

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 OPTIMIZING DATA AUGMENTATION THROUGH BAYESIAN MODEL SELECTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Data Augmentation (DA) has become an essential tool to improve robustness and generalization of modern machine learning. However, when deciding on DA strategies it is critical to choose parameters carefully, and this can be a daunting task which is traditionally left to trial-and-error or expensive optimization based on validation performance. In this paper, we counter these limitations by proposing a novel framework for optimizing DA. In particular, we take a probabilistic view of DA, which leads to the interpretation of augmentation parameters as model (hyper)-parameters, and the optimization of the marginal likelihood with respect to these parameters as a Bayesian model selection problem. Due to its intractability, we derive a tractable Evidence Lower BOund (ELBO), which allows us to optimize augmentation parameters jointly with model parameters. We provide extensive theoretical results on variational approximation quality, generalization guarantees, invariance properties, and connections to empirical Bayes. Through experiments on computer vision and NLP tasks, we show that our approach improves calibration and yields robust performance over fixed or no augmentation. Our work provides a rigorous foundation for optimizing DA through Bayesian principles with significant potential for robust machine learning.

1 INTRODUCTION

Data Augmentation (DA) (Van Dyk & Meng, 2001) is an essential element behind the success of modern machine learning (see, e.g., Shorten & Khoshgoftaar, 2019, and references therein). In supervised learning, DA amounts to creating copies of the data in the training set, and perturbing these with sensible transformations that preserve label information. The success of DA is connected with the current trend of employing over-parameterized models based on neural networks, which require large amounts of data to be trained effectively (Alabdulmohsin et al., 2022). It has been shown that DA has strong connections with regularization (Zhang et al., 2017; Dao et al., 2019), and it can provide a better estimation of the expected risk (Shao et al., 2022; Chen et al., 2020; Lyle et al., 2020; Deng et al., 2022). Therefore, it is expected for DA to enhance generalization.

For a given problem, once transformation for DA are chosen, it is then necessary to decide on their parameters. For example, in image classification, if we choose to apply transformations in the form of rotations, what range of angles should we choose? Careful choices of DA parameters are important to obtain performance improvements. For example, in the case of rotations applied to the popular MNIST dataset, large rotation angles can turn a '9' into a '6', negatively impacting training. In the literature, DA parameters are often suggested after some trial-and-error. Direct optimization of DA parameters could also be approached via grid-search or Bayesian optimization by recording performance on a validation set, but this is very costly due to the need to perform a large number of training runs.

In this paper, we propose a novel approach to optimize DA which counters these limitations. In particular, we take a probabilistic view of DA, whereby we treat DA parameters as model (hyper-)parameters. We then consider the optimization of such parameters as a Bayesian model selection problem. Due to the intractability of the Bayesian model selection objective (i.e., the marginal likelihood), we derive a tractable ELBO, which allows us to optimize DA parameters jointly with model parameters, bypassing the need to perform expensive cross-validation or grid search. We provide an extensive theoretical analysis, which indicates robust predictive performance and low Expected Calibration Error (ECE) as demonstrated by the experiments (see, e.g., Fig. 1). Our main contributions are as follows:

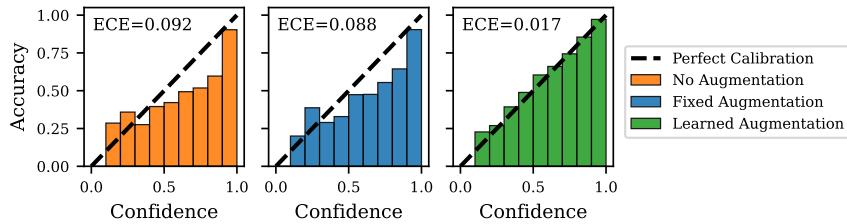


Figure 1: **OPTIMA obtains the best calibration.** Example of ResNet-18 on CIFAR10; see details in Appendix F.1.

Methodology: We introduce OPTIMA (OPTImizing Marginalized Augmentations), a novel framework to learn DA parameters grounded on Bayesian principles. We then provide a tractable variational approximation which allows for the optimization of both model parameters and DA parameters, yielding a practical and fast alternative to manual tuning or expensive black-box optimization of DA parameters.

Theory: We provide a comprehensive theoretical analysis, establishing a cohesive framework to understand our Bayesian approach to DA, highlighting its principled nature. Our analysis includes: **(i)** The analysis of the variational approximation’s quality, guiding DA distribution design (§ 4.1). **(ii)** A derivation of PAC-Bayes generalization guarantees (§ 4.2) and demonstration on how OPTIMA promotes model invariance and smoother decision boundaries (§ 4.3). **(iii)** A demonstration of improved uncertainty quantification and calibration through proper marginalization over DA parameters (§ 4.4). **(iv)** The establishing of empirical Bayes optimality (§ 4.5) for data-driven DA strategies, complemented by information-theoretic insights (§ 4.6) into how learned DA enhances inference.

Empirical Validation: We support OPTIMA and the theoretical developments with rigorous empirical validation on various tasks (§ 5), including regression, image classification on standard benchmarks (e.g., CIFAR10 and IMAGENET), and an additional natural language classification task (SST-5). Across all these settings—spanning both continuous geometric transformations and discrete text perturbations—our experiments consistently demonstrate that OPTIMA improves generalization, model calibration, and robustness to out-of-distribution data compared to models trained with fixed or no augmentation strategies.

Overall, our work demonstrates how Bayesian principles, specifically through a (partial or full) variational treatment of both model and augmentation parameters, can be effectively leveraged to develop a practical, scalable, and principled framework for optimizing DA, moving beyond expensive trial-and-error or validation-based procedures for optimal DA.

2 BACKGROUND AND RELATED WORK

We consider supervised learning tasks, where mappings from inputs $\mathbf{x} \in \mathbb{R}^D$ to labels $\mathbf{y} \in \mathbb{R}^O$ are learned from N training observations $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^N$. A common approach is to find a loss minimizing point estimates, which is equivalent to maximizing a log likelihood $\log p(\mathbf{Y} | \boldsymbol{\theta}, \mathbf{X})$, where \mathbf{X} and \mathbf{Y} denote all inputs and labels, respectively.

Marginal likelihood and ELBO. In the Bayesian approach we choose a prior $p(\boldsymbol{\theta})$, and infer the posterior distributions over parameters and predictive distribution for a new data point \mathbf{x}^* as:

$$p(\boldsymbol{\theta} | \mathcal{D}) = \frac{p(\mathbf{Y} | \boldsymbol{\theta}, \mathbf{X})p(\boldsymbol{\theta})}{p(\mathbf{Y} | \mathbf{X})}, \quad (1) \quad p(\mathbf{y}^* | \mathbf{x}^*, \mathcal{D}) = \int p(\mathbf{y}^* | \mathbf{x}^*, \boldsymbol{\theta})p(\boldsymbol{\theta} | \mathcal{D})d\boldsymbol{\theta}. \quad (2)$$

The denominator of Eq. 1 is the *marginal likelihood*, representing the data likelihood under the prior:

$$p(\mathbf{Y} | \mathbf{X}, \boldsymbol{\phi}) = \int p(\mathbf{Y} | \boldsymbol{\theta}, \mathbf{X}, \boldsymbol{\phi})p(\boldsymbol{\theta} | \boldsymbol{\phi})d\boldsymbol{\theta}, \quad (3)$$

where we made explicit the dependence on continuous hyper-parameters $\boldsymbol{\phi}$. We can perform model selection by choosing the one with highest log-marginal likelihood, also known as *model evidence*.

108 The intractability of this objective motivates us to employ variational inference to obtain a tractable
 109 lower bound to be optimized with respect to a parametric surrogate posterior $q(\theta)$,
 110

$$112 \log p(\mathbf{Y} | \mathbf{X}, \phi) \geq \mathbb{E}_{q(\theta)} [\log p(\mathbf{Y} | \theta, \mathbf{X}, \phi)] - \text{KL}[q(\theta) \| p(\theta | \phi)] =: \text{ELBO} \quad (4)$$

114 **Data augmentation in neural Networks.** In DA, we apply transformations $T_\gamma(\mathbf{x})$ parameterized
 115 by γ to the inputs at training time. In image classification common transformations include rotations,
 116 translations, flips, and color manipulations, while in natural language popular augmentations involve
 117 word substitutions and syntactic transformations (Shorten & Khoshgoftaar, 2019; Feng et al., 2021).
 118 During training, for each sample in a mini-batch, we first sample a transformation parameter γ and
 119 then apply $T_\gamma(\mathbf{x})$. This approach has proven highly effective in improving generalization in deep
 120 learning (Shorten & Khoshgoftaar, 2019).

121 **Augmentations overcount evidence.** Naïvely replicating augmented examples $\{(T_\gamma(\mathbf{x}_i), \mathbf{y}_i)\}$ as
 122 if fully independent effectively multiplies the evidence (3), *overcounting* the likelihood (Wilson &
 123 Izmailov, 2020). For a single data point $(\mathbf{x}_i, \mathbf{y}_i)$, this yields a likelihood $\prod_{k=1}^K p(\mathbf{y}_i | T_{\gamma_k}(\mathbf{x}_i), \theta)$,
 124 equivalent to raising $p(\mathbf{y}_i | \mathbf{x}_i, \theta)$ to the power K . This overcounting can artificially shrink posterior
 125 uncertainty and degrade calibration, undermining a key advantage of Bayesian methods.
 126

127 2.1 RELATED WORKS

129 **Data augmentation optimization.** Optimizing data augmentation (DA) parameters has been ap-
 130 proached via computationally expensive reinforcement learning (AutoAugment (Cubuk et al., 2019)),
 131 made more efficient by population-based training (Ho et al., 2019). Others formulate it as density
 132 matching, often using black-box search like Bayesian optimization (Snoek et al., 2012), or differenti-
 133 able policy search (Lim et al., 2019; Cubuk et al., 2020; Hataya et al., 2020), or as gradient matching
 134 (Zheng et al., 2022). Bi-level optimization has also been used, but remains expensive and often relies
 135 on strong relaxations (Liu et al., 2021; Li et al., 2020; Hataya et al., 2022; Mounsveng et al., 2021).
 136 These methods typically rely on heuristics and complex search pipelines. More recently, DA has been
 137 framed as invariance-constrained learning with regularized objectives (Benton et al., 2020) or via
 138 non-parametric models solved with costly Markov chain Monte Carlo (MCMC) (Hounie et al., 2023).

139 **Probabilistic perspectives of DA.** Probabilistic views of DA have shown perturbed inputs can
 140 induce degenerate (Izmailov et al., 2021) or tempered likelihoods (Kapoor et al., 2022), informing
 141 studies on DA’s role in the cold-posterior effect (Wenzel et al., 2020; Bachmann et al., 2022).
 142 Nabarro et al. (2022) proposed an integral likelihood similar to ours using a Jensen lower bound,
 143 and Heinonen et al. (2025) recently defined an augmented likelihood via label smoothing and input
 144 mollification (Tran et al., 2023). Kapoor et al. (2022) analyzed augmentations through a Dirichlet
 145 likelihood. Related latent-variable formulations also appear in work such as Chen et al. (2020)
 146 and Chatzipantazis et al. (2023), which consider probabilistic transformations but do not optimize
 147 augmentation parameters within a joint Bayesian model. However, these approaches generally use
 148 fixed, unoptimized augmentation parameters. In contrast, Wang et al. (2023) modeled DA with
 149 stochastic output layers and auxiliary variables for MAP optimization via expectation maximization,
 150 while Wu & Williamson (2024) applied MixUp (Zhang et al., 2018) for martingale posteriors (Fong
 151 et al., 2023). Broader connections link DA to kernel methods for task-specific invariances (Dao
 152 et al., 2019), though not directly to Bayesian inference. More directly, van der Wilk et al. (2018)
 153 learned invariances via marginal likelihood for Gaussian processes (Williams & Rasmussen, 2006),
 154 an idea Immer et al. (2022) extended to BNNs (Neal, 1996; Tran et al., 2022) using the Laplace
 155 approximation (MacKay, 1992; Daxberger et al., 2021; Immer et al., 2021), but without theoretical
 156 generalization guarantees.

157 **PAC-Bayes generalization bounds.** PAC-Bayes bounds (McAllester, 1999; Catoni, 2007; Alquier,
 158 2024) offer theoretical guarantees for Bayesian methods, including in deep learning (Dziugaite
 159 & Roy, 2017; Lotfi et al., 2022; Wilson, 2025). However, prior work rarely treats augmentation
 160 parameters as latent variables within this framework. We unify these directions by making the
 161 augmentation distribution a key component of the model’s likelihood, deriving novel theoretical
 162 results that characterize its benefits.

162 3 AUGMENTATION OPTIMIZATION THROUGH BAYESIAN MODEL SELECTION
163164 **Augmentation as Marginalization.** In this section we treat the optimization of DA parameters as
165 Bayesian model selection. To do so, we start by defining a transformation-augmented likelihood:

166
$$167 p(\mathbf{y} | \mathbf{x}, \boldsymbol{\theta}, \boldsymbol{\phi}) = \mathbb{E}_{p(\boldsymbol{\gamma} | \boldsymbol{\phi})} \left[p(\mathbf{y} | T_{\boldsymbol{\gamma}}(\mathbf{x}), \boldsymbol{\theta}) \right], \quad (5)$$

168

169 where $T_{\boldsymbol{\gamma}}(\mathbf{x})$ is the transformed input under augmentation distribution $\boldsymbol{\gamma} \sim p(\boldsymbol{\gamma} | \boldsymbol{\phi})$ parameterized
170 by $\boldsymbol{\phi}$. This formulation treats augmentation as marginalization over transformations rather than data
171 replication. This method averages over transformations to contribute each original example exactly
172 once, as opposed to the overcounting effect in the case of naïve augmentation. As we will see, this
173 yields a more calibrated posterior with appropriate uncertainty quantification.174 The data likelihood given model parameters $\boldsymbol{\theta}$ and augmentation parameters $\boldsymbol{\phi}$ is

175
$$176 p(\mathcal{D} | \boldsymbol{\theta}, \boldsymbol{\phi}) = \prod_{i=1}^N \mathbb{E}_{p(\boldsymbol{\gamma} | \boldsymbol{\phi})} \left[p(\mathbf{y}_i | T_{\boldsymbol{\gamma}}(\mathbf{x}_i), \boldsymbol{\theta}) \right]. \quad (6)$$

177

178 Taking a fully Bayesian treatment, we assign a prior $p(\boldsymbol{\phi})$ on the augmentation parameters $\boldsymbol{\phi}$,
179 making $\boldsymbol{\phi}$ a latent variable alongside $\boldsymbol{\theta}$. The joint distribution over all variables is $p(\mathcal{D}, \boldsymbol{\theta}, \boldsymbol{\phi}, \boldsymbol{\gamma}) =$
180 $p(\boldsymbol{\theta})p(\boldsymbol{\phi})p(\boldsymbol{\gamma} | \boldsymbol{\phi})p(\mathcal{D} | \boldsymbol{\theta}, \boldsymbol{\phi})$. Our goal is to approximate the posterior $p(\boldsymbol{\theta}, \boldsymbol{\phi} | \mathcal{D})$, which is typically
181 intractable. To address this challenge, we employ variational inference (Jordan et al., 1999).182 **Augmented Evidence Lower Bound.** For variational inference, we introduce a variational dis-
183 tribution $q(\boldsymbol{\theta}, \boldsymbol{\phi}) = q(\boldsymbol{\theta})q(\boldsymbol{\phi})$ to approximate the posterior $p(\boldsymbol{\theta}, \boldsymbol{\phi} | \mathcal{D})$. The standard ELBO is a
184 lower bound on the log marginal likelihood $\mathcal{L} := \log p(\mathcal{D}) = \log \int \int \int p(\mathcal{D}, \boldsymbol{\theta}, \boldsymbol{\phi}, \boldsymbol{\gamma}) d\boldsymbol{\theta} d\boldsymbol{\phi} d\boldsymbol{\gamma}$. Us-
185 ing Jensen’s inequality with $q(\boldsymbol{\theta}, \boldsymbol{\phi})$ and with standard manipulations, we obtain the ELBO, which
186 consists of a data-fitting term and two regularization terms $\text{KL}(q(\boldsymbol{\theta}) \| p(\boldsymbol{\theta}))$ and $\text{KL}(q(\boldsymbol{\phi}) \| p(\boldsymbol{\phi}))$:

187
$$188 \mathcal{L} \geq \mathbb{E}_{q(\boldsymbol{\theta})q(\boldsymbol{\phi})p(\boldsymbol{\gamma} | \boldsymbol{\phi})} \left[\sum_{i=1}^N \log p(\mathbf{y}_i | T_{\boldsymbol{\gamma}}(\mathbf{x}_i), \boldsymbol{\theta}) \right] - \text{KL}(q(\boldsymbol{\theta}) \| p(\boldsymbol{\theta})) - \text{KL}(q(\boldsymbol{\phi}) \| p(\boldsymbol{\phi})). \quad (7)$$

189

190 **Optimization of the ELBO.** The augmented ELBO presented in Eq. 7 is optimized by jointly
191 updating the parameters of the variational distributions $q(\boldsymbol{\theta})$ and $q(\boldsymbol{\phi})$ using stochastic gradient-based
192 methods. This involves sampling from these distributions (often via reparameterization) and from
193 the DA distribution $p(\boldsymbol{\gamma} | \boldsymbol{\phi})$ to compute Monte Carlo estimates of the expectation term, and then
194 backpropagating through the objective. A detailed algorithm, specific choices for parameterizing
195 $p(\boldsymbol{\gamma} | \boldsymbol{\phi})$ and $q(\boldsymbol{\phi})$ for continuous and discrete transformations, and other practical implementation
196 aspects are discussed in Appendix D.197 4 THEORETICAL ANALYSIS
198199 We present a comprehensive analysis of the proposed DA approach based on Bayesian model selection,
200 analyzing its properties from multiple perspectives: variational approximation quality, generalization
201 guarantees, invariance properties, and connections to empirical Bayes. Our analysis includes a
202 direct comparison with naïve DA, which amounts in treating augmented samples as training samples.
203 This analysis provides a rigorous foundation for OPTIMA while yielding practical insights for
204 implementation.205 4.1 VARIATIONAL APPROXIMATION WITH AUGMENTATION
206

207 We begin by analyzing the quality of our variational approximation when incorporating DA.

208 **Proposition 4.1** (Jensen Gap Bound). *The augmentation distribution variance and model sensitivity
209 control the Jensen gap introduced by our lower bound approximation. If $f(\boldsymbol{\gamma}) = \log p(\mathbf{y} | T_{\boldsymbol{\gamma}}(\mathbf{x}), \boldsymbol{\theta})$
210 is L -Lipschitz in $\boldsymbol{\gamma}$, and $\boldsymbol{\gamma} \sim p(\boldsymbol{\gamma} | \boldsymbol{\phi})$ is sub-Gaussian with variance proxy σ^2 , then:*

211
$$212 \log \mathbb{E}_{\boldsymbol{\gamma}} [p(\mathbf{y} | T_{\boldsymbol{\gamma}}(\mathbf{x}), \boldsymbol{\theta})] - \mathbb{E}_{\boldsymbol{\gamma}} [\log p(\mathbf{y} | T_{\boldsymbol{\gamma}}(\mathbf{x}), \boldsymbol{\theta})] \leq \frac{L^2 \sigma^2}{2}. \quad (8)$$

213

214 *Also, this bound is tight when $f(\boldsymbol{\gamma})$ is approximately linear in the high-probability region of $p(\boldsymbol{\gamma} | \boldsymbol{\phi})$.*

216 The proof is presented in [Appendix B.1](#). This result has important implications for optimizing the
 217 augmentation distribution $p(\gamma|\phi)$:
 218

219 **Corollary 4.2** (Optimal Augmentation Variance). *The optimal variance σ_ϕ^2 for the augmentation
 220 distribution balances two competing factors:*

221 1. *Increasing σ_ϕ^2 improves exploration of the augmentation space.*
 222 2. *Decreasing σ_ϕ^2 tightens the variational bound.*

224 *For models with high sensitivity to augmentations (large L), smaller variance is preferred to
 225 maintain bound tightness.*

226 This corollary provides practical guidance for setting augmentation distribution parameters, suggest-
 227 ing that highly sensitive models benefit from more conservative augmentation strategies.
 228

229 4.2 GENERALIZATION GUARANTEES

231 To analyze the generalization of our Bayesian-optimized DA, we leverage the PAC-Bayes framework
 232 ([McAllester, 1999](#); [Catoni, 2007](#)); see [Appendix C](#) for a primer. PAC-Bayes theory provides high-
 233 probability upper bounds on the true risk (generalization error) of a learning algorithm that outputs a
 234 distribution over hypotheses (a “posterior”). These bounds typically depend on the empirical risk
 235 observed on the training data and a complexity term, often expressed as the KL divergence between
 236 this posterior and a data-independent prior distribution. By extending this framework to our setting,
 237 we can formally quantify how well the model with learned DA parameters will perform on unseen
 238 data. We first present a PAC-Bayes bound for OPTIMA, then provide a theorem that explicitly
 239 compares OPTIMA to naïve DA, demonstrating superior generalization.

240 **Definition 4.3** (True and Empirical Risks). Given the transformation function $T_\gamma(\mathbf{x})$, we define:

241 • *True risk:* $R(\theta, \phi) = \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim P} [-\log \mathbb{E}_{p(\gamma|\phi)} p(\mathbf{y} \mid T_\gamma(\mathbf{x}), \theta)].$
 242
 243 • *Our empirical risk:* $\hat{R}(\theta, \phi) = -\frac{1}{N} \sum_{i=1}^N \log \mathbb{E}_{p(\gamma|\phi)} p(\mathbf{y}_i \mid T_\gamma(\mathbf{x}_i), \theta).$
 244
 245 • *Empirical risk for naïve augmentation (K samples per datapoint):*

246

$$\hat{R}_{\text{naive}}(\theta) = -\frac{1}{N} \frac{1}{K} \sum_{i=1}^N \sum_{k=1}^K \log p(y_i \mid T_{\gamma_k}(x_i), \theta), \quad \gamma_k \sim p(\gamma \mid \phi)$$

247 **Theorem 4.4** (PAC-Bayes with Augmented Likelihood). *For an i.i.d. dataset $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^N$
 248 drawn from an unknown distribution P , any prior $p(\theta, \phi)$, and any posterior $q(\theta, \phi) = q(\theta)q(\phi)$
 249 over the hypothesis space $\theta \times \phi$, with probability at least $1 - \delta$ over the draw of \mathcal{D} :*

250

$$\mathbb{E}_{q(\theta, \phi)} [R(\theta, \phi)] \leq \mathbb{E}_{q(\theta, \phi)} [\hat{R}(\theta, \phi)] + \sqrt{\frac{KL(q(\theta, \phi) \parallel p(\theta, \phi)) + \log \frac{2\sqrt{N}}{\delta}}{2N}}, \quad (9)$$

251 where $KL(q(\theta, \phi) \parallel p(\theta, \phi)) = KL(q(\theta) \parallel p(\theta)) + KL(q(\phi) \parallel p(\phi))$ if $p(\theta, \phi) = p(\theta)p(\phi)$.
 252

253 To explicitly demonstrate that OPTIMA generalizes better than naïve DA, we now compare the
 254 PAC-Bayes bounds of both methods, showing that OPTIMA yields a tighter bound due to proper
 255 marginalization over transformations. We encourage reader refer to [Appendix C](#) for further discussion.
 256

257 **Remark.** As usual with Monte Carlo estimates, the naïve risk \hat{R}_{naive} is a consistent approximation of
 258 the true marginalization when K is large enough, which is the setting assumed in [Theorem 4.5](#).

259 **Theorem 4.5** (Generalization Advantage of Bayesian-Optimized Augmentation). *Consider a model
 260 parameterized by $\theta \in \Theta$, and let $\phi \in \Phi$ parameterize an augmentation distribution $p(\gamma \mid \phi)$, where
 261 γ defines transformations $T_\gamma(\mathbf{x})$.*

262 *We consider the following assumptions:*

263 1. *The transformation distribution $p(\gamma \mid \phi)$ is such that $\mathbb{E}_{p(\gamma|\phi)} p(\mathbf{y} \mid T_\gamma(\mathbf{x}), \theta)$ can be computed
 264 or approximated accurately.*

270 2. The variational posteriors $q(\theta, \phi)$ and $q(\theta)$ are optimized to minimize their respective bounds.
 271
 272 3. The KL divergences $KL(q(\theta, \phi) \| p(\theta, \phi))$ and $KL(q(\theta) \| p(\theta))$ are comparable, i.e., the com-
 273 plexity penalties are similar.

274 Under these assumptions, the PAC-Bayes bound for OPTIMA is tighter than that for naïve DA:

$$275 \mathbb{E}_{q(\theta, \phi)}[R(\theta, \phi)] \leq \mathbb{E}_{q(\theta)}[R(\theta)] - \Delta, \quad (10)$$

276 where $\Delta = \mathbb{E}_{q(\theta, \phi)} \left[\frac{1}{N} \sum_{i=1}^N \Delta_\phi(\mathbf{x}_i, \mathbf{y}_i) \right] \geq 0$, and $\Delta_\phi(\mathbf{x}_i, \mathbf{y}_i) = \log \mathbb{E}_{p(\gamma|\phi)} p(\mathbf{y}_i \mid T_\gamma(\mathbf{x}_i), \theta)$. Furthermore, $\Delta > 0$ when $p(\mathbf{y}_i \mid T_\gamma(\mathbf{x}_i), \theta)$ varies across γ , indicating a strictly better generalization bound for OPTIMA.

281 The proofs for [Theorem 4.4](#) and [Theorem 4.5](#) are detailed in [Appendix B.2](#) and [Appendix B.3](#). This
 282 theorem provides several key insights:

283 **Corollary 4.6** (Marginalization Advantage). *For a fixed ϕ , the term $\Delta_\phi(\mathbf{x}_i, \mathbf{y}_i) = \log \mathbb{E}_{p(\gamma|\phi)} p(\mathbf{y}_i \mid T_\gamma(\mathbf{x}_i), \theta) - \mathbb{E}_{p(\gamma|\phi)} \log p(\mathbf{y}_i \mid T_\gamma(\mathbf{x}_i), \theta)$ quantifies the advantage of proper
 284 marginalization over naïve DA. By Jensen's inequality, $\Delta_\phi(\mathbf{x}_i, \mathbf{y}_i) \geq 0$, with equality only when
 285 $p(\mathbf{y}_i \mid T_\gamma(\mathbf{x}_i), \theta)$ is constant across all γ in the support of $p(\gamma|\phi)$.*

286 **Corollary 4.7** (Augmentation-Aware Prior). *The PAC-Bayes bound is smallest when the prior
 287 $p(\theta, \phi)$ reflects the invariances induced by the augmentation family. Priors that favor parameters
 288 satisfying $p(\mathbf{y} \mid T_\gamma(\mathbf{x}), \theta) \approx p(\mathbf{y} \mid \mathbf{x}, \theta)$ lead to smaller KL terms and tighter bounds.*

292 These results demonstrate that OPTIMA provides better generalization guarantees than naïve DA
 293 and suggests principles for designing priors that complement the DA strategy.

294 4.3 INVARIANCE ANALYSIS

297 We now analyze how OPTIMA promotes invariance to transformations, extending beyond first-order
 298 (Jacobian-based) analysis to include higher-order effects. This analysis reveals how the model's
 299 sensitivity to input transformations is regularized, encouraging robustness and generalization.

300 **Theorem 4.8** (Higher-Order Invariance). *Let f_θ be a twice-differentiable function parameterized by
 301 θ , with its Hessian bounded such that $\|\nabla^2 f_\theta\| \leq H$. For input transformations $T_\gamma(\mathbf{x}) = \mathbf{x} + \delta(\gamma)$,
 302 where $\delta(\gamma)$ is a perturbation with zero mean, $\mathbb{E}_{p(\gamma|\phi)}[\delta] = 0$, and covariance $\mathbb{E}_{p(\gamma|\phi)}[\delta\delta^\top] = \Sigma_\phi$,
 303 the expected squared difference in the model's output under these transformations is:*

$$304 \mathbb{E}_{p(\gamma|\phi)} [\|f_\theta(T_\gamma(\mathbf{x})) - f_\theta(\mathbf{x})\|^2] = \text{Tr} (J_f(\mathbf{x})^\top J_f(\mathbf{x}) \Sigma_\phi) \\ 305 + \frac{1}{4} \mathbb{E}_{p(\gamma|\phi)} [\delta^\top \nabla^2 f_\theta(\mathbf{x})^\top \nabla^2 f_\theta(\mathbf{x}) \delta] + \mathcal{O}(\|\delta\|^3), \quad (11)$$

307 where $J_f(\mathbf{x})$ is the Jacobian of f_θ at input \mathbf{x} , $\nabla^2 f_\theta(\mathbf{x})$ is the Hessian of f_θ at \mathbf{x} , and $\mathcal{O}(\|\delta\|^3)$
 308 represents higher-order terms that become negligible for small perturbations.

310 **Corollary 4.9** (Input-Space Regularization). *The second-order term in [Theorem 4.8](#) acts as
 311 a regularizer, penalizing high curvature in the model's output with respect to the input. This
 312 encourages a smoother response surface, promoting robustness to transformations and potentially
 313 enhancing generalization by reducing sensitivity to irrelevant input variations.*

315 **Corollary 4.10** (Optimal Transformation Covariance). *The optimal covariance structure Σ_ϕ
 316 for the augmentation distribution depends on the geometry of the model's response surface.
 317 Specifically, Σ_ϕ should allocate more variance in directions where the model is approximately
 318 invariant (small eigenvalues of $J_f(\mathbf{x})^\top J_f(\mathbf{x})$) and less variance in directions of high sensitivity.*

319 *Remark 4.11.* In our framework, ϕ is inferred via $q(\phi)$ by maximizing the augmented ELBO, allowing
 320 the DA distribution to adapt to the data and further enhance model robustness.

322 This insight provides practical guidance for designing augmentation distributions that align with the
 323 model's natural invariances, further enhancing robustness and generalization. The proof can be found
 324 in [Appendix B.4](#).

324 4.4 MARGINALIZATION VS. HEURISTIC AUGMENTATION
325326 We now quantify the difference between our marginalization approach and naïve DA, focusing on
327 the impact on posterior uncertainty. The next theorem assumes local Gaussianity of the posterior
328 with full-rank covariance, which might not be the case in practice for over-parameterized models;
329 however, we believe that the theoretical development gives some useful insights into the behavior of
330 OPTIMA compared to naïve DA, and we will attempt a more general proof in the future.331 **Theorem 4.12** (Posterior Shrinkage under Naïve Augmentation). *Let $p_{\text{true}}(\boldsymbol{\theta} | \mathcal{D})$ be the posterior
332 under our marginalization approach and $p_{\text{naïve}}(\boldsymbol{\theta} | \mathcal{D})$ be the posterior under naïve DA with K
333 augmentations per data point. Under regularity conditions and assuming a locally Gaussian approxi-
334 mation around the MAP estimate $\hat{\boldsymbol{\theta}}$: $\Sigma_{\text{naïve}} \approx \frac{1}{K} \Sigma_{\text{true}}$, where $\Sigma_{\text{naïve}}$ and Σ_{true} are full-rank covariance
335 matrices of $p_{\text{naïve}}(\boldsymbol{\theta} | \mathcal{D})$ and $p_{\text{true}}(\boldsymbol{\theta} | \mathcal{D})$, respectively.*336 The proof is in [Appendix B.5](#). This result has significant implications for uncertainty quantification:
337338 **Corollary 4.13** (Uncertainty Propagation). *Predictive uncertainty is underestimated by a factor of
339 approximately \sqrt{K} under naïve augmentation, leading to overconfident predictions, particularly
340 for out-of-distribution inputs.*342 These results provide a quantitative characterization of the benefits of proper marginalization over
343 naïve augmentation, particularly for uncertainty quantification and calibration.345 4.5 EMPIRICAL BAYES PERSPECTIVE
346347 Finally, we analyze OPTIMA from an empirical Bayes perspective ([Robbins, 1992](#); [Efron, 2012](#)),
348 showing how it naturally leads to optimal augmentation strategies.349 **Theorem 4.14** (Empirical Bayes Optimality via Augmented ELBO). *The augmented
350 ELBO_{aug}($q_{\boldsymbol{\theta}}, q_{\boldsymbol{\phi}}$) (see [Eq. 7](#)) holds when $q(\boldsymbol{\theta}) = p(\boldsymbol{\theta} | \mathcal{D})$ and $q(\boldsymbol{\phi}) = p(\boldsymbol{\phi} | \mathcal{D})$. Consequently,
351 maximizing ELBO_{aug}($q_{\boldsymbol{\theta}}, q_{\boldsymbol{\phi}}$) with respect to both $q(\boldsymbol{\theta})$ and $q(\boldsymbol{\phi})$ approximates the posterior distri-
352 butions $p(\boldsymbol{\theta} | \mathcal{D})$ and $p(\boldsymbol{\phi} | \mathcal{D})$, with the mode or mean of $q(\boldsymbol{\phi})$ serving as a point estimate analogous
353 to an Empirical Bayes solution, regularized by the prior $p(\boldsymbol{\phi})$.*354 **Corollary 4.15** (Data-Driven Augmentation). *The optimization of $q(\boldsymbol{\phi})$ via the augmented ELBO
355 results in an augmentation distribution $p(\boldsymbol{\gamma} | \boldsymbol{\phi})$ that is specifically tailored to the observed data \mathcal{D} ,
356 with $\boldsymbol{\phi} \sim q(\boldsymbol{\phi})$. This process effectively selects DA parameters enhancing the ability of the model
357 to explain the data, implicitly performs model selection over the space of augmentation strategies.*359 **Corollary 4.16** (Convergence of Joint Optimization). *Under mild regularity conditions (e.g.,
360 continuity and boundedness of the likelihood and prior), the alternating optimization of the
361 variational distributions $q(\boldsymbol{\theta})$ and $q(\boldsymbol{\phi})$ converges to a local optimum of the marginal likelihood
362 $p(\mathcal{D})$. This ensures that the learned augmentation distribution $p(\boldsymbol{\gamma} | \boldsymbol{\phi})$ is both data-consistent
363 and aligned with the model’s posterior distribution.*365 These results establish OPTIMA as a principled, data-driven method for learning optimal augmentation
366 strategies within a Bayesian framework. The proof is detailed in [Appendix B.6](#).368 4.6 INFORMATION-THEORETIC PERSPECTIVE
369370 We now provide an information-theoretic analysis of OPTIMA, offering additional insights into the
371 role of DA in Bayesian inference.372 **Theorem 4.17** (Information Gain from Augmentation). *The expected information gain from DA,
373 measured as the reduction in posterior entropy, is:*

374
$$\Delta H = H[p(\boldsymbol{\theta} | \mathcal{D}_{\text{noaug}})] - H[p(\boldsymbol{\theta} | \mathcal{D})] \approx \frac{1}{2} \log \det(I + H_{\text{noaug}}^{-1} H_{\text{aug}}), \quad (12)$$

375

377 where H_{noaug} and H_{aug} are the Hessians of the negative log-likelihood without and with DA,
378 respectively, and $p(\boldsymbol{\theta} | \mathcal{D})$ uses the marginalized likelihood.

378 The proof is in [Appendix B.7](#). This information-theoretic perspective provides additional insights:
 379

380 **Corollary 4.18** (Optimal Information Gain). *The DA distribution that maximizes information gain
 381 while maintaining a fixed KL divergence from a reference distribution aligns with the eigenvectors
 382 of the Fisher information matrix, with variance inversely proportional to the eigenvalues.*

384 **Corollary 4.19** (Connection to Information Bottleneck). *OPTIMA can be viewed as implementing
 385 an information bottleneck, where the DA distribution $p(\gamma|\phi)$ is optimized to maximize the
 386 mutual information between the augmented inputs and the targets, while minimizing the mutual
 387 information between the original and augmented inputs.*

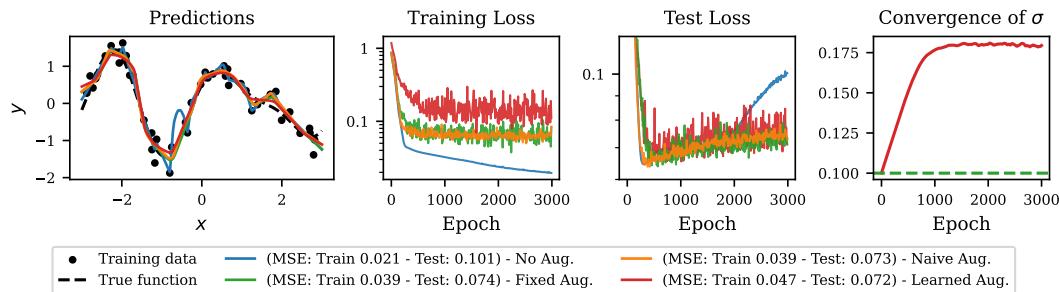
388 These information-theoretic results provide a complementary perspective on OPTIMA, connecting it
 389 to principles of optimal experimental design and information bottleneck theory.
 390

391 5 EXPERIMENTS

393 5.1 SYNTHETIC REGRESSION EXAMPLE

394 We begin with a toy regression problem by generating 50 training and 1000 test points from $y =$
 395 $\sin(2x) + 0.5 \cos(3x) + \varepsilon + \epsilon \sin(x)$ with $\varepsilon \sim \mathcal{N}(0, 0.2^2)$ and $\epsilon \sim \mathcal{N}(0, 0.15^2)$. We report results in
 396 [Fig. 2](#). In the competing approaches, **Fixed Aug** augments data by adding Gaussian noise with fixed
 397 standard deviation $\sigma = 0.1$. In **Naïve Aug**, for each training example, we average the loss over $K = 5$
 398 independent augmentations with $\sigma = 0.1$. In OPTIMA, the augmentation shift $\gamma \sim \mathcal{N}(\mu, \sigma^2)$ has
 399 learnable parameters and it has a prior $\mathcal{N}(0, 0.2^2)$.
 400

401 Although **No Aug** attains a lower training error, its test error is significantly higher due to overfitting.
 402 Conversely, **Fixed Aug** and **Naïve Aug** achieve better test performance than no augmentation,
 403 indicating that input perturbations help regularize the model. Our OPTIMA achieves competitive
 404 test MSE. The learned augmentation distribution widens over training taking σ from 0.10 to about
 405 0.18, implying that a broader range of translational perturbations is optimal for this dataset. This
 406 dynamic adaption shows the benefit of OPTIMA’s ability to learn the augmentation distribution, and
 407 it is theoretically justified in [Corollary 4.2](#) and [Corollary 4.15](#), which state that OPTIMA tailors the
 408 augmentation distribution to the observed data. For additional ablations with different intensities on
 409 image classification dataset CIFAR10, see [Appendix F.2](#).
 410



420 Figure 2: **Synthetic regression:** (Left) Test predictions compared to the ground-truth function. (Right)
 421 Convergence traces for OPTIMA; green dashed line denotes the fixed $\sigma = 0.1$ used in **Fixed Aug**.
 422

423 5.2 IMAGENET AND IMAGENET-C

425 We next evaluate the robustness of OPTIMA on IMAGENET ([Deng et al., 2009](#)) and IMAGENET-C, an out-
 426 of-distribution (OOD) dataset ([Hendrycks & Dietterich, 2019](#)) using a Bayesian ResNet-18 ([He et al., 2016](#)), where
 427 the final layer is replaced with a BayesianLinear module. This partially stochastic design—treating only
 428 the final layer in a Bayesian manner—is a common and
 429 efficient strategy in Bayesian deep learning ([Harrison et al., 2024](#)). As noted by [Sharma et al. \(2023\)](#),
 430

431 Table 1: IMAGENET and IMAGENET-C
 432 with non-Bayesian ResNet-50.

Method	Acc (%)	Acc (%)
	Clean	Corrupted
Mixup	76.1	40.1
OPTIMA Mixup	76.8	41.6

full network stochasticity is often unnecessary; introducing stochasticity in the final layer can be sufficient to capture predictive uncertainty, especially with strong deterministic feature extractors (Kristiadi et al., 2020). This allows the model to represent uncertainty in class probabilities while leveraging the pretrained backbone. With OPTIMA, we optimize augmentation parameters for Mixup (Zhang et al., 2018), CutMix (Yun et al., 2019), and AugMix (Hendrycks et al., 2020). Importantly, our approach is general and can also be applied to standard (non-Bayesian) networks. To illustrate this, we further evaluate OPTIMA on ResNet-50 without Bayesian treatment of its parameters. Implementation details are provided in Appendix E.

Table 2 summarizes the results, confirming that OPTIMA obtains better calibration and robustness for both in- and out-of-distributions. Regarding the non-Bayesian NNs, our framework also allows us to have better accuracy on the clean and corrupted data (see **Table 1**), further demonstrating that our method captures variations in the data better than fixed augmentations. More results can be found in [Appendix G.5](#). These results provide strong empirical support for our theoretical analyses – e.g, [Theorem 4.5](#) (improved generalization on test and OOD data) and [Theorem 4.12](#) (enhanced calibration and uncertainty quantification).

Table 2: IMAGENET and IMAGENET-C with pretrained Bayesian ResNet-50 (last layer) after 10 epochs ("C"-corrupted, "m" - mean)

Method	Test Acc (Clean Data) (%)	ECE (↓)	mCE (↓) (unnormalized) (C) (%)	mECE (↓) (C)	mOOD-AUROC (C)
Fixed Mixup	75.39	0.043	61.69	0.062	0.820
OPTIMA Mixup	74.97	0.031	61.65	0.045	0.822
Fixed Cutmix	74.17	0.036	63.28	0.059	0.819
OPTIMA Cutmix	74.34	0.034	63.60	0.058	0.820
Fixed Augmix	74.71	0.084	61.45	0.156	0.790
OPTIMA Augmix	75.33	0.083	60.68	0.149	0.793

5.3 COMPUTATIONAL EFFICIENCY AND COMPARISON WITH BAYESIAN OPTIMIZATION

Our method introduces almost no additional computational cost compared to traditional data augmentation. The difference lies in our adaptive augmentation strategies, which evolve over iterations rather than remaining fixed. OPTIMA employs Monte Carlo estimates with a small sample size like one per data point per iteration and uses the reparameterization trick for efficient, low-variance gradient estimation. To highlight its efficiency, we compare against Bayesian Optimization (BO), a strong baseline for augmentation tuning. BO requires costly black-box optimization with many full training runs per hyperparameter setting, whereas OPTIMA’s tractable ELBO jointly optimizes augmentation and model parameters within the same training loop—removing the need for separate validation runs.

We evaluate on CIFAR10 (Krizhevsky & Hinton, 2009) using a pretrained Bayesian ResNet-18 (Bayesian last layer) to optimize augmentation parameters (mean and variance). BO is run for 25 trials of 15 epochs, followed by 50 epochs of training with the optimized parameters, while OPTIMA is trained directly for 50 epochs. For augmentation, we use Mixup and learn the parameter α . We also assess performance on CIFAR10-C (Hendrycks & Dietterich, 2019) as OOD data. As shown in **Table 3**, OPTIMA achieves higher test accuracy on clean data (with a slight calibration trade-off) and substantially better accuracy, ECE, and AUROC on OOD data, all in far less time than BO—demonstrating improved calibration and robustness at much lower cost.

Table 3: Comparison between Bayesian optimization and OPTIMA on CIFAR10

Method	Test Acc (%)	ECE (%)	mAccuracy (C)	mECE (C)	OOD AUROC	Time
Bayesian Optimization	93.43	0.010	72.44	0.127	0.652	$\sim 4 \times T$
OPTIMA	95.03	0.047	78.52	0.076	0.680	T

5.4 OPTIMA ON DISCRETE NLP AUGMENTATIONS: SST-5 CASE STUDY

To demonstrate that OPTIMA is not restricted to continuous or geometric transformations used in computer vision, we additionally evaluate it on a natural language classification task where augmentations are inherently *discrete*. We use the SST-5 benchmark (Socher et al. 2013), a fine-grained 5-class sentiment dataset, and fine-tune a DistilBERT model (Sanh et al. 2019) for five epochs on the full training split.

486 **Discrete augmentation family.** We consider *token dropout*, a stochastic masking transformation
 487 widely used in NLP regularization. For an input sequence $x = (x_1, \dots, x_L)$ and a dropout probability
 488 p_{drop} , the augmentation samples a Bernoulli mask $\gamma_t \sim \text{Bernoulli}(1 - p_{\text{drop}})$ and replaces x_t with
 489 [MASK] whenever $\gamma_t = 0$. This produces a discrete latent transformation variable γ . Although the
 490 transformation is non-differentiable, OPTIMA can still optimize the dropout probability by using a
 491 score-function (REINFORCE) gradient, as predicted by our general formulation in Section 3.
 492

493 **Experimental setup.** We evaluate OPTIMA on discrete token-dropout augmentation. The augmentation
 494 uses a dropout probability $p_{\text{drop}} \in [0, p_{\text{max}}]$ parameterized as $p_{\text{drop}} = p_{\text{max}} \sigma(s)$, where s is a
 495 learnable scalar. To encode prior preferences for weaker or stronger dropout, we place a Gaussian
 496 prior directly on p_{drop} , and OPTIMA jointly learns s and the classifier parameters via the augmented
 497 ELBO. We compare OPTIMA against: (i) *No Aug*; (ii) *Fixed Aug*, which uses the same initial dropout
 498 as OPTIMA; (iii) *Fixed Aug (Matched)*, where p_{drop} is set equal to the value learned by OPTIMA;
 499 and (iv) *BO-Fixed*, which selects p_{drop} through a simple validation-based hyperparameter search.
 500 Complete implementation details and hyperparameter values are provided in the [Appendix H](#).
 501

501 Table 4: SST-5 results with OPTIMA for discrete token-dropout augmentation averaged over 5
 502 different seeds.
 503

504 Method	505 Accuracy	506 NLL	507 ECE
508 No Aug	509 0.516 ± 0.003	510 1.240 ± 0.010	511 0.190 ± 0.004
512 Fixed $p_{\text{drop}} = 0.04$	513 0.522 ± 0.003	514 1.180 ± 0.006	515 0.154 ± 0.006
516 Fixed $p_{\text{drop}} = 0.0625$	517 0.516 ± 0.006	518 1.162 ± 0.007	519 0.143 ± 0.007
520 OPTIMA with $\mu = 0.1$ ($p_{\text{learned}} = 0.0625$)	521 0.524 ± 0.003	522 1.161 ± 0.007	523 0.142 ± 0.006
524 BO-Fixed $p_{\text{drop}} = 0.3$	525 0.521 ± 0.004	526 1.086 ± 0.006	527 0.043 ± 0.004
528 OPTIMA with $\mu = 0.3$ ($p_{\text{learned}} = 0.3$)	529 0.524 ± 0.004	530 1.086 ± 0.005	531 0.046 ± 0.002

520 **Results.** Table 4 shows that accuracy differences are expectedly small for SST-5, but OPTIMA
 521 consistently achieves *lower NLL* and substantially better calibration than fixed-augmentation base-
 522 lines. Importantly, OPTIMA also matches the BO-tuned baseline—despite BO requiring a full
 523 hyperparameter search over multiple training runs (*it took around 8 \times times more*), whereas OPTIMA
 524 learns p_{drop} in a *single* training run. This highlights that the gains of OPTIMA stem from optimizing
 525 the *marginal likelihood* rather than simply selecting a favorable dropout rate. These results confirm
 526 that OPTIMA naturally extends to discrete augmentation spaces and that its theoretical advantages
 527 (Sections 4.2–4.3) persist beyond vision tasks.
 528

529 6 DISCUSSION AND CONCLUSION

530 We presented a theoretical and methodological framework for optimizing DA taking inspiration from
 531 Bayesian principles, which allow us to cast this problem as model selection. We derived a variational
 532 objective to learn optimal DA strategies from data in a practical way. We also provided extensive
 533 theoretical insights on the advantages of our proposed data-driven approach to DA compared to
 534 alternatives, revealing improved generalization through PAC-Bayes bounds, enhanced invariance via
 535 higher-order regularization, and better calibration through marginalization. Empirical results confirm
 536 these theoretical benefits, showing consistent improvements in calibration and predictive performance
 537 across various tasks. We believe that OPTIMA is a key step toward robust and well-calibrated
 538 models capable of assisting decision-making in applications where this is of critical importance.
 539

540 **Limitations and future work.** While OPTIMA offers significant advantages, it has some limi-
 541 tations that suggest directions for future work. Although our main experiments focus on computer
 542 vision, OPTIMA itself is not tied to continuous or geometric transformations. **Our additional**
 543 **evaluation on a natural language task (SST-5) demonstrates that OPTIMA can also handle discrete,**
 544 **non-geometric transformations by optimizing a latent augmentation distribution in text space.** Nev-
 545 ertheless, a broader exploration of more expressive or compositional transformations in NLP, time
 546 series, or multimodal settings remains an important next step. In addition, our theoretical analysis
 547 could be strengthened by developing tighter PAC-Bayes bounds and more refined characterizations
 548 of the benefits introduced by Bayesian marginalization over augmentation parameters.
 549

540 REFERENCES
541

542 Ibrahim M Alabdulmohsin, Behnam Neyshabur, and Xiaohua Zhai. Revisiting neural scaling laws in
543 language and vision. In *Advances in Neural Information Processing Systems*, 2022.

544 Pierre Alquier. User-friendly introduction to pac-bayes bounds. *Foundations and Trends in Machine*
545 *Learning*, 17(2):174–303, 2024. ISSN 1935-8237. doi: 10.1561/2200000100. URL <https://doi.org/10.1561/2200000100>.

546

547 Gregor Bachmann, Lorenzo Noci, and Thomas Hofmann. How tempering fixes data augmentation in
548 Bayesian neural networks. In *International Conference on Machine Learning*, 2022.

549

550 Gregory Benton, Marc Finzi, Pavel Izmailov, and Andrew G Wilson. Learning invariances in neural
551 networks from training data. In *Advances in Neural Information Processing Systems*, 2020.

552

553 Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
554 neural network. In *International Conference on Machine Learning*, 2015.

555

556 Olivier Catoni. Accounting for variance in machine learning benchmarks. *Institute of Mathematical*
557 *Statistics Lecture Notes-Monograph Series*, 2007.

558

559 Evangelos Chatzipantazis, Stefanos Pertigkiozoglou, Kostas Daniilidis, and Edgar Dobriban. Learn-
560 ing augmentation distributions using transformed risk minimization. *Transactions on Machine*
561 *Learning Research*, 2023. ISSN 2835-8856. URL <https://openreview.net/forum?id=LRYtNj8Xw0>.

562

563 Shuxiao Chen, Edgar Dobriban, and Jane H Lee. A group-theoretic framework for data augmentation.
564 *Journal of Machine Learning Research*, 2020.

565

566 Ekin D. Cubuk, Barret Zoph, Dandelion Mané, Vijay Vasudevan, and Quoc V. Le. AutoAugment:
567 Learning augmentation strategies from data. In *Conference on Computer Vision and Pattern*
568 *Recognition*, 2019.

569

570 Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated
571 data augmentation with a reduced search space. In *Conference on Vomputer VSION and Pattern*
572 *Recognition workshops*, 2020.

573

574 Tri Dao, Albert Gu, Alexander Ratner, Virginia Smith, Chris De Sa, and Christopher Re. A kernel
575 theory of modern data augmentation. In *International Conference on Machine Learning*, 2019.

576

577 Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and
578 Philipp Hennig. Laplace redux – effortless Bayesian deep learning. In *Advances in Neural*
579 *Information Processing Systems*, 2021.

580

581 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
582 hierarchical image database. In *Conference on Computer Vision and Pattern Recognition*, 2009.

583

584 Weijian Deng, Stephen Gould, and Liang Zheng. On the strong correlation between model invariance
585 and generalization. *Advances in Neural Information Processing Systems*, 2022.

586

587 Gintare Karolina Dziugaite and Daniel M Roy. Computing nonvacuous generalization bounds for
588 deep (stochastic) neural networks with many more parameters than training data. In *Conference on*
589 *Uncertainty in Artificial Intelligence*, 2017.

590

591 Bradley Efron. *Large-scale inference: Empirical Bayes methods for estimation, testing, and predic-
592 tion*. Cambridge University Press, 2012.

593

594 Steven Feng, Varun Gangal, Jason Wei, Sarath Chandar, Soroush Vosoughi, Teruko Mitamura, and
595 Eduard Hovy. A survey of data augmentation approaches for NLP. *Findings of the Association for*
596 *Computational Linguistics: ACL-IJCNLP*, 2021.

597

598 Edwin Fong, Chris Holmes, and Stephen G Walker. Martingale posterior distributions. *Journal of the*
599 *Royal Statistical Society Series B*, 85(5):1357–1391, 2023.

594 James Harrison, John Willes, and Jasper Snoek. Variational bayesian last layers. In *International*
 595 *Conference on Learning Representations*, 2024.

596

597 Ryuichiro Hataya, Jan Zdenek, Kazuki Yoshizoe, and Hideki Nakayama. Faster autoaugment:
 598 Learning augmentation strategies using backpropagation. In *European Conference on Computer*
 599 *Vision*, 2020.

600 Ryuichiro Hataya, Jan Zdenek, Kazuki Yoshizoe, and Hideki Nakayama. Meta approach to data
 601 augmentation optimization. In *Winter Conference on Applications of Computer Vision*, 2022.

602

603 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 604 recognition. In *Conference on Computer Vision and Pattern Recognition*, 2016.

605 Markus Heinonen, Ba-Hien Tran, Michael Kampffmeyer, and Maurizio Filippone. Robust classifica-
 606 tion by coupling data mollification with label smoothing. In *International Conference on Artificial*
 607 *Intelligence and Statistics*, 2025.

608 Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
 609 corruptions and perturbations. In *International Conference on Learning Representations*, 2019.

610

611 Dan Hendrycks, Norman Mu, Ekin D Cubuk, Barret Zoph, Justin Gilmer, and Balaji Lakshmi-
 612 narayanan. Augmix: A simple data processing method to improve robustness and uncertainty. In
 613 *International Conference on Learning Representations*, 2020.

614 Daniel Ho, Eric Liang, Xi Chen, Ion Stoica, and Pieter Abbeel. Population based augmentation:
 615 Efficient learning of augmentation policy schedules. In *International Conference on Machine*
 616 *Learning*, 2019.

617

618 Ignacio Hounie, Luiz FO Chamon, and Alejandro Ribeiro. Automatic data augmentation via
 619 invariance-constrained learning. In *International Conference on Machine Learning*, 2023.

620

621 Alexander Immer, Matthias Bauer, Vincent Fortuin, Gunnar Rätsch, and Khan Mohammad Emtiyaz.
 622 Scalable marginal likelihood estimation for model selection in deep learning. In *International*
 623 *Conference on Machine Learning*, 2021.

624

625 Alexander Immer, Tycho van der Ouderaa, Gunnar Rätsch, Vincent Fortuin, and Mark van der
 626 Wilk. Invariance learning in deep neural networks with differentiable Laplace approximations. In
 627 *Advances in Neural Information Processing Systems*, 2022.

628

629 Pavel Izmailov, Sharad Vikram, Matthew D Hoffman, and Andrew Gordon Wilson. What are
 630 Bayesian neural network posteriors really like? In *International Conference on Machine Learning*,
 631 2021.

632

633 Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with Gumbel-softmax. In
 634 *International Conference on Learning Representations*, 2017.

635

636 Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An introduction to
 637 variational methods for graphical models. *Machine learning*, 1999.

638

639 Sanyam Kapoor, Wesley Maddox, Pavel Izmailov, and Andrew Gordon Wilson. On uncertainty,
 640 tempering, and data augmentation in Bayesian classification. In *Advances in Neural Information*
 641 *Processing Systems*, 2022.

642

643 Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. Being Bayesian, even just a bit, fixes
 644 overconfidence in relu networks. In *International Conference on Machine Learning*, 2020.

645

646 A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. *Master's thesis,*
 647 *Department of Computer Science, University of Toronto*, 2009.

648

649 Yonggang Li, Guosheng Hu, Yongtao Wang, Timothy Hospedales, Neil M Robertson, and Yongxin
 650 Yang. Differentiable automatic data augmentation. In *European Conference on Computer Vision*,
 651 2020.

652

653 Sungbin Lim, Ildoo Kim, Taesup Kim, Chiheon Kim, and Sungwoong Kim. Fast autoaugment. In
 654 *Advances in Neural Information Processing Systems*, 2019.

648 Aoming Liu, Zehao Huang, Zhiwu Huang, and Naiyan Wang. Direct differentiable augmentation
 649 search. In *International Conference on Computer Vision*, 2021.
 650

651 Sanae Lotfi, Marc Anton Finzi, Sanyam Kapoor, Andres Potapczynski, Micah Goldblum, and An-
 652 drew Gordon Wilson. PAC-Bayes compression bounds so tight that they can explain generalization.
 653 In *Advances in Neural Information Processing Systems*, 2022.

654 Clare Lyle, Mark van der Wilk, Marta Kwiatkowska, Yarin Gal, and Benjamin Bloem-Reddy. On the
 655 benefits of invariance in neural networks. *arXiv*, 2020.
 656

657 David JC MacKay. A practical Bayesian framework for backpropagation networks. *Neural computa-
 658 tion*, 1992.

659 David A McAllester. PAC-Bayesian Model Averaging. In *Annual Conference on Learning Theory*,
 660 1999.

661 Saypraseuth Mounsaveng, Issam H. Laradji, Ismail Ben Ayed, David Vázquez, and Marco Peder-
 662 soli. Learning data augmentation with online bilevel optimization for image classification. In
 663 *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)*, pp.
 664 1691–1700, 2021.

665

666 Seth Nabarro, Stoil Ganev, Adrià Garriga-Alonso, Vincent Fortuin, Mark van der Wilk, and Laurence
 667 Aitchison. Data augmentation in Bayesian neural networks and the cold posterior effect. In
 668 *Conference on Uncertainty in Artificial Intelligence*, 2022.

669 Radford M. Neal. *Bayesian Learning for Neural Networks (Lecture Notes in Statistics)*. Springer,
 670 1996.

671

672 Herbert E Robbins. An empirical Bayes approach to statistics. In *Breakthroughs in Statistics:
 673 Foundations and basic theory*, pp. 388–394. Springer, 1992.

674

675 Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
 676 bert: smaller, faster, cheaper and lighter. *arXiv preprint arXiv:1910.01108*, 2019.

677 Han Shao, Omar Montasser, and Avrim Blum. A theory of PAC learnability under transformation
 678 invariances. *Advances in Neural Information Processing Systems*, 2022.

679

680 Mrinank Sharma, Sebastian Farquhar, Eric Nalisnick, and Tom Rainforth. Do Bayesian neural
 681 networks need to be fully stochastic? In *International Conference on Artificial Intelligence and
 682 Statistics*, 2023.

683 Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep learning.
 684 *Journal of Big Data*, 2019.

685

686 Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian optimization of machine
 687 learning algorithms. In *Advances in Neural Information Processing Systems*, 2012.

688

689 Richard Socher, Alex Perelygin, Jean Y Wu, Jason Chuang, Christopher D Manning, Andrew Ng,
 690 and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
 691 treebank. In *Proceedings of the 2013 Conference on Empirical Methods in Natural Language
 692 Processing*, pp. 1631–1642, 2013.

693

694 Ba-Hien Tran, Simone Rossi, Dimitrios Miliros, and Maurizio Filippone. All you need is a good
 695 functional prior for Bayesian deep learning. *Journal of Machine Learning Research*, 2022.

696

697 Ba-Hien Tran, Giulio Franzese, Pietro Michiardi, and Maurizio Filippone. One-line-of-code data
 698 mollification improves optimization of likelihood-based generative models. In *Advances in Neural
 699 Information Processing Systems*, 2023.

700

701 Mark van der Wilk, Matthias Bauer, ST John, and James Hensman. Learning invariances using the
 702 marginal likelihood. In *Advances in Neural Information Processing Systems*, 2018.

703

704 David A Van Dyk and Xiao-Li Meng. The art of data augmentation. *Journal of Computational and
 705 Graphical Statistics*, 10(1):1–50, 2001.

702 Yuexi Wang, Nicholas Polson, and Vadim O. Sokolov. Data Augmentation for Bayesian Deep
703 Learning. *Bayesian Analysis*, 2023.

704
705 Florian Wenzel, Kevin Roth, Bastiaan Veeling, Jakub Swiatkowski, Linh Tran, Stephan Mandt,
706 Jasper Snoek, Tim Salimans, Rodolphe Jenatton, and Sebastian Nowozin. How good is the Bayes
707 posterior in deep neural networks really? In *International Conference on Machine Learning*, 2020.

708
709 Christopher KI Williams and Carl Edward Rasmussen. *Gaussian processes for machine learning*,
710 volume 2. MIT press Cambridge, MA, 2006.

711
712 Andrew G Wilson and Pavel Izmailov. Bayesian deep learning and a probabilistic perspective of
713 generalization. *Advances in Neural Information Processing Systems*, 2020.

714
715 Andrew Gordon Wilson. Deep learning is not so mysterious or different. *arXiv*, 2025.

716
717 Luhuan Wu and Sinead A. Williamson. Posterior uncertainty quantification in neural networks using
718 data augmentation. In *International Conference on Artificial Intelligence and Statistics*, 2024.

719
720 Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
721 Cutmix: Regularization strategy to train strong classifiers with localizable features. In *International
722 Conference on Computer Vision*, 2019.

723
724 Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
725 deep learning requires rethinking generalization. In *International Conference on Learning
726 Representations*, 2017.

727
728 Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
729 risk minimization. In *International Conference on Learning Representations*, 2018.

730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756
757
Appendix
758759
TABLE OF CONTENTS

760

A Derivation of the Augmented Evidence Lower Bound	15
B Detailed Proofs	16
B.1 Proof of Proposition 4.1 (Jensen Gap Bound)	16
B.2 Proof of Theorem 4.4 (PAC-Bayes Under Augmentation)	17
B.3 Proof of Theorem 4.5 (Generalization Advantange of Bayesian-Optimized Augmentation)	17
B.4 Proof of Theorem 4.8 (Higher-order Invariance)	18
B.5 Proof of Theorem 4.12 (Posterior Shrinkage under naïve Augmentation)	19
B.6 Proof of Theorem 4.14 (Empirical Bayes Optimality via Augmented ELBO)	19
B.7 Proof of Theorem 4.17 (Information Gain from Augmentation)	20
C A Primer on PAC-Bayes Theory	20
D Algorithm and Implementation	21
D.1 Parameterization of Augmentation Distribution	21
D.2 Practical Considerations	23
E Additional Experimental Details for § 5.2	23
F Additional Results on Different Types of Data Augmentation	23
F.1 Learning Geometric Augmentation for CIFAR10 Classification	23
F.2 Exploring different intensities of Gaussian translations	24
G Additional Experiment on IMAGENET using Resnet-50	25
G.1 Implementation Details for OPTIMA with Mixup	25
G.2 Implementation Details for OPTIMA with CutMix	26
G.3 Implementation Details for OPTIMA with AugMix (Learnable Severity + JSD)	26
G.4 Evaluation and Software/Hardware for all these methods.	27
G.5 Experimental Results	27
H Additional Experimental Details for § 5.4. Token-dropout implementation details	28
I Broader Impact	28
J Reproducibility Statement	28
K The Use of Large Language Models (LLMs)	28

806
807
A DERIVATION OF THE AUGMENTED EVIDENCE LOWER BOUND
808809
For variational inference, we introduce a variational distribution $q(\theta, \phi) = q(\theta)q(\phi)$ to approximate the posterior $p(\theta, \phi | \mathcal{D})$. The standard ELBO is a lower bound on the log marginal likelihood

810 $\log p(\mathcal{D}) = \log \iiint p(\mathcal{D}, \boldsymbol{\theta}, \boldsymbol{\phi}, \boldsymbol{\gamma}) d\boldsymbol{\theta} d\boldsymbol{\phi} d\boldsymbol{\gamma}$. Using Jensen's inequality with $q(\boldsymbol{\theta}, \boldsymbol{\phi})$, we have:
811

$$812 \log p(\mathcal{D}) \geq \underbrace{\mathbb{E}_{q(\boldsymbol{\theta}, \boldsymbol{\phi})} \left[\log \frac{p(\mathcal{D}, \boldsymbol{\theta}, \boldsymbol{\phi})}{q(\boldsymbol{\theta}, \boldsymbol{\phi})} \right]}_{\text{ELBO}(q)}, \quad \text{where } p(\mathcal{D}, \boldsymbol{\theta}, \boldsymbol{\phi}) = \int p(\mathcal{D}, \boldsymbol{\theta}, \boldsymbol{\phi}, \boldsymbol{\gamma}) d\boldsymbol{\gamma}. \quad (13)$$

816 Applying Jensen's inequality further to the log of the likelihood term, $p(\mathcal{D} | \boldsymbol{\theta}, \boldsymbol{\phi})$:
817

$$818 \log p(\mathcal{D} | \boldsymbol{\theta}, \boldsymbol{\phi}) = \log \mathbb{E}_{p(\boldsymbol{\gamma} | \boldsymbol{\phi})} \left[\prod_{i=1}^N p(\mathbf{y}_i | T_{\boldsymbol{\gamma}}(\mathbf{x}_i), \boldsymbol{\theta}) \right] \geq \mathbb{E}_{p(\boldsymbol{\gamma} | \boldsymbol{\phi})} \left[\sum_{i=1}^N \log p(\mathbf{y}_i | T_{\boldsymbol{\gamma}}(\mathbf{x}_i), \boldsymbol{\theta}) \right]. \quad (14)$$

822 Substituting this into the ELBO in Eq. 13, with $p(\mathcal{D}, \boldsymbol{\theta}, \boldsymbol{\phi}) = p(\mathcal{D} | \boldsymbol{\theta}, \boldsymbol{\phi})p(\boldsymbol{\theta})p(\boldsymbol{\phi})$, we can obtain the
823 augmented ELBO as follows:
824

$$825 \text{ELBO}(q) \geq \mathbb{E}_{q(\boldsymbol{\theta}, \boldsymbol{\phi})} \left[\mathbb{E}_{p(\boldsymbol{\gamma} | \boldsymbol{\phi})} \left[\sum_{i=1}^N \log p(\mathbf{y}_i | T_{\boldsymbol{\gamma}}(\mathbf{x}_i), \boldsymbol{\theta}) \right] + \log \frac{p(\boldsymbol{\theta})p(\boldsymbol{\phi})}{q(\boldsymbol{\theta})q(\boldsymbol{\phi})} \right] \quad (15)$$

$$829 = \underbrace{\mathbb{E}_{q(\boldsymbol{\theta})} \mathbb{E}_{q(\boldsymbol{\phi})} \mathbb{E}_{p(\boldsymbol{\gamma} | \boldsymbol{\phi})} \left[\sum_{i=1}^N \log p(\mathbf{y}_i | T_{\boldsymbol{\gamma}}(\mathbf{x}_i), \boldsymbol{\theta}) \right]}_{\text{data fit}} - \underbrace{\text{KL}(q(\boldsymbol{\theta}) \| p(\boldsymbol{\theta}))}_{\text{parameter prior}} - \underbrace{\text{KL}(q(\boldsymbol{\phi}) \| p(\boldsymbol{\phi}))}_{\text{augmentation prior}}. \quad (16)$$

833 The augmented ELBO consists of three terms: a **data-fitting term** that averages over the variational
834 distributions $q(\boldsymbol{\theta})$, $q(\boldsymbol{\phi})$, and the augmentation distribution $p(\boldsymbol{\gamma} | \boldsymbol{\phi})$; a **regularization term**
835 $\text{KL}(q(\boldsymbol{\theta}) \| p(\boldsymbol{\theta}))$ that penalizes divergence from the prior over model parameters; and another **regularization term**
836 $\text{KL}(q(\boldsymbol{\phi}) \| p(\boldsymbol{\phi}))$ that aligns the augmentation parameters with their prior.
837

B DETAILED PROOFS

839 This section provides expanded proofs for the theoretical results presented in the main paper.
840

B.1 PROOF OF PROPOSITION 4.1 (JENSEN GAP BOUND)

841 *Proof.* Let $f(\boldsymbol{\gamma}) = \log p(\mathbf{y} | T_{\boldsymbol{\gamma}}(\mathbf{x}), \boldsymbol{\theta})$. For sub-Gaussian $\boldsymbol{\gamma}$ with mean $\mu = \mathbb{E}[\boldsymbol{\gamma}]$ and variance proxy
842 σ^2 , we use standard moment generating function bounds:
843

$$844 \log \mathbb{E}_{\boldsymbol{\gamma}}[e^{f(\boldsymbol{\gamma})}] = \log \mathbb{E}_{\boldsymbol{\gamma}} \left[e^{f(\mu) + (f(\boldsymbol{\gamma}) - f(\mu))} \right] \quad (17)$$

$$848 = f(\mu) + \log \mathbb{E}_{\boldsymbol{\gamma}} \left[e^{f(\boldsymbol{\gamma}) - f(\mu)} \right]. \quad (18)$$

850 Since f is L -Lipschitz, we have $|f(\boldsymbol{\gamma}) - f(\mu)| \leq L\|\boldsymbol{\gamma} - \mu\|$. Using the sub-Gaussian property:
851

$$852 \mathbb{E}_{\boldsymbol{\gamma}}[e^{f(\boldsymbol{\gamma}) - f(\mu)}] \leq \mathbb{E}_{\boldsymbol{\gamma}}[e^{L\|\boldsymbol{\gamma} - \mu\|}] \leq e^{\frac{L^2\sigma^2}{2}}. \quad (19)$$

853 Therefore:
854

$$855 \log \mathbb{E}_{\boldsymbol{\gamma}}[e^{f(\boldsymbol{\gamma})}] \leq f(\mu) + \frac{L^2\sigma^2}{2}. \quad (20)$$

857 Since $\mathbb{E}_{\boldsymbol{\gamma}}[f(\boldsymbol{\gamma})] = f(\mu)$ when $\mathbb{E}_{\boldsymbol{\gamma}}[\boldsymbol{\gamma} - \mu] = 0$, the gap is:
858

$$859 \text{Gap} = \log \mathbb{E}_{\boldsymbol{\gamma}}[e^{f(\boldsymbol{\gamma})}] - \mathbb{E}_{\boldsymbol{\gamma}}[f(\boldsymbol{\gamma})] \quad (21)$$

$$860 \leq \frac{L^2\sigma^2}{2}. \quad (22)$$

862 For tightness, when $f(\boldsymbol{\gamma})$ is approximately linear in the high-probability region of $p(\boldsymbol{\gamma} | \boldsymbol{\phi})$, the bound
863 approaches equality. \square

864 B.2 PROOF OF THEOREM 4.4 (PAC-BAYES UNDER AUGMENTATION)
865866 *Proof.* Define the loss function as:

867
$$\ell(\boldsymbol{\theta}, \boldsymbol{\phi}, (x, y)) = -\log \mathbb{E}_{p(\boldsymbol{\gamma}|\boldsymbol{\phi})}[p(y | T_{\boldsymbol{\gamma}}(x), \boldsymbol{\theta})]. \quad (23)$$

868

869 The empirical risk is:
870

871
$$\hat{R}(\boldsymbol{\theta}, \boldsymbol{\phi}) = \frac{1}{N} \sum_{i=1}^N \ell(\boldsymbol{\theta}, \boldsymbol{\phi}, (\mathbf{x}_i, \mathbf{y}_i)). \quad (24)$$

872
873

874 Since $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^N$ are i.i.d., and the expectation over $\boldsymbol{\gamma} \sim p(\boldsymbol{\gamma} | \boldsymbol{\phi})$ is computed independently
875 for each sample, the terms $\ell(\boldsymbol{\theta}, \boldsymbol{\phi}, (\mathbf{x}_i, \mathbf{y}_i))$ are independent for fixed $\boldsymbol{\theta}, \boldsymbol{\phi}$. Applying the standard
876 PAC-Bayes theorem over the joint space $(\boldsymbol{\theta}, \boldsymbol{\phi})$ (McAllester, 1999; Catoni, 2007; Alquier, 2024):
877

878
$$\mathbb{E}_{q(\boldsymbol{\theta}, \boldsymbol{\phi})}[R(\boldsymbol{\theta}, \boldsymbol{\phi})] \leq \mathbb{E}_{q(\boldsymbol{\theta}, \boldsymbol{\phi})}[\hat{R}(\boldsymbol{\theta}, \boldsymbol{\phi})] + \sqrt{\frac{\text{KL}(q(\boldsymbol{\theta}, \boldsymbol{\phi}) \| p(\boldsymbol{\theta}, \boldsymbol{\phi})) + \log \frac{2\sqrt{N}}{\delta}}{2N}}. \quad (25)$$

879
880

881 This completes the proof. \square
882883 B.3 PROOF OF THEOREM 4.5 (GENERALIZATION ADVANTAGE OF BAYESIAN-OPTIMIZED
884 AUGMENTATION)
885886 *Proof. Step 1: PAC-Bayes Bounds*
887888 For OPTIMA, the PAC-Bayes bound is:
889

890
$$\mathbb{E}_{q(\boldsymbol{\theta}, \boldsymbol{\phi})}[R(\boldsymbol{\theta}, \boldsymbol{\phi})] \leq \mathbb{E}_{q(\boldsymbol{\theta}, \boldsymbol{\phi})}[\hat{R}(\boldsymbol{\theta}, \boldsymbol{\phi})] + \sqrt{\frac{\text{KL}(q(\boldsymbol{\theta}, \boldsymbol{\phi}) \| p(\boldsymbol{\theta}, \boldsymbol{\phi})) + \log \frac{2\sqrt{N}}{\delta}}{2N}}. \quad (26)$$

891
892

893 For naïve augmentation, the bound is:
894

895
$$\mathbb{E}_{q(\boldsymbol{\theta})}[R(\boldsymbol{\theta})] \leq \mathbb{E}_{q(\boldsymbol{\theta})}[\hat{R}_{\text{naïve}}(\boldsymbol{\theta})] + \sqrt{\frac{\text{KL}(q(\boldsymbol{\theta}) \| p(\boldsymbol{\theta})) + \log \frac{2\sqrt{N}}{\delta}}{2N}}. \quad (27)$$

896
897

900 **Step 2: Relationship Between Empirical Risks**
901902 By Jensen's inequality, for each data point $(\mathbf{x}_i, \mathbf{y}_i)$:
903

904
$$\log \mathbb{E}_{p(\boldsymbol{\gamma}|\boldsymbol{\phi})} p(\mathbf{y}_i | T_{\boldsymbol{\gamma}}(\mathbf{x}_i), \boldsymbol{\theta}) \geq \mathbb{E}_{p(\boldsymbol{\gamma}|\boldsymbol{\phi})} \log p(\mathbf{y}_i | T_{\boldsymbol{\gamma}}(\mathbf{x}_i), \boldsymbol{\theta}). \quad (28)$$

905

906 Thus,
907

908
$$-\log \mathbb{E}_{p(\boldsymbol{\gamma}|\boldsymbol{\phi})} p(\mathbf{y}_i | T_{\boldsymbol{\gamma}}(\mathbf{x}_i), \boldsymbol{\theta}) \leq -\mathbb{E}_{p(\boldsymbol{\gamma}|\boldsymbol{\phi})} \log p(\mathbf{y}_i | T_{\boldsymbol{\gamma}}(\mathbf{x}_i), \boldsymbol{\theta}). \quad (29)$$

909
910

911 For large K , the naïve empirical risk approximates:
912

913
$$\hat{R}_{\text{naïve}}(\boldsymbol{\theta}) \approx -\frac{1}{N} \sum_{i=1}^N \mathbb{E}_{p(\boldsymbol{\gamma}|\boldsymbol{\phi})} \log p(\mathbf{y}_i | T_{\boldsymbol{\gamma}}(\mathbf{x}_i), \boldsymbol{\theta}). \quad (30)$$

914
915

916 Therefore,
917

918

919

920

$$\hat{R}(\boldsymbol{\theta}, \boldsymbol{\phi}) = -\frac{1}{N} \sum_{i=1}^N \log \mathbb{E}_{p(\boldsymbol{\gamma}|\boldsymbol{\phi})} p(\mathbf{y}_i \mid T_{\boldsymbol{\gamma}}(\mathbf{x}_i), \boldsymbol{\theta}) \leq \hat{R}_{\text{naive}}(\boldsymbol{\theta}), \quad (31)$$

921

922

923

with equality only if $\Delta_{\boldsymbol{\phi}}(\mathbf{x}_i, \mathbf{y}_i) = 0$ for all i , i.e., when $p(\mathbf{y}_i \mid T_{\boldsymbol{\gamma}}(\mathbf{x}_i), \boldsymbol{\theta})$ is constant across $\boldsymbol{\gamma}$.

924

Step 3: Bound Comparison

925

926

927

Assuming $\text{KL}(q(\boldsymbol{\theta}, \boldsymbol{\phi}) \parallel p(\boldsymbol{\theta}, \boldsymbol{\phi})) \approx \text{KL}(q(\boldsymbol{\theta}) \parallel p(\boldsymbol{\theta}))$, the difference in bounds is driven by the empirical risks:

928

929

930

931

932

933

$$\mathbb{E}_{q(\boldsymbol{\theta}, \boldsymbol{\phi})}[R(\boldsymbol{\theta}, \boldsymbol{\phi})] \leq \mathbb{E}_{q(\boldsymbol{\theta}, \boldsymbol{\phi})}[\hat{R}(\boldsymbol{\theta}, \boldsymbol{\phi})] + \text{complexity term}, \quad (32)$$

934

Since $\hat{R}(\boldsymbol{\theta}, \boldsymbol{\phi}) \leq \hat{R}_{\text{naive}}(\boldsymbol{\theta})$, and the complexity terms are similar, our bound is tighter. Specifically,

935

936

937

938

939

$$\mathbb{E}_{q(\boldsymbol{\theta}, \boldsymbol{\phi})}[\hat{R}(\boldsymbol{\theta}, \boldsymbol{\phi})] = \mathbb{E}_{q(\boldsymbol{\theta}, \boldsymbol{\phi})}[\hat{R}_{\text{naive}}(\boldsymbol{\theta})] - \mathbb{E}_{q(\boldsymbol{\theta}, \boldsymbol{\phi})} \left[\frac{1}{N} \sum_{i=1}^N \Delta_{\boldsymbol{\phi}}(\mathbf{x}_i, \mathbf{y}_i) \right], \quad (34)$$

940

leading to:

941

942

943

$$\mathbb{E}_{q(\boldsymbol{\theta}, \boldsymbol{\phi})}[R(\boldsymbol{\theta}, \boldsymbol{\phi})] \leq \mathbb{E}_{q(\boldsymbol{\theta})}[\hat{R}_{\text{naive}}(\boldsymbol{\theta})] - \Delta + \text{complexity term}, \quad (35)$$

944

945

$$\text{where } \Delta = \mathbb{E}_{q(\boldsymbol{\theta}, \boldsymbol{\phi})} \left[\frac{1}{N} \sum_{i=1}^N \Delta_{\boldsymbol{\phi}}(\mathbf{x}_i, \mathbf{y}_i) \right] \geq 0.$$

946

947

Thus, OPTIMA's bound is lower by Δ , proving better generalization. When $p(\mathbf{y}_i \mid T_{\boldsymbol{\gamma}}(\mathbf{x}_i), \boldsymbol{\theta})$ varies across $\boldsymbol{\gamma}$, $\Delta > 0$, making our bound strictly tighter. \square

948

949

B.4 PROOF OF THEOREM 4.8 (HIGHER-ORDER INVARIANCE)

950

Proof. Using a second-order Taylor expansion of $f_{\boldsymbol{\theta}}$ around x :

951

952

953

$$f_{\boldsymbol{\theta}}(T_{\boldsymbol{\gamma}}(\mathbf{x})) = f_{\boldsymbol{\theta}}(\mathbf{x}) + J_f(\mathbf{x})\delta + \frac{1}{2}\delta^T \nabla^2 f_{\boldsymbol{\theta}}(\mathbf{x})\delta + \mathcal{O}(\|\delta\|^3), \quad (36)$$

954

955

956

$$f_{\boldsymbol{\theta}}(T_{\boldsymbol{\gamma}}(\mathbf{x})) - f_{\boldsymbol{\theta}}(\mathbf{x}) = J_f(\mathbf{x})\delta + \frac{1}{2}\delta^T \nabla^2 f_{\boldsymbol{\theta}}(\mathbf{x})\delta + \mathcal{O}(\|\delta\|^3). \quad (37)$$

Squaring this difference and taking the expectation over $p(\boldsymbol{\gamma}|\boldsymbol{\phi})$:

957

958

959

$$\mathbb{E}_{p(\boldsymbol{\gamma}|\boldsymbol{\phi})} [\|f_{\boldsymbol{\theta}}(T_{\boldsymbol{\gamma}}(\mathbf{x})) - f_{\boldsymbol{\theta}}(\mathbf{x})\|^2] = \mathbb{E}_{p(\boldsymbol{\gamma}|\boldsymbol{\phi})} [\|J_f(\mathbf{x})\delta\|^2] \quad (38)$$

960

961

962

$$+ \mathbb{E}_{p(\boldsymbol{\gamma}|\boldsymbol{\phi})} \left[\left(\frac{1}{2} \delta^T \nabla^2 f_{\boldsymbol{\theta}}(\mathbf{x}) \delta \right)^2 \right] \quad (39)$$

963

964

965

$$+ \mathbb{E}_{p(\boldsymbol{\gamma}|\boldsymbol{\phi})} \left[2 (J_f(\mathbf{x})\delta)^T \left(\frac{1}{2} \delta^T \nabla^2 f_{\boldsymbol{\theta}}(\mathbf{x}) \delta \right) \right] \quad (40)$$

$$+ \mathcal{O}(\|\delta\|^3). \quad (41)$$

966

967

968

The cross-term $\mathbb{E}_{p(\boldsymbol{\gamma}|\boldsymbol{\phi})} [(J_f(\mathbf{x})\delta)^T (\delta^T \nabla^2 f_{\boldsymbol{\theta}}(\mathbf{x})\delta)]$ involves odd powers of δ , which vanish since $\mathbb{E}[\delta] = 0$. Thus:

969

970

971

$$\mathbb{E}_{p(\boldsymbol{\gamma}|\boldsymbol{\phi})} [\|f_{\boldsymbol{\theta}}(T_{\boldsymbol{\gamma}}(\mathbf{x})) - f_{\boldsymbol{\theta}}(\mathbf{x})\|^2] = \mathbb{E}_{p(\boldsymbol{\gamma}|\boldsymbol{\phi})} [\delta^T J_f(\mathbf{x})^T J_f(\mathbf{x})\delta] \quad (42)$$

$$+ \frac{1}{4} \mathbb{E}_{p(\boldsymbol{\gamma}|\boldsymbol{\phi})} \left[(\delta^T \nabla^2 f_{\boldsymbol{\theta}}(\mathbf{x})\delta)^2 \right] + \mathcal{O}(\|\delta\|^3). \quad (43)$$

972 Using properties of quadratic forms for zero-mean random variables:
 973

$$\mathbb{E}_{p(\gamma|\phi)} [\delta^T J_f(\mathbf{x})^T J_f(\mathbf{x}) \delta] = \text{Tr} (J_f(\mathbf{x})^T J_f(\mathbf{x}) \Sigma_\phi), \quad (44)$$

$$\mathbb{E}_{p(\gamma|\phi)} \left[(\delta^T \nabla^2 f_\theta(\mathbf{x}) \delta)^2 \right] = \text{Tr} (\nabla^2 f_\theta(\mathbf{x})^T \nabla^2 f_\theta(\mathbf{x}) \Sigma_\phi) + 2 \text{Tr} ((\nabla^2 f_\theta(\mathbf{x}) \Sigma_\phi)^2). \quad (45)$$

977
 978 For small perturbations, the dominant term is $\text{Tr} (\nabla^2 f_\theta(\mathbf{x})^T \nabla^2 f_\theta(\mathbf{x}) \Sigma_\phi)$, and higher moments
 979 contribute to $\mathcal{O}(\|\delta\|^3)$. Therefore:

$$\mathbb{E}_{p(\gamma|\phi)} [\|f_\theta(T_\gamma(\mathbf{x})) - f_\theta(\mathbf{x})\|^2] \approx \text{Tr} (J_f(\mathbf{x})^T J_f(\mathbf{x}) \Sigma_\phi) + \frac{1}{4} \text{Tr} (\nabla^2 f_\theta(\mathbf{x})^T \nabla^2 f_\theta(\mathbf{x}) \Sigma_\phi). \quad (46)$$

984 This approximation holds for small $\|\delta\|$, completing the proof. \square
 985

986 B.5 PROOF OF THEOREM 4.12 (POSTERIOR SHRINKAGE UNDER NAÏVE AUGMENTATION)

988 *Proof.* Under a locally Gaussian approximation with full-rank covariance, the posterior covariance is
 989 approximately the inverse of the Hessian of the negative log posterior at the MAP estimate. For the
 990 true posterior, marginalizing over ϕ :

$$991 \quad p(\mathcal{D} | \boldsymbol{\theta}) = \int p(\mathcal{D} | \boldsymbol{\theta}, \phi) p(\phi) d\phi,$$

$$994 \quad \Sigma_{\text{true}}^{-1} \approx -\nabla^2 \log p_{\text{true}}(\boldsymbol{\theta} | \mathcal{D})|_{\boldsymbol{\theta}=\hat{\boldsymbol{\theta}}} = -\nabla^2 \log p(\boldsymbol{\theta}) \quad (47)$$

$$996 \quad - \sum_{i=1}^N \nabla^2 \log \left(\int \mathbb{E}_{p(\gamma|\phi)} [p(\mathbf{y}_i | T_\gamma(\mathbf{x}_i), \boldsymbol{\theta})] p(\phi) d\phi \right) \Big|_{\boldsymbol{\theta}=\hat{\boldsymbol{\theta}}}.$$

999 For the naïve posterior:
 1000

$$1001 \quad \Sigma_{\text{naïve}}^{-1} \approx -\nabla^2 \log p_{\text{naïve}}(\boldsymbol{\theta} | \mathcal{D})|_{\boldsymbol{\theta}=\hat{\boldsymbol{\theta}}} = -\nabla^2 \log p(\boldsymbol{\theta}) - \sum_{i=1}^N \sum_{k=1}^K \nabla^2 \log p(\mathbf{y}_i | T_{\gamma_k}(\mathbf{x}_i), \boldsymbol{\theta})|_{\boldsymbol{\theta}=\hat{\boldsymbol{\theta}}}. \quad (48)$$

1005 Assuming $\gamma_k \sim p(\gamma | \hat{\phi})$ (e.g., using a point estimate of ϕ), this approximates:

$$1008 \quad \approx -\nabla^2 \log p(\boldsymbol{\theta}) - K \sum_{i=1}^N \nabla^2 \log \mathbb{E}_{p(\gamma|\hat{\phi})} [p(\mathbf{y}_i | T_\gamma(\mathbf{x}_i), \boldsymbol{\theta})]|_{\boldsymbol{\theta}=\hat{\boldsymbol{\theta}}} \approx K \cdot \Sigma_{\text{true}}^{-1}. \quad (49)$$

1011 Therefore, $\Sigma_{\text{naïve}} \approx \frac{1}{K} \Sigma_{\text{true}}$. \square
 1012

1013 B.6 PROOF OF THEOREM 4.14 (EMPIRICAL BAYES OPTIMALITY VIA AUGMENTED ELBO)

1015 *Proof.* The proof leverages variational inference principles. Start with the log marginal likelihood:

$$1017 \quad \log p(\mathcal{D}) = \log \int \int \int p(\mathcal{D}, \boldsymbol{\theta}, \phi, \boldsymbol{\gamma}) d\boldsymbol{\theta} d\phi d\boldsymbol{\gamma}. \quad (50)$$

1019 Introduce the variational distribution $q(\boldsymbol{\theta}, \phi) = q(\boldsymbol{\theta})q(\phi)$:

$$1021 \quad \log p(\mathcal{D}) = \mathbb{E}_{q(\boldsymbol{\theta}, \phi)} \left[\log \frac{p(\mathcal{D}, \boldsymbol{\theta}, \phi)}{q(\boldsymbol{\theta}, \phi)} \right] + \text{KL}(q(\boldsymbol{\theta}, \phi) \| p(\boldsymbol{\theta}, \phi | \mathcal{D})). \quad (51)$$

1023 Since the KL divergence is non-negative, we obtain the lower bound:

$$1025 \quad \log p(\mathcal{D}) \geq \mathbb{E}_{q(\boldsymbol{\theta}, \phi)} \left[\log \frac{p(\mathcal{D}, \boldsymbol{\theta}, \phi)}{q(\boldsymbol{\theta}, \phi)} \right]. \quad (52)$$

1026 Now, factor in the augmentation variable γ . The joint likelihood is:
 1027

$$1028 \quad p(\mathcal{D} | \boldsymbol{\theta}, \boldsymbol{\phi}) = \mathbb{E}_{p(\boldsymbol{\gamma} | \boldsymbol{\phi})} \left[\prod_{i=1}^N p(\mathbf{y}_i | T_{\boldsymbol{\gamma}}(\mathbf{x}_i), \boldsymbol{\theta}) \right]. \quad (53)$$

1031 Applying Jensen's inequality:
 1032

$$1033 \quad \log p(\mathcal{D} | \boldsymbol{\theta}, \boldsymbol{\phi}) \geq \mathbb{E}_{p(\boldsymbol{\gamma} | \boldsymbol{\phi})} \left[\sum_{i=1}^N \log p(\mathbf{y}_i | T_{\boldsymbol{\gamma}}(\mathbf{x}_i), \boldsymbol{\theta}) \right]. \quad (54)$$

1035 Substitute into the lower bound:
 1036

$$1037 \quad \log p(\mathcal{D}) \geq \mathbb{E}_{q(\boldsymbol{\theta}, \boldsymbol{\phi})} \left[\mathbb{E}_{p(\boldsymbol{\gamma} | \boldsymbol{\phi})} \left[\sum_{i=1}^N \log p(\mathbf{y}_i | T_{\boldsymbol{\gamma}}(\mathbf{x}_i), \boldsymbol{\theta}) \right] + \log \frac{p(\boldsymbol{\theta})p(\boldsymbol{\phi})}{q(\boldsymbol{\theta})q(\boldsymbol{\phi})} \right]. \quad (55)$$

1040 Rewrite:
 1041

$$1042 \quad = \mathbb{E}_{q(\boldsymbol{\theta})} \mathbb{E}_{q(\boldsymbol{\phi})} \mathbb{E}_{p(\boldsymbol{\gamma} | \boldsymbol{\phi})} \left[\sum_{i=1}^N \log p(\mathbf{y}_i | T_{\boldsymbol{\gamma}}(\mathbf{x}_i), \boldsymbol{\theta}) \right] - \text{KL}(q(\boldsymbol{\theta}) \| p(\boldsymbol{\theta})) - \text{KL}(q(\boldsymbol{\phi}) \| p(\boldsymbol{\phi})). \quad (56)$$

1045 Thus, we arrive at the augmented ELBO. When $q(\boldsymbol{\theta}) = p(\boldsymbol{\theta} | \mathcal{D})$ and $q(\boldsymbol{\phi}) = p(\boldsymbol{\phi} | \mathcal{D})$, the bound
 1046 becomes tight, confirming the result. \square
 1047

1048 B.7 PROOF OF THEOREM 4.17 (INFORMATION GAIN FROM AUGMENTATION)

1049 *Proof.* Under a Gaussian approximation to the posterior, the entropy is proportional to the log
 1050 determinant of the covariance matrix. Using the results from Theorem Theorem 4.12, we have:
 1051

$$1052 \quad \Delta H \propto \log \det(\Sigma_{\text{noaug}}) - \log \det(\Sigma_{\text{aug}}), \quad (57)$$

1054 where $\Sigma_{\text{noaug}} \approx H_{\text{noaug}}^{-1}$, $\Sigma_{\text{aug}} \approx H_{\text{aug}}^{-1}$, and H_{aug} incorporates the effect of augmentation. Thus:
 1055

$$1056 \quad \Delta H \approx \frac{1}{2} \log \det(H_{\text{aug}} H_{\text{noaug}}^{-1}) = \frac{1}{2} \log \det(I + H_{\text{noaug}}^{-1} (H_{\text{aug}} - H_{\text{noaug}})). \quad (58)$$

1058 Approximating the effect of augmentation as an effective increase in Fisher information, we obtain
 1059 the stated result. \square
 1060

1061 C A PRIMER ON PAC-BAYES THEORY

1063 The Probably Approximately Correct (PAC)-Bayes framework, pioneered by (McAllester, 1999) and
 1064 further developed by (Catoni, 2007) among others, provides a powerful tool for deriving generalization
 1065 bounds for Bayesian-inspired learning algorithms. Unlike traditional PAC learning which often
 1066 focuses on a single hypothesis, PAC-Bayes theory considers a distribution over hypotheses.
 1067

1068 **Core Idea** The central idea is to bound the true risk (expected loss on unseen data) of a *posterior*
 1069 distribution Q over a hypothesis class \mathcal{H} . This bound is typically expressed in terms of the empirical
 1070 risk (average loss on the training data) under Q , and a complexity term that measures how much
 1071 Q deviates from a data-independent *prior* distribution P over \mathcal{H} . The guarantee holds with high
 1072 probability (at least $1 - \delta$) over the random draw of the training dataset.
 1073

1074 Key Components

- 1075 • **Hypothesis Class (\mathcal{H}):** The set of all possible models (e.g., sets of parameters $\boldsymbol{\theta}$).
- 1076 • **Prior Distribution (P):** A distribution over \mathcal{H} chosen *before* observing any training data. It
 1077 reflects initial beliefs about good hypotheses.
- 1078 • **Posterior Distribution (Q):** A distribution over \mathcal{H} that is typically learned from the training
 1079 data \mathcal{D} . In PAC-Bayes, Q can be any distribution, not necessarily a true Bayesian posterior.

- **Loss Function** ($\ell(h, z)$): Measures the error of a hypothesis $h \in \mathcal{H}$ on a data point $z = (\mathbf{x}, \mathbf{y})$.
- **True Risk** ($R(Q)$): The expected loss of a hypothesis drawn from Q on the true (unknown) data distribution: $R(Q) = \mathbb{E}_{h \sim Q} [\mathbb{E}_{z \sim \mathcal{D}_{\text{true}}} [\ell(h, z)]]$.
- **Empirical Risk** ($\hat{R}(Q)$): The average loss of a hypothesis drawn from Q on the N training samples: $\hat{R}(Q) = \mathbb{E}_{h \sim Q} [\frac{1}{N} \sum_{i=1}^N \ell(h, z_i)]$.
- **Kullback-Leibler (KL) Divergence** ($\text{KL}(Q \| P)$): Measures the "distance" or "information gain" from the prior P to the posterior Q . It serves as a complexity penalty: if Q is very different from P , the penalty is high.

A Common Form of PAC-Bayes Bound A typical PAC-Bayes generalization bound (e.g., McAllester's 1999 bound or variations) states that for any $\delta \in (0, 1)$, with probability at least $1 - \delta$ over the draw of an i.i.d. training set \mathcal{D} of size N , for all posterior distributions Q :

$$R(Q) \leq \hat{R}(Q) + \sqrt{\frac{\text{KL}(Q \| P) + \ln(\frac{1}{\delta}) + C}{2N}} \quad (59)$$

where C is a constant that can depend on the range of the loss or other factors (e.g., $\ln(2\sqrt{N})$ as used in our paper, which is a common variant for empirical Bernstein bounds).

Interpretation and Significance

- The bound guarantees that the true risk is unlikely to be much larger than the empirical risk, plus a term that penalizes the complexity of Q relative to P .
- It highlights a trade-off: to achieve good generalization, a learning algorithm should find a posterior Q that both fits the training data well (low $\hat{R}(Q)$) and does not deviate too much from the prior (low $\text{KL}(Q \| P)$).
- The bounds are often tighter than uniform convergence bounds for complex hypothesis classes like neural networks, especially when a good prior is available.
- They provide a theoretical justification for regularization techniques and can guide the design of learning algorithms.

Relevance to This Paper In our work (§ 4.2), we adapt this framework to derive generalization bounds for our augmented likelihood approach. Here, the "hypothesis" space effectively includes both the model parameters θ and the augmentation (hyper)parameters ϕ . The priors $p(\theta)$ and $p(\phi)$ and the variational posteriors $q(\theta)$ and $q(\phi)$ play the roles of P and Q . Our Theorem Theorem 4.4 provides such a bound, and Theorem Theorem 4.5 uses PAC-Bayes reasoning to show the theoretical advantage of our marginalized approach over naïve data replication. The KL terms in our augmented ELBO (Eq. 7) naturally appear as complexity measures in these PAC-Bayes bounds.

D ALGORITHM AND IMPLEMENTATION

We now present a practical algorithm for implementing our Bayesian-optimized data augmentation approach. The algorithm employs stochastic gradient-based optimization of both model parameters and augmentation distribution parameters.

D.1 PARAMETERIZATION OF AUGMENTATION DISTRIBUTION

For continuous transformation parameters, we typically use a Gaussian distribution for $p(\gamma | \phi)$:

$$p(\gamma | \phi) = \mathcal{N}(\gamma | \mu_\phi, \Sigma_\phi), \quad (60)$$

where $\phi = (\mu_\phi, \Sigma_\phi)$. For $q(\phi)$, we might use a Gaussian:

$$q(\phi) = \mathcal{N}(\phi | \mu_q, \Sigma_q), \quad (61)$$

1134 **Algorithm 1** Augmented Variational Inference with Learned Augmentation

1135
1136 1: **Input:** Dataset $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^N$, transformation family $T_{\gamma}(\cdot)$
1137 2: **Initialize:** Variational distributions $q(\theta)$ and $q(\phi)$
1138 3: **while** not converged **do**
1139 4: Sample a minibatch $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^B$ from \mathcal{D}
1140 5: Sample model parameters $\theta \sim q(\theta)$ (or use reparameterization)
1141 6: Sample augmentation parameters $\phi \sim q(\phi)$ (or use reparameterization)
1142 7: **for** each $(\mathbf{x}_i, \mathbf{y}_i)$ in the minibatch **do**
1143 8: Sample augmentation parameters $\gamma_i \sim p(\gamma|\phi)$
1144 9: Apply transformation $\mathbf{x}'_i = T_{\gamma_i}(\mathbf{x}_i)$
1145 10: Compute log-likelihood $\log p(\mathbf{y}_i|\mathbf{x}'_i, \theta)$
1146 11: **end for**
1147 12: Estimate ELBO:
1148
$$\widehat{\text{ELBO}}_{\text{aug}} = \frac{N}{B} \sum_{i=1}^B \log p(\mathbf{y}_i|\mathbf{x}'_i, \theta) - \text{KL}(q(\theta)||p(\theta)) - \text{KL}(q(\phi)||p(\phi))$$

1149
1150 13: Update variational parameters in $q(\theta)$ using gradient of $\widehat{\text{ELBO}}_{\text{aug}}$
1151 14: Update variational parameters in $q(\phi)$ using gradient of $\widehat{\text{ELBO}}_{\text{aug}}$
1152 15: **end while**
1153 16: **Output:** Optimized variational distributions $q(\theta)$ and $q(\phi)$

1154
1155
1156 **Algorithm 2** Partial Variational Inference with Learned Augmentation

1157 1: **Input:** Dataset $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^N$, transformation family $T_{\gamma}(\cdot)$
1158 2: **Initialize:** Model parameters θ and distribution $q(\phi)$
1159 3: **while** not converged **do**
1160 4: Sample a minibatch $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^B$ from \mathcal{D}
1161 5: Sample augmentation parameters $\phi \sim q(\phi)$
1162 6: **for** each $(\mathbf{x}_i, \mathbf{y}_i)$ in the minibatch **do**
1163 7: Sample $\gamma_i \sim p(\gamma|\phi)$
1164 8: Apply transformation $\mathbf{x}'_i = T_{\gamma_i}(\mathbf{x}_i)$
1165 9: Compute log-likelihood $\log p(\mathbf{y}_i|\mathbf{x}'_i, \theta)$
1166 10: **end for**
1167 11: Estimate ELBO:
1168
$$\widehat{\text{ELBO}}_{\text{aug}} = \frac{N}{B} \sum_{i=1}^B \log p(\mathbf{y}_i|\mathbf{x}'_i, \theta) - \text{KL}(q(\phi)||p(\phi))$$

1169
1170
1171 12: Update θ using gradient of $\widehat{\text{ELBO}}_{\text{aug}}$
1172 13: Update $q(\phi)$ using gradient of $\widehat{\text{ELBO}}_{\text{aug}}$
1173 14: **end while**
1174 15: **Output:** Optimized parameters θ and distribution $q(\phi)$

1175
1176
1177 learning μ_q and Σ_q . This allows for reparameterization during sampling:
1178

$$\phi = \mu_q + \Sigma_q^{1/2} \epsilon, \quad \epsilon \sim \mathcal{N}(0, I), \quad (62)$$

1179 followed by:
1180

$$\gamma = \mu_{\phi} + \Sigma_{\phi}^{1/2} \epsilon', \quad \epsilon' \sim \mathcal{N}(0, I). \quad (63)$$

1181
1182 For discrete transformations, we can use a categorical distribution:
1183

$$p(\gamma|\phi) = \text{Cat}(\gamma|\pi_{\phi}), \quad (64)$$

1184 where π_{ϕ} represents the probabilities, and use the Gumbel-Softmax trick (Jang et al., 2017) for
1185 differentiable sampling.
1186

1188 D.2 PRACTICAL CONSIDERATIONS
11891190 **Adaptive Variance Scheduling.** Based on Corollary 4.2, we can implement an adaptive schedule
1191 for the augmentation variance within $q(\phi)$, adjusting the variance of ϕ over training to balance
1192 exploration and bound tightness.

1193

1194 **Marginalization Advantage Monitoring.** Following Corollary 4.6, we can monitor the marginal-
1195 ization advantage term $D_\phi(x_i, y_i)$ during training to assess the benefit of OPTIMA over naïve
1196 augmentation.

1197

1198 **Curvature-Aware Augmentation.** Inspired by Corollary 4.10, we can adapt the augmentation
1199 distribution based on the model’s sensitivity to different transformations, allocating more variance to
1200 directions where the model is approximately invariant.

1201

1202 **Computational Efficiency.** For large models, we use Monte Carlo estimates with a small number
1203 of samples (e.g., one per data point per iteration) to approximate the expectations in the ELBO. The
1204 reparameterization trick ensures low-variance gradient estimates.

1205

1206 E ADDITIONAL EXPERIMENTAL DETAILS FOR § 5.2
12071208 We use a ResNet-50 architecture with a Bayesian linear layer at the end (for non-Bayesian case, we
1209 just use ResNet-50 without any replacements). We apply standard preprocessing for IMAGENET. We
1210 use the Adam optimizer with a learning rate of 1×10^{-5} for model parameters. In OPTIMA, we are
1211 learning a parameter in Beta distribution for Mixup, in uniform distribution for Cutmix, and Dirichlet,
1212 depth and Beta distribution parameters jointly for Augmix augmentations. For these augmentations,
1213 we use lognormal distribution as a prior because of the simplicity. The augmentation parameters have
1214 a separate learning rate (1×10^{-3}) to facilitate faster exploration. We regularize the augmentation
1215 parameters with a KL weight of $\beta_{\text{kl_aug}} = 1$, balancing data-fit and prior alignment. For all methods,
1216 we include a small KL weight $\beta_{\text{kl_net}} = 10^{-4}$ on the model parameters to maintain a Bayesian prior
1217 but it works with any weight on the model parameters. This acts as a Bayesian regularizer on the final
1218 layer weights, preventing overfitting within that layer and ensuring consistency with the variational
1219 Bayesian framework (Blundell et al., 2015). Training proceeds for 30 epochs with a batch size of
1220 256.

1221

1222 **Evaluation Metrics.** We compute the Expected Calibration Error (ECE) by dividing predictions
1223 into 10 bins based on confidence and measuring the difference between average confidence and
accuracy in each bin:

1224

1225
$$\text{ECE} = \sum_{i=1}^{10} \frac{|B_i|}{n} |\text{acc}(B_i) - \text{conf}(B_i)|, \quad (65)$$

1226

1227

1228 where B_i is the set of examples in bin i , n is the total number of examples, $\text{acc}(B_i)$ is the accuracy
1229 in bin i , and $\text{conf}(B_i)$ is the average confidence in bin i .

1230

1231 For out-of-distribution detection, we use the AUROC metric, which measures the area under the ROC
1232 curve when using predictive entropy as the detection score:

1233

1234
$$H[p(y|x)] = - \sum_{c=1}^C p(\mathbf{y} = c | \mathbf{x}) \log p(\mathbf{y} = c | \mathbf{x}). \quad (66)$$

1235

1236

1237 Higher entropy indicates higher uncertainty, which should correlate with out-of-distribution examples.

1238

1239 F ADDITIONAL RESULTS ON DIFFERENT TYPES OF DATA AUGMENTATION
1240

1241

F.1 LEARNING GEOMETRIC AUGMENTATION FOR CIFAR10 CLASSIFICATION

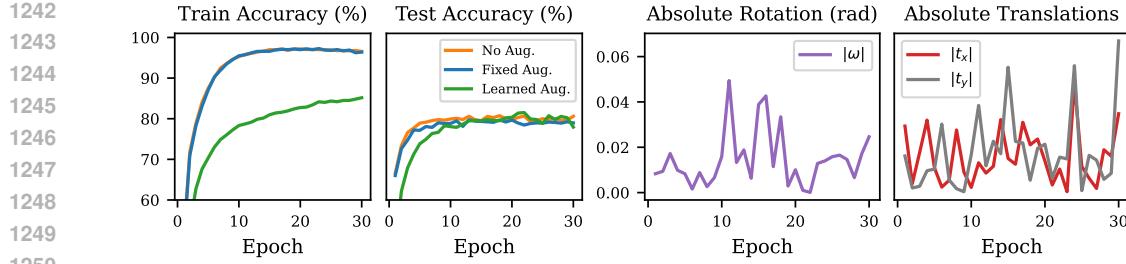


Figure 3: (Left Two) Convergences of training and test accuracy on CIFAR10. OPTIMA generalizes better than the other approaches. (Right Two) Evolutions of the data augmentation parameters.

Setups. We use a ResNet-18 architecture with a Bayesian linear layer at the end. We apply standard preprocessing: normalization with mean (0.4914, 0.4822, 0.4465) and standard deviation (0.2023, 0.1994, 0.2010). We use the Adam optimizer with a learning rate of 1×10^{-4} for model parameters. In OPTIMA, we are learning $\gamma = \{\omega, t_x, t_y\}$ jointly, where ω is rotation (radians), and t_x and t_y are horizontal and vertical shifts. The augmentation parameters have a separate learning rate (1×10^{-2}) to facilitate faster exploration. We regularize the augmentation parameters with a KL weight of $\beta_{\text{kl_aug}} = 1$, balancing data-fit and prior alignment. For all methods, we include a small KL weight $\beta_{\text{kl_net}} = 0.1$ on the model parameters to maintain a Bayesian prior but it works with any weight on the model parameters. This acts as a Bayesian regularizer on the final layer weights, preventing overfitting within that layer and ensuring consistency with the variational Bayesian framework (Blundell et al., 2015). Training proceeds for 30 epochs with a batch size of 128.

Results. We assess calibration using 100 Monte Carlo (MC) samples. Fig. 1 presents reliability diagrams for **No Aug**, **Fixed Aug**, and OPTIMA, revealing that the learned augmentation strategy yields the lowest calibration error (ECE), with the reliability curve closely aligning with perfect calibration. Table 5 summarizes the final ECE values, confirming that OPTIMA leads to more accurate confidence estimates than fixed or no augmentation. Moreover, Fig. 3 (second panel) shows test accuracy over time: the learned augmentation generalizes better, while **No Aug** and **Fixed Aug** exhibit overfitting and poorer generalization.

F.2 EXPLORING DIFFERENT INTENSITIES OF GAUSSIAN TRANSLATIONS

We use the same implementation details as in Appendix F.1, except that we choose Gaussian Translation as an augmentation parameter and validate on different values of K in naïve augmentation, and different prior variance σ in OPTIMA. As an OOD data, we choose the SVHN dataset, since this mismatch makes it a widely adopted benchmark for OOD testing of classifiers trained on CIFAR10.

Table 6: Effect of marginalization vs. naïve augmentation with different numbers of augmentations per example on CIFAR10 using Pretrained Bayesian ResNet-18 (last layer) and Gaussian Translation after 30 epochs. Test accuracy and ECE are on CIFAR10, and OOD AUROC is on the SVHN dataset.

Method	Test Acc (%)	ECE \downarrow	OOD AUROC
No Aug	94.09	0.0381	0.9069
naive Aug (K=2)	95.03	0.0298	0.9425
naive Aug (K=5)	95.21	0.0327	0.9383
naive Aug (K=10)	93.75	0.0424	0.9560
OPTIMA ($\sigma = 0.1$)	93.30	0.0192	0.9446
OPTIMA ($\sigma = 0.5$)	93.87	0.0165	0.9576
OPTIMA ($\sigma = 1$)	90.25	0.0175	0.9647

Results. Table 6 shows that OPTIMA allows us to get much better calibration than naïve and no augmentation cases. Because of the overcounting problem in naïve case, it obviously consumes

Table 5: CIFAR10 classification. Fixed Aug uses fixed rotation $\omega = 0.1$ and translations of 0.1.

Method	Acc (%)	ECE (\downarrow)
No Aug	80.90	0.092
Fixed Aug	80.73	0.088
OPTIMA	81.35	0.017

1296 around K times more time than our approach demonstrating that we can get good generalization and
 1297 better robustness for OOD in short time with our approach.
 1298

1299 **G ADDITIONAL EXPERIMENT ON IMAGENET USING RESNET-50**

1300 Here we use OPTIMA for Imagenet in order to learn Mixup, Cutmix and Augmix augmentations.
 1301

1302 **G.1 IMPLEMENTATION DETAILS FOR OPTIMA WITH MIXUP**

1303 We evaluate our OPTIMA framework with the Learnable Mixup augmentation on the IMAGENET
 1304 (Deng et al., 2009) dataset for image classification. Performance is assessed on the standard IMA-
 1305 GENET validation set, and robustness is measured on the IMAGENET-C (Hendrycks & Dietterich,
 1306 2019) benchmark.

1307 **Model Architecture and Preprocessing.** We employ a ResNet-50 architecture
 1308 (He et al., 2016), initialized with pretrained weights from
 1309 `torchvision.models.ResNet50_Weights.IMAGENET1K_V2`. The final fully connected layer is replaced with a new linear layer mapping to the 1000 IMAGENET classes. For
 1310 input preprocessing during training, images are transformed by a `RandomResizedCrop` to
 1311 224×224 pixels followed by a `RandomHorizontalFlip`. Validation and test images are
 1312 resized to 256 pixels on their shorter edge and then center-cropped to 224×224 . All images
 1313 are subsequently converted to tensors and normalized using the standard IMAGENET mean
 1314 $\mu_{\text{ImageNet}} = (0.485, 0.456, 0.406)$ and standard deviation $\sigma_{\text{ImageNet}} = (0.229, 0.224, 0.225)$.
 1315

1316 **Learnable Mixup Augmenter.** In the OPTIMA Mixup variant, the Mixup hyperparameter α
 1317 (controlling the Beta distribution $\text{Beta}(\alpha, \alpha)$ from which the mixing coefficient λ is sampled) is made
 1318 learnable. We parameterize a Normal distribution over $\text{logit}(\alpha)$ with learnable mean $\mu_{\ell\alpha}$ and learnable
 1319 log standard deviation $\log \sigma_{\ell\alpha}$, where $\ell\alpha = \text{logit}(\alpha)$. The initial value for $\mu_{\ell\alpha}$ is set to $\text{logit}(0.2)$,
 1320 corresponding to an initial $\alpha_{\text{init}} = 0.2$. The initial $\log \sigma_{\ell\alpha}$ is set to $\log(0.1)$, promoting a small initial
 1321 variance for the learned distribution over $\text{logit}(\alpha)$. A prior distribution $p(\text{logit}(\alpha))$ is defined as
 1322 $\mathcal{N}(\text{logit}(\alpha_{\text{init}}), \sigma_p^2)$, where the prior standard deviation $\sigma_p = 2.0$. The KL divergence between the
 1323 learned variational posterior $q(\text{logit}(\alpha) | \mu_{\ell\alpha}, \sigma_{\ell\alpha}^2)$ and this prior is added to the training objective,
 1324 weighted by the hyperparameter `beta_augmenter_reg`. Sampled λ values are clamped to the
 1325 range $[10^{-6}, 1 - 10^{-6}]$ for numerical stability.
 1326

1327 **Training Configuration.** Models were trained for 10 epochs¹ using the AdamW optimizer.
 1328 The base learning rate for the ResNet-50 parameters was set to 1×10^{-4} . The learnable
 1329 parameters of the Mixup augmenter ($\mu_{\ell\alpha}, \log \sigma_{\ell\alpha}$) utilized a learning rate of 1×10^{-3} (10
 1330 times the base learning rate). A cosine annealing learning rate scheduler with warm restarts
 1331 (`CosineAnnealingWarmRestarts`) was employed, with parameters ‘ $T_0 = 10$ ’ epochs,
 1332 ‘ $T_{\text{mult}} = 2$ ’, and ‘ eta_{min} ’ set to $1/100$ of the initial learning rate. The weight decay for net-
 1333 work parameters (`beta_network_reg`) was 0.01. The coefficient for the KL divergence term
 1334 of the augmentation parameters (`beta_augmenter_reg`) was 1.0. Training was performed
 1335 with a global batch size of 256 distributed across 4 NVIDIA A100 GPUs using Distributed Data
 1336 Parallel (DDP). We used a precision of “16” (interpreted as 16-bit native mixed precision) and
 1337 set ‘`torch.set_float32_matmul_precision('medium')`’. Gradient clipping was applied with a
 1338 maximum norm of 1.0. The number of data loader workers was set to 8 per GPU process.
 1339

1340 **Baselines.** We compare OPTIMA Mixup against:
 1341

- **Fixed Mixup:** Standard Mixup augmentation with a fixed $\alpha = 0.2$. The training setup (optimizer, scheduler, epochs, batch size) was identical to that of OPTIMA Mixup, excluding elements specific to learnable augmentation parameters.

1342
 1343 ¹While longer training (e.g., 90-100 epochs) is standard for IMAGENET, these experiments were conducted
 1344 for 10 epochs to demonstrate the behavior of the learnable augmentation parameters and compare against fixed
 1345 augmentation under identical short-run conditions.

1350
 1351 • **Pretrained ResNet-50 (No Augmentation Eval):** The ResNet-50 model with weights from
 1352 `torchvision.models.ResNet50_Weights.IMAGENET1K_V2`, evaluated directly on
 1353 the validation and IMAGENET-C sets without any fine-tuning under our experimental setup. This
 1354 serves as a standard reference.

1355 **G.2 IMPLEMENTATION DETAILS FOR OPTIMA WITH CUTMIX**

1356 For evaluating OPTIMA with CutMix, we follow a similar experimental setup on the IMAGENET
 1357 ([Deng et al., 2009](#)) dataset, with robustness assessed on IMAGENET-C ([Hendrycks & Dietterich, 2019](#)).

1360 **Model Architecture and Preprocessing.** We use the ResNet-50 architecture ([He et al., 2016](#))
 1361 pretrained with `torchvision.models.ResNet50_Weights.IMAGENET1K_V2`, replacing
 1362 the final classifier layer for the 1000 IMAGENET classes. Input preprocessing during training includes
 1363 `RandomResizedCrop` to 224×224 and `RandomHorizontalFlip`. Validation and test images
 1364 are resized (256 shorter edge) and center-cropped to 224×224 . Standard IMAGENET normalization
 1365 is applied.

1366 **Learnable CutMix Augmenter.** In CutMix ([Yun et al., 2019](#)), a patch from one image is pasted
 1367 onto another, and labels are mixed proportionally to the area of the patches. The mixing ratio λ
 1368 (determining the area of the first image to keep, and thus $(1-\lambda)$ is the area of the patch from the
 1369 second image) is typically sampled from a $\text{Beta}(\alpha, \alpha)$ distribution. For our OPTIMA CutMix, this α
 1370 parameter of the Beta distribution is made learnable. We parameterize a Normal distribution over
 1371 $\log(\alpha)$ with learnable mean $\mu_{\log \alpha}$ and learnable log standard deviation $\log \sigma_{\log \alpha}$. The initial value
 1372 for $\mu_{\log \alpha}$ is set to $\log(1.0)$, corresponding to an initial $\alpha_{\text{init}} = 1.0$ (a common default for CutMix).
 1373 The initial $\log \sigma_{\log \alpha}$ is set to $\log(0.1)$. A prior distribution $p(\log(\alpha))$ is defined as $\mathcal{N}(\log(\alpha_{\text{init}}), \sigma_p^2)$,
 1374 with prior standard deviation $\sigma_p = 2.0$. The KL divergence between the learned variational posterior
 1375 for $\log(\alpha)$ and this prior is added to the training loss, weighted by `beta_augmenter_reg`. The
 1376 sampled α values are clamped to $[10^{-4}, 100.0]$ before being used in the Beta distribution. The
 1377 resulting mixing coefficient λ_{final} (coefficient for the first image’s label) is determined by the actual
 1378 area of the pasted patch after clipping to image boundaries.

1380 **Training Configuration.** Models were trained for N_{epochs} epochs (e.g., 15) using the AdamW opti-
 1381 mizer. The base learning rate for network parameters was 1×10^{-4} , while the learnable CutMix param-
 1382 eters ($\mu_{\log \alpha}, \log \sigma_{\log \alpha}$) used a learning rate of 1×10^{-3} . A CosineAnnealingWarmRestarts
 1383 learning rate scheduler was used (‘T_0=10’ or ‘15’, ‘T_mult=2’, ‘eta_min’=1/100 of
 1384 initial LR). Network weight decay (`beta_network_reg`) was 0.01, and the KL coefficient
 1385 (`beta_augmenter_reg`) was 1.0. Training used a global batch size of 256 on 4 NVIDIA A100
 1386 GPUs with DDP, “16” precision, `‘torch.set_float32_matmul_precision('medium')’`, and
 1387 gradient clipping at 1.0. Data loader workers were set to 8 per GPU.

1388 **G.3 IMPLEMENTATION DETAILS FOR OPTIMA WITH AUGMIX (LEARNABLE SEVERITY +
 1389 JSD)**

1390 We evaluate OPTIMA by learning a component of the AugMix ([Hendrycks et al., 2020](#)) augmentation
 1391 strategy, specifically its overall `aug_severity`, while also employing the Jensen-Shannon
 1392 Divergence (JSD) consistency loss. Experiments are conducted on IMAGENET ([Deng et al., 2009](#))
 1393 and IMAGENET-C ([Hendrycks & Dietterich, 2019](#)).

1394 **Model Architecture and Preprocessing.** The model is a ResNet-50 ([He et al., 2016](#)) initialized with
 1395 `torchvision.models.ResNet50_Weights.IMAGENET1K_V2`, with the final classifier
 1396 layer adapted for 1000 classes. During training, input PIL images undergo `RandomResizedCrop`
 1397 to 224×224 and `RandomHorizontalFlip`. These PIL images are then passed to our
 1398 `LearnableAugMixSeverityJSDAugmenter` module. Validation and test images use stan-
 1399 dard resizing, center cropping, and `ToTensor` conversion, followed by IMAGENET normalization.

1400 **Learnable AugMix Severity + JSD Augmenter.** The `LearnableAugMixSeverityJSDAugmenter`
 1401 is implemented as an `nn.Module`.

1404 • **AugMix Core:** For each input PIL image, three views are generated: the original, and two
 1405 independently augmented versions using AugMix. Each AugMix version is a convex combination
 1406 ($m \sim \text{Beta}(1, 1)$) of the original image and a mixture of $K = \text{augmix_mixture_width}$
 1407 (default 3) augmentation chains. Each chain consists of D (default random 1-3, controlled by
 1408 $\text{augmix_mixture_depth}$) basic operations (e.g., rotate, shear, color jitter) sampled randomly.
 1409 Mixing weights for chains w_k are from $\text{Dirichlet}(1)$. All PIL operations and the final conversion to
 1410 tensors (for each of the three views) happen within this augmenter module, ensuring output tensors
 1411 are on the correct device. We utilize a predefined list of tensor-based augmentation operations
 1412 where possible to improve performance over PIL-only operations.
 1413 • **Learnable Severity:** The overall intensity of the basic augmentations, aug_severity
 1414 (typically a value between 0-10), is made learnable. We parameterize a Normal distribution
 1415 over $\log(\text{aug_severity})$ with learnable mean $\mu_{\log S}$ and learnable log standard deviation
 1416 $\log \sigma_{\log S}$. The initial $\mu_{\log S}$ corresponds to an $\text{initial_aug_severity}$ of 3.0, and initial
 1417 $\log \sigma_{\log S} = \log(0.1)$. The prior for $\log(\text{aug_severity})$ is $\mathcal{N}(\log(\text{initial_aug_severity}), \sigma_{pS}^2)$
 1418 with $\sigma_{pS} = \text{prior_severity_std_learnable_aug}$ (default 1.0). A KL divergence term,
 1419 weighted by $\text{beta_augmenter_reg}$, regularizes these learned severity parameters. The sampled
 1420 severity is clamped to [0.1, 10.0].
 1421 • **JSD Loss:** The three output image tensors (original, AugMix view 1, AugMix view 2) are passed
 1422 through the network. A JSD consistency loss is calculated between their softmax predictions,
 1423 weighted by beta_jsd (default 12.0), and added to the primary cross-entropy loss (calculated on
 1424 the original view).

1424 The data loader for training uses a custom collate function to provide a list of PIL images to the
 1425 augmenter.

1427 **Training Configuration.** Training was conducted for N_{epochs} epochs (in our case 6 epochs because
 1428 of the computational complexity related to tensor and PIL transformations) with the AdamW optimizer.
 1429 The base learning rate for network parameters was 1×10^{-4} . The learnable severity parameters
 1430 ($\mu_{\log S}, \log \sigma_{\log S}$) used a learning rate of 1×10^{-3} . A CosineAnnealingWarmRestarts
 1431 scheduler was used ('T_0=10' or '15', 'T_mult=2', 'eta_min'=1/100 of initial LR). Network
 1432 weight decay (beta_network_reg) was 0.01. The KL coefficient for severity parameters
 1433 ($\text{beta_augmenter_reg}$) was 1.0. The JSD loss coefficient (beta_jsd) was 12.0. Training used
 1434 a global batch size of 128 (reduced due to processing three views) on 4 NVIDIA A100 GPUs with
 1435 DDP, '16' precision, '`torch.set_float32_matmul_precision('medium')`', and gradient clipping
 1436 at 1.0. Data loader workers were 8 per GPU.

1438 G.4 EVALUATION AND SOFTWARE/HARDWARE FOR ALL THESE METHODS.

1440 Models are evaluated on the standard IMAGENET validation set for top-1 accuracy and cross-entropy
 1441 loss. Robustness is assessed on the IMAGENET-C benchmark, reporting the normalized mean
 1442 Corruption Error (mCE normalized by AlexNet baseline) across all corruptions and severities. For
 1443 IMAGENET-C, images are processed using the same validation transforms as for the clean IMAGENET
 1444 validation set. All final reported evaluations are performed on a single GPU using 32-bit floating-point
 1445 precision.

1446 Experiments were conducted using PyTorch version 2.0.1 and PyTorch Lightning version 2.1.0.
 1447 Training and evaluation four utilized NVIDIA A100 (80GB) GPUs.

1449 G.5 EXPERIMENTAL RESULTS

1451 Table 7: The result of IMAGENET and IMAGENET-C using ResNet-50 for each augmentations. We
 1452 evaluate the average test error for each corruption type

Method	Test Acc (%)	mCE (normalized) (%)	gaussian	shot	impulse	defocus	glass	motion	zoom	snow	frost	fog	brightness	contrast	elastic	pixelate	jpeg
No Aug	60.8	76.7	71	73	76	61	73	61	64	67	62	54	32	61	55	55	47
Mixup (Zhang et al., 2018)	77.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
OPTIMA Mixup (10 epochs)	79.41	68.41	55	57	59	62	73	59	59	62	51	44	31	48	55	50	43
Cutmix (Yun et al., 2019)	78.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
OPTIMA Cutmix (15 epochs)	79.62	70.6	68	68.7	68.8	74.6	88.6	75.7	73.4	73.2	70.8	59	54.1	61.3	83.6	70.5	69.2
Augmix (Hendrycks et al., 2020)	77.53	65.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
OPTIMA Augmix (6 epochs)	78.19	68.21	57.37	58.26	60.79	60.98	72.04	56.77	54.54	59.76	54.58	44.72	30.13	45.37	54.75	51.66	44.71

1458 **Results.** In Table 7, we can see that OPTIMA allows us to get better test accuracy on clean data
 1459 with non-Bayesian ResNet-50. OPTIMA Mixup, Cutmix and Augmix are beating the baseline
 1460 results within (5-15 epochs). The mCE of OPTIMA Augmix is lower than the benchmark. This can
 1461 be explained by the very few training epochs (6 epochs) which we could run due to the computational
 1462 complexity of this experiment; with our computational resources it takes around 15 hours for one full
 1463 epoch.

1464

1465 H ADDITIONAL EXPERIMENTAL DETAILS FOR § 5.4. TOKEN-DROPOUT 1466 IMPLEMENTATION DETAILS

1467

1468 **Parameterization.** The augmentation module applies token dropout with probability

1469

$$p_{\text{drop}} = p_{\text{max}} \sigma(s),$$

1470 where s is a trainable scalar (initialized at $s_0 = -2$ in our implementation) and $\sigma(\cdot)$ is the logistic
 1471 function. The constant p_{max} sets an upper bound on the amount of dropout; we use $p_{\text{max}} = 0.5$.

1472

1473 **Prior.** We place a Gaussian prior directly on p_{drop} ,

1474

$$p(p_{\text{drop}}) \propto \exp\left(-\frac{1}{2} \frac{(p_{\text{drop}} - \mu)^2}{\sigma^2}\right),$$

1475

1476 implemented as a quadratic penalty in the ELBO objective. We use $\mu \in \{0.1, 0.3\}$ to represent weak
 1477 and strong prior preferences for token dropout, and $\sigma = 0.1$.

1478

1479 **OPTIMA initialization.** All methods begin from the same initial dropout rate $p_{\text{drop}} =$
 1480 $p_{\text{max}} \sigma(s_0) \approx 0.04$, ensuring a mild initial augmentation.

1481

1482 **Baselines.** We compare the following: (i) *No Aug* ($p_{\text{drop}} = 0$); (ii) *Fixed Aug*, using the same
 1483 initialization as OPTIMA; (iii) *Fixed Aug (Matched)*, using OPTIMA’s learned dropout; (iv) *BO-Fixed*,
 1484 selecting p_{drop} via validation NLL over a grid in $[0, 0.3]$.

1485

1486 **Optimizers.** DistilBERT is trained with learning rate 2×10^{-5} , and s is trained with learning rate
 1487 5×10^{-2} . Further hyperparameters are unchanged from standard HuggingFace defaults.

1488

1489

1490 I BROADER IMPACT

1491

1492 OPTIMA has significant potential for improving the reliability of Bayesian deep learning in high-
 1493 stakes applications, such as medical imaging, autonomous driving, and scientific discovery. The
 1494 ability to learn optimal augmentation strategies from data also reduces the need for manual tuning,
 1495 making Bayesian methods more accessible to practitioners across domains.

1496

1497

1498 J REPRODUCIBILITY STATEMENT

1499

1500 All experiments are fully described in the submission, including dataset details, hyperparameters,
 1501 and training procedures. The accompanying code is provided to ensure that our results can be
 1502 independently reproduced.

1503

1504

1505 K THE USE OF LARGE LANGUAGE MODELS (LLMs)

1506

1507 We used large language models (LLMs) solely for non-substantive assistance, including grammar
 1508 refinement and summarizing relevant literature. All research ideas, analyses, and conclusions are the
 1509 authors’ own.

1510

1511