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Discovering Diverse Nearly Optimal Policies with Successor Features

Abstract

Finding different solutions to the same problem
is a key aspect of intelligence associated with cre-
ativity and adaptation to novel situations. In rein-
forcement learning, a set of diverse policies can be
useful for exploration, transfer, hierarchy, and ro-
bustness. We propose Diverse Successive Policies,
a method for discovering policies that are diverse
in the space of Successor Features, while assuring
that they are near optimal. We formalize the prob-
lem as a Constrained Markov Decision Process
(CMDP) where the goal is to find policies that
maximize diversity, characterized by an intrinsic
diversity reward, while remaining near-optimal
with respect to the extrinsic reward of the MDP.
We also analyze how recently proposed robustness
and discrimination rewards perform and find that
they are sensitive to the initialization of the proce-
dure and may converge to sub-optimal solutions.
To alleviate this, we propose new explicit diver-
sity rewards that aim to minimize the correlation
between the Successor Features of the policies in
the set. We compare the different diversity mech-
anisms in the DeepMind Control Suite and find
that the type of explicit diversity we are proposing
is important to discover distinct behavior, like for
example different locomotion patterns.

1. Introduction
Creative problem solving is the mental process of searching
for an original and previously unknown solution to a prob-
lem (Osborn, 1953). The relationship between creativity
and intelligence is widely recognized across many fields;
for example, in the field of Mathematics, finding different
proofs to the same theorem is considered elegant and often
leads to new insights.

Closer to Artificial Intelligence (AI), consider the field of
game playing and specifically the game of Chess in which
a move is considered creative when it goes beyond known
patterns (da Fonseca-Wollheim, 2020). In some cases, such
moves can only be detected by human players while remain-
ing invisible to currently state-of-the-art Chess engines. A
famous example thereof is the winning move in game eight
of the Classical World Chess Championship 2004 between
Leko and Kramnik (Behovits, 2004). Humans and indeed
many animals employ similarly creative behavior on a daily
basis; faced with a challenging problem we often consider
qualitatively different alternative solutions.

Yet, the majority of AI research is focused on finding a single
best solution to a given problem. For example, in the field
of Reinforcement Learning (RL), most algorithms are de-
signed to find a single reward-maximizing policy. However,
for many problems of interest there may be many quali-
tatively different optimal or near-optimal policies; finding
such diverse set of policies may help an RL agent become
more robust to changes in the task and/or environment and
to generalize better to future tasks.

In the field of Quality-Diversity (QD), evolutionary algo-
rithms are used to find useful diverse policies (e.g., (Pugh
et al., 2016; Mouret and Clune, 2015; Hong et al., 2018;
Masood and Doshi-Velez, 2019; Parker-Holder et al., 2020;
Gangwani et al., 2020; Peng et al., 2020; Zhang et al., 2019)).
In a related line of work, intrinsic rewards are used to find
diverse skills for fast adaptation (Gregor et al., 2017; Eysen-
bach et al., 2019) to be robust to model miss-specification
(Kumar et al., 2020; Zahavy et al., 2020b) and for explo-
ration (Agarwal et al., 2020). It was also suggested that
policies that maximize diversity are more correlated with
human behaviour than those that maximize only the extrin-
sic reward (Matusch et al., 2020).

This work makes the following contributions. First, we pro-
pose an incremental method for discovering a diverse set
of near-optimal policies. Each policy in the set is trained to
solve a Constrained Markov Decision Process (CMDP). The
main objective in the CMDP is to maximize the diversity
of the growing set, measured in the space of Successor Fea-
tures (SFs; Barreto et al., 2017), and the constraint is that the
policies are near-optimal. Second, we analyze how previ-
ously proposed robustness and discrimination mechanisms
for the “no-reward” setting perform in terms of diversity in
our setup. We find that they are sensitive to the initialization
of the procedure and may converge to sub-optimal solutions.
To alleviate this, we propose two explicit diversity rewards
that aim to minimize the correlation between the SFs of the
policies in the set. Third, we demonstrate our method in
the DeepMind Control Suite (Tassa et al., 2018). Given an
extrinsic reward (e.g. for standing or walking) our method
discovers qualitatively diverse locomotion behaviours for
approximately maximizing this reward.

2. Preliminaries and Notation
An MDP (Puterman, 1984) is a tupleM , (S,A, P, r, γ, ρ),
where S is the set of states, A is the set of actions, P =
{P a | a ∈ A} is the set of transition kernels, γ ∈ [0, 1) is
the discount factor and ρ is the initial state distribution. The
function r : S×A 7→ R defines the rewards. A policy inM ,
denoted by π, is a mapping π : S → P(A), where P(A) is
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the probability distributions over A.

Usually in RL, the agent’s objective is to maximize the ex-
pected cumulative extrinsic reward. In this work, we will
also be interested in discovering and maximizing intrinsic
reward functions (Singh et al., 2010). These rewards can
be a function of the policy (e.g., its entropy) or a function
of observed features. Let φ(s, a) ∈ [0, 1]d be an observ-
able vector of bounded features. Then there is a set of re-
wards induced by all possible linear combinations of the
features φ. Specifically, for any w ∈ Rd, we can define
a reward function rw(s, a) = w · φ(s, a). Given w, the
intrinsic reward rw is well defined and we will use w and
rw interchangeably to refer to it. Any policy induces a state
transition matrix Pπ , where Pπ(x, y) = Pπ(x)(x, y) is the
probability of transitioning from state x to state y when the
action is selected according to π(x). Thus, any policy yields
a Markov chain (S, Pπ). By looking at the Markov chain
induced by a policy we can study its long-term behavior,
such as its stationary distribution. This in turn allows us to
define a notion of diversity based on the limiting behavior
of policies, in contrast with most previous work on diver-
sity that focus on short-term behavior (Gregor et al., 2017;
Eysenbach et al., 2019).

Concretely, in defining diversity we use measures defined in
the average-case setting. The stationary distribution dπ
of a Markov chain with transition matrix Pπ is defined to
be dπ(s) = limt→∞ Pr(st = s|s0 ∼ ρ, π), which we as-
sume exists and is independent of s0 for all policies. In
ergodic MDPs this limit is unique and is known to be
the probability distribution satisfying d>π = d>π P

π (Put-
erman, 1984). The asymptotic average reward value, here-
after simply value, of a policy π under reward function r,
denoted vπr , can be defined as an expectation over dπ as:
vπr = Es∼dπ r(s, π(s)) = dπ · rπ, where rπ is a vector with
Ea∼π(s)r(s, a) in its coordinates. A natural time scale in this
long-term average-case context is the mixing time of the
policy – the time until the Markov chain is "close" to its sta-
tionary state distribution. Formally, the ε-mixing time Tmix
of an ergodic Markov chain with a stationary distribution dπ
is the smallest time t such that ∀x0, TV[Prt(·|x0), dπ] ≤ ε,
where Prt(·|x0) is the distribution over states after t steps,
starting from x0 and TV[·, ·] is the total variation distance. In
other words, if we follow a policy in an MDP for Tmix steps,
we will observe states that are approximately distributed
according to dπ .

Similarly, we can define the expected features, also
known as successor features, under dπ as ψπ =
Ex∼dπ φ(x, π(x)). Note that the SFs are conditioned on
ρ and π and that they are vectors in Rd; similar definitions
were suggested in (Mehta et al., 2008; Zahavy et al., 2020a).
For linear rewards there is a simple way to express the av-
erage reward value of the policy (Section 2) using the SFs:
vπw = ψπ · w. To keep the notation simple, we will refer to
the SFs of policy πi as ψi; and, since we are dealing with
different intrinsic rewards, we will use the notation vid to
refer to the value of policy πi for reward rd.

3. Discovering diverse near-optimal policies
We are interested in discovering a set of n near-optimal poli-
cies Πn = {πi}ni=1 that are maximally diverse according to
some diversity metric. Let Ψn be the set of SFs correspond-
ing to the policies in Πn, then we are interested in solving
the following constrained optimization problem:

max
Πn

Diversity(Ψn) s.t vπe ≥ αv∗e , ∀π ∈ Πn, (1)

where Diversity : {Rd}n → R measures the diversity of a
set of SFs (Ψn) that we shall define shortly, and the con-
straint requires that all the policies in Πn achieve value
better than a parameter α ∈ [0, 1] times the value of the
optimal policy (here vπe is the value of policy π for extrinsic
reward re and v∗e is the value of the optimal policy with re-
spect to re). Note that α controls how big a space of policies
we search over for our diverse set of policies. In general,
the smaller the α parameter the larger the set of α-optimal
policies and thus the greater the diversity of the policies
found in Πn1.

Algorithm 1 Diverse Successive Policies

1: Input: mechanism to compute rewards re and rd.
2: Initialize: π0 ← arg maxπ∈Π re · dπ ,
3: v∗e = vπ

0

, Π0 = {π0}
4: for i = 1, . . . , T do
5: Compute diversity reward rid = D(Ψi−1)
6: πi = arg maxπ dπ · rid s.t. dπ · re ≥ αv∗e
7: Estimate the SFs ψi of the policy πi
8: Πi = Πi−1 ∪ {πi},Ψi = Ψi−1 ∪ {ψi}
9: end for

10: return ΠT

Common to many approaches is to define a diversity objec-
tive using intrinsic rewards (Gregor et al., 2017; Eysenbach
et al., 2019; Kumar et al., 2020; Zahavy et al., 2021), i.e.,
rewards not from the environment but defined by the agent
itself. Our approach also uses intrinsic rewards to induce
diversity, as we describe in Algorithm 1. The algorithm
receives as input two reward functions re and rd, which
together define a CMDP. The reward rd corresponds to a
diversity intrinsic reward. We will discuss five different can-
didate rd’s. The constraint reward re will typically be the
extrinsic reward, but we will also consider two alternative
choices for re. In the initialization step of Algorithm 1 (line
2) there are no policies in the set, and so the goal of the first
policy π0 is to solve the MDP with reward re. Algorithm 1
then adds π0 and its SFs to the set, and the variable v∗e is set
to be v0. v∗e defines the near-optimality constraint αv∗e for
the other policies (say with α = 0.9).

After this first step, the algorithm proceeds in iterations. In
iteration i, an intrinsic reward rid is computed given the pre-

1When the extrinsic reward is positive (re(s, a) ≥ 0, ∀s, a),
the extrinsic value is positive vπe ≥ 0, ∀π, and setting α = 0 in
Eq. (1) is equivalent to the no-reward setting where the goal is to
maximize diversity.
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vious policies in the set Πi−1. The next policy to be added
to the set, πi, is the solution to the following Constrained
MDP (CMDP) (line 6 in Algorithm 1):

arg max
π

dπ · rid s.t. dπ · re ≥ αv∗e . (2)

In words, the new policy optimizes the average intrinsic
reward value subject to the constraint that it be near-optimal
with respect to its average extrinsic reward value. In Sec-
tion 5 we discuss the details of how to solve Eq. (2). Clearly,
the behavior of Algorithm 1 strongly depends on the choice
of rd, the intrinsic reward used to induce diversity. We now
discuss five alternatives to define this reward.

4. Measuring Policy Diversity
A key aspect of our method is the measure of diversity. Our
focus is on diverse policies, as measured by their stationary
distribution after they have mixed. This suggests we should
measure diversity in the space of SFs, as they are defined
under the policy’s stationary distribution (see Section 2). In
contrast, prior work have focused on learning diverse skills,
which is often measured before the skill policy mixes. A
common approach to measuring skill diversity is to measure
skill discrimination in terms of trajectory-specific quantities
such as terminal states (Gregor et al., 2017), a mixture of
the initial and terminal states (Baumli et al., 2020), or tra-
jectories (Eysenbach et al., 2019). An alternative approach
that implicitly induces diversity is to learn policies that max-
imize the robustness of the set Πn to the worst-possible
reward (Kumar et al., 2020; Zahavy et al., 2021).

In Subsections 4.1 and 4.2, we analyze the diversity of
these two approaches in the space of SFs and find that they
both depend on the initialization of the algorithm and cannot
guarantee diversity. Motivated by these findings, we develop
two new explicit diversity rewards that aim to minimize the
correlation between the SFs of the policies in the set. We
discuss these new methods in Section 4.3.

4.1. Diversity via Discrimination

Discriminative approaches rely on the intuition that skills
should be distinguishable from one another simply by ob-
serving the states that they visit. Learning diverse skills
is then a matter of learning skills that can be easily dis-
criminated. For instance, DIAYN (Eysenbach et al., 2019)
maximizes the mutual information between skills and states
as follows. Given a probability space (Ω,F ,P), we denote
by I(S;Z) the mutual information between the random
variable state S : Ω→ S and latent random variable (skill)
Z : Ω → Z (Cover, 1999). We also use H[A|S] to refer
to the conditional entropy of the action random variable
A : Ω→ A conditioned on state S. Finally, the conditional
mutual information between A and Z given S is denoted by
I(A;Z|S). Then, the DIAYN objective to be maximized,

given a prior over the latents, p, is:

I(S;Z) +H[A|S]− I(A;Z|S) (3)
= H[A|S,Z] + Ez∼p(z)

s∼dπz
[log p(z|s)− log p(z)].

This is an entropy-regularized objective that seeks to max-
imize the information that states contain about the skill
used to reach it. In particular, the term of interest is
Ez∼p(z),s∼dπz [log p(z|s) − log p(z)], which corresponds
to the value of a skill in an MDP with reward r(s|z) =
log p(z|s)− log p(z). A skill policy π(a|s, z) controls the
first component of this reward, p(z|s), which measures the
probability of identifying the skill in state s. Hence, the
policy is rewarded for visiting states that differentiates it
from other skills, thereby implicitly encouraging diversity.

The exact form of p(z|s) depends on how skills are encoded
(Gregor et al., 2017). The most common version is to encode
z as a one-hot d-dimensional variable (e.g.; Gregor et al.,
2017; Achiam et al., 2018; Eysenbach et al., 2019). Simi-
larly, we represent z as z ∈ {1, . . . , n} to index n separate
policies πz . In addition, the concept of finding a small set
of meaningful policies is appealing from the interpretability
perspective.

p(z|s) is typically intractable to compute due to the large
state space and is instead approximated via a learned dis-
criminator qφ(z|s). In our case, we measure p(z|s) under the
stationary distribution of the policy; that is, p(s|z) = dπz (s).
Therefore, for the purpose of analysis, we can find an ana-
lytic form for the objective of DIAYN before we apply the
variational approximation. Given this, applying Bayes rule
to p(z|s) yields

p(z|s) =
dπz (s)p(z)∑
k dπk(s)p(k)

. (4)

And in the kernel case, we define a Gibbs distribution

p(z|s) =
p(z) exp (φ(s) · ψz)∑
p(k) exp(φ(s) · ψk)

. (5)

Plugging p(z|s) from Eq. (4) in the objective of DIAYN,
the relevant term in Eq. (3) becomes

Ez∼p(z),s∼d(πz)[log p(z|s)] (6)

=
∑
z

p(z)
∑
s

dπz (s) log

(
dπz (s)p(z)∑
k dπk(s)p(k)

)
.

Finding a policy with maximal value for this reward can
be seen as solving an optimization program in dπz under
the constraint that the solution is a valid stationary state
distribution (Section 2). The term

∑
s p(s|z) log p(s|z) cor-

responds to the negative entropy of dπz , meaning that the
objective to be maximized is convex in dπz .

Lemma 1. The function
∑
s dπz (s) log

(
dπz (s)p(z)∑
k dπk (s)p(k)

)
is

a convex function of dπz .
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The proof can be found in Appendix A; briefly,
Lemma 1 holds because the function can be written as
KL(dπz ||

∑
k p(k)dπk) +

∑
s dπz (s) log p(z) and the KL-

divergence is jointly convex on both arguments (Boyd and
Vandenberghe, 2004, Example 3.19). The convexity of the
objective results from the fact that the intrinsic reward
log p(z|s) is a function of the policy. In the standard RL
setup, the reward is not a function of the policy and the ob-
jective is linear in it, thus, maximizing and minimizing the
reward are both convex minimization problems. However,
when the reward is a function of the policy, maximization
and minimization of the reward are not equivalent optimiza-
tion problems. In DIAYN, the maximization of log p(z|s)
leads to convex maximization while the minimization of the
same reward leads to convex minimization. We note that
the convexity of the objective has nothing to do with the
variational approximation typically used to compute p(z|s);
it is encountered with or without it.

The observation that discriminatory objectives lead to a set
of n convex maximization problems in our setting is prob-
lematic, since the optimality of the solutions—in particular,
their diversity—cannot be guaranteed. From the perspec-
tive of the policy set, the algorithm may converge to a set
which is a local maxima rather than the global maxima, and
therefore result in suboptimal diversity. In practice, differ-
ent initializations and stochastic updates might mitigate the
issue to some degree. In addition, it is possible that all the
local maxima are close to optimal. For example, similar
observations were made regarding the loss surface of deep
neural networks, but the local optima points were shown
to be very good in practice (Dauphin et al., 2014; Choro-
manska et al., 2015; Soudry and Carmon, 2016), mitigating
the issues mentioned above. Thus, we recommend taking
Lemma 1 as an observation regarding the optimization land-
scape of DIAYN which we hope to further explore in future
work.

4.2. Diversity via Robustness

An alternative approach that implicitly induces diversity is
to seek robustness among a set of policies by maximizing
the performance w.r.t the worst case reward (Kumar et al.,
2020; Zahavy et al., 2021); for fixed n, the goal is:

max
Πn⊆Π

min
w∈B2

max
πi∈Πn

ψi · w. (7)

Here B2 is the `2 unit ball, Π is the set of all possible poli-
cies, Πn = {π1, . . . , πn} is the set of n policies for which
we are optimizing. Let us parse this objective term by term.
First, the inner product ψi ·w yields the expected value under
the steady-state distribution (see Section 2) of the policy πi.
The inner min-max is a two-player zero-sum game, where
the minimizing player is finding the worst-case reward func-
tion (since weights and reward functions are in a one-to-one
correspondence) that minimizes the expected value, and the
maximizing player is finding the best policy from the set Πn

(since policies and SFs are in a one-to-one correspondence)
to maximize the value. The outer maximization is to find the

best set of n policies that the maximizing player can use.

Intuitively speaking, the solution Πn to this problem might
be a diverse set of policies since a non-diverse set is likely
to yield a low value of the game, that is, it would easily be
exploited by the minimizing player. In this way diversity
and robustness are dual to each other, in the same way as
a diverse financial portfolio is more robust to risk than a
heavily concentrated one. By forcing our policy set to be
robust to an adversarially chosen reward it will be diverse.

In (Kumar et al., 2020), the authors proposed a solution to
Eq. (7) using a CMDP with rd as discrimination (via DI-
AYN) and re is the extrinsic reward; we discuss it in more
detail in Section 5. In (Zahavy et al., 2021), the authors pro-
posed an iterative solution to Eq. (7) that incrementally adds
policies to a solution set Πn (Algorithm 2 in the appendix).
The authors define a Set Max Policy (SMP) as a policy that
takes a set of policies and a reward as inputs and returns
the best policy in the set for this reward. In each iteration,
the algorithm computes the worst case reward w.r.t to the
SMP, finds the policy that maximizes it, and adds it to the
set. In iteration n The value of the SMP on the set Πn is
defined as vn = minw∈B2

maxπi∈Πn ψ
i · w, and it is guar-

anteed that this value strictly increases vn+1 > vn in each
iteration until the optimal solution is found. The following
Lemma suggests that this procedure is equivalent to a fully
corrective FW (Frank and Wolfe, 1956) algorithm on the
function f = || · ||2. As a consequence, it is guaranteed to
convergence to the optimal solution in a linear rate (Jaggi
and Lacoste-Julien, 2015).
Lemma 2. The iterative procedure in (Zahavy et al., 2021)
is equivalent to a fully corrective FW algorithm to min-
imize the function f = ||ψπ||2. As a consequence, to
achieve an ε−optimal solution, the algorithm requires at
most O(log(1/ε)) iterations.

The proof in Appendix B suggests that the SMP policy is
equivalent to the fully corrective search (maintaining a dic-
tionary of solutions from previous iterations and choosing
the best convex combination). The only difference between
the two algorithms is that one of them solves a max-min
problem where the other solves the equivalent min-max
problem, and therefore they are guaranteed to have the same
iterations from strong duality. Unfortunately this approach,
like the discriminative approaches, has a weakness that can
limit the ultimate diversity in the set. To see this note that

max
Πn⊆Π

min
w∈B2

max
πi∈Πn

ψi · w ≤ min
w∈B2

max
πi∈Π

ψi · w

= max
πi∈Π

min
w∈B2

ψi · w = − min
πi∈Π

‖ψi‖ def
= v∗,

where the inequality comes from the fact that Πn ⊆ Π, and
the first equality uses von Neumann’s minimax theorem (von
Neumann, 1928). If we let π∗ = arg minπi∈Π ‖ψi‖, then
if Πn = {π∗} we have an optimal policy set for the game,
since we have found a policy set that achieves the known
upper bound on the value of the game, v∗. In other words
a single policy is a sufficient solution for Eq. (7), which is
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problematic since the goal was to build up a set of many
diverse policies. Similar to the discriminative approaches, in
practice we obtain more policies by initializing the set away
from π∗, or alternatively restricting Πn to deterministic
policies. However, this issue likely explains the empirical
observations in (Zahavy et al., 2021) that there are only a
few active policies in the optimal sets.

Note that the results above hold only in the case that Π is
the set of all the stochastic policies in the MDP; if only
deterministic policies are used, we cannot apply the von
Neumann’s minimax theorem. This is not an issue since
we are interested in stochastic policies for multiple reasons:
optimal solutions to CMDPs are stochastic policies (Alt-
man, 1999) and stochastic policies are the most common
approach in continuous control tasks, which is the focus of
our experiments.

4.3. Explicit diversity methods

The two diversity mechanisms we have discussed so far were
designed to maximize robustness or discrimination. Each
one has its own merits in terms of diversity, but since they
do not explicitly maximize a diversity measure they cannot
guarantee that the resulting set of policies will be diverse.
We now propose two reward signals designed to induce a
diverse set of policies. The way they do so is to leverage the
information about the policies’ long-term behavior available
in their SFs. Both rewards are based on the intuition that the
correlation between SFs should be minimized.

To motivate this approach, we note that SFs can be seen as
a compact representation of a policy’s stationary distribu-
tion. This becomes clear when we consider the case of a
finite MDP with |S|-dimensional “one-hot” feature vectors
φ whose elements encode the states: φi(s) = I{s = i},
where I{ ·} is the indicator function. In this special case the
SFs of a policy π coincide with its stationary distribution,
that is, ψπ = dπ. Under this interpretation, minimizing the
correlation between SFs intuitively corresponds to encour-
aging the associated policies to visit different regions of the
state space—which in turn leads to diverse behavior. As
long as we assume the tasks of interest are linear combina-
tions of the features φ ∈ Rd, which we do, similar reasoning
applies when d < |S|.

But how do we compute policies in order to minimize the
correlation between their SFs? To answer this question, we
first consider the extreme scenario where there is a sin-
gle policy πk in the set Π. In this case the objective is:
maxψz ψ

z ·w, where w = −ψk. Solving this problem is an
RL problem whose reward is linear in the features weighted
by w. A similar objective was investigated in (Hansen et al.,
2020), but there w was sampled i.i.d from a fixed prior. The
question we are trying to address is: how to define w taking
into account multiple policies in the set Πn?

We propose two answers to this question. The first one is
to have w be the negative average of the SFs of the policies
currently in the set, that is,w = − 1

k

∑
ψk. This formulation

is useful as it measures the sum of negative correlations
within the set. However, when two policies in the set happen
to have the same SFs with opposite signs, they cancel each
other, and do not impact the diversity measure. This diversity
objective shares some similarities with the novelty search
algorithm in (Conti et al., 2018), where the mean pairwise
distance between the current policy and an archive of other
policies is used.

The second diversity-inducing reward we propose addresses
this issue. It is defined as the minimum over the SFs in each
state: r(s) = mink

{
φ(s) · −ψk

}
. This objective encour-

ages the policy to have the largest "margin" from the set,
as it maximizes the negative correlation from the element
that is "closest" to it. This objectives shares some similar-
ities with a recent work (Parker-Holder et al., 2020) that
uses the determinant of the kernel matrix and penalizes it
to the closest agents in the population, building on ideas
from Determinantal point processes (Kulesza et al., 2012).
Finally, we note that we also apply a non linear transforma-
tion to bound both of these rewards; the details are in the
supplementary (Appendix C).

5. Solving the constrained MDP
At the core of our approach is the solution of a CMDP. The
literature on CMDPs is quite vast and we refer the reader
to (Altman, 1999) and (Szepesvári, 2020) for treatments of
the subject at different levels of abstraction. In this work we
will focus on a reduction of CMDPs to MDPs via gradient
updates. The idea is to look at the Lagrangian of Eq. (2):

L(π, λ) = −dπ · (rd + λre)− λαv∗e . (8)

Then, solving the CMDP in Eq. (2) is equivalent to solving
minπ∈Π maxλ≥0 L(π, λ).

Solving CMDPs via Lagrangian methods dates back to
(Borkar, 2005; Bhatnagar and Lakshmanan, 2012); more
recently the problem has been tackled using Deep RL tech-
niques (Tessler et al., 2019; Calian et al., 2021). These algo-
rithms perform primal-dual gradient updates on the min-max
game. When the value function of the policy satisfies the
constraint, the Lagrange multiplier will decrease, putting
more emphasis on the extrinsic reward; when the constraint
is not satisfied, the Lagrange multiplier will increase to
satisfy the constraint.

Non linear Lagrange multiplier. We would like our agent
to optimize a bounded reward signal, and we discuss how to
bound each reward rd in the supplementary (Appendix C).
To guarantee that a combination of two bounded rewards
remains bounded, it is sufficient to combine them via a
convex combination. To achieve that, we use a Sigmoid acti-
vation on the Lagrange multiplier so the reward is a convex
combination of the diversity and the extrinsic rewards:

r(s) = σ(λ)re(s) + (1− σ(λ))rd(s).

We further introduce an entropy regularization on λ to pre-
vent σ(λ) from getting to extreme values (1 or 0), where the
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Sigmoid activation is saturated and has low gradients. This
can happen, for example, at the beginning of learning where
the agent’s policy is sub-optimal and does not satisfy the
constraint for many iterations. The objective for λ is thus:

f(λ) = σ(λ)(v̂ − αv∗e)− ahH(σ(λ)), (9)

where H is the entropy function, ah is the weight of the
entropy regularization and v̂ is an estimate of the total cu-
mulative extrinsic return that the agent obtained in recent
trajectories. The Lagrangian λ is updated by performing
gradient descent on Eq. (9) every Nλ agent steps.

Estimation of average rewards. Another important step
of Algorithm 1 which is not directly related to solving the
CMDP is the estimation of the average rewards. For that,
we used a simple Monte Carlo estimates: ṽj = 1

T

∑T
t=1 rt,

i.e, the empirical average reward obtained by the agent in
trajectory j (where T = 1000). We used the same estimator
to estimate the average SFs (replace rt with φt).

The value ṽj is a good estimate of the average reward, but
it is not perfect. The issue is that the trajectory is of finite
length, and therefore the samples in the beginning of the
trajectory, before the policy is mixed, are biased. Our ex-
periments are in the DM control suite (Tassa et al., 2018)
where the mixing time is small; the policies we discover
roughly mix after∼ 50 steps (as can be seen in the videos in
the supplementary). Since the mixing time is much shorter
than T , the effect of the biased samples is small (∼ 5%).
It is also possible to wait until the policy is mixed or to
collect a perfect unbiased estimate of the average reward
via Coupling From the Past procedure (Propp and Wilson,
1996) as was done in (Zahavy et al., 2020a). Note that this
is a known issue with any practical policy gradient method
but was not found to make a big difference empirically.

We further average the estimate using a running average
with decay factor of ad: v̂j = adv̂j−1 + (1− ad)ṽj ; this is
the estimate we use in Eq. (9). The running average variables
are set to 0 between iterations of Algorithm 1. Finally, we
note here that we also experimented with the discounted
criteria (discounted SFs). In that case, we observed that
there is too much emphasis on the features that are observed
at the beginning of the trajectory, resulting in less diversity
across the entire trajectory.

Discussion. A different feasible approach to combine rd
and re is to model the problem as a multi-objective MDP.
That is, the diversity objective is added to the main one
via a fixed, stationary weighting of the two rewards, e.g.,
r = a1rd + a2re. We note that the solution of such a multi-
objective MDP cannot be be a solution to a CMDP. I.e., it is
not possible to find the optimal dual variables λ∗, plug them
in Eq. (8) and simply solve the resulting (unconstrained)
MDP. Such an approach ignores the fact the dual variables
must be a ‘best-response’ to the policy and is referred to as
the "scalarization fallacy" in (Szepesvári, 2020, Section 4).

While Multi objective MDPs have been used in prior QD-
RL papers (Hong et al., 2018; Masood and Doshi-Velez,

2019; Parker-Holder et al., 2020; Gangwani et al., 2020;
Peng et al., 2020; Zhang et al., 2019), we now outline a few
potential advantages for using CMDPs. First, the CMDP
formulation guarantees that the policies that we find are
near optimal (satisfy the constraint). Secondly, the weight-
ing coefficient in multi-objective MDPs has to be tuned,
while in our case it is being adapted over time. This is par-
ticularly important in the context of maximizing diversity
while satisficing reward. In many cases, as we observed in
our experiments, the diversity reward might have no other
option other than being the negative of the extrinsic reward.
In these cases our algorithm will return good policies that
are not diverse, while a solution to multi-objective MDP
might fluctuate between the two objectives and not be useful
at all.

CMDPs in related QD papers. Kumar et al. (Kumar et al.,
2020) proposed that solving a CMDP with rd as discrimi-
nation reward and re as the extrinsic reward will lead to a
solution to the robustness objective (Eq. (7)). Sun et al. (Sun
et al., 2020) also investigated CMDPs, but focused on the
setup where the diversity reward has to satisfy a constraint,
so the diversity reward is re and the extrinsic reward is rd.
But most importantly, we use a different method to solve
CMDPs, which is based on Lagrange multipliers and SFs
and is justified from CMDP theory (Altman, 1999; Borkar,
2005; Bhatnagar and Lakshmanan, 2012), while these other
two papers use techniques that are not guaranteed to solve
CMDPs.

6. Experiments
We conducted our experiments on domains from the DM
Control Suite (Tassa et al., 2018), standard continuous con-
trol locomotion tasks where diverse near-optimal policies
should naturally correspond to different gaits. We focused
on the setup where the agent is learning from feature ob-
servations corresponding to the positions and velocities of
the body joints being controlled by the agent. Due to space
considerations, we focus on domains where the diversity
is interesting from a visual point of view, and in particular
on Walker and Dog. In simpler domains like Cartpole and
Reacher, we observed simple symmetric diversity – one
policy moves a certain way clockwise and then the second
policy moves in the same way anti-clockwise (see Fig. 5
in the supplementary). Later policies in the set are less dis-
tinguishable visually but can learn, for example, to balance
the pole while moving. Note that without a diversity mecha-
nism, the agent tends to only move in a single direction (e.g.
clockwise).

In most of our experiments, the extrinsic reward re, which
defines the optimality constraint in Algorithm 1, is set to
be the environment reward provided by the DM Control
Suite . The first policy in the set is trained to only maximize
the extrinsic reward, and the other policies has to satisfy
the constraint of being α = 0.9 optimal w.r.t it. In these
experiments, we report the reward that each policy collects
in white color on top of each figure. Additionally we report
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# re %

1 920 100
2 809 88
3 820 89
4 878 95
5 818 89
6 818 89
7 490 53
8 926 101

(a) Walker Stand, re as reward; rd as min.

# re %

1 951 100
2 866 91
3 813 85
4 872 92
5 971 102
6 837 88
7 876 92
8 870 91

(b) Walker Walk, re as reward; rd as average.

Figure 1: Diverse near optimal policies in Walker

the reward of each policy in a small table in the main text.

In the QD community, there is no consensus regarding a sin-
gle metric for measuring diversity, and some argue that there
shouldn’t be such (see, for example, the book ”Why Great-
ness Cannot Be Planned” (Stanley and Lehman, 2015)).
Inspired by this literature, we focus on measuring diversity
only qualitatively by visualizing the learned policies. We
strongly recommend the reader to check our visualization
website where we show videos of the trajectories that each
policy takes at https://anon98723.github.io/. In addition, we
present "motion figures" by discretizing the videos (details
in the Appendix) that give a fair impression of the policy
behaviours. We would like to note that we did not tune our
method to maximize diversity based on any metric other
than constraint satisfaction (maintaining near-optimality).
The main purpose of our experiments are the feasibility of
the CMDP framework as proposed in Algorithm 1, i.e., to
demonstrate that we discover diverse near-optimal policies.

Choice of rd: Given that our Diverse Successive Policies
algorithm (1) can be used with different measures of di-
versity, we compared four different choices. The previ-
ously proposed robustness and discrimination measures
and the new min and average explicit measures of diver-
sity we proposed in Section 4.3, corresponding to: (1)
Robustness: the worst case linear reward with respect
to the previous policies in the set: rd(s) = w · φ(s),
where w = minw∈B2

maxz∈[1,..,n−1] ψ
z · w is the inter-

nal minimization in Eq. (7). (2) Discrimination rd(s) =

log( exp (φ(s)·ψn)∑n
i=j exp(φ(s)·ψj) ), where ψn is the running average

estimator of the SFs of the current policy. This reward
corresponds to Eq. (5) with a uniform prior. (3) Min:
rd(s) = minz∈[1,..,n−1]−ψz · φ(s). (4) Average: rd(s) =

− 1
n−1

∑n−1
j=1 ψ

j ·φ(s). (5) None: rd(s) = 0 or no diversity.

Fig. 1a presents eight polices that were discovered by Algo-
rithm 1 where rd is the minimum explicit diversity criteria
for Walker.stand. As we can see, the policies exhibit dif-
ferent types of standing: standing on both legs, standing
on either leg, lifting the other leg forward and backward,
spreading the legs and stamping. Not only are the policies
different from each other, they also achieve high extrinsic
reward in standing (see values on top of each policy visual-
ization). Similar figures for the other diversity mechanisms

can be found in the supplementary material (Appendix D.2).
We observed that in this domain the Average diversity crite-
rion can also discover policies that behave differently, but
they are not as diverse as the ones found using the Minimum
criterion (see Appendix D.2 in the supplementary material)

The robustness mechanism can also provide diverse policies,
but it tends to converge after a few iterations so no further
diversity is achieved by the algorithm after 3 iterations. We
also include a figure of different policies with no diversity
mechanism in the supplementary (Fig. 10); in this case
there is a small amount of diversity from training, but it
is much less significant than the diversity we get with a
diversity objective. Similarly, the discrimination method
exhibits diversity but not as good as the explicit methods.
We believe that this is due to the fact that the policies that
maximize the extrinsic reward are already discriminative,
and the algorithm fails to escape these local minima.

Fig. 1b presents similar results in the Walker.walk envi-
ronment where rd is the average explicit diversity criteria.
In this case the walker discovered how to walk in different
ways, such as lifting one of the legs while up walking, walk-
ing with high knees, or walking with the heels to the bottom.
In this domain we observed much better diversity with the
explicit diversity mechanisms than with robustness or dis-
crimination, see Appendix D.3. We also note that in both
of the Walker environments, all (but one) of the discovered
policies that we found are indeed near optimal, and satisfy
the constraint (which was set to 90%).

Fig. 2 presents results in the Dog.stand environment where
in Fig. 2a rd is the minimum explicit diversity criteria and in
Fig. 2b there is no diversity mechanism. Inspecting Fig. 2b
we can see that the dog learns how to stand (different poli-
cies are independent of each other so we leave the % blank),
but in all cases, it stands with four legs on the ground. On
the other hand, in Fig. 2a the dog learns different variations
of "three leg standing" (lifting one of his legs), and still
achieves high reward.

Next, we present results in the no-reward setting, where the
agent has no access to the reward from the environment. Our
results with None diversity confirm that the implementation
of these diversity mechanisms yields complex locomotion
in the no-reward setting as was reported in the original
papers. However, in more complex domains like Walker,

https://anon98723.github.io/
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# re %

1 921 100
2 870 94
3 879 95
4 909 98
5 944 102
6 975 106
7 938 102
8 930 101

(a) Dog Stand, re as reward; rd as min.

# re %

1 812 —
2 936 —
3 765 —
4 892 —
5 926 —
6 891 —
7 921 —
8 948 —

(b) Dog Stand, re as reward; rd as none.

Figure 2: Diverse near optimal policies in Dog

without adding the explicit diversity we get static behaviours
that resemble "Yoga" exercises, as was also reported, for
example, in (Zahavy et al., 2021).

Fig. 3 presents results for Walker where re is robustness
and rd is average. Inspecting the results, we can see that the
agent discovered complex locomotion skills such as kneel-
ing backwards, crawling and flick-flack jumping. We also
report the extrinsic reward for standing as another measure
of zero-shot transfer (it was not used during training at all).
In Appendix D.4 we can see that other diversity mechanisms
discovered other surprising skills such as "head walking".

Figure 3: Walker, re as robustness and rd as average.

Finally, Fig. 4 presents results for Cheetah where re is dis-
crimination and rd is robustness. The cheetah learns to run
forward, backwards, and then to do various jumps. While
previous methods were able to discover similar behaviours,
they are typically not that diverse with such a small set.

Figure 4: Cheetah, re as discrimination and rd as robustness.

7. Conclusion
In this work we proposed a framework for discovering near
optimal diverse behaviours. We framed the problem as solv-
ing a CMDP where a diversity intrinsic reward and the
extrinsic reward are adaptively combined. There are interest-
ing connections to whitebox metagradients (Xu et al., 2018;
Zahavy et al., 2020c) – the updates of the Lagrangian can
be viewed as the outer update in metagradients where satis-
fying the constraint is the outer loss. Using metagradients
to learn other diversity hyperparameters or even to discover
the diversity reward itself (Zheng et al., 2018) are exciting
directions for future work. Key to our approach was the
idea of measuring diversity in the space of SFs. This design
choice allowed us to provide insights on how existing di-
versity mechanisms behave from the perspective of convex
optimization.

There are many exciting applications for our framework. For
example, consider the process of using RL to train a robot to
walk. The designer does not know a priori which reward will
result in the desired walking pattern. Thus, robotic engineers
often train a policy to maximize an initial reward, tweak the
reward, and iterate until they reach the desired behaviour.
Using our approach, the engineer would have multiple forms
of walking to choose from in each attempt, which are also
interpretable (linear in the weights).
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A. Proof for Lemma 1
Proof. We will focus on the case that there are no zero elements in dπ which is a standard assumption in ergodic MDPs.
Under this assumption f is a twice differentiable function so it is convex if its Hessian is positive semidefinite.

Recall that the prior p(z) is constant, and that the policies k = 1, ..., k 6= z are also constant from the perspective of dπz .
We can therefore introduce a simplified notation and write the objective as

∑
s

dπz (s) log

(
dπz (s)p

dπz (s)p+ cs

)

The variable dπz is a vector in the |S|−simplex. We can represent it using |S| − 1 degrees of freedom x1, ..xs−1 ∈ [0, 1]

where the last element is xs = 1−
∑|S|−1
i=1 xi. Notice that xs is a function of xi so it has a derivative with respect to. xi

which equals −1. So we have

f(x) =
∑
i

xi log

(
xip

xip+ ci

)
+ xs log

(
xsp

xsp+ cs

)

The first derivative of this function with respect to xi, i ∈ [1, .., |S| − 1 is

∂f

∂xi
= log(xi) + 1 + log(p)− xip

xip+ ci
− log(xip+ ci)

− log(xs)− 1− log(p) +
xsp

xsp+ cs
+ log(xsp+ cs)

= log(xi)− log(xip+ ci)−
xip

xip+ ci
(10)

−
(

log(xs)− log(xsp+ ci)−
xsp

xsp+ cs

)
(11)

We can see that the terms in Eq. (10) depend only on xi and the terms in Eq. (11) depend only on xs. In addition, we will
soon see that the derivatives of xs will be equal for any j ∈ 1, ..., s− 1. These two observations imply that the Hessian will
have the form of

H = D +m1,

where D is a diagonal matrix with derivatives of Eq. (10) with respect to xi as it elements, 1 is a matrix of all ones, and
m is the derivative of Eq. (11) with respect to xj which we will show to be equal for all j. Notice that ∀x, we have that
xT (D +m1)x =

∑
Dix

2
i +m(

∑
xi)

2. This implies that in order for the Hessian to be positive definite, we only need to
show that the elements of d and the scalar m are positive. The derivative of Eq. (10) with respect to xi is

1

xi
− p

pxi + ci
− p(pxi + ci)− p2xi

(pxi + ci)2

=
pxi + ci − pxi
xi(pxi + ci)

− pci
(pxi + ci)2

=
ci(pxi + ci)− pxici

xi(pxi + ci)2
=

c2i
xi(pxi + ci)2

, (12)

which is positive because xi ≥ 0.

Similarly, The derivative of Eq. (11) with respect to xj is

1

xs
− p

pxs + cs
− p(pxs + cs)− p2xs

(pxs + cs)2

=
c2s

xs(pxs + cs)2
, (13)

which is also positive because xs ≥ 0 and concludes our proof. �
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B. Proof for Lemma 2

Algorithm 2 The iterative procedure in (Zahavy et al., 2021)

Initialize: Sample w ∼ N(0̄, 1̄),Π0 ← { }, π1 ← arg maxπ∈Π w ·ψπ , t← 1
v̄SMP

Π1 ← −||ψ1||
repeat

Πt ← Πt−1 ∪ {πt}
Ψt = Ψt−1 ∪ {ψt}
w̄SMP

Πt ← arg minw∈B2 maxψ∈Ψi w · ψ
πt+1← arg maxπ ψ(π) · w̄SMP

Πt

t← t+ 1
until vt

w̄SMP
Πn
≤ v̄SMP

Πt−1

return Πt−1

Algorithm 3 Fully corrective FW for h(ψ) = 0.5||ψ||22
Initialize: Let π1 be a random policy and let ψ1 be its SFs. Also, let Π0 = {} and Ψ0 = {} and t← 1.
repeat

Πt = Πt−1 ∪ {πt}
Ψt = Ψt−1 ∪ {ψt}
ψ̂ = arg minψ∈Co(Ψi) 0.5||ψ||22.
πt+1 = arg maxπ ψ(π) · −∇h(ψ̂) = arg maxπ ψ(π) · −ψ̂
t← t+ 1

until h(ψ̂) ≤ ε
return Πt−1

In this section we show that the iterates of the fully corrective FW algorithm (Algorithm 3) correspond to the iterates of the
Worst Case Policy Iteration algorithm (Algorithm 2). Examining the two algorithms, it is easy to see that all that is needed is
to show that

arg max
π

ψ(π) · −ψ̂ = arg max
π

ψ(π) · w̄SMP
Πn .

To show this, first observe that w̄SMP
Πn can be also written as

w̄SMP
Πn = arg min

w∈B2

max
x∈Ψi

w · ψ = arg min
w∈B2

max
ψ∈Co(Ψi)

w · ψ, (14)

that is, maximizing ψ over Co(Ψi) instead of Ψi (SMP). This is correct because for any reward w there is always a
maximizer in the convex hull that is one of the vertices (a property of the linear inner product). And therefore, the same
maximum value is attained when maximizing over these two sets.

Next, we have that

arg min
ψ∈Co(Ψi)

||ψ||22 = arg max
ψ∈Co(Ψi)

−||ψ||22 (15)

= arg max
ψ∈Co(Ψi)

−||ψ||2 = arg max
ψ∈Co(Ψi)

min
w∈B2

ψ · w. (16)

Now, if we denote the optimal solutions to Eq. (16) as ŵ, ψ̂ then, they are also an optimal solution to Eq. (14) via Von
Neuman’s min-max theorem. This means that w̄SMP

Πn = ŵ = −ψ̂/||ψ̂||.

Thus
arg max

π
ψ(π) · w̄SMP

Πn = arg max
π

ψ(π) · −ψ̂/||ψ̂|| = arg max
π

ψ(π) · −ψ̂,

where the second inequality follows from the fact that dividing the reward by the same constant across all states does not
change the optimal policy (the arg max).

Finally, note that the function h = 0.5||x||22 has 1-Lipschitz gradient and is strongly convex. Thus, since the algorithms are
equivalent, Algorithm 2 achieves a linear convergence according to the following theorem.
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Theorem 1 (Linear Convergence (Jaggi and Lacoste-Julien, 2015)). Suppose that h has L-Lipschitz gradient and is µ-
strongly convex. Let D = {dπ,∀π ∈ Π} be the set of all the state occupancy’s of deterministic policies in the MDP and let
K = Co(D) be its Convex Hull. Such thatK a polytope with vertices D, and let M = diam(K). Also, denote the Pyramidal
Width of D, δ = PWidth(D) as in (Jaggi and Lacoste-Julien, 2015, Equation 9 1).

Then the suboptimality ht of the iterates of all the fully corrective FW algorithm decreases geometrically at each step, that is

h(xt+1) ≤ (1− ρ)h(xt) , where ρ =
µδ2

4LM2

C. Additional implementation details and hyper parameters
When we add a new policy, πt, to the set Πt−1, we reset the maximum value v∗e = max{v∗e , vt}. This step is useful because
the policies and their value functions are computed approximately in practice and in some of the domains the optimal
performance is not achieved in the first iteration of Algorithm 1.

To bound the intrinsic rewards we first use the following transformation r̃w(s) = w·φ(s) +‖w‖2
‖w‖2 and then apply the following

non-linear transformation:
r(s) = (1− exp (−τ r̃w(s))) /(1− exp(τ)), (17)

This transformation is useful when we want the reward to be more sensitive to small variations of the inner product, i.e.,
when many policies are relatively similar to each other.

Finally, Table 1 summarizes the hyperparameters that we use in Algorithm 1

Table 1: Hyperparameters table

Parameter Value
Optimality level α (Eq. (8)) 0.9
Environment steps per policy 106

Number of policies 8
Lagrange entropy regularization weight ah (Eq. (9)) 0.01
Lagrange learning rate 0.1
Lagrange update frequency (Nλ) 30
Estimation decay factor ad 0.9
Normalization temperature τ (Eq. (17)) 3

D. Additional results
Our "motion figures" were created in the following manner. Given a trajectory of frames that composes a video f1, . . . , fT ,
we first trim and sub sample the trajectory into a point of interest in time: fn, . . . , fn+m. We always use the same trimming
across the same set of policies (the sub figures in a figure). We then sub sample frames from the trimmed sequence at
frequency 1/p: fn, fn+p, fn+2p . . . ,. After that, we take the maximum over the sequence and present this "max" image. In
Python, this simply corresponds to, for example, to

n=400, m=30, p=3
indices = range(n,n+m,p)
im = np.max(f[indices])

This creates the effect of motion in single figure since the object has higher values then the background.

D.1. Clockwise Diversity in Cartpole and Reacher
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(a) Cartpole (b) Reacher

Figure 5: Clockwise Diversity in Cartpole and Reacher.
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D.2. Walker Stand

Figure 6: Min

Figure 7: Average
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Figure 8: Robustness

Figure 9: Discrimination
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Figure 10: None
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D.3. Walker Walk

Figure 11: Min

Figure 12: Average
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Figure 13: Robustness

Figure 14: Discrimination
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Figure 15: None
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D.4. Robustness in Walker

Figure 16: Min

Figure 17: Average
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Figure 18: Discrimination

Figure 19: None
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D.5. Robustness in Cheetah

Figure 20: Min

Figure 21: Average
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Figure 22: Discrimination

Figure 23: None
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