log p(yi | Tγ(xi),θ). Furthermore, ∆ > 0 when p(yi | Tγ(xi),θ) varies
across γ, indicating a strictly better generalization bound for OPTIMA.

The proofs for Theorem 4.4 and Theorem 4.5 are detailed in Appendix B.2 and Appendix B.3. This
theorem provides several key insights:

Corollary 4.6 (Marginalization Advantage). For a fixed ϕ, the term ∆ϕ(xi,yi) =
logEp(γ|ϕ)p(yi | Tγ(xi),θ)− Ep(γ|ϕ) log p(yi | Tγ(xi),θ) quantifies the advantage of proper
marginalization over naïve DA. By Jensen’s inequality, ∆ϕ(xi,yi) ≥ 0, with equality only when
p(yi | Tγ(xi),θ) is constant across all γ in the support of p(γ|ϕ).

Corollary 4.7 (Augmentation-Aware Prior). The PAC-Bayes bound is smallest when the prior
p(θ,ϕ) reflects the invariances induced by the augmentation family. Priors that favor parameters
satisfying p(y | Tγ(x),θ) ≈ p(y | x,θ) lead to smaller KL terms and tighter bounds.

These results demonstrate that OPTIMA provides better generalization guarantees than naïve DA
and suggests principles for designing priors that complement the DA strategy.

4.3 INVARIANCE ANALYSIS

We now analyze how OPTIMA promotes invariance to transformations, extending beyond first-order
(Jacobian-based) analysis to include higher-order effects. This analysis reveals how the model’s
sensitivity to input transformations is regularized, encouraging robustness and generalization.
Theorem 4.8 (Higher-Order Invariance). Let fθ be a twice-differentiable function parameterized by
θ, with its Hessian bounded such that ∥∇2fθ∥ ≤ H . For input transformations Tγ(x) = x+ δ(γ),
where δ(γ) is a perturbation with zero mean, Ep(γ|ϕ)[δ] = 0, and covariance Ep(γ|ϕ)[δδ

⊤] = Σϕ,
the expected squared difference in the model’s output under these transformations is:

Ep(γ|ϕ)

[
∥fθ(Tγ(x))− fθ(x)∥2

]
= Tr

(
Jf (x)

⊤Jf (x)Σϕ

)
+

1

4
Ep(γ|ϕ)

[
δ⊤∇2fθ(x)

⊤∇2fθ(x)δ
]
+O(∥δ∥3), (11)

where Jf (x) is the Jacobian of fθ at input x, ∇2fθ(x) is the Hessian of fθ at x, and O(∥δ∥3)
represents higher-order terms that become negligible for small perturbations.

Corollary 4.9 (Input-Space Regularization). The second-order term in Theorem 4.8 acts as
a regularizer, penalizing high curvature in the model’s output with respect to the input. This
encourages a smoother response surface, promoting robustness to transformations and potentially
enhancing generalization by reducing sensitivity to irrelevant input variations.

Corollary 4.10 (Optimal Transformation Covariance). The optimal covariance structure Σϕ

for the augmentation distribution depends on the geometry of the model’s response surface.
Specifically, Σϕ should allocate more variance in directions where the model is approximately
invariant (small eigenvalues of Jf (x)⊤Jf (x)) and less variance in directions of high sensitivity.

Remark 4.11. In our framework, ϕ is inferred via q(ϕ) by maximizing the augmented ELBO, allowing
the DA distribution to adapt to the data and further enhance model robustness.

This insight provides practical guidance for designing augmentation distributions that align with the
model’s natural invariances, further enhancing robustness and generalization. The proof can be found
in Appendix B.4.
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4.4 MARGINALIZATION VS. HEURISTIC AUGMENTATION

We now quantify the difference between our marginalization approach and naïve DA, focusing on
the impact on posterior uncertainty. The next theorem assumes local Gaussianity of the posterior
with full-rank covariance, which might not be the case in practice for over-parameterized models;
however, we believe that the theoretical development gives some useful insights into the behavior of
OPTIMA compared to naïve DA, and we will attempt a more general proof in the future.

Theorem 4.12 (Posterior Shrinkage under Naïve Augmentation). Let ptrue(θ | D) be the posterior
under our marginalization approach and pnaïve(θ | D) be the posterior under naïve DA with K
augmentations per data point. Under regularity conditions and assuming a locally Gaussian approxi-
mation around the MAP estimate θ̂: Σnaïve ≈ 1

KΣtrue, where Σnaïve and Σtrue are full-rank covariance
matrices of pnaïve(θ | D) and ptrue(θ | D), respectively.

The proof is in Appendix B.5. This result has significant implications for uncertainty quantification:

Corollary 4.13 (Uncertainty Propagation). Predictive uncertainty is underestimated by a factor of
approximately

√
K under naïve augmentation, leading to overconfident predictions, particularly

for out-of-distribution inputs.

These results provide a quantitative characterization of the benefits of proper marginalization over
naïve augmentation, particularly for uncertainty quantification and calibration.

4.5 EMPIRICAL BAYES PERSPECTIVE

Finally, we analyze OPTIMA from an empirical Bayes perspective (Robbins, 1992; Efron, 2012),
showing how it naturally leads to optimal augmentation strategies.

Theorem 4.14 (Empirical Bayes Optimality via Augmented ELBO). The augmented
ELBOaug(qθ, qϕ) (see Eq. 7) holds when q(θ) = p(θ | D) and q(ϕ) = p(ϕ | D). Consequently,
maximizing ELBOaug(qθ, qϕ) with respect to both q(θ) and q(ϕ) approximates the posterior distri-
butions p(θ | D) and p(ϕ | D), with the mode or mean of q(ϕ) serving as a point estimate analogous
to an Empirical Bayes solution, regularized by the prior p(ϕ).

Corollary 4.15 (Data-Driven Augmentation). The optimization of q(ϕ) via the augmented ELBO
results in an augmentation distribution p(γ |ϕ) that is specifically tailored to the observed data D,
with ϕ ∼ q(ϕ). This process effectively selects DA parameters enhancing the ability of the model
to explain the data, implicitly performs model selection over the space of augmentation strategies.

Corollary 4.16 (Convergence of Joint Optimization). Under mild regularity conditions (e.g.,
continuity and boundedness of the likelihood and prior), the alternating optimization of the
variational distributions q(θ) and q(ϕ) converges to a local optimum of the marginal likelihood
p(D). This ensures that the learned augmentation distribution p(γ |ϕ) is both data-consistent
and aligned with the model’s posterior distribution.

These results establish OPTIMA as a principled, data-driven method for learning optimal augmenta-
tion strategies within a Bayesian framework. The proof is detailed in Appendix B.6.

4.6 INFORMATION-THEORETIC PERSPECTIVE

We now provide an information-theoretic analysis of OPTIMA, offering additional insights into the
role of DA in Bayesian inference.

Theorem 4.17 (Information Gain from Augmentation). The expected information gain from DA,
measured as the reduction in posterior entropy, is:

∆H = H[p(θ | Dnoaug)]−H[p(θ | D)] ≈ 1

2
log det(I +H−1

noaugHaug), (12)

where Hnoaug and Haug are the Hessians of the negative log-likelihood without and with DA,
respectively, and p(θ | D) uses the marginalized likelihood.

7
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The proof is in Appendix B.7. This information-theoretic perspective provides additional insights:

Corollary 4.18 (Optimal Information Gain). The DA distribution that maximizes information gain
while maintaining a fixed KL divergence from a reference distribution aligns with the eigenvectors
of the Fisher information matrix, with variance inversely proportional to the eigenvalues.

Corollary 4.19 (Connection to Information Bottleneck). OPTIMA can be viewed as implement-
ing an information bottleneck, where the DA distribution p(γ|ϕ) is optimized to maximize the
mutual information between the augmented inputs and the targets, while minimizing the mutual
information between the original and augmented inputs.

These information-theoretic results provide a complementary perspective on OPTIMA, connecting it
to principles of optimal experimental design and information bottleneck theory.

5 EXPERIMENTS

5.1 SYNTHETIC REGRESSION EXAMPLE

We begin with a toy regression problem by generating 50 training and 1000 test points from y =
sin(2x)+0.5 cos(3x)+ ε+ ϵ sin(x) with ε ∼ N (0, 0.22) and ϵ ∼ N (0, 0.152). We report results in
Fig. 2. In the competing approaches, Fixed Aug augments data by adding Gaussian noise with fixed
standard deviation σ = 0.1. In Naïve Aug, for each training example, we average the loss over K = 5
independent augmentations with σ = 0.1. In OPTIMA, the augmentation shift γ ∼ N (µ, σ2) has
learnable parameters and it has a prior N (0, 0.22).

Although No Aug attains a lower training error, its test error is significantly higher due to overfitting.
Conversely, Fixed Aug and Naïve Aug achieve better test performance than no augmentation,
indicating that input perturbations help regularize the model. Our OPTIMA achieves competitive
test MSE. The learned augmentation distribution widens over training taking σ from 0.10 to about
0.18, implying that a broader range of translational perturbations is optimal for this dataset. This
dynamic adaption shows the benefit of OPTIMA’s ability to learn the augmentation distribution, and
it is theoretically justified in Corollary 4.2 and Corollary 4.15, which state that OPTIMA tailors the
augmentation distribution to the observed data. For additional ablations with different intensities on
image classification dataset CIFAR10, see Appendix F.2.
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(MSE: Train 0.047 - Test: 0.072) - Learned Aug.

Figure 2: Synthetic regression: (Left) Test predictions compared to the ground-truth function. (Right)
Convergence traces for OPTIMA; green dashed line denotes the fixed σ = 0.1 used in Fixed Aug.

5.2 IMAGENET AND IMAGENET-C

Table 1: IMAGENET and IMAGENET-C
with non-Bayesian ResNet-50.

Method Acc (%) Acc (%)
Clean Corrupted

Mixup 76.1 40.1
OPTIMA Mixup 76.8 41.6

We next evaluate the robustness of OPTIMA on IMA-
GENET (Deng et al., 2009) and IMAGENET-C, an out-
of-distribution (OOD) dataset (Hendrycks & Dietterich,
2019) using a Bayesian ResNet-18 (He et al., 2016), where
the final layer is replaced with a BayesianLinear
module. This partially stochastic design—treating only
the final layer in a Bayesian manner—is a common and
efficient strategy in Bayesian deep learning (Harrison et al., 2024). As noted by Sharma et al. (2023),
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full network stochasticity is often unnecessary; introducing stochasticity in the final layer can be
sufficient to capture predictive uncertainty, especially with strong deterministic feature extractors
(Kristiadi et al., 2020). This allows the model to represent uncertainty in class probabilities while
leveraging the pretrained backbone. With OPTIMA, we optimize augmentation parameters for
Mixup (Zhang et al., 2018), CutMix (Yun et al., 2019), and AugMix (Hendrycks et al., 2020). Im-
portantly, our approach is general and can also be applied to standard (non-Bayesian) networks.
To illustrate this, we further evaluate OPTIMA on ResNet-50 without Bayesian treatment of its
parameters. Implementation details are provided in Appendix E.

Table 2 summarizes the results, confirming that OPTIMA obtains better calibration and robustness
for both in- and out-of-distributions. Regarding the non-Bayesian NNs, our framework also allows
us to have better accuracy on the clean and corrupted data (see Table 1), further demonstrating that
our method captures variations in the data better than fixed augmentations. More results can be
found in Appendix G.5. These results provide strong empirical support for our theoretical analyses
– e.g, Theorem 4.5 (improved generalization on test and OOD data) and Theorem 4.12 (enhanced
calibration and uncertainty quantification).

Table 2: IMAGENET and IMAGENET-C with pretrained Bayesian ResNet-50 (last layer) after 10
epochs ("C"-corrupted, "m" - mean)

Method Test Acc (Clean Data) (%) ECE (↓) mCE (↓) (unnormalized) (C) (%) mECE (↓) (C) mOOD-AUROC (C)

Fixed Mixup 75.39 0.043 61.69 0.062 0.820
OPTIMA Mixup 74.97 0.031 61.65 0.045 0.822
Fixed Cutmix 74.17 0.036 63.28 0.059 0.819
OPTIMA Cutmix 74.34 0.034 63.60 0.058 0.820
Fixed Augmix 74.71 0.084 61.45 0.156 0.790
OPTIMA Augmix 75.33 0.083 60.68 0.149 0.793

5.3 COMPUTATIONAL EFFICIENCY AND COMPARISON WITH BAYESIAN OPTIMIZATION

Our method introduces almost no additional computational cost compared to traditional data augmen-
tation. The difference lies in our adaptive augmentation strategies, which evolve over iterations rather
than remaining fixed. OPTIMA employs Monte Carlo estimates with a small sample size like one
per data point per iteration and uses the reparameterization trick for efficient, low-variance gradient
estimation. To highlight its efficiency, we compare against Bayesian Optimization (BO), a strong
baseline for augmentation tuning. BO requires costly black-box optimization with many full training
runs per hyperparameter setting, whereas OPTIMA’s tractable ELBO jointly optimizes augmentation
and model parameters within the same training loop—removing the need for separate validation runs.

We evaluate on CIFAR10 (Krizhevsky & Hinton, 2009) using a pretrained Bayesian ResNet-18
(Bayesian last layer) to optimize augmentation parameters (mean and variance). BO is run for
25 trials of 15 epochs, followed by 50 epochs of training with the optimized parameters, while
OPTIMA is trained directly for 50 epochs. For augmentation, we use Mixup and learn the parameter
α. We also assess performance on CIFAR10-C (Hendrycks & Dietterich, 2019) as OOD data. As
shown in Table 3, OPTIMA achieves higher test accuracy on clean data (with a slight calibration
trade-off) and substantially better accuracy, ECE, and AUROC on OOD data, all in far less time than
BO—demonstrating improved calibration and robustness at much lower cost.

Table 3: Comparison between Bayesian optimization and OPTIMA on CIFAR10

Method Test Acc (%) ECE (%) mAccuracy (C) mECE (C) OOD AUROC Time

Bayesian Optimization 93.43 0.010 72.44 0.127 0.652 ∼ 4× T
OPTIMA 95.03 0.047 78.52 0.076 0.680 T

5.4 OPTIMA ON DISCRETE NLP AUGMENTATIONS: SST-5 CASE STUDY

To demonstrate that OPTIMA is not restricted to continuous or geometric transformations used
in computer vision, we additionally evaluate it on a natural language classification task where
augmentations are inherently discrete. We use the SST-5 benchmark (Socher et al. 2013), a fine-
grained 5-class sentiment dataset, and fine-tune a DistilBERT model (Sanh et al. 2019) for five epochs
on the full training split.

9
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Discrete augmentation family. We consider token dropout, a stochastic masking transformation
widely used in NLP regularization. For an input sequence x = (x1, . . . , xL) and a dropout probability
pdrop, the augmentation samples a Bernoulli mask γt ∼ Bernoulli(1− pdrop) and replaces xt with
[MASK] whenever γt = 0. This produces a discrete latent transformation variable γ. Although the
transformation is non-differentiable, OPTIMA can still optimize the dropout probability by using a
score-function (REINFORCE) gradient, as predicted by our general formulation in Section 3.

Experimental setup. We evaluate OPTIMA on discrete token-dropout augmentation. The augmen-
tation uses a dropout probability pdrop ∈ [0, pmax] parameterized as pdrop = pmax σ(s), where s is a
learnable scalar. To encode prior preferences for weaker or stronger dropout, we place a Gaussian
prior directly on pdrop, and OPTIMA jointly learns s and the classifier parameters via the augmented
ELBO. We compare OPTIMA against: (i) No Aug; (ii) Fixed Aug, which uses the same initial dropout
as OPTIMA; (iii) Fixed Aug (Matched), where pdrop is set equal to the value learned by OPTIMA;
and (iv) BO-Fixed, which selects pdrop through a simple validation-based hyperparameter search.
Complete implementation details and hyperparameter values are provided in the Appendix H.

Table 4: SST-5 results with OPTIMA for discrete token-dropout augmentation averaged over 5
different seeds.

Method Accuracy NLL ECE
No Aug 0.516± 0.003 1.240± 0.010 0.190± 0.004
Fixed pdrop = 0.04 0.522± 0.003 1.180± 0.006 0.154± 0.006
Fixed pdrop = 0.0625 0.516± 0.006 1.162± 0.007 0.143± 0.007
OPTIMA with µ = 0.1 (plearned = 0.0625) 0.524 ± 0.003 1.161 ± 0.007 0.142 ± 0.006
BO-Fixed pdrop = 0.3 0.521± 0.004 1.086± 0.006 0.043 ± 0.004
OPTIMA with µ = 0.3 (plearned = 0.3) 0.524 ± 0.004 1.086 ± 0.005 0.046 ± 0.002

Results. Table 4 shows that accuracy differences are expectedly small for SST-5, but OPTIMA
consistently achieves lower NLL and substantially better calibration than fixed-augmentation base-
lines. Importantly, OPTIMA also matches the BO-tuned baseline—despite BO requiring a full
hyperparameter search over multiple training runs (it took around 8× times more), whereas OPTIMA
learns pdrop in a single training run. This highlights that the gains of OPTIMA stem from optimizing
the marginal likelihood rather than simply selecting a favorable dropout rate. These results confirm
that OPTIMA naturally extends to discrete augmentation spaces and that its theoretical advantages
(Sections 4.2–4.3) persist beyond vision tasks.

6 DISCUSSION AND CONCLUSION

We presented a theoretical and methodological framework for optimizing DA taking inspiration from
Bayesian principles, which allow us to cast this problem as model selection. We derived a variational
objective to learn optimal DA strategies from data in a practical way. We also provided extensive
theoretical insights on the advantages of our proposed data-driven approach to DA compared to
alternatives, revealing improved generalization through PAC-Bayes bounds, enhanced invariance via
higher-order regularization, and better calibration through marginalization. Empirical results confirm
these theoretical benefits, showing consistent improvements in calibration and predictive performance
across various tasks. We believe that OPTIMA is a key step toward robust and well-calibrated
models capable of assisting decision-making in applications where this is of critical importance.

Limitations and future work. While OPTIMA offers significant advantages, it has some limi-
tations that suggest directions for future work. Although our main experiments focus on computer
vision, OPTIMA itself is not tied to continuous or geometric transformations. Our additional
evaluation on a natural language task (SST-5) demonstrates that OPTIMA can also handle discrete,
non-geometric transformations by optimizing a latent augmentation distribution in text space. Nev-
ertheless, a broader exploration of more expressive or compositional transformations in NLP, time
series, or multimodal settings remains an important next step. In addition, our theoretical analysis
could be strengthened by developing tighter PAC-Bayes bounds and more refined characterizations
of the benefits introduced by Bayesian marginalization over augmentation parameters.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Ibrahim M Alabdulmohsin, Behnam Neyshabur, and Xiaohua Zhai. Revisiting neural scaling laws in
language and vision. In Advances in Neural Information Processing Systems, 2022.

Pierre Alquier. User-friendly introduction to pac-bayes bounds. Foundations and Trends in Machine
Learning, 17(2):174–303, 2024. ISSN 1935-8237. doi: 10.1561/2200000100. URL https:
//doi.org/10.1561/2200000100.

Gregor Bachmann, Lorenzo Noci, and Thomas Hofmann. How tempering fixes data augmentation in
Bayesian neural networks. In International Conference on Machine Learning, 2022.

Gregory Benton, Marc Finzi, Pavel Izmailov, and Andrew G Wilson. Learning invariances in neural
networks from training data. In Advances in Neural Information Processing Systems, 2020.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
neural network. In International Conference on Machine Learning, 2015.

Olivier Catoni. Accounting for variance in machine learning benchmarks. Institute of Mathematical
Statistics Lecture Notes-Monograph Series, 2007.

Evangelos Chatzipantazis, Stefanos Pertigkiozoglou, Kostas Daniilidis, and Edgar Dobriban. Learn-
ing augmentation distributions using transformed risk minimization. Transactions on Machine
Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/forum?
id=LRYtNj8Xw0.

Shuxiao Chen, Edgar Dobriban, and Jane H Lee. A group-theoretic framework for data augmentation.
Journal of Machine Learning Research, 2020.

Ekin D. Cubuk, Barret Zoph, Dandelion Mané, Vijay Vasudevan, and Quoc V. Le. AutoAugment:
Learning augmentation strategies from data. In Conference on Computer Vision and Pattern
Recognition, 2019.

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated
data augmentation with a reduced search space. In Conference on Vomputer Vsion and Pattern
Recognition workshops, 2020.

Tri Dao, Albert Gu, Alexander Ratner, Virginia Smith, Chris De Sa, and Christopher Re. A kernel
theory of modern data augmentation. In International Conference on Machine Learning, 2019.

Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and
Philipp Hennig. Laplace redux – effortless Bayesian deep learning. In Advances in Neural
Information Processing Systems, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
hierarchical image database. In Conference on Computer Vision and Pattern Recognition, 2009.

Weijian Deng, Stephen Gould, and Liang Zheng. On the strong correlation between model invariance
and generalization. Advances in Neural Information Processing Systems, 2022.

Gintare Karolina Dziugaite and Daniel M Roy. Computing nonvacuous generalization bounds for
deep (stochastic) neural networks with many more parameters than training data. In Conference on
Uncertainty in Artificial Intelligence, 2017.

Bradley Efron. Large-scale inference: Empirical Bayes methods for estimation, testing, and predic-
tion. Cambridge University Press, 2012.

Steven Feng, Varun Gangal, Jason Wei, Sarath Chandar, Soroush Vosoughi, Teruko Mitamura, and
Eduard Hovy. A survey of data augmentation approaches for NLP. Findings of the Association for
Computational Linguistics: ACL-IJCNLP, 2021.

Edwin Fong, Chris Holmes, and Stephen G Walker. Martingale posterior distributions. Journal of the
Royal Statistical Society Series B, 85(5):1357–1391, 2023.

11

https://doi.org/10.1561/2200000100
https://doi.org/10.1561/2200000100
https://openreview.net/forum?id=LRYtNj8Xw0
https://openreview.net/forum?id=LRYtNj8Xw0


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

James Harrison, John Willes, and Jasper Snoek. Variational bayesian last layers. In International
Conference on Learning Representations, 2024.

Ryuichiro Hataya, Jan Zdenek, Kazuki Yoshizoe, and Hideki Nakayama. Faster autoaugment:
Learning augmentation strategies using backpropagation. In European Conference on Computer
Vision, 2020.

Ryuichiro Hataya, Jan Zdenek, Kazuki Yoshizoe, and Hideki Nakayama. Meta approach to data
augmentation optimization. In Winter Conference on Applications of Computer Vision, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Conference on Computer Vision and Pattern Recognition, 2016.

Markus Heinonen, Ba-Hien Tran, Michael Kampffmeyer, and Maurizio Filippone. Robust classifica-
tion by coupling data mollification with label smoothing. In International Conference on Artificial
Intelligence and Statistics, 2025.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. In International Conference on Learning Representations, 2019.

Dan Hendrycks, Norman Mu, Ekin D Cubuk, Barret Zoph, Justin Gilmer, and Balaji Lakshmi-
narayanan. Augmix: A simple data processing method to improve robustness and uncertainty. In
International Conference on Learning Representations, 2020.

Daniel Ho, Eric Liang, Xi Chen, Ion Stoica, and Pieter Abbeel. Population based augmentation:
Efficient learning of augmentation policy schedules. In International Conference on Machine
Learning, 2019.

Ignacio Hounie, Luiz FO Chamon, and Alejandro Ribeiro. Automatic data augmentation via
invariance-constrained learning. In International Conference on Machine Learning, 2023.

Alexander Immer, Matthias Bauer, Vincent Fortuin, Gunnar Rätsch, and Khan Mohammad Emtiyaz.
Scalable marginal likelihood estimation for model selection in deep learning. In International
Conference on Machine Learning, 2021.

Alexander Immer, Tycho van der Ouderaa, Gunnar Rätsch, Vincent Fortuin, and Mark van der
Wilk. Invariance learning in deep neural networks with differentiable Laplace approximations. In
Advances in Neural Information Processing Systems, 2022.

Pavel Izmailov, Sharad Vikram, Matthew D Hoffman, and Andrew Gordon Wilson. What are
Bayesian neural network posteriors really like? In International Conference on Machine Learning,
2021.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with Gumbel-softmax. In
International Conference on Learning Representations, 2017.

Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An introduction to
variational methods for graphical models. Machine learning, 1999.

Sanyam Kapoor, Wesley Maddox, Pavel Izmailov, and Andrew Gordon Wilson. On uncertainty,
tempering, and data augmentation in Bayesian classification. In Advances in Neural Information
Processing Systems, 2022.

Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. Being Bayesian, even just a bit, fixes
overconfidence in relu networks. In International Conference on Machine Learning, 2020.

A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Master’s thesis,
Department of Computer Science, University of Toronto, 2009.

Yonggang Li, Guosheng Hu, Yongtao Wang, Timothy Hospedales, Neil M Robertson, and Yongxin
Yang. Differentiable automatic data augmentation. In European Conference on Computer Vision,
2020.

Sungbin Lim, Ildoo Kim, Taesup Kim, Chiheon Kim, and Sungwoong Kim. Fast autoaugment. In
Advances in Neural Information Processing Systems, 2019.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Aoming Liu, Zehao Huang, Zhiwu Huang, and Naiyan Wang. Direct differentiable augmentation
search. In International Conference on Computer Vision, 2021.

Sanae Lotfi, Marc Anton Finzi, Sanyam Kapoor, Andres Potapczynski, Micah Goldblum, and An-
drew Gordon Wilson. PAC-Bayes compression bounds so tight that they can explain generalization.
In Advances in Neural Information Processing Systems, 2022.

Clare Lyle, Mark van der Wilk, Marta Kwiatkowska, Yarin Gal, and Benjamin Bloem-Reddy. On the
benefits of invariance in neural networks. arXiv, 2020.

David JC MacKay. A practical Bayesian framework for backpropagation networks. Neural computa-
tion, 1992.

David A McAllester. PAC-Bayesian Model Averaging. In Annual Conference on Learning Theory,
1999.

Saypraseuth Mounsaveng, Issam H. Laradji, Ismail Ben Ayed, David Vázquez, and Marco Peder-
soli. Learning data augmentation with online bilevel optimization for image classification. In
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp.
1691–1700, 2021.

Seth Nabarro, Stoil Ganev, Adrià Garriga-Alonso, Vincent Fortuin, Mark van der Wilk, and Laurence
Aitchison. Data augmentation in Bayesian neural networks and the cold posterior effect. In
Conference on Uncertainty in Artificial Intelligence, 2022.

Radford M. Neal. Bayesian Learning for Neural Networks (Lecture Notes in Statistics). Springer,
1996.

Herbert E Robbins. An empirical Bayes approach to statistics. In Breakthroughs in Statistics:
Foundations and basic theory, pp. 388–394. Springer, 1992.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Han Shao, Omar Montasser, and Avrim Blum. A theory of PAC learnability under transformation
invariances. Advances in Neural Information Processing Systems, 2022.

Mrinank Sharma, Sebastian Farquhar, Eric Nalisnick, and Tom Rainforth. Do Bayesian neural
networks need to be fully stochastic? In International Conference on Artificial Intelligence and
Statistics, 2023.

Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep learning.
Journal of Big Data, 2019.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian optimization of machine
learning algorithms. In Advances in Neural Information Processing Systems, 2012.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason Chuang, Christopher D Manning, Andrew Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pp. 1631–1642, 2013.

Ba-Hien Tran, Simone Rossi, Dimitrios Milios, and Maurizio Filippone. All you need is a good
functional prior for Bayesian deep learning. Journal of Machine Learning Research, 2022.

Ba-Hien Tran, Giulio Franzese, Pietro Michiardi, and Maurizio Filippone. One-line-of-code data
mollification improves optimization of likelihood-based generative models. In Advances in Neural
Information Processing Systems, 2023.

Mark van der Wilk, Matthias Bauer, ST John, and James Hensman. Learning invariances using the
marginal likelihood. In Advances in Neural Information Processing Systems, 2018.

David A Van Dyk and Xiao-Li Meng. The art of data augmentation. Journal of Computational and
Graphical Statistics, 10(1):1–50, 2001.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yuexi Wang, Nicholas Polson, and Vadim O. Sokolov. Data Augmentation for Bayesian Deep
Learning. Bayesian Analysis, 2023.

Florian Wenzel, Kevin Roth, Bastiaan Veeling, Jakub Swiatkowski, Linh Tran, Stephan Mandt,
Jasper Snoek, Tim Salimans, Rodolphe Jenatton, and Sebastian Nowozin. How good is the Bayes
posterior in deep neural networks really? In International Conference on Machine Learning, 2020.

Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learning,
volume 2. MIT press Cambridge, MA, 2006.

Andrew G Wilson and Pavel Izmailov. Bayesian deep learning and a probabilistic perspective of
generalization. Advances in Neural Information Processing Systems, 2020.

Andrew Gordon Wilson. Deep learning is not so mysterious or different. arXiv, 2025.

Luhuan Wu and Sinead A. Williamson. Posterior uncertainty quantification in neural networks using
data augmentation. In International Conference on Artificial Intelligence and Statistics, 2024.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In International
Conference on Computer Vision, 2019.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understand-
ing deep learning requires rethinking generalization. In International Conference on Learning
Representations, 2017.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. In International Conference on Learning Representations, 2018.

Yu Zheng, Zhi Zhang, Shen Yan, and Mi Zhang. Deep autoaugment. In International Conference on
Learning Representations, 2022.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Appendix

TABLE OF CONTENTS

A Derivation of the Augmented Evidence Lower Bound 15

B Detailed Proofs 16
B.1 Proof of Proposition 4.1 (Jensen Gap Bound) . . . . . . . . . . . . . . . . . . . . 16

B.2 Proof of Theorem 4.4 (PAC-Bayes Under Augmentation) . . . . . . . . . . . . . . 17

B.3 Proof of Theorem 4.5 (Generalization Advantange of Bayesian-Optimized Augmen-
tation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

B.4 Proof of Theorem 4.8 (Higher-order Invariance) . . . . . . . . . . . . . . . . . . . 18

B.5 Proof of Theorem 4.12 (Posterior Shrinkage under naïve Augmentation) . . . . . . 19

B.6 Proof of Theorem 4.14 (Empirical Bayes Optimality via Augmented ELBO) . . . . 19

B.7 Proof of Theorem 4.17 (Information Gain from Augmentation) . . . . . . . . . . . 20

C A Primer on PAC-Bayes Theory 20

D Algorithm and Implementation 21
D.1 Parameterization of Augmentation Distribution . . . . . . . . . . . . . . . . . . . 21

D.2 Practical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

E Additional Experimental Details for § 5.2 23

F Additional Results on Different Types of Data Augmentation 23
F.1 Learning Geometric Augmentation for CIFAR10 Classification . . . . . . . . . . . 23

F.2 Exploring different intensities of Gaussian translations . . . . . . . . . . . . . . . 24

G Additional Experiment on IMAGENET using Resnet-50 25
G.1 Implementation Details for OPTIMA with Mixup . . . . . . . . . . . . . . . . . . 25

G.2 Implementation Details for OPTIMA with CutMix . . . . . . . . . . . . . . . . . 26

G.3 Implementation Details for OPTIMA with AugMix (Learnable Severity + JSD) . . 26

G.4 Evaluation and Software/Hardware for all these methods. . . . . . . . . . . . . . . 27
G.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

H Additional Experimental Details for § 5.4. Token-dropout implementation details 28

I Broader Impact 28

J Reproducibility Statement 28

K The Use of Large Language Models (LLMs) 28

A DERIVATION OF THE AUGMENTED EVIDENCE LOWER BOUND

For variational inference, we introduce a variational distribution q(θ,ϕ) = q(θ)q(ϕ) to approximate
the posterior p(θ,ϕ | D). The standard ELBO is a lower bound on the log marginal likelihood
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log p(D) = log
∫∫∫

p(D,θ,ϕ,γ) dθ dϕ dγ. Using Jensen’s inequality with q(θ,ϕ), we have:

log p(D) ≥ Eq(θ,ϕ)

[
log

p(D,θ,ϕ)

q(θ,ϕ)

]
︸ ︷︷ ︸

ELBO(q)

, where p(D,θ,ϕ) =

∫
p(D,θ,ϕ,γ) dγ. (13)

Applying Jensen’s inequality further to the log of the likelihood term, p(D |θ,ϕ):

log p(D |θ,ϕ) = logEp(γ |ϕ)

[
N∏
i=1

p(yi |Tγ(xi),θ)

]
≥ Ep(γ |ϕ)

[
N∑
i=1

log p(yi |Tγ(xi),θ)

]
. (14)

Substituting this into the ELBO in Eq. 13, with p(D,θ,ϕ) = p(D |θ,ϕ)p(θ)p(ϕ), we can obtain the
augmented ELBO as follows:

ELBO(q) ≥ Eq(θ,ϕ)

[
Ep(γ |ϕ)

[
N∑
i=1

log p(yi |Tγ(xi),θ)

]
+ log

p(θ)p(ϕ)

q(θ)q(ϕ)

]
(15)

= Eq(θ)Eq(ϕ)Ep(γ |ϕ)

[
N∑
i=1

log p(yi |Tγ(xi),θ)

]
︸ ︷︷ ︸

data fit

−KL(q(θ)∥p(θ))︸ ︷︷ ︸
parameter prior

−KL(q(ϕ)∥p(ϕ))︸ ︷︷ ︸
augmentation prior

. (16)

The augmented ELBO consists of three terms: a data-fitting term that averages over the varia-
tional distributions q(θ), q(ϕ), and the augmentation distribution p(γ | ϕ); a regularization term
KL(q(θ)∥p(θ)) that penalizes divergence from the prior over model parameters; and another regular-
ization term KL(q(ϕ)∥p(ϕ)) that aligns the augmentation parameters with their prior.

B DETAILED PROOFS

This section provides expanded proofs for the theoretical results presented in the main paper.

B.1 PROOF OF PROPOSITION 4.1 (JENSEN GAP BOUND)

Proof. Let f(γ) = log p(y |Tγ(x),θ). For sub-Gaussian γ with mean µ = E[γ] and variance proxy
σ2, we use standard moment generating function bounds:

logEγ [e
f(γ)] = logEγ

[
ef(µ)+(f(γ)−f(µ))

]
(17)

= f(µ) + logEγ

[
ef(γ)−f(µ)

]
. (18)

Since f is L-Lipschitz, we have |f(γ)− f(µ)| ≤ L∥γ − µ∥. Using the sub-Gaussian property:

Eγ [e
f(γ)−f(µ)] ≤ Eγ [e

L∥γ−µ∥] ≤ e
L2σ2

2 . (19)

Therefore:

logEγ [e
f(γ)] ≤ f(µ) +

L2σ2

2
. (20)

Since Eγ [f(γ)] = f(µ) when Eγ [γ − µ] = 0, the gap is:

Gap = logEγ [e
f(γ)]− Eγ [f(γ)] (21)

≤ L2σ2

2
. (22)

For tightness, when f(γ) is approximately linear in the high-probability region of p(γ|ϕ), the bound
approaches equality.
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B.2 PROOF OF THEOREM 4.4 (PAC-BAYES UNDER AUGMENTATION)

Proof. Define the loss function as:

ℓ(θ,ϕ, (x, y)) = − logEp(γ|ϕ)[p(y | Tγ(x),θ)]. (23)

The empirical risk is:

R̂(θ,ϕ) =
1

N

N∑
i=1

ℓ(θ,ϕ, (xi,yi)). (24)

Since {(xi,yi)}Ni=1 are i.i.d., and the expectation over γ ∼ p(γ | ϕ) is computed independently
for each sample, the terms ℓ(θ,ϕ, (xi,yi)) are independent for fixed θ,ϕ. Applying the standard
PAC-Bayes theorem over the joint space (θ,ϕ) (McAllester, 1999; Catoni, 2007; Alquier, 2024):

Eq(θ,ϕ)[R(θ,ϕ)] ≤ Eq(θ,ϕ)[R̂(θ,ϕ)] +

√
KL(q(θ,ϕ)∥p(θ,ϕ)) + log 2

√
N

δ

2N
. (25)

This completes the proof.

B.3 PROOF OF THEOREM 4.5 (GENERALIZATION ADVANTANGE OF BAYESIAN-OPTIMIZED
AUGMENTATION)

Proof. Step 1: PAC-Bayes Bounds

For OPTIMA, the PAC-Bayes bound is:

Eq(θ,ϕ)[R(θ,ϕ)] ≤ Eq(θ,ϕ)[R̂(θ,ϕ)] +

√
KL(q(θ,ϕ)∥p(θ,ϕ)) + log 2

√
N

δ

2N
. (26)

For naïve augmentation, the bound is:

Eq(θ)[R(θ)] ≤ Eq(θ)[R̂naïve(θ)] +

√
KL(q(θ)∥p(θ)) + log 2

√
N

δ

2N
. (27)

Step 2: Relationship Between Empirical Risks

By Jensen’s inequality, for each data point (xi,yi):

logEp(γ|ϕ)p(yi | Tγ(xi),θ) ≥ Ep(γ|ϕ) log p(yi | Tγ(xi),θ). (28)

Thus,

− logEp(γ|ϕ)p(yi | Tγ(xi),θ) ≤ −Ep(γ|ϕ) log p(yi | Tγ(xi),θ). (29)

For large K, the naïve empirical risk approximates:

R̂naïve(θ) ≈ − 1

N

N∑
i=1

Ep(γ|ϕ) log p(yi | Tγ(xi),θ). (30)

Therefore,
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R̂(θ,ϕ) = − 1

N

N∑
i=1

logEp(γ|ϕ)p(yi | Tγ(xi),θ) ≤ R̂naïve(θ), (31)

with equality only if ∆ϕ(xi,yi) = 0 for all i, i.e., when p(yi | Tγ(xi),θ) is constant across γ.

Step 3: Bound Comparison

Assuming KL(q(θ,ϕ)∥p(θ,ϕ)) ≈ KL(q(θ)∥p(θ)), the difference in bounds is driven by the empiri-
cal risks:

Eq(θ,ϕ)[R(θ,ϕ)] ≤ Eq(θ,ϕ)[R̂(θ,ϕ)] + complexity term, (32)

Eq(θ)[R(θ)] ≤ Eq(θ)[R̂naïve(θ)] + complexity term. (33)

Since R̂(θ,ϕ) ≤ R̂naïve(θ), and the complexity terms are similar, our bound is tighter. Specifically,

Eq(θ,ϕ)[R̂(θ,ϕ)] = Eq(θ,ϕ)[R̂naïve(θ)]− Eq(θ,ϕ)

[
1

N

N∑
i=1

∆ϕ(xi,yi)

]
, (34)

leading to:

Eq(θ,ϕ)[R(θ,ϕ)] ≤ Eq(θ)[R̂naïve(θ)]−∆+ complexity term, (35)

where ∆ = Eq(θ,ϕ)

[
1
N

∑N
i=1 ∆ϕ(xi,yi)

]
≥ 0.

Thus, OPTIMA ’s bound is lower by ∆, proving better generalization. When p(yi | Tγ(xi),θ)
varies across γ, ∆ > 0, making our bound strictly tighter.

B.4 PROOF OF THEOREM 4.8 (HIGHER-ORDER INVARIANCE)

Proof. Using a second-order Taylor expansion of fθ around x:

fθ(Tγ(x)) = fθ(x) + Jf (x)δ +
1

2
δT∇2fθ(x)δ +O(∥δ∥3), (36)

fθ(Tγ(x))− fθ(x) = Jf (x)δ +
1

2
δT∇2fθ(x)δ +O(∥δ∥3). (37)

Squaring this difference and taking the expectation over p(γ|ϕ):
Ep(γ|ϕ)

[
∥fθ(Tγ(x))− fθ(x)∥2

]
= Ep(γ|ϕ)

[
∥Jf (x)δ∥2

]
(38)

+ Ep(γ|ϕ)

[(
1

2
δT∇2fθ(x)δ

)2
]

(39)

+ Ep(γ|ϕ)

[
2 (Jf (x)δ)

T

(
1

2
δT∇2fθ(x)δ

)]
(40)

+O(∥δ∥3). (41)

The cross-term Ep(γ|ϕ)

[
(Jf (x)δ)

T (
δT∇2fθ(x)δ

)]
involves odd powers of δ, which vanish since

E[δ] = 0. Thus:

Ep(γ|ϕ)

[
∥fθ(Tγ(x))− fθ(x)∥2

]
= Ep(γ|ϕ)

[
δTJf (x)

TJf (x)δ
]

(42)

+
1

4
Ep(γ|ϕ)

[(
δT∇2fθ(x)δ

)2]
+O(∥δ∥3). (43)
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Using properties of quadratic forms for zero-mean random variables:

Ep(γ|ϕ)

[
δTJf (x)

TJf (x)δ
]
= Tr

(
Jf (x)

TJf (x)Σϕ

)
, (44)

Ep(γ|ϕ)

[(
δT∇2fθ(x)δ

)2]
= Tr

(
∇2fθ(x)

T∇2fθ(x)Σϕ

)
+ 2Tr

(
(∇2fθ(x)Σϕ)

2
)
. (45)

For small perturbations, the dominant term is Tr
(
∇2fθ(x)

T∇2fθ(x)Σϕ

)
, and higher moments

contribute to O(∥δ∥3). Therefore:

Ep(γ|ϕ)

[
∥fθ(Tγ(x))− fθ(x)∥2

]
≈ Tr

(
Jf (x)

TJf (x)Σϕ

)
+

1

4
Tr

(
∇2fθ(x)

T∇2fθ(x)Σϕ

)
.

(46)

This approximation holds for small ∥δ∥, completing the proof.

B.5 PROOF OF THEOREM 4.12 (POSTERIOR SHRINKAGE UNDER NAÏVE AUGMENTATION)

Proof. Under a locally Gaussian approximation with full-rank covariance, the posterior covariance is
approximately the inverse of the Hessian of the negative log posterior at the MAP estimate. For the
true posterior, marginalizing over ϕ:

p(D |θ) =
∫

p(D |θ,ϕ)p(ϕ) dϕ,

Σ−1
true ≈ −∇2 log ptrue(θ | D)|θ=θ̂ = −∇2 log p(θ) (47)

−
N∑
i=1

∇2 log

(∫
Ep(γ|ϕ)[p(yi |Tγ(xi),θ)]p(ϕ) dϕ

) ∣∣∣
θ=θ̂

.

For the naïve posterior:

Σ−1
naïve ≈ −∇2 log pnaïve(θ | D)|θ=θ̂ = −∇2 log p(θ)−

N∑
i=1

K∑
k=1

∇2 log p(yi |Tγk
(xi),θ)|θ=θ̂.

(48)

Assuming γk ∼ p(γ | ϕ̂) (e.g., using a point estimate of ϕ), this approximates:

≈ −∇2 log p(θ)−K
N∑
i=1

∇2 logEp(γ|ϕ̂)[p(yi |Tγ(xi),θ)]|θ=θ̂ ≈ K · Σ−1
true. (49)

Therefore, Σnaïve ≈ 1
KΣtrue.

B.6 PROOF OF THEOREM 4.14 (EMPIRICAL BAYES OPTIMALITY VIA AUGMENTED ELBO)

Proof. The proof leverages variational inference principles. Start with the log marginal likelihood:

log p(D) = log

∫ ∫ ∫
p(D,θ,ϕ,γ) dθ dϕ dγ. (50)

Introduce the variational distribution q(θ,ϕ) = q(θ)q(ϕ):

log p(D) = Eq(θ,ϕ)

[
log

p(D,θ,ϕ)

q(θ,ϕ)

]
+ KL(q(θ,ϕ)∥p(θ,ϕ | D)). (51)

Since the KL divergence is non-negative, we obtain the lower bound:

log p(D) ≥ Eq(θ,ϕ)

[
log

p(D,θ,ϕ)

q(θ,ϕ)

]
. (52)
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Now, factor in the augmentation variable γ. The joint likelihood is:

p(D |θ,ϕ) = Ep(γ |ϕ)

[
N∏
i=1

p(yi |Tγ(xi),θ)

]
. (53)

Applying Jensen’s inequality:

log p(D |θ,ϕ) ≥ Ep(γ |ϕ)

[
N∑
i=1

log p(yi |Tγ(xi),θ)

]
. (54)

Substitute into the lower bound:

log p(D) ≥ Eq(θ,ϕ)

[
Ep(γ |ϕ)

[
N∑
i=1

log p(yi |Tγ(xi),θ)

]
+ log

p(θ)p(ϕ)

q(θ)q(ϕ)

]
. (55)

Rewrite:

= Eq(θ)Eq(ϕ)Ep(γ |ϕ)

[
N∑
i=1

log p(yi |Tγ(xi),θ)

]
− KL(q(θ)∥p(θ))− KL(q(ϕ)∥p(ϕ)). (56)

Thus, we arrive at the augmented ELBO. When q(θ) = p(θ | D) and q(ϕ) = p(ϕ | D), the bound
becomes tight, confirming the result.

B.7 PROOF OF THEOREM 4.17 (INFORMATION GAIN FROM AUGMENTATION)

Proof. Under a Gaussian approximation to the posterior, the entropy is proportional to the log
determinant of the covariance matrix. Using the results from Theorem Theorem 4.12, we have:

∆H ∝ log det(Σnoaug)− log det(Σaug), (57)

where Σnoaug ≈ H−1
noaug, Σaug ≈ H−1

aug, and Haug incorporates the effect of augmentation. Thus:

∆H ≈ 1

2
log det(HaugH

−1
noaug) =

1

2
log det(I +H−1

noaug(Haug −Hnoaug)). (58)

Approximating the effect of augmentation as an effective increase in Fisher information, we obtain
the stated result.

C A PRIMER ON PAC-BAYES THEORY

The Probably Approximately Correct (PAC)-Bayes framework, pioneered by (McAllester, 1999) and
further developed by (Catoni, 2007) among others, provides a powerful tool for deriving generalization
bounds for Bayesian-inspired learning algorithms. Unlike traditional PAC learning which often
focuses on a single hypothesis, PAC-Bayes theory considers a distribution over hypotheses.

Core Idea The central idea is to bound the true risk (expected loss on unseen data) of a posterior
distribution Q over a hypothesis class H. This bound is typically expressed in terms of the empirical
risk (average loss on the training data) under Q, and a complexity term that measures how much
Q deviates from a data-independent prior distribution P over H. The guarantee holds with high
probability (at least 1− δ) over the random draw of the training dataset.

Key Components

• Hypothesis Class (H): The set of all possible models (e.g., sets of parameters θ).

• Prior Distribution (P ): A distribution over H chosen before observing any training data. It
reflects initial beliefs about good hypotheses.

• Posterior Distribution (Q): A distribution over H that is typically learned from the training
data D. In PAC-Bayes, Q can be any distribution, not necessarily a true Bayesian posterior.
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• Loss Function (ℓ(h, z)): Measures the error of a hypothesis h ∈ H on a data point
z = (x,y).

• True Risk (R(Q)): The expected loss of a hypothesis drawn from Q on the true (unknown)
data distribution: R(Q) = Eh∼Q[Ez∼Dtrue [ℓ(h, z)]].

• Empirical Risk (R̂(Q)): The average loss of a hypothesis drawn from Q on the N training
samples: R̂(Q) = Eh∼Q[

1
N

∑N
i=1 ℓ(h, zi)].

• Kullback-Leibler (KL) Divergence (KL(Q∥P )): Measures the "distance" or "information
gain" from the prior P to the posterior Q. It serves as a complexity penalty: if Q is very
different from P , the penalty is high.

A Common Form of PAC-Bayes Bound A typical PAC-Bayes generalization bound (e.g.,
McAllester’s 1999 bound or variations) states that for any δ ∈ (0, 1), with probability at least
1− δ over the draw of an i.i.d. training set D of size N , for all posterior distributions Q:

R(Q) ≤ R̂(Q) +

√
KL(Q∥P ) + ln( 1δ ) + C

2N
(59)

where C is a constant that can depend on the range of the loss or other factors (e.g., ln(2
√
N) as used

in our paper, which is a common variant for empirical Bernstein bounds).

Interpretation and Significance

• The bound guarantees that the true risk is unlikely to be much larger than the empirical risk,
plus a term that penalizes the complexity of Q relative to P .

• It highlights a trade-off: to achieve good generalization, a learning algorithm should find a
posterior Q that both fits the training data well (low R̂(Q)) and does not deviate too much
from the prior (low KL(Q∥P )).

• The bounds are often tighter than uniform convergence bounds for complex hypothesis
classes like neural networks, especially when a good prior is available.

• They provide a theoretical justification for regularization techniques and can guide the
design of learning algorithms.

Relevance to This Paper In our work (§ 4.2), we adapt this framework to derive generalization
bounds for our augmented likelihood approach. Here, the "hypothesis" space effectively includes
both the model parameters θ and the augmentation (hyper)parameters ϕ. The priors p(θ) and p(ϕ)
and the variational posteriors q(θ) and q(ϕ) play the roles of P and Q. Our Theorem Theorem 4.4
provides such a bound, and Theorem Theorem 4.5 uses PAC-Bayes reasoning to show the theoretical
advantage of our marginalized approach over naïve data replication. The KL terms in our augmented
ELBO (Eq. 7) naturally appear as complexity measures in these PAC-Bayes bounds.

D ALGORITHM AND IMPLEMENTATION

We now present a practical algorithm for implementing our Bayesian-optimized data augmentation
approach. The algorithm employs stochastic gradient-based optimization of both model parameters
and augmentation distribution parameters.

D.1 PARAMETERIZATION OF AUGMENTATION DISTRIBUTION

For continuous transformation parameters, we typically use a Gaussian distribution for p(γ |ϕ):

p(γ|ϕ) = N (γ|µϕ,Σϕ), (60)

where ϕ = (µϕ,Σϕ). For q(ϕ), we might use a Gaussian:

q(ϕ) = N (ϕ |µq,Σq), (61)
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Algorithm 1 Augmented Variational Inference with Learned Augmentation

1: Input: Dataset D = {(xi,yi)}Ni=1, transformation family Tγ(·)
2: Initialize: Variational distributions q(θ) and q(ϕ)
3: while not converged do
4: Sample a minibatch {(xi,yi)}Bi=1 from D
5: Sample model parameters θ ∼ q(θ) (or use reparameterization)
6: Sample augmentation parameters ϕ ∼ q(ϕ) (or use reparameterization)
7: for each (xi,yi) in the minibatch do
8: Sample augmentation parameters γi ∼ p(γ|ϕ)
9: Apply transformation x′

i = Tγi
(xi)

10: Compute log-likelihood log p(yi|x′
i,θ)

11: end for
12: Estimate ELBO:

ÊLBOaug =
N

B

B∑
i=1

log p(yi|x′
i,θ)− KL(q(θ)||p(θ))− KL(q(ϕ)||p(ϕ))

13: Update variational parameters in q(θ) using gradient of ÊLBOaug

14: Update variational parameters in q(ϕ) using gradient of ÊLBOaug
15: end while
16: Output: Optimized variational distributions q(θ) and q(ϕ)

Algorithm 2 Partial Variational Inference with Learned Augmentation

1: Input: Dataset D = {(xi,yi)}Ni=1, transformation family Tγ(·)
2: Initialize: Model parameters θ and distribution q(ϕ)
3: while not converged do
4: Sample a minibatch {(xi,yi)}Bi=1 from D
5: Sample augmentation parameters ϕ ∼ q(ϕ)
6: for each (xi,yi) in the minibatch do
7: Sample γi ∼ p(γ|ϕ)
8: Apply transformation x′

i = Tγi
(xi)

9: Compute log-likelihood log p(yi|x′
i,θ)

10: end for
11: Estimate ELBO:

ÊLBOaug =
N

B

B∑
i=1

log p(yi|x′
i,θ)− KL(q(ϕ)||p(ϕ))

12: Update θ using gradient of ÊLBOaug

13: Update q(ϕ) using gradient of ÊLBOaug
14: end while
15: Output: Optimized parameters θ and distribution q(ϕ)

learning µq and Σq . This allows for reparameterization during sampling:

ϕ = µq +Σ1/2
q ϵ, ϵ ∼ N (0, I), (62)

followed by:
γ = µϕ +Σ

1/2
ϕ ϵ′, ϵ′ ∼ N (0, I). (63)

For discrete transformations, we can use a categorical distribution:

p(γ|ϕ) = Cat(γ|πϕ), (64)

where πϕ represents the probabilities, and use the Gumbel-Softmax trick (Jang et al., 2017) for
differentiable sampling.
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D.2 PRACTICAL CONSIDERATIONS

Adaptive Variance Scheduling. Based on Corollary 4.2, we can implement an adaptive schedule
for the augmentation variance within q(ϕ), adjusting the variance of ϕ over training to balance
exploration and bound tightness.

Marginalization Advantage Monitoring. Following Corollary 4.6, we can monitor the marginal-
ization advantage term Dϕ(xi, yi) during training to assess the benefit of OPTIMA over naïve
augmentation.

Curvature-Aware Augmentation. Inspired by Corollary 4.10, we can adapt the augmentation
distribution based on the model’s sensitivity to different transformations, allocating more variance to
directions where the model is approximately invariant.

Computational Efficiency. For large models, we use Monte Carlo estimates with a small number
of samples (e.g., one per data point per iteration) to approximate the expectations in the ELBO. The
reparameterization trick ensures low-variance gradient estimates.

E ADDITIONAL EXPERIMENTAL DETAILS FOR § 5.2

We use a ResNet-50 architecture with a Bayesian linear layer at the end (for non-Bayesian case, we
just use ResNet-50 without any replacements). We apply standard preprocessing for IMAGENET. We
use the Adam optimizer with a learning rate of 1× 10−5 for model parameters. In OPTIMA, we are
learning a parameter in Beta distribution for Mixup, in uniform distribution for Cutmix, and Dirichlet,
depth and Beta distribution parameters jointly for Augmix augmentations. For these augmentations,
we use lognormal distribution as a prior because of the simplicity. The augmentation parameters have
a separate learning rate (1× 10−3) to facilitate faster exploration. We regularize the augmentation
parameters with a KL weight of βkl_aug = 1, balancing data-fit and prior alignment. For all methods,
we include a small KL weight βkl_net = 10−4 on the model parameters to maintain a Bayesian prior
but it works with any weight on the model parameters This acts as a Bayesian regularizer on the final
layer weights, preventing overfitting within that layer and ensuring consistency with the variational
Bayesian framework (Blundell et al., 2015). Training proceeds for 30 epochs with a batch size of
256.

Evaluation Metrics. We compute the Expected Calibration Error (ECE) by dividing predictions
into 10 bins based on confidence and measuring the difference between average confidence and
accuracy in each bin:

ECE =

10∑
i=1

|Bi|
n

|acc(Bi)− conf(Bi)|, (65)

where Bi is the set of examples in bin i, n is the total number of examples, acc(Bi) is the accuracy
in bin i, and conf(Bi) is the average confidence in bin i.

For out-of-distribution detection, we use the AUROC metric, which measures the area under the ROC
curve when using predictive entropy as the detection score:

H[p(y|x)] = −
C∑

c=1

p(y = c |x) log p(y = c |x). (66)

Higher entropy indicates higher uncertainty, which should correlate with out-of-distribution examples.

F ADDITIONAL RESULTS ON DIFFERENT TYPES OF DATA AUGMENTATION

F.1 LEARNING GEOMETRIC AUGMENTATION FOR CIFAR10 CLASSIFICATION
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Figure 3: (Left Two) Convergences of training and test accuracy on CIFAR10. OPTIMA generelizes
better than the other approaches. (Right Two) Evolutions of the data augmentation parameters.

Table 5: CIFAR10 classification.
Fixed Aug uses fixed rotation ω =
0.1 and translations of 0.1.

Method Acc (%) ECE (↓)

No Aug 80.90 0.092
Fixed Aug 80.73 0.088
OPTIMA 81.35 0.017

Setups. We use a ResNet-18 architecture with a Bayesian
linear layer at the end. We apply standard preprocessing: nor-
malization with mean (0.4914, 0.4822, 0.4465) and standard
deviation (0.2023, 0.1994, 0.2010). We use the Adam opti-
mizer with a learning rate of 1 × 10−4 for model parameters.
In OPTIMA, we are learning γ = {ω, tx, ty} jointly, where ω
is rotation (radians), and tx and ty are horizontal and vertical
shifts. The augmentation parameters have a separate learning
rate (1× 10−2) to facilitate faster exploration. We regularize
the augmentation parameters with a KL weight of βkl_aug = 1,
balancing data-fit and prior alignment. For all methods, we include a small KL weight βkl_net = 0.1
on the model parameters to maintain a Bayesian prior but it works with any weight on the model
parameters. This acts as a Bayesian regularizer on the final layer weights, preventing overfitting
within that layer and ensuring consistency with the variational Bayesian framework (Blundell et al.,
2015). Training proceeds for 30 epochs with a batch size of 128.

Results. We assess calibration using 100 Monte Carlo (MC) samples. Fig. 1 presents reliability
diagrams for No Aug, Fixed Aug, and OPTIMA, revealing that the learned augmentation strategy
yields the lowest calibration error (ECE), with the reliability curve closely aligning with perfect
calibration. Table 5 summarizes the final ECE values, confirming that OPTIMA leads to more
accurate confidence estimates than fixed or no augmentation. Moreover, Fig. 3 (second panel) shows
test accuracy over time: the learned augmentation generalizes better, while No Aug and Fixed Aug
exhibit overfitting and poorer generalization.

F.2 EXPLORING DIFFERENT INTENSITIES OF GAUSSIAN TRANSLATIONS

We use the same implementation details as in Appendix F.1, except that we choose Gaussian
Translation as an augmentation parameter and validate on different values of K in naïve augmentation,
and different prior variance σ in OPTIMA. As an OOD data, we choose the SVHN dataset, since this
mismatch makes it a widely adopted benchmark for OOD testing of classifiers trained on CIFAR10.

Table 6: Effect of marginalization vs. naïve augmentation with different numbers of augmentations
per example on CIFAR10 using Pretrained Bayesian ResNet-18 (last layer) and Gaussian Translation
after 30 epochs. Test accuracy and ECE are on CIFAR10, and OOD AUROC is on the SVHN dataset.

Method Test Acc (%) ECE ↓ OOD AUROC

No Aug 94.09 0.0381 0.9069
naïve Aug (K=2) 95.03 0.0298 0.9425
naïve Aug (K=5) 95.21 0.0327 0.9383
naïve Aug (K=10) 93.75 0.0424 0.9560
OPTIMA (σ = 0.1) 93.30 0.0192 0.9446
OPTIMA (σ = 0.5) 93.87 0.0165 0.9576
OPTIMA (σ = 1) 90.25 0.0175 0.9647

Results. Table 6 shows that OPTIMA allows us to get much better calibration than naïve and
no augmentation cases. Because of the overcounting problem in naïve case, it obviously consumes
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around K times more time than our approach demostrating that we can get good generalization and
better robustness for OOD in short time with our approach.

G ADDITIONAL EXPERIMENT ON IMAGENET USING RESNET-50

Here we use OPTIMA for Imagenet in order to learn Mixup, Cutmix and Augmix augmentations.

G.1 IMPLEMENTATION DETAILS FOR OPTIMA WITH MIXUP

We evaluate our OPTIMA framework with the Learnable Mixup augmentation on the IMAGENET
(Deng et al., 2009) dataset for image classification. Performance is assessed on the standard IMA-
GENET validation set, and robustness is measured on the IMAGENET-C (Hendrycks & Dietterich,
2019) benchmark.

Model Architecture and Preprocessing. We employ a ResNet-50 ar-
chitecture (He et al., 2016), initialized with pretrained weights from
torchvision.models.ResNet50_Weights.IMAGENET1K_V2. The final fully con-
nected layer is replaced with a new linear layer mapping to the 1000 IMAGENET classes. For
input preprocessing during training, images are transformed by a RandomResizedCrop to
224 × 224 pixels followed by a RandomHorizontalFlip. Validation and test images are
resized to 256 pixels on their shorter edge and then center-cropped to 224 × 224. All images
are subsequently converted to tensors and normalized using the standard IMAGENET mean
µImageNet = (0.485, 0.456, 0.406) and standard deviation σImageNet = (0.229, 0.224, 0.225).

Learnable Mixup Augmenter. In the OPTIMA Mixup variant, the Mixup hyperparameter α
(controlling the Beta distribution Beta(α, α) from which the mixing coefficient λ is sampled) is made
learnable. We parameterize a Normal distribution over logit(α) with learnable mean µℓα and learnable
log standard deviation log σℓα, where ℓα = logit(α). The initial value for µℓα is set to logit(0.2),
corresponding to an initial αinit = 0.2. The initial log σℓα is set to log(0.1), promoting a small initial
variance for the learned distribution over logit(α). A prior distribution p(logit(α)) is defined as
N (logit(αinit), σ

2
p), where the prior standard deviation σp = 2.0. The KL divergence between the

learned variational posterior q(logit(α)|µℓα, σ
2
ℓα) and this prior is added to the training objective,

weighted by the hyperparameter beta_augmenter_reg. Sampled λ values are clamped to the
range [10−6, 1− 10−6] for numerical stability.

Training Configuration. Models were trained for 10 epochs1 using the AdamW optimizer.
The base learning rate for the ResNet-50 parameters was set to 1 × 10−4. The learnable
parameters of the Mixup augmenter (µℓα, log σℓα) utilized a learning rate of 1 × 10−3 (10
times the base learning rate). A cosine annealing learning rate scheduler with warm restarts
(CosineAnnealingWarmRestarts) was employed, with parameters ‘T0 = 10‘ epochs,
‘Tmult = 2‘, and ‘etamin‘ set to 1/100 of the initial learning rate. The weight decay for net-
work parameters (beta_network_reg) was 0.01. The coefficient for the KL divergence term
of the augmentation parameters (beta_augmenter_reg) was 1.0. Training was performed
with a global batch size of 256 distributed across 4 NVIDIA A100 GPUs using Distributed Data
Parallel (DDP). We used a precision of ‘"16"‘ (interpreted as 16-bit native mixed precision) and
set ‘torch.set_float32_matmul_precision(′medium′)‘. Gradient clipping was applied with a
maximum norm of 1.0. The number of data loader workers was set to 8 per GPU process.

Baselines. We compare OPTIMA Mixup against:

• Fixed Mixup: Standard Mixup augmentation with a fixed α = 0.2. The training setup (optimizer,
scheduler, epochs, batch size) was identical to that of OPTIMA Mixup, excluding elements specific
to learnable augmentation parameters.

1While longer training (e.g., 90-100 epochs) is standard for IMAGENET, these experiments were conducted
for 10 epochs to demonstrate the behavior of the learnable augmentation parameters and compare against fixed
augmentation under identical short-run conditions.
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• Pretrained ResNet-50 (No Augmentation Eval): The ResNet-50 model with weights from
torchvision.models.ResNet50_Weights.IMAGENET1K_V2, evaluated directly on
the validation and IMAGENET-C sets without any fine-tuning under our experimental setup. This
serves as a standard reference.

G.2 IMPLEMENTATION DETAILS FOR OPTIMA WITH CUTMIX

For evaluating OPTIMA with CutMix, we follow a similar experimental setup on the IMAGENET
(Deng et al., 2009) dataset, with robustness assessed on IMAGENET-C (Hendrycks & Dietterich,
2019).

Model Architecture and Preprocessing. We use the ResNet-50 architecture (He et al., 2016)
pretrained with torchvision.models.ResNet50_Weights.IMAGENET1K_V2, replacing
the final classifier layer for the 1000 IMAGENET classes. Input preprocessing during training includes
RandomResizedCrop to 224×224 and RandomHorizontalFlip. Validation and test images
are resized (256 shorter edge) and center-cropped to 224× 224. Standard IMAGENET normalization
is applied.

Learnable CutMix Augmenter. In CutMix (Yun et al., 2019), a patch from one image is pasted
onto another, and labels are mixed proportionally to the area of the patches. The mixing ratio λ
(determining the area of the first image to keep, and thus (1-λ) is the area of the patch from the
second image) is typically sampled from a Beta(α, α) distribution. For our OPTIMA CutMix, this α
parameter of the Beta distribution is made learnable. We parameterize a Normal distribution over
log(α) with learnable mean µlogα and learnable log standard deviation log σlogα. The initial value
for µlogα is set to log(1.0), corresponding to an initial αinit = 1.0 (a common default for CutMix).
The initial log σlogα is set to log(0.1). A prior distribution p(log(α)) is defined as N (log(αinit), σ

2
p),

with prior standard deviation σp = 2.0. The KL divergence between the learned variational posterior
for log(α) and this prior is added to the training loss, weighted by beta_augmenter_reg. The
sampled α values are clamped to [10−4, 100.0] before being used in the Beta distribution. The
resulting mixing coefficient λfinal (coefficient for the first image’s label) is determined by the actual
area of the pasted patch after clipping to image boundaries.

Training Configuration. Models were trained for Nepochs epochs (e.g., 15) using the AdamW opti-
mizer. The base learning rate for network parameters was 1×10−4, while the learnable CutMix param-
eters (µlogα, log σlogα) used a learning rate of 1× 10−3. A CosineAnnealingWarmRestarts
learning rate scheduler was used (‘T_0=10‘ or ‘15‘, ‘T_mult=2‘, ‘eta_min‘=1/100 of ini-
tial LR). Network weight decay (beta_network_reg) was 0.01, and the KL coefficient
(beta_augmenter_reg) was 1.0. Training used a global batch size of 256 on 4 NVIDIA A100
GPUs with DDP, ‘"16"‘ precision, ‘torch.set_float32_matmul_precision(′medium′)‘, and gra-
dient clipping at 1.0. Data loader workers were set to 8 per GPU.

G.3 IMPLEMENTATION DETAILS FOR OPTIMA WITH AUGMIX (LEARNABLE SEVERITY +
JSD)

We evaluate OPTIMA by learning a component of the AugMix (Hendrycks et al., 2020) augmenta-
tion strategy, specifically its overall aug_severity, while also employing the Jensen-Shannon
Divergence (JSD) consistency loss. Experiments are conducted on IMAGENET (Deng et al., 2009)
and IMAGENET-C (Hendrycks & Dietterich, 2019).

Model Architecture and Preprocessing. The model is a ResNet-50 (He et al., 2016) initialized with
torchvision.models.ResNet50_Weights.IMAGENET1K_V2, with the final classifier
layer adapted for 1000 classes. During training, input PIL images undergo RandomResizedCrop
to 224 × 224 and RandomHorizontalFlip. These PIL images are then passed to our
LearnableAugMixSeverityJSDAugmenter module. Validation and test images use stan-
dard resizing, center cropping, and ToTensor conversion, followed by IMAGENET normalization.

Learnable AugMix Severity + JSD Augmenter. The LearnableAugMixSeverityJSDAugmenter
is implemented as an nn.Module.
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• AugMix Core: For each input PIL image, three views are generated: the original, and two
independently augmented versions using AugMix. Each AugMix version is a convex combination
(m ∼ Beta(1, 1)) of the original image and a mixture of K = augmix_mixture_width
(default 3) augmentation chains. Each chain consists of D (default random 1-3, controlled by
augmix_mixture_depth) basic operations (e.g., rotate, shear, color jitter) sampled randomly.
Mixing weights for chains wk are from Dirichlet(1). All PIL operations and the final conversion to
tensors (for each of the three views) happen within this augmenter module, ensuring output tensors
are on the correct device. We utilize a predefined list of tensor-based augmentation operations
where possible to improve performance over PIL-only operations.

• Learnable Severity: The overall intensity of the basic augmentations, aug_severity
(typically a value between 0-10), is made learnable. We parameterize a Normal distribu-
tion over log(aug_severity) with learnable mean µlogS and learnable log standard deviation
log σlogS . The initial µlogS corresponds to an initial_aug_severity of 3.0, and ini-
tial log σlogS = log(0.1). The prior for log(aug_severity) is N (log(initial_aug_severity), σ2

pS)
with σpS = prior_severity_std_learnable_aug (default 1.0). A KL divergence term,
weighted by beta_augmenter_reg, regularizes these learned severity parameters. The sam-
pled severity is clamped to [0.1, 10.0].

• JSD Loss: The three output image tensors (original, AugMix view 1, AugMix view 2) are passed
through the network. A JSD consistency loss is calculated between their softmax predictions,
weighted by beta_jsd (default 12.0), and added to the primary cross-entropy loss (calculated on
the original view).

The data loader for training uses a custom collate function to provide a list of PIL images to the
augmenter.

Training Configuration. Training was conducted for Nepochs epochs (in our case 6 epochs because
of the computational complexity related to tensor and PIL tranformations) with the AdamW optimizer.
The base learning rate for network parameters was 1 × 10−4. The learnable severity parameters
(µlogS , log σlogS) used a learning rate of 1 × 10−3. A CosineAnnealingWarmRestarts
scheduler was used (‘T_0=10‘ or ‘15‘, ‘T_mult=2‘, ‘eta_min‘=1/100 of initial LR). Network
weight decay (beta_network_reg) was 0.01. The KL coefficient for severity parameters
(beta_augmenter_reg) was 1.0. The JSD loss coefficient (beta_jsd) was 12.0. Training used
a global batch size of 128 (reduced due to processing three views) on 4 NVIDIA A100 GPUs with
DDP, ‘16‘ precision, ‘torch.set_float32_matmul_precision(′medium′)‘, and gradient clipping
at 1.0. Data loader workers were 8 per GPU.

G.4 EVALUATION AND SOFTWARE/HARDWARE FOR ALL THESE METHODS.

Models are evaluated on the standard IMAGENET validation set for top-1 accuracy and cross-entropy
loss. Robustness is assessed on the IMAGENET-C benchmark, reporting the normalized mean
Corruption Error (mCE normalized by AlexNet baseline) across all corruptions and severities. For
IMAGENET-C, images are processed using the same validation transforms as for the clean IMAGENET
validation set. All final reported evaluations are performed on a single GPU using 32-bit floating-point
precision.

Experiments were conducted using PyTorch version 2.0.1 and PyTorch Lightning version 2.1.0.
Training and evaluation four utilized NVIDIA A100 (80GB) GPUs.

G.5 EXPERIMENTAL RESULTS

Table 7: The result of IMAGENET and IMAGENET-C using ResNet-50 for each augmentations. We
evaluate the average test error for each corruption type

Method Test Acc (%) mCE (normalized) (%) gaussian shot impulse defocus glass motion zoom snow frost fog brightness contrast elastic pixelate jpeg

No Aug 60.8 76.7 71 73 76 61 73 61 64 67 62 54 32 61 55 55 47
Mixup (Zhang et al., 2018) 77.9 - - - - - - - - - - - - - - - -
OPTIMA Mixup (10 epochs) 79.31 68.41 55 57 59 62 73 59 59 62 51 44 31 48 55 50 43
Cutmix (Yun et al., 2019) 78.6 - - - - - - - - - - - - - - - -
OPTIMA Cutmix (15 epochs) 79.62 70.6 68 68.7 68.8 74.6 88.6 75.7 73.4 73.2 70.8 59 54.1 61.3 83.6 70.5 69.2
Augmix (Hendrycks et al., 2020) 77.53 65.3 - - - - - - - - - - - - - - -
OPTIMA Augmix (6 epochs) 78.19 68.21 57.37 58.26 60.79 60.98 72.04 56.77 54.54 59.76 54.58 44.72 30.13 45.37 54.75 51.66 44.71
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Results. In Table 7, we can see that OPTIMA allows us to get better test accuracy on clean data
with non-Bayesian ResNet-50. OPTIMA Mixup, Cutmix and Augmix are beating the baseline
results within (5-15 epochs). The mCE of OPTIMA Augmix is lower than the benchmark. This can
be explained by the very few training epochs (6 epochs) which we could run due to the computational
complexity of this experiment; with our computational resources it takes around 15 hours for one full
epoch.

H ADDITIONAL EXPERIMENTAL DETAILS FOR § 5.4. TOKEN-DROPOUT
IMPLEMENTATION DETAILS

Parameterization. The augmentation module applies token dropout with probability

pdrop = pmax σ(s),

where s is a trainable scalar (initialized at s0 = −2 in our implementation) and σ(·) is the logistic
function. The constant pmax sets an upper bound on the amount of dropout; we use pmax = 0.5.

Prior. We place a Gaussian prior directly on pdrop,

p(pdrop) ∝ exp
(
− 1

2
(pdrop−µ)2

σ2

)
,

implemented as a quadratic penalty in the ELBO objective. We use µ ∈ {0.1, 0.3} to represent weak
and strong prior preferences for token dropout, and σ = 0.1.

OPTIMA initialization. All methods begin from the same initial dropout rate pdrop =
pmax σ(s0) ≈ 0.04, ensuring a mild initial augmentation.

Baselines. We compare the following: (i) No Aug (pdrop = 0); (ii) Fixed Aug, using the same
initialization as OPTIMA; (iii) Fixed Aug (Matched), using OPTIMA’s learned dropout; (iv) BO-Fixed,
selecting pdrop via validation NLL over a grid in [0, 0.3].

Optimizers. DistilBERT is trained with learning rate 2× 10−5, and s is trained with learning rate
5× 10−2. Further hyperparameters are unchanged from standard HuggingFace defaults.

I BROADER IMPACT

OPTIMA has significant potential for improving the reliability of Bayesian deep learning in high-
stakes applications, such as medical imaging, autonomous driving, and scientific discovery. The
ability to learn optimal augmentation strategies from data also reduces the need for manual tuning,
making Bayesian methods more accessible to practitioners across domains.

J REPRODUCIBILITY STATEMENT

All experiments are fully described in the submission, including dataset details, hyperparameters,
and training procedures. The accompanying code is provided to ensure that our results can be
independently reproduced.

K THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs) solely for non-substantive assistance, including grammar
refinement and summarizing relevant literature. All research ideas, analyses, and conclusions are the
authors’ own.
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