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Abstract

This paper investigates the logistic bandit problem, a variant of the generalized
linear bandit model that utilizes a logistic model to depict the feedback from an
action. While most existing research focuses on the binary logistic bandit problem,
the multinomial case, which considers more than two possible feedback values,
offers increased practical relevance and adaptability for use in complex decision-
making problems such as reinforcement learning. In this paper, we provide an
algorithm that enjoys both statistical and computational efficiency for the logistic
bandit problem. In the binary case, our method improves the state-of-the-art binary
logistic bandit method by reducing the per-round computation cost from O(log T )
to O(1) with respect to the time horizon T , while still preserving the minimax
optimal guarantee up to logarithmic factors. In the multinomial case, with K + 1

potential feedback values, our algorithm achieves an Õ(K
√
T ) regret bound with

O(1) computational cost per round. The result not only improves the Õ(K
√
κT )

bound for the best-known tractable algorithm—where the large constant κ increases
exponentially with the diameter of the parameter domain—but also reduces the
O(T ) computational complexity demanded by the previous method.

1 Introduction

The stochastic linear bandit (SLB) [1, 2, 3] problem is a natural generalization of the classic stochastic
multi-armed bandit problem [4] by incorporating side information into the decision-making process.
In the SLB problem, a linear model is used to characterize the relationship between the reward
rt ∈ R and the learner’s action xt ∈ X ⊆ Rd, whereas such an assumption is not always satisfied
in real-world applications. Consequently, various models have been developed to account for the
non-linear reward, including the generalized linear bandit (GLB) model [5] and kernelized bandit
model [6]. The logistic bandit is a specific kind of GLB model by connecting the learner’s d-
dimensional action and the reward with a logistic model. Most existing work focuses on the binary
case [7, 8, 9, 10]. The reward rt ∈ {0, 1} exhibits a binary value and the probability is modeled
by Pr[rt = 1 | xt] = σ(w⊤

∗ xt), where σ(z) = 1/(1 + exp(−z)) is a non-linear link function and
w∗ ∈ W ⊆ Rd is an unknown parameter. Compared to the SLB model, the logistic bandit model
provides a more precise representation for a wide range of real-world application problems, where
feedback exhibits discrete behavior. Moreover, from a theoretical perspective, it also serves as a basic
setting for understanding the impact of non-linearity of the reward on the decision-making process.
In this paper, we investigate a more general multinomial logistic bandit (MLogB) problem [11], in
which the learner’s action xt results in feedback yt that could have K + 1 possible outcome values.
The probability of each outcome is characterized with a logistic model (the formal definition is
provided in Section 2.1). The MLogB model is of more practical interest compared to the binary
case. For example, in the real-world application such as online advertising, there could be multiple
possible feedback from customers, including “buy now”, “add to cart”, “view related item”, and
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Table 1: Comparison in terms of the regret bound, computation cost and storage cost. For the regret
bound, the logarithmic dependence on the time horizon T is hidden by the Õ(·)-notation. As for the
computational cost (abbreviated as “Comput.”) and storage cost, we only keep the dependence on the
time step t. Notation “-” denotes that the algorithm is intractable for implementation.

Setting Algorithm Regret Comput. per Round Storage Cost Improved κ Constant Cost

binary

Logistic-UCB-1 [8] Õ
(√
κT
)

O(t) O(t)

OFULog-r [9] Õ
(√

T/κ∗
)

O(t) O(t) ✓

(ada)-OFU-ECOLog [10] Õ
(√

T/κ∗
)

O(log t) O(1) ✓

OL2M [7],GLOC [14] Õ
(
κ
√
T
)

O(1) O(1) ✓

OFU-MLogB (Corollary 1) Õ
(√

T/κ∗
)

O(1) O(1) ✓ ✓

multinomial
MNL-UCB [11] Õ

(
K
√
κT
)

O(t) O(t)

Improved MNL-UCB [11] Õ
(
K3/2

√
T
)

— O(t) ✓ –

OFUL-MLogB (Theorem 4) Õ
(
K
√
T
)

O(1) O(1) ✓ ✓

just leave without any click. Beyond addressing practical demands, studying the MLogB problem
can shed light on other decision-making problems. For instance, in the theoretical reinforcement
learning research [12, 13], the transition matrix is approximated using a linear model, which enables
the application of the SLB method for balancing the exploration-exploitation trade-off. Since the
transition matrix is inherently a probability matrix, the multinomial logistic model may be a more
suitable structure for modeling transition probabilities between states.

As shown in Table 1, the logistic bandit problem has received much attention in the binary case. There
are two main focuses arising from the non-linearity of the reward function: statistical efficiency and
resource overhead. Regarding the statistical efficiency, a main focus is the algorithms’ dependence
on κ = maxx∈X ,w∈W 1/σ′(w⊤x), a crucial parameter capturing the non-linearity of the reward
function. Since the binary logistic bandit is a special case of the generalized linear model, the result
from [5] implies an Õ(κ

√
T ) bound. However, the parameter κ grows exponentially in terms of the

diameter of the decision domain W and action space X , making the linear dependence unfavorable.
A pivotal advancement is made by [9], where the paper presents an algorithm that achieves the nearly
minimax optimal bound Õ(

√
T/κ∗). Here, κ∗ = 1/σ′(w⊤

∗ x∗) is the non-linear parameter associated
with the best action x∗ = argmaxx∈X σ(w

⊤
∗ x), suggesting that non-linearity might be advantageous

for statistical efficiency, rather than a hindrance. Alongside statistical efficiency considerations, the
non-linearity of the feedback raises concerns about the algorithms’ computation and storage efficiency.
The methods [8, 9] with improved dependence on κ usually require storing and optimizing over all
historical data to estimate the unknown parameter, leading to an O(t) computation and storage cost
at round t ∈ [T ]. The pioneering work [7] provided the first efficient solution for binary logistic
bandit with constant computation and storage costs and [14] further proposed an efficient algorithm
for generalized linear bandit, but their regret bounds still exhibit a linear dependence on κ. Recently,
a jointly efficient algorithm was proposed by [10], which achieves the optimal dependence on κ with
a O(log t) computation cost and constant storage cost per round. However, it remains open whether
the minimax optimal bound is achievable with constant computation cost independent of the time t.

Regrading the multinomial logistic bandit, the best-known feasible algorithm was proposed by [11].
This method achieves an Õ(K

√
κT ) regret bound, bearing an O(

√
κ) dependence on the exponen-

tially large constant. Moreover, it still demands O(t) computation and storage costs to optimize over
all past data. The same study also introduced an Õ(K3/2

√
T ) bound with improved dependence on κ.

Yet, this solution leans heavily towards theoretical insights and is intractable in implementation [11,
Section 2.6]. Designing a practical or more efficient algorithm with improved dependence on κ is still
an unsolved challenge. More discussions on the related work and topics can be found in Section 4.

Our Results. In this paper, we provide an algorithm with both statistical and computational efficiency.

• For the multinomial logistic bandit, we propose OFUL-MLOGB, a jointly efficient method
attaining an Õ(K

√
T ) regret bound with O(1) in T computation and storage cost per round.

The result improves the previous work on the dependence of the large constant κ.
• For the binary case, our proposed OFUL-MLOGB can achieve the Õ(

√
T/κ∗) optimal

bound up to logarithmic factors. Besides, our method reduces the computation cost of the
state-of-the-art binary method [10] from O(log t) to O(1) per round.
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2 Multinomial Logistic Bandit with Improved Regret

This section provides preliminaries on the multinomial logistic bandit problem and optimistic al-
gorithms, beginning with the problem formulation and notations. Then, we revisit the optimistic
algorithms for the MLogB problem. Specifically, we investigate the previously best-known feasible
algorithm, MNL-UCB algorithm [11], and propose an improved version with better dependence on
the exponentially large constant κ and the number of outcome values K.

2.1 Problem Formulation

The multinomial logistic bandit (MLogB) problem studies a T round decision-making process
between the learner and the environment. At the beginning of the iteration t, the learner will first
select an action xt ∈ X from the feasible action set X ⊆ Rd and then submit it to the environment.
After that, a response yt ∈ {0} ∪ [K] with K + 1 possible outcomes (like “buy now”, “add to chart”,
or "do nothing") is returned based on the learner’s choice, where K ∈ N. Specifically, the MLogB
problem assumes that each outcome k ∈ [K] is associated with a ground-truth parameter w(k)

∗ ∈ Rd
and the probability of the outcome Pr[yt = k | xt] follows the logistic model,

Pr[yt = k | xt] =
exp

(
(w

(k)
∗ )⊤xt

)
1 +

∑K
j=1 exp

(
(w

(j)
∗ )⊤xt

) and Pr[yt = 0 | xt] = 1−
K∑
k=1

Pr[yt = k | xt].

For notational simplicity, we denote by W∗ = [w
(1)
∗ , . . . ,w

(K)
∗ ]⊤ ∈ RK×d the matrix for the

unknown parameter and define the softmax function σ : RK 7→ [0, 1]K by

[σ(z)]k =
exp([z]k)

1 +
∑K
j=1 exp([z]j)

for all k ∈ [K] and [σ(z)]0 =
1

1 +
∑K
j=1 exp([z]j)

, (1)

where [·]k denotes the k-th entry of the input vector. Then, the probability of the outcome can also
be written in a concise way as Pr[yt = k | xt] = [σ(W∗xt)]k. Besides, each outcome is associated
with a fixed and known reward. We denote by ρk ∈ R+ the reward for the outcome k ∈ [K], and let
ρ0 = 0 for the outcome yt = 0. Therefore, the expected reward of the learner’s action xt is defined
as r(xt) =

∑K
k=0 Pr[yt = k |xt] · ρk = ρ⊤σ(W∗xt). Let x∗ = argmaxx∈X ρ⊤σ(W∗x). The goal

of the learner is to maximize the cumulative reward, which is equivalent to minimizing the regret

RegT =

T∑
t=1

ρ⊤
(
σ(W∗x∗)− σ(W∗xt)

)
, (2)

When K = 1 and ρ1 = 1, MLogB recovers the binary logistic bandit by r(x) = σ(w⊤
∗ x) =

1/(1 + exp(−w⊤
∗ x)), where w∗ ∈ Rd is a unknown parameter.

Exponentially Large Constant κ. In the logistic bandit problem, the non-linearity of the reward
function is captured by the gradient of the link function ∇σ : z ∈ Rd 7→ diag(σ(z))− σ(z)σ(z)⊤.
The analysis typically that requires that the gradient term is bounded from below and thus one would
define the constant κ ≜ 1/minW∈W,x∈X λmin(∇σ(Wx)) such that 1

κId ≼ ∇σ(Wx) for any
W ∈ W and x ∈ X , where λmin : RK×K → RK is the minimum eigenvalue of the input matrix. In
the binary case (K = 1), one can show that κ = maxw∈W,x∈X {1 + exp(w⊤x) + exp(−w⊤x)} =
O(eSX), where S and X are the diameters of the parameter space W and action space X . In the
multinomial case, the paper [11, Section 3] also shows that κ is an exponentially large constant with
respect to S and X . Thus, an algorithm with improved dependence on κ is demanded.

2.2 Assumptions and Notations

Same as the previous work for multinomial logistic bandit [11], we use the following assumptions.
Assumption 1. The norm of the action is bounded by 1, i.e., ∥x∥2 ≤ 1 for any x ∈ X .
Assumption 2. The reward vector ρ ∈ RK+ and its norm is bounded by R, i.e., ∥ρ∥2 ≤ R.

Assumption 3. The norm of the parameter W∗ ∈ RK×d is bounded by S, i.e., ∥W∗∥F ≤ S, where
∥·∥F denotes the Frobenius norm of a matrix.
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Assumption 4. Let ∇σ(z) : z ∈ Rd 7→ diag(σ(z)) − σ(z)σ(z)⊤. For all x ∈ X and W ∈ W ,
we have λmin(∇σ(Wx)) ≥ 1/κ and λmax(∇σ(Wx)) ≤ L, where λmax : RK×K → RK and
λmin : RK×K → RK take the maximum and minimum eigenvalues of the input, respectively.

Other Notations. The following notations are used in the paper. Given a K-by-d matrix W , we
denote by

−→
W its Kd-dimensional vectorization. For any positive semi-definite H ∈ RKd×Kd, we

define the norm ∥
−→
W∥H =

√〈−→
W,H

−→
W
〉
. The notation ⊗ is used for the standard Kronecker product.

When the input is a vector
−→
W ∈ RKd, we treat it as a Kd× 1 matrix. Moreover, for any symmetric

matrix A,B ∈ RKd×Kd, we denote by A ≽ B that A − B is a semi-positive definite matrix. We
use Ft = σ(x1, y1, . . . , yt−1,xt) to denote the filtration, which encodes the information collected so
far before receiving yt. Finally, O(·) is used to highlight the dependence on d, K, κ, and T . With
Õ(·)-notation, we further hide the dependence on the dimension d and logarithmic factors.

2.3 Optimistic Algorithm with Improved Bound

This part revisit the principle of optimism in the face of uncertainty (OFU) [15] and introduces an
improved version of the MNL-UCB algorithm [11] with better dependence on κ and K.

Optimism in the Face of Uncertainty. The OFU principle is a fundamental paradigm for addressing
the exploration-exploitation dilemma in bandits. At each iteration t, the algorithm selects the arm
by the rule xt = argmaxx∈X r̃t(x), where r̃t(x) is an optimistic estimate of the true reward r(x)
satisfying r̃t(x) ≥ r(x) for all x ∈ X . Based on the OFU rule, one can show that RegT ≤∑T
t=1(r̃(xt) − r(xt)), indicating that a tighter optimistic estimate r̃t will lead to a tighter regret

bound. Therefore, designing a tight optimistic estimate r̃t is essential for the OFU algorithm.

In the context of the logistic bandit, a common practice is to construct a confidence set Ct ⊂ RK×d,
which is supposed to contain the true parameter W∗ with high probability. As such, the learner can
obtain the optimistic reward for each arm x ∈ X by r̃t(x) = argmaxW∈Ct

ρ⊤σ(Wx). A tighter
confidence set will lead to a tighter optimistic reward, and thus resulting in a better regret bound.

Improved Concentration Set. Given the reward is generated by the multinomial logistic model, we
can employ the maximum likelihood estimation (MLE) method to learn the unknown parameter W∗.
Specifically, after observing the action-feedback pairs {(xs, ys)}t−1

s=1, one can train the model by

W MLE
t = argmin

W∈RK×d

Lt(W ) ≜
t−1∑
s=1

ℓs(W ) +
λ

2
∥W∥2F, (3)

where ℓt(W ) =
∑K
k=0 1{yt = k} · log (1/[σ(Wxt)]k) is the multiclass logistic loss established

over (xt, yt) and λ > 0 is the regularization parameter. Let
−→
W ∈ RKd be the vectorized parameter.

We also define the gradient gt(
−→
W ) and the Fisher information matrix Ht(W ) of the logistic loss by

gt(
−→
W ) ≜ ∇Lt(

−→
W ) and Ht(W ) ≜ λI +

t−1∑
s=1

∇σ(Wxs)⊗ xsx
⊤
s ,

where
−→
W ∈ RKd is the vectorized parameter and ∇σ : z 7→ diag(σ(z))− σ(z)σ(z)⊤ is the first

order derivative of the reward vector σ(z). Then, we are ready to present our confidence set for the
maximum likelihood estimator, which exhibits O(

√
K) improvement over that in [11].

Theorem 1. Set the parameter λ = O(dK log(t/δ)) with a certain δ ∈ (0, 1]. For each iteration
t ∈ [T ], we define the confidence set as

Ct(δ) ≜
{
W ∈ W

∣∣∣∣ ∥∥∥gt(−→W )− gt(
−→
W MLE

t )
∥∥∥
H−1

t (W )
≤ βt(δ)

}
, (4)

where βt(δ) = 4
√
Kd(1 + S) log

(
2 (1 + t/d) /δ

)
= O(

√
dK log t) is the radius of the set and

W = {W ∈ RK×d | ∥W∥F ≤ S}. Then, we have Pr
[
∀t ≥ 1,W∗ ∈ Ct(δ)

]
≥ 1− δ.

One advantage of the confidence set (4) is that its radius βt(δ) is independent of the exponentially
large constant κ and thus is much tighter than the confident set constructed for the generalized
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Algorithm 1 MNL-UCB+
Input: regularization coefficient λ, probability δ.
1: Initialize H1 = λIKd and

−→
W MLE

1 as any point in W
2: for t = 1, . . . , T do
3: Construct r̃t and select the arm by (5). Then, the learner receives yt.
4: Train the estimator W MLE

t+1 by (3) and construct the confidence set Ct+1(δ) as (4).
5: end for

linear bandit [5], whose radius exhibits a linear dependence on κ. The κ-independent set are first
established by [8] for the binary logistic bandit problem and then adapted to multinomial setting
by [11] with refined analysis on the self-normalized martingale tail-inequality for multinomial noise.
Our confidence set is tighter than that in [11] by improving the radius from βt(δ) = O(K

√
d log t)

to βt(δ) = O(
√
dK log t). The improvement is based on a slightly refined self-normalized tail-

inequality for the multinomial case, whose formal description is provided in Appendix C.1.

Construction of Optimistic Reward. Based on the confidence set (4), we can construct the optimistic
reward and select the arm for each iteration by

r̃t(x) = argmaxW∈Ct(δ) ρ
⊤σ(Wx) and xt = argmaxx∈W r̃t(x). (5)

We have following guarantee for the algorithm based on the MLE (3) and the selection rule specified
in (4) and (5). We summarize the algorithmic procedure in Algorithm 1.
Theorem 2. Under the same conditions as Theorem 1. Let δ ∈ (0, 1]. Algorithm 1 ensures

RegT ≤ O
(
min{d log T

√
κKT , dK log T

√
T + κd2K log2 T}

)
with probability at least 1− δ when we set the parameter λ = O(dK log(T/δ)).

Remark 1 (Improved dependence on K and κ). Our method achieves the Õ(
√
κKT ) and Õ(K

√
T )

regret bounds for MLogB problem simultaneously. The first bound slightly improves the Õ(K
√
κT )

guarantee of the MNL-UCB algorithm [11] by an O(
√
K) factor while the second one is independent

of the exponentially large constant κ in its leading term. An Õ(K
3
2

√
T ) bound is also attained

by [11]. However, their proposed method is intractable as its confidence set is established on all
minimal elements of partially Loewner-ordered set Ct(δ) ∩W [11, Appendix D]. The computation
cost of identifying all minimal elements and projecting onto the proposed confidence set is prohibitive.
Our solution is free from such demands by using a different rule to construct the optimistic reward.

3 Jointly Efficient Algorithm

In this section, we introduce OFUL-MLogB, an algorithm with jointly computational and statistical
efficiency for the MLogB problem. We will first discuss the efficiency concern of the existing methods
in the literature and then introduce our algorithm, followed by a technical highlight.

3.1 Efficiency Concerns

The algorithms for logistic bandit crucially rely on two components to ensure the statistical efficiency:
the MLE (3) and the optimistic rule (5) for constructing r̃t. However, the implementation of both
components could be inefficient by requiring O(t) computation cost per online iteration.

Computation and Storage Cost of Maximum Likelihood Estimation. For logistic bandit or even
the generalized linear bandit problem [3, 8, 9, 11], MLE is a widely used tool to learn the unknown
parameter. To solve the optimization problem, the gradient-based method, e.g. the projected gradient
descent [16], are usually applied. However, as discussed in [10], the optimization of the MLE problem
typically requires O(t log(1/ϵ)) gradient step to achieve ϵ-accuracy. Besides, the loss function Lt is
established on all historical data {(xs, ys)}t−1

s=1, resulting in an O(t) gradient query complexity for
each gradient step and O(t) storage cost, and thus is inefficient.

Computation and Storage Cost of Optimistic Reward Construction. The construction of the
optimistic reward r̃t(x) requires to solve the optimization problem (5). However, the objective
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Algorithm 2 OFUL-MLogB
Input: regularization coefficient λ, probability δ, step size η.
1: Initialize H1 = λIKd and

−→
W OL

1 as any point in W
2: for t = 1, . . . , T do
3: Select the arm by xt = argmaxx∈X r̃t(x) and receive yt.
4: Update H̃t = Ht + η∇σ(W OL

t xt)⊗ xtx
⊤
t

5: Update the estimator
−→
W OL

t+1 for the next iteration by (6)
6: Update Ht+1 = Ht +∇σ(W OL

t+1xt)⊗ xtx
⊤
t and

7: Construct the optimistic reward by r̃t+1(x) = ρ⊤σ(W OL
t+1x) + ϵfstt+1(x) + ϵsndt+1(x) as (8).

8: end for

function ρ⊤σ(Wx) is non-concave and the decision domain Ct(δ) is non-convex, making the
maximization problem r̃t(x) = argmaxW∈Ct(δ) ρ

⊤σ(Wx) computationally challenging. In the
binary case, the paper [9] proposed a convex relaxation of the confidence set Ct(δ), whereas the
relaxed confidence set is still established on all historical data, resulting in O(t) time complexity
and O(t) storage cost at iteration t. The optimistic estimate construction in the previous work for
multinomial logistci bandits [11] is computationally efficient without involving any optimization
problem solving. However, it will lead to an inferior regret bound of Õ(

√
κT ).

In the binary case, the work [10] proposed a jointly efficient algorithm, which achieved a nearly
minimax optimal bound with O(log t) computation cost per iteration and O(1) storage cost. However,
as we will discuss in Section 3.3, it is hard to apply their analysis to the multinomial case.

3.2 Efficient Algorithm

In this section, we proposed a novel algorithm which only requires O(1) computation cost per
iteration and O(1) storage cost. The algorithm can achieve the best known results both for binary
and multinomial logistic bandits. We have introduced new ingredients both on the algorithm design
and regret analysis to achieve the jointly efficient algorithm.

Efficient Online Estimation. Instead of performing MLE, we run an online mirror descent algorithm
to estimate parameter:

−→
W OL

t+1 = argmin
W∈W

⟨∇ℓt(
−→
W OL

t ),
−→
W ⟩+ 1

2η
∥
−→
W −

−→
W OL

t ∥2
H̃t
, ∀t ≥ 1 (6)

where η > 0 is the step size to be specified later and the first iteration model
−→
W OL

1 can be initialized
as any point in the domain W = {

−→
W ∈ RKd | ∥

−→
W∥2 ≤ S}. We set the matrix as H̃t =

Ht + η∇σ(W OL
t xt)⊗ xtx

⊤
t , where Ht = λI +

∑t−1
s=1 ∇σ(W OL

s+1xs)⊗ xsx
⊤
s . Both H̃t and Ht can

be updated incrementally.

We show the online estimator (6) enjoys computational, storage, and statistical efficiency. Since (6)
exhibits a standard online mirror descent formulation [17], it can be solved with a single projected
gradient step with the following equivalent formulation by

−→
Z t+1 =

−→
W OL

t − ηH̃−1
t ∇ℓt(

−→
W OL

t ) and
−→
W OL

t+1 = argmin−→
W∈W∥

−→
W −

−→
Z t+1∥H̃t

.

For the gradient descent step above, the most time-consuming operation is maintaining the inverse of
the matrix H̃t. Since ∇σ(W OL

t xt)⊗ xtx
⊤
t is a rank-K matrix, it can be calculated by the Sherman-

Morrison-Woodbury formula with O(d2K3) cost per round. As for the projection step, since H̃t is
positive semi-definite matrix, it can be solved in O(K3d3) [18, Section 4].* As a consequence, our
algorithm achieves a light update with O(1) cost per round. Regarding storage cost, our proposed
estimator eliminates the need to store all historical data and updates in a one-pass fashion, requiring
only O(1) storage cost throughout the learning process. Moreover, the estimator is also statistically
efficient. We can construct the following κ-independent confidence set similar to that in Theorem 1.

*In the high-dimensional case, one can also employ Lemma 13 of [10] to perform the projection step, which
ensures 1/τ -error with O(d2 log τ) computation complexity per iteration.
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Theorem 3. Let δ ∈ (0, 1] and α = 2(1 + S) + ln(K + 1). Set the parameter η = α/2 and
λ = max{28Kdα, 7

√
6αS}. For each iteration t ∈ [T ], we define the confidence set as

COLt (δ) ≜

{
W ∈ W

∣∣∣∣ ∥−→W OL
t −

−→
W∥Ht

≤ βOLt (δ)

}
, (7)

where βOLt (δ) = O
(
logK log t

√
Kd
)
. Then, we have Pr

[
∀t ≥ 1,W∗ ∈ Ct(δ)

]
≥ 1− δ. Moreover,

the computation cost of solving (6) is O(1) per round.
Remark 2 (Comparison with the online estimator [10]). Our algorithm design is inspired by the
online estimator [10] developed for the binary case, while achieving even lighter cost by novel
algorithm ingredients and analysis. As discussed in Section 3.3, the analysis for the binary setting is
hard to be applied to the multinomial case. Specifically, the paper [10] has proposed an intermediary
decision W t in the analysis to prove the statistical efficiency of the proposed estimator. However,
the favorable property of the intermediate decision only holds in the binary case. To this end, we
have proposed a new intermediary decisions, which not only help to prove the statistically efficient
of our estimator but also eliminate the requirement of the exploration step. Besides, we have also
introduced a novel algorithm ingredient to further speed-up the algorithm. Instead of learning with
original loss function as in [10], by a more refined exploitation of the negative term in the analysis,
we show it is sufficient to learn with the first order approximate ⟨∇ℓt(

−→
W OL

t ),
−→
W ⟩ of ℓt(W ) with the

adjusted local norm ∥·∥H̃t
. Our new algorithm not only enjoys a computation efficiency improvement

from O(log t) in [10] to O(1), but also is free from any exploration step required by the previous
work. We provide a technical highlight in Section 3.3.

Efficient Optimistic Reward Construction. Although the confidence set COLt (δ) is convex, the
optimistic rule (5) by r̃t(x) = argminW∈COL

t (δ) ρ
⊤σ(Wx) still involves inefficient non-concave

optimization problem solving. In this part, we propose a novel optimistic reward that can be solved
in a constant time per round.
Proposition 1. For any x ∈ X and iteration t ∈ [T ], the optimistic reward is constructed by

r̃OLt (x) = ρ⊤σ(W OL
t x) + ϵfstt (x) + ϵsndt (x). (8)

In above, ϵfstt (x) = βOLt (δ) · ∥H− 1
2

t (IK ⊗ x)∇σ(W OL
t x)ρ∥2 and ϵsndt (x) = 3R (βOLt )

2 · ∥(IK ⊗
x⊤)H

−1/2
t ∥22 are the bonus. Then, we have r̃OLt (x) ≥ ρ⊤σ(W∗x) for all t ≥ 1 and x ∈ X with

probability at least 1− δ.

Proposition 1 constructs the optimistic reward by adding the “bonus” to the reward empirically
estimated by W OL

t . Different from the term used in [11], our bonus terms are independent of the
exponentially large constant and thus can lead to an improved Õ(K

√
T ) bound. The optimistic

rule (8) does not involve any optimization problem solving and can be calculated in an O(1) cost.

Overall Algorithm and Guarantees. We overall procedures in Algorithm 2. For the general
multinomial setting, it ensures an Õ(K

√
T ) regret guarantee and an O(1) computation cost.

Theorem 4. Under the same condition as Theorem 3, Algorithm 2 ensures

RegT = O
(
Kd logK(log T )

3
2

√
T + κK

3
2 d2(logK)2(log T )3

)
= Õ(K

√
T ).

The computation cost of Algorithm 2 is bounded by O(1) for each round t ∈ [T ].

Remark 3 (On the Õ(
√
T/κ∗) bound). In the binary setting, [9, 10] show that an Õ(

√
T/κ∗)

minimax optimal is achievable with κ∗ = 1/σ′(w⊤
∗ x∗). However, due to the multinomial behavior

of the feedback, it is unclear how to achieve such a rate in MLogB case (see the discussion in
Appendix C.5). Besides, it also raises concerns about efficiency when applying the method devel-
oped for binary case to multinomial setting. In particular, the Õ(

√
T/κ∗) is achieved by the rule

argmaxx∈X ,w∈Ct(δ) σ(w
⊤x) in [9, 10]. The optimization can be efficiently solved in the binary

case since one can simply eliminate the non-linearity of the reward function by the relationship
σ(z1) > σ(z2) for any z1 ∈ R > z2 ∈ R. Such a condition does not hold in MLogB problem.

When reduced to the binary case K = 1, our algorithm can also achieves the minimax regret bound.
Corollary 1. When K = 1, the multinomial logistic bandit reduces to the binary logistic bandit
problem. Then, under the same conditions as Theorem 4, Algorithm 2 with the optimistic rule
r̃t(x) = argmaxw∈COL

t (δ) w
⊤x ensures RegT ≤ Õ(

√
T/κ∗) with probability at least 1− δ.
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3.3 Analysis

This section presents the proof sketch for Theorem 3, which plays an key role in the analysis for
Algorithm 2. For notational simplicity, we will drop the superscript OL in this section.

Leveraging Negative Terms for Efficient Update. If we update the model with the original loss
function by

−→
W t+1 = argminW∈W ℓt(W ) + 1

2η∥
−→
W −

−→
W t∥2Ht

, the arguments in [10] shows that the

estimation error between
−→
W t+1 and

−→
W ∗ can be bounded by their gap on the loss function

∥
−→
W t+1 −

−→
W ∗∥2Ht+1

≲
t∑

s=1

ℓs(W∗)−
t∑

s=1

ℓs(Ws+1). (9)

However, the update rule with original loss will lead to an O(log t) computation cost per itera-
tion. To facilitate a more efficient algorithm, we introduce the update rule with the linearized loss
⟨∇ℓt(

−→
W t),

−→
W ⟩ and the adjusted norm H̃t as (6). As we have shown in the proof of Lemma 12

in Appendix C.1. Denote by ℓ̃t(W ) = ⟨∇ℓt(
−→
W t),

−→
W ⟩ + 1

2∥
−→
W −

−→
W t∥2∇2ℓt(

−→
W t)

the second-order

surrogate of ℓt(W ). The efficient update rule will introduce an additional term

t∑
s=1

⟨∇ℓs(
−→
W s+1)−∇ℓ̃s(

−→
W s+1),

−→
W s+1 −

−→
W ∗⟩.

We handle the additional term by the self-concordant property of the logistic loss and exploiting a
negative term ignored in the previous analysis. Since the logistic loss is a

√
6-self-concordant-like

function [19, Lemma 4], then Theorem 3 of [19] indicates that the additional term can be bounded by
t∑

s=1

⟨∇ℓt(
−→
W s+1)−∇ℓ̃s(

−→
W s+1),

−→
W s+1 −

−→
W ∗⟩ ≤

t∑
s=1

√
6KS∥

−→
W s+1 −

−→
W s∥2∇2ℓs(ξs)

,

where ξs ∈ RKd is on the line connecting
−→
W s+1 and

−→
W s. Besides, by a refined analysis of the online

mirror descent (OMD) update (6), we identify an additional negative term −
∑t
s=1∥

−→
W s+1−

−→
W s∥2Hs

on the right hand side of (9). By properly choosing the coefficient λ, one can cancel the additional
term by the negative term and achieves (9) with the efficient update. We note that the negative term
in the OMD analysis is also found crucial in the gradient-variation regret of non-stationary online
learning [20, 21] as well as its applications to game theory [22] and the SEA model [23].

Novel construction of the intermediary prediction. Then, we can further bound the right hand side
of (9) by inserting an intermediary loss ℓs(W̃s) as

t∑
s=1

ℓs(W∗)−
t∑

s=1

ℓs(Ws+1) =

t∑
s=1

ℓs(W∗)−
t∑

s=1

ℓs(W̃s)︸ ︷︷ ︸
term (A)

+

t∑
s=1

ℓs(W̃s)−
t∑

s=1

ℓs(Ws+1)︸ ︷︷ ︸
term (B)

.

In the binary case, inspired by the study [24] for the binary online logistic regression, [10] propose
to construct w̃s = argminw∈Ws

ℓb(w
⊤xs,+1) + ℓb(w

⊤xs, 0) +
1
2η∥w −ws∥2Hs

, where ℓb is the
binary logistic loss and Ws is a shrank decision domain. Then, both term (A) and term (B) can be
bounded without the dependence on κ. However, the analysis for term (B) crucially relies on the
condition |σ(w̃⊤

s xs) − ys| · |σ(w̃⊤
s xs) − 1 + ys| = σ′(w̃⊤

s xs) to eliminate the dependence on κ,
where ys ∈ {0, 1} is the one-dimensional feedback. It is hard to show such an relationship in the
multinomial case since the feedback ys has multiple value. A similar challenge is also observed in the
recent study on online multiclass logistic regression [25, Appendix F]. One might consider whether it
is possible to construct W̃t with the update rule developed in [25]. However, since the online update
rule of [25] requires to perform over RK×d, the learned parameter would become unbounded, which
makes it is hard to provide an upper bound for term (A).

To this end, we design a new intermediary term by ℓm(z̃s, ys), where ℓm is the multiclass logistic
loss. The prediction is constructed by z̃s = σ+ (EW∼Ps

[σ(Wxs)]) with the Gaussian distribution
Ps = N (

−→
W s, αH

−1
s ), where σ+ is a pseudo inverse function of the sigmoid function σ. Such
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an integral construction z̃s = σ+ (EW∼Ps [σ(Wxs)]) is previously used in the online logistic
regression literature [26, 27] but we tailored the tool to our analysis with a different construction of
the distribution Ps. Lemma 13 and Lemma 14 in Appendix C.1 shows that

term (A) ≲ (logK + log t) log t and term (B) ≲
t∑

s=1

∥
−→
W s −

−→
W s+1∥2Hs

+Kd logK log t,

Then, combining the upper bound of term (A) and term (B) and eliminating the additional term∑t
s=1∥

−→
W s−

−→
W s+1∥2Hs

with the negative term obtained by a refined analysis of online mirror descent,
we complete the proof of Theorem 3.

4 More Discussions and Related Work

This section begins with a discussion on the tightness of the proposed bounds.

On the Tightness of Our Bounds. In this paper, we introduced OFUL-MLogB, a jointly efficient
algorithm that simultaneously achieves regret bounds of Õ(

√
κKT ) and Õ(K

√
T ).† The tightness of

these bounds, with respect to κ and T , was detailed in Remark 3. Regarding the number of feedback
values K, [11] claimed the optimality of a linear dependence on K. However, our findings revealed a
nuanced interplay between κ and K. The Õ(

√
κKT ) bound does not conflict with the lower bound

argument by [11], given that the non-linear constant κ is also associated with K. Beyond κ, the norm
of the unknown parameter S and maximum norm R of the reward vector ρ can also depend on K
based on the problem’s specifics. It is an interesting direction to understand the interrelation of these
constants by establishing a lower bound. Additionally, our method has a linear dependence on d. In
the finite-arm case, an O(

√
d) dependence might be attainable with a SupLin-type algorithm [28].

Below, we introduce more related works on logistic bandit and the related topics.

Logistic Bandit. While the logistic bandit is a specific instance of the generalized linear bandit
model [5, 29, 30, 31, 32, 33, 34], the algorithms proposed for GLB tend to exhibit a linear dependence
on the nonlinear term κ, which is exponentially large in the logistic bandit case. Therefore, addressing
the non-linearity of the reward function warrants specialized consideration. Besides the UCB-
type algorithms [8, 9] mentioned in Section 1, for the N -arm case, [35] proposed an experimental
design-based algorithm providing an Õ(

√
d logNT/κ∗) regret bound with better dependence on d.

However, the previous methods were built upon the MLE estimator, whose optimization demands
O(t) computation and storage complexity for the t-th iteration. To the best of our knowledge, the
only known jointly computational and statistical efficient algorithm was proposed by [10], which
achieves a nearly minimax optimal regret bound with computation cost of O(log t) per round. In
addition to the frequentist bounds, there are also researches on logistic bandit from the Bayesian view.
[36] showed the Bayesian regret of the Thompson sampling method is independent of κ (even in the
lower order term) when the feasible domain is identical to the parameter domain, i.e., X = W . [37]
further proved the κ-independent bound with weaker conditions.

Multinomial Logit (MNL) Bandit. Another relevant line of research is the multinomial logit
contextual bandit problem [38, 39, 40, 41, 42], which generalizes the binary logistic bandit by
allowing the learner to submit a subset of arms St = {xt,i}Ki=1 ∈ X to the users. The expected reward
function is also modeled by the multinomial logit model: E[rt|St] =

∑
xt,i∈St

ρt,i exp(w
⊤
∗ xt,i)/(1+∑

xt,i∈St
exp(w⊤

∗ xt,i)), where ρt,i is the reward for arm xt,i and w∗ ∈ Rd is an unknown parameter.
There are also studies on the MNL bandit problem concerning the exponentially large constant
κ. [42] proposed an optimistic algorithm with O(d

√
T ) regret bounds without κ in its leading term,

which improves the O(dκ
√
T ) bound with better dependence on κ. Considering uniform reward, i.e.,

ρt,i = 1 for all t ∈ [T ] and i ∈ [N ], [43] further showed an Õ(d
√
T/κ∗) bound. To the best of our

knowledge, all the existing methods with improved κ are established on the MLE estimator. It would
be an interesting future direction to develop jointly efficient algorithm for the MNL bandit problem.

†Theorem 5 in Appendix C.3.2 shows that OFUL-MLogB also attains the Õ(
√
κKT ) regret bound.
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Figure 1: Performance and computation cost comparison for binary logistic bandit.
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Figure 2: Performance and computation cost comparison for multinomial logistic bandit.

5 Experiments

This section validates the statistical and computation efficiency of the proposed method by experi-
ments. We conduct a bandit learning for T = 3000 iterations. In each experiment, we run experiments
on 6 random configurations, in which the arm set and the underlying parameter are randomly sampled.
Specially, |X | = 20 actions are randomly sampled from a 2-dimensional sphere of radius 1. In the
binary case, the norm of the unknown parameter w∗ is set as S = 5. In the multinomial case, we set
K = 4 with S = 1. The reward vector is set as ρ = [0.25, 0.5, 0.75, 1]. For each configuration, we
report the averaged results over 10 trials. More details can be found in Appendix D.

Experimental Results. Figure 4 provides a comparison of performance and computation costs in the
binary case. The algorithm O2LM [7], which has a constant computational cost per iteration, is used
as a comparison baseline. Our algorithm demonstrates a time complexity akin to O2LM, affirming
its computational efficiency. Compared to the state-of-the-art binary logistic bandit algorithm
ada-OFU-ECOLog [10], our OFU-MLogB method has lighter computational overheads while
preserving similar empirical performance. Figure 4 illustrates the comparison in the multinomial
setting. Our algorithm is around 50 times faster than MNL-UCB [11] for running T = 3000 iterations
and achieves better empirical performance. More experimental results on other configurations and
the running time curve that increases along the iterations can be found in Appendix D.

6 Conclusion

This paper proposed a jointly efficient algorithm OFUL-MLogB for both binary and multinomial
logistic bandit problems with constant computation cost per round and improved regret guarantees.
For the multinomial setting, our method improves over the best-known feasible algorithm both on the
dependence of κ and the computation cost. When reduced to the binary case, OFUL-MLogB also
contributes to improve the computation cost of previous method from O(log t) to O(1) per round
while still preserving the Õ(

√
T/κ∗) minimax optimal bound up to logarithmic factors. A promising

future direction is to consider the multinomial logit model in reinforcement learning. Besides, it is
still open on how to achieve the Õ(

√
T/κ∗) bound for the multinomial case.
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A Properties of the Logistic Regression

This section collects several key properties of the logistic loss used throughout the paper.

A.1 Multiclass Logistic Loss

We have the following property of the multiclass logistic loss.
Property 1. Let y ∈ Y with Y = {0} ∪ [K] and ℓ : RK × Y 7→ R be the multiclass logistic loss
defined by

ℓ(z, y) =

K∑
k=0

1{y = k} · log
(

1

[σ(z)]k

)
, (10)

where σ : RK → [0, 1]K is the vector valued link function defined by [σ(z)]k = exp(zk)/(1 +∑K
j=1 exp(zj)) and [σ(z)]0 = exp(zk)/(1 +

∑K
j=1 exp(zj)). Let y = [1{y = 1}, . . . ,1{y =

K}] ∈ RK and σk(z) = [σ(z)]k be the k-th entry of σ(z). Then the first, second and third
derivations w.r.t. the first argument of the loss function can be written as

∇zℓ(z, y) = σ(z)− y,

∇2
zℓ(z, y) = diag(σ(z))− σ(z)σ(z)⊤,

∇3
zℓ(z, y)[u] =

K∑
k=1

ukσk(z)
(
2σ(z)σ(z)⊤ − diag(σ(z))− ekσ(z)

⊤ − σ(z)e⊤k + Ek
)
,

where uk is the k-th entry of the vector u ∈ RK and Ek ∈ RK×K is a “one-hot” matrix whose
(k, k)-th entry equals to 1 while others equaling to 0. Besides, ek is the one-hot vector whose k-th
entry equals to 1. In the above, ∇3

zℓ(z, y)[u] = limt→0 t
−1
(
∇2
zℓ(z+ tu, y)−∇2

zℓ(z, y)
)
.

When we train a linear model with the logistic regression loss, we can calculate its gradient and
Hessian as follows.
Property 2. Denote by the logistic loss defined over the data point (xt, yt) ∈ X × Y by

ℓt(W ) = ℓ(Wx, y) =

K∑
k=0

1{yt = k} · log (1/[σ(Wxt)]k) . (11)

Then, the gradient ∇ℓt(
−→
W ) ∈ RKd and the Hessian ∇2ℓt(W ) ∈ RKd×Kd of the loss function with

respective to the vectorized model
−→
W is given by

∇ℓt(
−→
W ) = (σ(Wxt)− yt)⊗ xt and ∇2ℓt(W ) = diag(σ(Wxt))− σ(Wxt)σ(Wxt)

⊤ ⊗ xtx
⊤
t .

Besides, we can obtain the gradient of the vector-valued link function as follows.
Property 3. Let the sigmoid function σ : RK 7→ [0, 1]K be defined as (1) and σk(z) denote the k-th
entry of σ(z). We have

∇σk(z) = σk(z) · (ek − σ(z));

∇2σk(z) = σk(z)
(
2σ(z)σ(z)⊤ − diag(σ(z))− ekσ(z)

⊤ − σ(z)e⊤k + Ek
)
,

In above, Ek ∈ RK×K is an all zero matrix except that its (k, k)-th entry is 1. For the first order
derivation, we can write it into a more concise formulation by the notation ∇σ(z) : RK 7→ RK×K

∇σ(z) ≜
∂σ(z)

∂z⊤
= diag(σ(z))− σ(z)σ(z)⊤.

We have the following lemma for the logistic loss function.
Lemma 1. Let C > 0, a ∈ [−C,C]K , y ∈ {0} ∪ [K] and b ∈ RK . Then, we have

ℓ(a, y) ≥ ℓ(b, y) +∇ℓ(b, y)⊤(a− b) +
1

log(K + 1) + 2(C + 1)
(a− b)⊤∇2ℓ(b, y)(a− b).
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Proof. Lemma 1 is essentially the Lemma 4 of [27] with a slightly different definition of the
logistic loss. The K + 1-class logistic loss used by [27] is defined as ℓ̃(z̃, y) =

∑K
k=0 1{y =

k} log
(∑K

k=0 exp([z̃]j)/ exp([z̃]k)
)

, where z̃ ∈ RK+1 is a K + 1-dimensional input. One can

connect the two logistic losses by ℓ̃([z; 0], y) = ℓ(z, y). Then, we can prove Lemma 1 by directly
applying Lemma 4 of [27] with the augmented vectors ã = [a; 0] and b̃ = [b; 0].

A.2 Self-concordant-like Function

Then, we introduce the notion of self-concordant-like function, which generalizes the standard self-
concordant notion. The self-concordant function is first introduced by [44] in the study of inner-point
algorithm and the notion is further generalized by the following work [45, 19, 46] for analyzing the
Newton-step methods. The self-concordant function enjoys several nice properties, which plays an
important role in our local analysis. A comprehensive study for self-concordance function is provided
by [46]. Here, we present the definition and necessary lemmas for our analysis.
Definition 1 (Theorem 3 of [19]). A convex function ℓ ∈ C3 : Rd → R is M -self-concordant-like if
and only if for any x,u1,u2,u3 ∈ Rd, we have∣∣⟨D3ℓ(z)[u1]u2,u3⟩

∣∣ ≤M∥u1∥2∥u2∥z∥u3∥z,

where ∥u∥z :=
√

u⊤∇2f(z)u is the local norm over the Hessian ∇2ℓ(z).

The logistic loss is
√
6-self-concordant-like function.

Lemma 2 (Lemma 4 of [19]). The logistic loss defined as (11) is
√
6∥xt∥2-self-concordant-like.

The self-concordant function enjoys favorable properties, which help us to conduct local analysis for
the logistic bandit problem. We list useful lemmas as follows.
Lemma 3 (Bound of Hessian Map, Theorem 4(b) of [19]). Let ℓ : Rd 7→ R be an M -self-concordant-
like function. Then, for any z1, z2 ∈ dom(ℓ), we have

e−M∥z1−z2∥2∇2ℓ(z1) ≼ ∇2ℓ(z2) ≼ eM∥z1−z2∥2∇2ℓ(z1) (12)

The following lemma is a consequence of the bound of the Hessian map.
Lemma 4 (Corollary 2 of [46]). Let ℓ : Rd 7→ R be an M -self-concordant-like function. Then, for
any z1, z2 ∈ dom(ℓ), we have

1− e−M∥z1−z2∥2

M∥z1 − z2∥2
· ∇2ℓ(z2) ≼

∫ 1

0

∇2ℓ(z1 + ν(z2 − z1))dν ≼
eM∥z1−z2∥2 − 1

M∥z1 − z2∥2
∇2ℓ(z1).

We can also have the bound on the function value of the self-concordant functions.
Lemma 5 (Proposition 10 of [46]). Let ℓ : Rd 7→ R be an M -self-concordant-like function. Then,
for any z1, z2 ∈ dom(ℓ), we have

c(−M∥z1 − z2∥2) · ∥z2 − z1∥2z1
≤ ℓ(z2)− ℓ(z1)−∇ℓ(z1)⊤(z2 − z1) ≤ c(Mf∥z1 − z2∥2) · ∥z2 − z1∥2z1

,

where c : R 7→ R is the coefficient function defined as c(x) = (ex − x− 1)/x2.

B Omitted Proofs for Section 2.3

B.1 Proof of Theorem 1

This section we present the proof of Theorem 1.

B.1.1 Main Proof

Before introducing the main proof, we introduce a key lemma on an improved self-normalized
martingale tail inequality for the multinomial noise, which helps to save an O(

√
K) factor compared

to the one obtained by [11]. The proof of Lemma 6 is provided in Appendix B.1.2
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Lemma 6. Let {Ft}∞t=1 be a filtration. Let {xt}∞t=1 be a stochastic process in B2(d) ≜ {x ∈
Rd | ∥xt∥2 ≤ 1} such that xt is Ft measurable. Let {εt}∞t=1 be a martingale difference sequence
such that εt ∈ RK is Ft+1 measurable. Furthermore, assume that conditional on Ft, we have
∥εt∥1 ≤ 2 almost surely, and denoted by Σt ≜ E[εtε⊤t | Ft]. Let λ > 0 and for any t ≥ 1 define

St =

t−1∑
s=1

εs ⊗ xs and Ht = λIKd +

t−1∑
s=1

Σs ⊗ xsx
⊤
s .

Then for any δ ∈ (0, 1], we have

Pr

[
∃t > 1, ∥St∥H−1

t
≥

√
λ

4
+

4√
λ
log

(
|Ht|1/2

δλKd/2

)
+

4√
λ
Kd log(2)

]
≤ δ.

Lemma 6 is a counterpart of the variance-aware self-normalized tail inequality [8, Theorem 1] for the
multinominal case. In comparison with the previously established result by [11], our inequality more
effectively leverages the geometric structure of the noise in the multinomial logistic bandit problem,
as indicated by the condition ∥εt∥1 ≤ 2. The previous paper’s condition, ∥εt∥2 ≤

√
K, is relatively

loose, ultimately resulting in an additional O(
√
K) term in the concentration inequality. Then, we

introduce the main proof of Theorem 1

Proof of Theorem 1. The optimality of the MLE estimator indicates that gt(
−→
W MLE

t ) = ∇Lt(
−→
W MLE

t ) =
0. In such a case, we have

gt(W
MLE
t )− gt(W∗) = −gt(W∗) =

t−1∑
s=1

(σ(W∗xs)− ys)⊗ xs − λ
−→
W ∗ =

t−1∑
s=1

εs ⊗ xs − λ
−→
W ∗,

where εs = σ(W∗xs)−ys is the noise with boundedL∞ norm as we have ∥ϵs∥∞ ≤ ∥σ(W∗xs)∥∞+

∥ys∥∞ ≤ 2. Then, we can bound the gap between
−→
W MLE

t and
−→
W ∗ by

∥gt(W MLE
t )− gt(W∗)∥H−1

t (W∗)
≤

∥∥∥∥∥
t−1∑
s=1

εs ⊗ xs

∥∥∥∥∥
H−1

t (W∗)

+ ∥λ
−→
W ∗∥H−1

t (W∗)

≤

∥∥∥∥∥
t−1∑
s=1

εs ⊗ xs

∥∥∥∥∥
H−1

t (W∗)

+
√
λS

≤
√
λ

4
+

4√
λ
log

(
|Ht|1/2

δλKd/2

)
+

4√
λ
Kd log(2) +

√
λS, (13)

with probability at least 1− δ for all t ≥ 1. In above, the matrix Ht(W∗) is defined as Ht(W∗) =

λIKd+
∑t−1
s=1 Σ(W∗xs)xsx

⊤
s . The first inequality is due to the relationship H−1

t (W∗) ≼ 1/λ · IKd.
The last inequality is by Lemma 6 since

Σ(W∗xs) = diag(σ(W∗xs))− σ(W∗xs)σ(W∗xs)
⊤ = E[εsε⊤s | Fs−1].

Then, we can bound the determinate of Ht(W∗) by

|Ht| ≤
(

Tr(Ht)

Kd

)Kd
≤

(
λKd+

∑t−1
s=1

∑K
k=1 Σk(W∗xs)∥xs∥2
Kd

)Kd
≤ (λ+ t/d)Kd. (14)

Plugging (14) into (13), we have

∥gt(W MLE
t )− gt(W∗)∥H−1

t (W∗)
≤
(
1

4
+ S

)√
λ+

2Kd√
λ

log

(
1 +

t

λd

)
+

4Kd√
λ

log

(
2

δ

)
, (15)

By setting

λ =
4Kd log(2 (1 + t/d) /δ)

S + 1/4
= O(dK log(t/δ)), (16)

we have

∥gt(W MLE
t )− gt(W∗)∥H−1

t (W∗)
≤ betat(δ) ≜ 4

√
Kd(1 + S) log

(
2 (1 + t/d) /δ

)
,

which completes the proof .
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B.1.2 Useful Lemmas

Lemma 6. Let {Ft}∞t=1 be a filtration. Let {xt}∞t=1 be a stochastic process in B2(d) ≜ {x ∈
Rd | ∥xt∥2 ≤ 1} such that xt is Ft measurable. Let {εt}∞t=1 be a martingale difference sequence
such that εt ∈ RK is Ft+1 measurable. Furthermore, assume that conditional on Ft, we have
∥εt∥1 ≤ 2 almost surely, and denoted by Σt ≜ E[εtε⊤t | Ft]. Let λ > 0 and for any t ≥ 1 define

St =

t−1∑
s=1

εs ⊗ xs and Ht = λIKd +

t−1∑
s=1

Σs ⊗ xsx
⊤
s .

Then for any δ ∈ (0, 1], we have

Pr

[
∃t > 1, ∥St∥H−1

t
≥

√
λ

4
+

4√
λ
log

(
|Ht|1/2

δλKd/2

)
+

4√
λ
Kd log(2)

]
≤ δ.

Proof of Lemma 6. The proof follows the pipeline in the analysis of the self-normalized tail-inequality
in the previous studies [3, 8, 11]. Letting H̄t =

∑t−1
s=1 Σs ⊗ xsx

⊤
s , we define the function

Mt(ξ) ≜ exp(ξ⊤St − ∥ξ∥2H̄t
),

for any t ≥ 1 and ξ ∈ RKd. For t = 0, let M0(ξ) = 0.

By Lemma 7 in Appendix B.1.2, we can show that {Mt(ξ)}∞t=1 is a non-negative super-martingale
for any ξ ∈ 1

2B2(Kd). We note that our Lemma 7 is an imporved version of Lemma 7 in [11], which
relaxs restriction on the feasible domain of ξ from ξ ∈ 1√

K
B2(Kd) to ξ ∈ 1

2B2(Kd), resulting in

saving an O(
√
K) factor in the bound.

Then, let h(ξ) be a probability density with support on 1
2B2(Kd) and define

M̄t ≜
∫
ξ

Mt(ξ)dh(ξ) =

∫
ξ

exp(ξ⊤St − ∥ξ∥2H̄t
)dh(ξ)

for all t ≥ 1. Lemma 20.3 of [15] shows that M̄t is also a non-negative super-martingale and
E[M̄0] = 1. Then, the maximal inequality (Theorem 3.9 of [15]) shows that

Pr
[
sup
t∈N

log(M̄t) ≥ log

(
1

δ

)]
= Pr

[
sup
t∈N

M̄t ≥
1

δ

]
≤ δ. (17)

Next, we turn to exam the formulation of M̄t and subsequently establish a connection with the term
we aim to bound, ∥St∥H−1

t
. Let h(ξ) be the density of an isotropic normal distribution with precision

matrix 2λIKd truncated on 1
2B2(Kd) and N(h) be its normalization constant. Furthermore, let g(ξ)

be the density of the normal distribution with precision matrix 2Ht that is truncated on the ball
1
4B2(Kd). Following the arguments in the proof of [8, Theorem 1] (more precisely the arguments in
deriving Eq.(11) in [8]), for any t ≥ 1, one can show that

M̄t ≥ exp(ξ⊤St − ∥ξ∥2Ht
) · N(g)

N(h)
.

for any ξ ∈ 1
4B2(Kd). Let ξ0 ≜ H−1

t St

∥St∥H
−1
t

·
√
λ
4 . One can check ∥ξ0∥2 ≤ 1√

λ
·
√
λ
4 ≤ 1/4. Then, we

can further have

log(M̄t) ≥ ξ⊤0 St − ∥ξ0∥2Ht
+ log

(
N(g)

N(h)

)
=

√
λ

4
∥St∥H−1

t
− λ

16
+ log

(
N(g)

N(h)

)
. (18)

Combining (17) and (18), for any t ≥ 1, we have

Pr

[
∥St∥H−1

t
≤

√
λ

4
+

4√
λ
log

(
N(h)

δN(g)

)]
≥ 1− δ.

We complete the proof with Lemma 6 of [8] such that

log

(
N(h)

N(g)

)
≤ log

(
|Ht|1/2

λKd/2

)
+Kd log(2).
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Lemma 7. For all ξ ∈ 1
2B2(Kd), the sequence {Mt(ξ)}∞t=1 is a non-negative super-martingale.

Proof of Lemma 7. To show that {Mt(ξ)}∞t=1 is a non-negative super-martingale, it is sufficient to
prove E[Mt+1(ξ) | Ft] ≤Mt(ξ) for any t > 1 and ξ ∈ 1

2B2(Kd). By the definition of Mt+1(ξ), we
have

E[Mt+1(ξ) | Ft] = E
[
exp(ξ⊤St+1 − ∥ξ∥2H̄t+1

) | Ft
]

= E
[
exp(ξ⊤(εt ⊗ xt)− ξ⊤(Σt ⊗ xtx

⊤
t )ξ) | Ft

]
Mt(ξ)

= E
[
exp(ε⊤t (IK ⊗ x⊤

t )ξ − ξ⊤(Σt ⊗ xtx
⊤
t )ξ) | Ft

]
Mt(ξ). (19)

Let ξ = [ξ1; . . . ; ξK ] and ξk ∈ Rd is the vector containing (k − 1)d+ 1-th to kd-th elements of ξ.
We can further check that

|ε⊤t (IK ⊗ x⊤
t )ξ| ≤ ∥εt∥1 · ∥(IK ⊗ x⊤

t )ξ∥∞ = ∥εt∥1 ·max
k∈K

|ξ⊤k xt| ≤ 1,

where the first inequality is due to the Höler’s inequality. The last inequality is by the condition
∥εt∥1 ≤ 2 and ∥ξk∥2 ≤ ∥ξ∥2 ≤ 1/2 for any k ∈ [K]. Then, we can further bound the expectation
term in (19) by

E
[
exp(ε⊤t (IK ⊗ x⊤

t )ξ − ξ⊤(Σt ⊗ xtx
⊤
t )ξ) | Ft

]
= E

[
exp(ε⊤t (IK ⊗ x⊤

t )ξ) | Ft
]
· exp(−ξ⊤(Σt ⊗ xtx

⊤
t )ξ)

≤ exp(ξ⊤(IK ⊗ xt)Σt(IK ⊗ x⊤
t )ξ) · exp(−ξ⊤(Σt ⊗ xtx

⊤
t )ξ)

= exp(ξ⊤(Σt ⊗ xtx
⊤
t )ξ) · exp(−ξ⊤(Σt ⊗ xtx

⊤
t )ξ) = 1,

where the first inequality is due to Lemma 8 and the last equality is due to mixed-product property of
the Kronecker product. Therefore, we can show E[Mt+1(ξ) | Ft] ≤Mt(ξ) and complete the proof.

Lemma 8 (Lemma 6 of [11]). Let ε ∈ RK be a zero-mean random vector with covariance matrix Σ.
Then, for any vector a ∈ RK such that |ε⊤a| ≤ 1, we have E[exp(ε⊤a)] ≤ exp(a⊤Σa).

B.2 Proof of Theorem 2

This section provides the proof for Theorem 2.

B.2.1 Main Proof

Proof of Theorem 2. We prove the proposed algorithm can achieve O(d log T
√
κKT ) and

O(dK log T
√
T + κd2K2 log2 T ) bounds simultaneously. Before presenting the proofs, we in-

troduce two matrix that measures the local curvature of the loss function and will be used in the rest
part of the proof:

A(x,W1,W2) =

∫ 1

v=0

∇σ(vW1x+ (1− v)W2x)dv; (20)

Gt(W1,W2) = λIKd +

t−1∑
s=1

A(xs,W1,W2)⊗ xsx
⊤
s . (21)

Analysis for the O(d log T
√
κKT ) Bound. The regret can be bounded by

RegT =

T∑
t=1

ρ⊤σ(W∗x∗)−
T∑
t=1

ρ⊤σ(W∗xt)

≤
T∑
t=1

ρ⊤σ(W OPT
t xt)−

T∑
t=1

ρ⊤σ(W∗xt)

=

T∑
t=1

ρ⊤A(xt,W∗,W
OPT
t )(W OPT

t −W∗)xt

18



≤
T∑
t=1

∥ρ∥A(xt,W∗,W OPT
t ) · ∥(W OPT

t −W∗)xt∥A(xt,W∗,W OPT
t )

≤
T∑
t=1

∥ρ∥2 · ∥(W OPT
t −W∗)xt∥A(xt,W∗,W OPT

t )

≤ R

T∑
t=1

∥(W OPT
t −W∗)xt∥A(xt,W∗,W OPT

t )

In the above, the term A(xt,W∗,W
OPT
t ) is defined as (20) and the first inequality is a consequence of

the optimistic rule (5) such that (xt,W OPT
t ) = argmaxx∈X ,W∈Ct(δ) ρ

⊤σ(Wx) and the first equality
is due to the mean value theorem for the vector valued function. The second inequality is due to the
Cauchy-Schwarz inequality and we can obtain the the last second inequality by the fact ∇σ(z) ≼ IK
for any z ∈ RK . The last inequality is due to Assumption 2.

Let G− 1
2

t (W1,W2) be defined as (21). We can proceed to handle the gap between W OPT
t and W∗ by

T∑
t=1

∥(W OPT
t −W∗)xt∥A(xt,W∗,W OPT

t )

≤
T∑
t=1

∥(W OPT
t −W∗)xt∥2

=

T∑
t=1

∥(IK ⊗ x⊤
t ) · (

−→
W OPT

t −
−→
W ∗)∥2

=

T∑
t=1

∥(IK ⊗ x⊤
t )G

− 1
2

t (W∗,W
OPT
t ) ·G

1
2
t (W∗,W

OPT
t )(

−→
W OPT

t −
−→
W ∗)∥2

≤
T∑
t=1

∥(IK ⊗ x⊤
t )G

− 1
2

t (W∗,W
OPT
t )∥2 · ∥G

1
2
t (W∗,W

OPT
t )(

−→
W OPT

t −
−→
W ∗)∥2

≤
T∑
t=1

∥(IK ⊗ x⊤
t )V̄

− 1
2

t ∥2 · ∥G
1
2
t (W∗,W

OPT
t )(

−→
W OPT

t −
−→
W ∗)∥2

≤

√√√√ T∑
t=1

∥(IK ⊗ x⊤
t )V̄

− 1
2

t ∥22︸ ︷︷ ︸
term (a)

·

√√√√ T∑
t=1

∥G
1
2
t (W∗,W OPT

t )(
−→
W OPT

t −
−→
W ∗)∥22︸ ︷︷ ︸

term (b)

. (22)

where the first inequality is due to the fact A(xt,W∗,W
OPT
t ) ≼ IK and the second inequality is due to

the Cauchy-Schwarz inequality. Since both W∗,W
OPT
t ∈ W , the third inequality is by the condition

Gt(W∗,W
OPT
t ) ≽ V̄t ≜ λIKd +

1
κ

∑t−1
s=1 IK ⊗ xsx

⊤
s . We can show the last inequality by using

Cauchy-Schwarz inequality again.

Then, we proceed to bound term (a) and term (b) respectively.

term (a) =

√√√√ T∑
t=1

∥(IK ⊗ x⊤
t )V̄

− 1
2

t ∥22

=

√√√√ T∑
t=1

λmax((IK ⊗ x⊤
t )V̄

−1
t (IK ⊗ xt))

=

√√√√ T∑
t=1

λmax((IK ⊗ x⊤
t )

(
IK ⊗

(
λId +

1

κ

t−1∑
s=1

xsx⊤
s

))−1

(IK ⊗ xt))
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=

√√√√ T∑
t=1

λmax

(
IK ⊗ x⊤

t

(
λId +

1

κ

t−1∑
s=1

xsx⊤
s

)−1

xt

)

=

√√√√ T∑
t=1

x⊤
t

(
λId +

1

κ

t−1∑
s=1

xsx⊤
s

)−1

xt

≤

√
κd log

(
1 +

T

κλd

)
(23)

In above, we denote by λmax the maximum eigenvalue of the input matrix. The second inequality is
due to the property of the maximum eigenvalue such that λmax(ABC) = λmax(BCA) for matrix
A,B and C. The last second equality is due to the mixed product property of the the Kronecker
product and (A⊗B)−1 = A−1 ⊗B−1 for matrix A and B. In the last inequality, we can bound the
term with the standard arguments of the elliptical potential lemma [3, Lemma 11].

It remains to bound term (b). Since Theorem 1 shows that W∗ ∈ Ct(δ) with probability at least 1− δ
for all t > 1 and the optimistic rule (5) ensures W OPT

t ∈ Ct(δ), Lemma 9 in Appendix B.2.2 indicates
that the distance between W∗ and W OPT

t can be bounded by

∥G
1
2
t (W∗,W

OPT
t )(

−→
W OPT

t −
−→
W ∗)∥2 ≤ 2

√
1 + 2Sβt(δ).

Then, plugging the above displayed equation into term (b), we can bound this term by

term (b) ≤ 2
√
1 + 2S

√√√√ T∑
t=1

(βt(δ))2 ≤ 2
√

(1 + 2S)TβT (δ) = O(
√
dTK log(T/δ)),

where the last inequality holds because βt(δ) is a non-decreasing function with respect to t. A
combination of the upper bound for term (a) and term (b) leads to

RegT ≤ 8(1 + 2S)Rd

√
κKT · log

(2(1 + T/d)

δ

)
· log

(
1 +

T

κd

)
= O(d log T

√
κKT ).

Analysis for the O(Kd log T
√
T + κKd2 log2 T ) Bound. Inspired by the analysis for binary

logistic bandit problem [9, Appendix C], we employ a different decomposition compared to the one
used in the first part of the analysis

RegT =

T∑
t=1

K∑
k=1

ρk(σk(W∗x∗)− σk(W∗xt))

≤
T∑
t=1

K∑
k=1

ρk(σk(W
OPT
t xt)− σk(W∗xt))

=

T∑
t=1

K∑
k=1

ρk∇σk(W∗xt)
⊤(W OPT

t −W∗)xt +

K∑
k=1

ρk∥(W OPT
t −W∗)xt∥2Ξk,t

≤
T∑
t=1

∣∣∣∣∣
K∑
k=1

ρk∇σk(W∗xt)
⊤(W OPT

t −W∗)xt

∣∣∣∣∣︸ ︷︷ ︸
term (c)

+

T∑
t=1

∣∣∣∣∣
K∑
k=1

ρk∥(W OPT
t −W∗)xt∥2Ξk,t

∣∣∣∣∣︸ ︷︷ ︸
term (d)

,

where σk : x 7→ [σ(x)]k is the k-th output of the vector-valued function σ(x) and Ξk,t =
∫ 1

ν=0
(1−

ν)∇2σk((W∗ + ν(W OPT
t −W∗))xt)dν. In the above, the first inequality is due to the optimistic

rule (5) and the last equality is due to the integral formulation of the Taylor series. Then, we proceed
to handle term (c) and term (d) respectively.

As for term (c), we have

term (c) =

T∑
t=1

∣∣∣ρ∇σ(W∗xt)
⊤(

−→
W OPT

t −
−→
W ∗)xt

∣∣∣
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=

T∑
t=1

∣∣∣ρ∇σ(W∗xt)
⊤(IK ⊗ x⊤

t )(
−→
W OPT

t −
−→
W ∗)

∣∣∣
=

T∑
t=1

∣∣∣ρ∇σ(W∗xt)
⊤(IK ⊗ x⊤

t )G
− 1

2
t (W∗,W

OPT
t ) ·G

1
2
t (W∗,W

OPT
t )(

−→
W OPT

t −
−→
W ∗)

∣∣∣
≤

T∑
t=1

∥
−→
W OPT

t −
−→
W ∗∥Gt(W∗,W OPT

t ) · ∥G
− 1

2
t (W∗,W

OPT
t )(IK ⊗ xt)∇σ(W∗xt)ρ∥2

≤ 2
√
1 + 2SβT (δ)

T∑
t=1

∥G− 1
2

t (W∗,W
OPT
t )(IK ⊗ xt)∇σ(W∗xt)ρ∥2, (24)

where the first inequality holds by Cauchy-Schwarz inequality and the last one is due to Lemma 9.

Let λmax(·) denote the maximum eigenvalue of the matrix. We can further bound (24) by

T∑
t=1

∥G− 1
2

t (W∗,W
OPT
t )(IK ⊗ xt)∇σ(W∗xt)ρ∥2

≤
T∑
t=1

∥∇σ
1
2 (W∗xt)ρ∥2 · ∥G

− 1
2

t (W∗,W
OPT
t )(IK ⊗ xt)∇σ

1
2 (W∗xt)∥2

≤ R

T∑
t=1

√
λmax

(
(∇σ

1
2 (W∗xt)⊗ x⊤

t )G
−1
t (W∗,W OPT

t )(∇σ
1
2 (W∗xt)⊗ xt)

)

= R

T∑
t=1

√
λmax

(
(∇σ(W∗xt)⊗ xtx⊤

t )G
−1
t (W∗,W OPT

t )

)

≤ R
√
T

√√√√ T∑
t=1

λmax

(
(∇σ(W∗xt)⊗ xtx⊤

t )G
−1
t (W∗,W OPT

t )

)

≤ R
√
T

√
(1 + 2S)Kd ln

(
1 +

T

2λ

)
(25)

where the first inequality is due to the fact that ∥Ab∥2 ≤ ∥A∥2 · ∥b∥ for a matrix A and vector b.
The second inequality is due to the definition of the induced norm ∥A∥2 =

√
λmax(ATA) and the

mixed-product property of the Kronecker production. The last equality is due to the cycle property of
the maximum eigenvalue such that λmax(ABC) = λmax(CAB) for matrices A,B and C and we
use the mixed-product property again. The last inequality is due to Lemma 10 in Appendix B.2.2.

Combining (24) and (25), we arrive

term (c) ≤ 8R(1 + 2S)
3
2 dK

√
T · log

(2(1 + t/d)

δ

)
· log

(
1 +

T

2d

)
= O(dK log T

√
T ). (26)

Then, we turn to handle term (d). Lemma 11 indicates that

Ξk,t =

∫ 1

ν=0

(1− ν)∇2σk((W∗ + ν(W OPT
t −W∗))xt)dν ≼ 3IK

∫ 1

ν=0

(1− ν)dν ≼ 3IK . (27)

As a consequence, we can bound term (d) by

term (d) =

T∑
t=1

∣∣∣∣∣
K∑
k=1

ρk∥(W OPT
t −W∗)xt∥2Ξk,t

∣∣∣∣∣
≤ 3

T∑
t=1

∣∣∣∣∣
K∑
k=1

ρk∥(W OPT
t −W∗)xt∥22

∣∣∣∣∣
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≤ 3R

T∑
t=1

∥(W OPT
t −W∗)xt∥22

≤ 3Rβ2
T (δ)

T∑
t=1

∥(IK ⊗ x⊤
t )V̄

− 1
2

t ∥22

≤ 3Rβ2
T (δ)κd log

(
1 +

T

κλd

)
where the first inequality is due to Assumption 2 and the second inequality is due to (27). The last
second inequality can be obtained by a similar argument in obtaining (22). The last inequality can be
obtained by the same argument as (23).

Combining (26) and (26), we obtain

RegT ≤ 8R(1 + 2S)
3
2 dK

√
T · log

(2(1 + T/d)

δ

)
· log

(
1 +

T

2d

)
+ 48R(1 + S)κKd2 log

(2(1 + T/d)

δ

)
· log

(
1 +

T

2d

)
= O(dK log T

√
T + κd2K log2 T ).

We have completed the proof.

B.2.2 Useful Lemma

This section provides the lemmas used in the main proof.
Lemma 9. If W∗ ∈ Ct(δ), then for all W ∈ Ct(δ):

∥G
1
2
t (W∗,W )(

−→
W −

−→
W ∗)∥2 ≤ 2

√
1 + 2Sβt(δ),

where βt(δ) = 4
√
Kd(1 + S) log

(
2 (1 + t/d) /δ

)
= O(

√
dK log t) is defined in Theorem 1.

Proof of Lemma 9. Lemma 3 in [11] shows that

gt(
−→
W ∗)− gt(

−→
W ) = Gt(W∗,W )(

−→
W ∗ −

−→
W ),

for any
−→
W ∈ Ct(δ). Then, we have

∥G
1
2
t (W∗,W )(

−→
W −

−→
W ∗)∥2

= ∥gt(
−→
W ∗)− gt(

−→
W )∥G−1

t (W∗,W )

≤ ∥gt(
−→
W ∗)− gt(

−→
W MLE

t )∥G−1
t (W∗,W ) + ∥gt(

−→
W )− gt(

−→
W MLE

t )∥G−1
t (W∗,W )

≤
√
1 + 2S

(
∥gt(

−→
W ∗)− gt(

−→
W MLE

t )∥H−1
t (W∗)

+ ∥gt(
−→
W )− gt(

−→
W MLE

t )∥H−1
t (W )

)
≤ 2

√
1 + 2Sβt(δ),

where the last second inequality is due to generalized self-concordant properties of the logistic loss
as shown by Lemma 13 of [11]. The last inequality is due to Theorem 1 and the condition that W is
contained in the confidence set Ct(δ).

Lemma 10. When the regularization parameter λ > 2, we have
T∑
t=1

λmax

(
(∇σ(W∗xt)⊗ xtx

⊤
t )G

−1
t (W∗,W

OPT
t )

)
≤ (1 + 2S)Kd ln

(
1 +

T

2λ

)
.

Proof of Lemma 10. Denoting by Tr(A) the trace of matrix A, We have
T∑
t=1

λmax

(
(∇σ(W∗xt)⊗ xtx

⊤
t )G

−1
t (W∗,W

OPT
t )

)

22



≤
T∑
t=1

Tr
(
(∇σ(W∗xt)⊗ xtx

⊤
t )G

−1
t (W∗,W

OPT
t )

)
≤ (1 + 2S)

T∑
t=1

Tr
(
(∇σ(W∗xt)⊗ xtx

⊤
t )H

−1
t (W∗)

)
,

where the last inequality is due to Lemma 4 of [11] such that (1 + 2S)Gt(W∗,W
OPT
t ) ≽ Ht(W∗).

Let Mt(W∗) =
λ
2 IKd +

∑t
s=1 ∇σ(W∗xs)⊗ xsx

⊤
s . Then, we can further bound the last line of the

above displayed equations by

(1 + 2S)

T∑
t=1

Tr
(
(∇σ(W∗xt)⊗ xtx

⊤
t )H

−1
t (W∗)

)
= (1 + 2S)

T∑
t=1

Tr
(
Mt(W∗)−Mt−1(W∗))H

−1
t (W∗)

)
≤ (1 + 2S)

T∑
t=1

Tr
(
Mt(W∗)−Mt−1(W∗))M

−1
t (W∗)

)
≤ (1 + 2S)

T∑
t=1

log
|Mt(W∗)|

|Mt−1(W∗)|

≤ (1 + 2S)Kd ln

(
1 +

T

2λ

)
The first inequality is by the fact Ht(W∗) ≽ Mt(W∗) under the condition λ ≥ 2. The last second
inequality is due to Lemma 4.5 of [16].

Lemma 11. Let σk : z 7→ [σ(x)]k ∈ R by the k-th output of the vector-valued function σ(z). Then,
for any z ∈ RK , we have ∇2σk(z) ≤ 3IK for any k ∈ [K].

Proof of Lemma 11. For any z ∈ RK , we have

3IK −∇2σk(z)

= 3IK + σk(z) ·
(
diag(σ(z)) + ekσ(z)

⊤ + σ(z)e⊤k
)
− 2σk · (z)σ(z)σ(z)⊤ − σk(z)Ek

≽ 3IK − 2σk(z)σ(z)σ(z)
⊤ + σk(z)(ekσ(z)

⊤ + σ(z)e⊤k − Ek) (28)

= 3IK − σk(z)σ(z)σ(z)
⊤ − σk(z)(σ(z)− ek)(σ(z)− ek)

⊤ ≽ 0 (29)

where we denote byEk as the matrix where the entry at the (k, k)-th position is 1, and all other entries
are 0. In the above, the first inequality is due to the definition of σk. The second inequality holds
since diag(σ(z)) is semi-positive defined matrix. The last inequality is a consequence of the fact that
the maximum eigenvalue of σk(z)σ(z)σ(z)⊤ is bounded by σk(z)(σ(z)− ek)(σ(z)− ek)

⊤ is less
than 1. The maximum eigenvalue of σk(z)(σ(z)− ek)(σ(z)− ek)

⊤ is bounded by 2.

C Omitted Proofs for Section 3

This section presents the omitted details for Section 3. To simplify the notation, we exclude the
superscript OL in all the proofs within this section.

C.1 Proof of Theorem 3

This section provides the proof of Theorem 3. We will first provide the main proof of Theorem 3 and
the prove the technical lemma used in the main proof.
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C.1.1 Main Proof

Proof of Theorem 3. The proof shares the similarity with the online-to-confidence-set conversion
technique [47, 14], where the estimation error of the online estimator W OL

t is bounded by the regret.
However, we have introduced a novel algorithm and analysis ingredient to achieve jointly statistical
and computation efficiency.

The following lemma provides the estimation error analysis. Drawing inspiration from the modern
analysis of OMD [23], we explicitly extract the negative term −

∑t
s=1∥

−→
W s+1−

−→
W s∥2Hs

in the upper
bound, which is pivotal for our subsequent theoretical analysis and the algorithm design.

Lemma 12. Under Assumptions 1 and 3, we consider the estimator update rule

−→
W t+1 = argmin

W∈W

{
ℓ̃t(W ) +

1

2η
∥
−→
W −

−→
W t∥2Ht

}
,

where ℓ̃t(W ) = ⟨∇ℓt(
−→
W t),

−→
W ⟩+ 1

2∥
−→
W −

−→
W t∥2∇2ℓt(

−→
W t)

and Ht = λIKd +
∑t−1
s=1 ∇2ℓs(Ws+1)⊗

xsx
⊤
s . Then, letting α = ln(K + 1) + 2(S + 1) and λ > 0, we have

∥
−→
W t+1 −

−→
W ∗∥2Ht+1

≤ α

( t∑
s=1

ℓs(W∗)−
t∑

s=1

ℓs(Ws+1)

)
+ 4λS2

+

t∑
s=1

√
6αS∥

−→
W s+1 −

−→
W s∥2IK⊗xsx⊤

s
−

t∑
s=1

∥
−→
W s+1 −

−→
W s∥2Hs

,

when the step size is set as η = α/2.

Then, we focus on the first term of the right hand side. Inspired by the previous studies on binary
logistic bandit [10], we decompose the regret into two part by inserting an intermediate decision.

t∑
s=1

ℓs(W∗)−
t∑

s=1

ℓs(Ws+1)

=

t∑
s=1

ℓs(W∗)−
t∑

s=1

ℓ(z̃s, ys)︸ ︷︷ ︸
term (A)

+

t∑
s=1

ℓ(z̃s, ys)−
t∑

s=1

ℓs(Ws+1)]︸ ︷︷ ︸
term (B)

,

where the z̃s is an aggregating forecaster for logistic loss defined by z̃s = σ+ (EW∼Ps [σ(Wxs)]) and
Ps = N (

−→
W s, (1 + cH−1

s ) is the Gaussian distribution with mean
−→
W s and covariance matrix cH−1

s ,
where c > 0 is a constant to be specified. In above, σ+ : ∆ 7→ RK is a pseudo-inverse function of
σ(·) whose k-th output is [σ+(p)]k = log

(
pk/(1 − ∥p∥1)

)
for any p ∈ {q ∈ [0, 1]K |∥q∥1 < 1}.

We bound the above two terms respectively. First, we show that the term (A) is bounded by O
(
log2 t

)
with high probability.

Lemma 13. Let δ ∈ (0, 1]. Under Assumptions 1 and 3, we have

Pr

[
∀t ≥ 1,

t∑
s=1

ℓs(W∗)−
t∑

s=1

ℓ(z̃s, ys) ≤ γAt (δ)

]
≥ 1− δ,

where the confidence radius is γAt = (log(1+K)+2 log(1+(1+K)t))

(
5
4 + 4 log

(√
1+2t
δ

))
+2 =

O ((logK + log t) log t).

Besides, the term (b) can be bounded by the following lemma,

Lemma 14. Under Assumptions 1 and 3, for any c > 0, we have
t∑

s=1

ℓ(z̃s, ys)−
t∑

s=1

ℓs(Ws+1) ≤
1

c

t∑
s=1

∥
−→
W s −

−→
W s+1∥2Hs

+ γBt (δ),
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by setting λ ≥ max{2, 24Kdc}. In the above, γBt (δ) =
√
6cKd ln

(
1 + (t+1)L

2λ

)
and L :=

maxW∈RKd,t∈[T ] ∇2ℓt(W ) is the smooth parameter of the logistic loss.

Combining Lemma 12, Lemma 13 and Lemma 14, we arrive at

∥
−→
W t+1 −

−→
W ∗∥Ht+1

≤

√√√√4λS2 + αγAt + αγBt + (
α

c
− 1)

t∑
s=1

∥
−→
W s+1 −

−→
W s∥2Hs

+
√
6αS

t∑
s=1

∥
−→
W s+1 −

−→
W s∥2IK⊗xsx⊤

s

≤
√

4λS2 + αγAt + αγBt

=

√√√√√√ 4λS2︸ ︷︷ ︸
=O(Kd logK)

+α(3 logK + 2 log t)

(
5

4
+ 4 log

(√
1 + 2t

δ

))
+ 2︸ ︷︷ ︸

=O((logK+log t) log t)

+7α2Kd ln (1 + (t+ 1)L) /
√
6︸ ︷︷ ︸

=O(Kd log2K log t)

≜ βOLt (δ).

For the last second inequality, we eliminate the additional term by the parameter setting η = α/2,
c = 7α/6 and λ ≥ {7

√
6αS, 28Kdα} and due to the fact that IK⊗xsx

⊤
s ≼ IKd under the condition

∥xt∥2 ≤ 1 for any t ∈ [T ]. In the above, we have λ = O(Kd logK) and α = O(logK). Then, we
can show ∥

−→
W t+1 −

−→
W ∗∥Ht+1

≤ βOLt (δ) = O(logK log t
√
Kd), which completes the proof.

C.1.2 Proof of Lemma 12

Proof of Lemma 12. Let ℓ̃s(W ) = ℓs(Ws) + ⟨
−→
W −

−→
W s,∇ℓs(

−→
W s)⟩+ 1

2∥
−→
W −

−→
W s∥2∇2ℓs(

−→
W s)

be a

second order approximation of the original function ℓs(W ) at the point
−→
W s. The update rule (6) can

be equally written as

−→
W s+1 = argmin

W∈W
ℓ̃s(W ) +

1

2η
∥
−→
W −

−→
W s∥2Hs

, (30)

which is an implicit online mirror descent update with the loss function ℓ̃s. Then, according to
Lemma 16, the model Wt+1 ensures,

⟨∇ℓ̃s(
−→
W s+1),

−→
W s+1 −

−→
W ∗⟩ ≤

1

2η

(
∥
−→
W s −

−→
W ∗∥2Hs

− ∥
−→
W s+1 −

−→
W ∗∥2Hs

− ∥
−→
W s+1 −

−→
W s∥2Hs

)
.

(31)

One the other hand, let α = log(1 + K) + 2(1 + S). Since ∥W∗xt∥∞ = maxk∈[K]{∥w
(k)
∗ ∥2 ·

∥xt∥2} ≤ S and ℓs(W ) = ℓ(Wxs, ys), Lemma 1 shows

ℓs(Ws+1)− ℓs(W∗) ≤ ⟨∇ℓs(Ws+1),
−→
W s+1 −

−→
W ∗⟩ −

1

α
∥
−→
W s+1 −

−→
W ∗∥2∇2ℓs(Ws+1)

. (32)

By setting η = α/2, the combination of (31) and (32) shows

ℓs(Ws+1)− ℓs(W∗) ≤ ⟨∇ℓs(Ws+1)−∇ℓ̃s(Ws+1),
−→
W s+1 −

−→
W ∗⟩ (33)

+
1

α

(
∥
−→
W s −

−→
W ∗∥2Hs

− ∥
−→
W s+1 −

−→
W ∗∥2Hs+1

− ∥
−→
W s+1 −

−→
W s∥2Hs

)
.

In above, we can further bound inner product term by

⟨∇ℓs(Ws+1)−∇ℓ̃s(Ws+1),
−→
W s+1 −

−→
W ∗⟩

= ⟨∇ℓs(Ws+1)−∇ℓs(Ws)−∇2ℓs(
−→
W s)(

−→
W s+1 −

−→
W s),

−→
W s+1 −

−→
W ∗⟩

=
〈
D3ℓs(ξs+1)[

−→
W s+1 −

−→
W s](

−→
W s+1 −

−→
W s),

−→
W s+1 −

−→
W ∗

〉
=
〈
D3ℓs(ξs+1)[

−→
W s+1 −

−→
W ∗](

−→
W s+1 −

−→
W s),

−→
W s+1 −

−→
W s

〉
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≤
√
6∥
−→
W s+1 −

−→
W ∗∥2 · ∥

−→
W s+1 −

−→
W s∥2∇2ℓs(ξs+1)

≤
√
6S∥

−→
W s+1 −

−→
W s∥2IK⊗xsx⊤

s
(34)

In above ξs+1 is a certain point on the line connecting
−→
W t and

−→
W t+1. The notation is defined as

D3ℓs(
−→
W )[

−→
U ] = limα→0α

−1
(
∇2ℓs(

−→
W + α

−→
U )−∇2ℓs(

−→
W )
)

. The first inequality is due to the
definition of ℓs and the second inequality is by the Taylor series for the vector-valued function. The
third inequality is because the third order derivative of the logistic loss is a symmetric tensor as shown
in Property 1. The last second inequality is by Definition 1 since the multiclass logistic loss is a

√
6

self-concordant-like function. The last inequality is by the boundedness of the decision domain W
and bounded action such that ∥x∥2 ≤ 1 for any x ∈ X under Assumption 1.

Combining (33) and (34), we have

ℓs(Ws+1)− ℓs(W∗)

≤ 1

α

(
∥
−→
W s −

−→
W ∗∥2Hs

− ∥
−→
W s+1 −

−→
W ∗∥2Hs+1

− ∥
−→
W s+1 −

−→
W s∥2Hs

)
+
√
6S∥

−→
W s+1 −

−→
W s∥2IK⊗xsx⊤

s
,

Taking the summation of the above inequality over t rounds and rearranging the term, we have

∥
−→
W t+1 −

−→
W ∗∥2Ht+1

≤ α

(
t∑

s=1

ℓs(W∗)−
t∑

s=1

ℓs(Ws+1)

)
+ ∥

−→
W 1 −

−→
W ∗∥2H1

+

t∑
s=1

(√
6αS∥

−→
W s+1 −

−→
W s∥2IK⊗xsx⊤

s
− ∥

−→
W s+1 −

−→
W s∥2Hs

)
≤ α

(
t∑

s=1

ℓs(W∗)−
t∑

s=1

ℓs(Ws+1)

)
+ 4λS2

+

t∑
s=1

(√
6αS∥

−→
W s+1 −

−→
W s∥2IK⊗xsx⊤

s
− ∥

−→
W s+1 −

−→
W s∥2Hs

)
,

which completes the proof.

C.1.3 Proof of Lemma 13

Proof of Lemma 13. Since the norm of the intermediate decision z̃s = σ+(EW∼Ps
[σ(Wxs)])

is generally unbounded, as suggested by [26], we use the smoothed version z̃µs =
σ+ (smoothµ(EW∼Ps

[σ(Wxs)])) as an intermediate term in the analysis. In above, the smooth
function smoothµ : [0, 1]K 7→ [0, 1]K with parameter µ ∈ [0, 1/2] is defined by smoothµ(p) =
(1− µ)p+ µ1/(K + 1), where 1 ∈ RK is an all one vector.

Given the construction of the pseudo inverse function σ+ such that σ(σ+(p)) = p for any p ∈ {q ∈
[0, 1]K | ∥q∥1 < 1}, one can check that z̃µs = σ+ (smoothµ(σ(z̃s))). Then, Lemma 17 shows that

t∑
s=1

ℓ(z̃µs , ys)−
t∑

s=1

ℓ(z̃s, ys) ≤ 2µt. (35)

Besides, Lemma 17 also shows that ∥z̃µs ∥∞ ≤ log(1 + (K + 1)/µ). Therefore, to prove the lemma,
it is sufficient bound the gap between the loss of W∗ and z̃µs . By the definition of the loss function ℓs,
we have ℓs(W∗) = ℓ(z∗s,ys), where z∗s =W∗xs. Then, we have

t∑
s=1

ℓs(W∗)−
t∑

s=1

ℓ(z̃µs , ys) =

t∑
s=1

ℓ(z∗s, ys)−
t∑

s=1

ℓ(z̃µs , ys)

≤
t∑

s=1

⟨∇zℓ(z
∗
s, ys), z

∗
s − z̃µs ⟩ −

t∑
s=1

1

Sµ
∥z∗s − z̃µs ∥2∇2

zℓ(z
∗
s ,ys)
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=

t∑
s=1

⟨σ(z∗s)− ys, z
∗
s − z̃µs ⟩ −

t∑
s=1

1

Sµ
∥z∗s − z̃µs ∥2∇σ(z∗

s)
(36)

where Sµ = log(K + 1) + 2 log(1 + (K + 1)/µ). In above, the first inequality is due to Lemma 1.
The second equality is by a direct calculation of the first order and Hessian of the logistic loss as
shown in Property 1.

To bound the first term of the right hand side, we require the following lemma, which adapts lemma 6
to a one-dimension case and whose proof is provided C.1.5.

Lemma 15. Let {Ft}∞t=1 be a filtration. Let {zt}∞t=1 be a stochastic process in B2(K) = {z ∈ RK |
∥z∥∞ ≤ 1} such that zt is Ft measurable. Let {εt}∞t=1 be a martingale difference sequence such
that εt ∈ RK is Ft+1 measurable. Furthermore, assume that conditional on Ft, we have ∥εt∥1 ≤ 2
almost surely, and denote by Σt := E[εtε⊤t | Ft]. Let λ > 0 and for any t ≥ define

St =

t−1∑
s=1

⟨εs, zs⟩ and Ht = λ+

t−1∑
s=1

∥zs∥2Σs

Then for any δ ∈ (0, 1], we have

Pr

[
∃t > 1, St ≥

√
Ht

(√
λ

4
+

4√
λ
log

(√
Ht

λ

)
+

4√
λ
log(2/δ)

)]
≤ δ.

To check the condition of Lemma 15, we let ds = (z∗s − z̃µs )/(Sµ + S). Since ∥z∗s∥∞ ≤
maxk∈[K]∥w

(k)
∗ ∥2∥xs∥2 ≤ S and ∥z̃µs ∥∞ ≤ log(1 + (K + 1)/µ), one can verify that ∥ds∥∞ ≤ 1.

Besides, since z∗s and z̃µs is independent of ys, the variable ds is Fs measurable. Furthermore, we
can check that E[(σ(z∗s) − ys)(σ(z

∗
s) − ys)

⊤ | Fs] = ∇σ(z∗s) and ∥σ(z∗s) − ys∥1 ≤ 2. Thus, a
direct application of Lemma 15 shows that, with probability at least 1− δ, we have

t∑
s=1

⟨σ(z∗s)− ys, z
∗
s − z̃µs ⟩ (37)

= (Sµ + S)

t∑
s=1

⟨σ(z∗s)− ys,ds⟩

≤ (Sµ + S)

√√√√λ+

t∑
s=1

∥ds∥2∇σ(z∗
s)

·

√√√√√
λ

4
+

4√
λ
log

(√1 +
∑t
s=1∥ds∥2∇σ(z∗

s)

δ

)

≤ (Sµ + S)

√√√√λ+

t∑
s=1

∥ds∥2∇σ(z∗
s)

·

√√
λ

4
+

4√
λ
log

(√
1 + 2t

δ

)
, (38)

for any t ≥ 1. In above, the second inequality is a consequence of the fact ∥ds∥2Σ(z∗
s)

=

d⊤
s ∇σ(z∗s)ds ≤ 2. Then, combining (36) and (38) and setting λ = 1, we arrive ‡

t∑
s=1

ℓs(W∗)−
t∑

s=1

ℓ(z̃µs ,ys)

≤ (Sµ + S)

√√√√1 +

t∑
s=1

∥ds∥2Σ(z∗
s)

·

√
1

4
+ 4 log

(√
1 + 2t

δ

)
− (Sµ + S)

t∑
s=1

∥ds∥2Σ(z∗
s)

≤ (Sµ + S)

(
1 +

t∑
s=1

∥ds∥Σ(z∗
s)

)
+ (Sµ + S)

(
1

4
+ 4 log

(√
1 + 2t

δ

))
− (Sµ + S)

t∑
s=1

∥ds∥2Σ(z∗
s)

≤ 5

4
(Sµ + S) + 4(Sµ + S) log

(√
1 + 2t

δ

)
, (39)

‡We note that the λ here is irrelevant of the algorithm, we can set it as any value.
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where the second inequality is due to AM-GM inequality. Finally, combining (35) and (39), we have

t∑
s=1

ℓs(W∗)−
t∑

s=1

ℓ(z̃s,ys) ≤
5

4
(Sµ + S) + 4(Sµ + S) log

(√
1 + 2t

δ

)
2 + µt

≤ 3 log(1 + (1 +K)t)

(
5

4
+ 4 log

(√
1 + 2t

δ

))
+ 2,

where the last inequality is by the parameter setting µ = 1/t and, as a consequence, Sµ = log(1 +
K) + 2 log(1 + (K + 1)t). We have completed the proof.

C.1.4 Proof of Lemma 14

Proof of Lemma 14. Our proof starts with the observation made by [26, Proposition 2] that z̃s is an
aggregating forecaster [48, Chapter, 3.5] for the logistic function, which satisfies

ℓ(z̃s,ys) ≤ − ln
(
EW∼Ps

[
e−ℓs(W )

])
.

Then, a direct calculation with the definition of Gaussian distribution Ps ∼ N (
−→
W s, cH

−1
s ) gives

ℓ(z̃s,ys) ≤ − ln
(
EW∼Ps

[
e−ℓs(W )

])
= − ln

(
1

Zs

∫
RKd

e−Ls(W )d
−→
W

)
, (40)

where we define the loss function Ls(W ) = ℓs(W ) + (2c)−1∥
−→
W −

−→
W s∥2Hs

and Zs =√
(2π)Kdc|H−1

s | being the normalization factor.

Then, we consider the following quadratic approximation,

L̃s(W ) = Ls(Ws+1) + ⟨∇Ls(Ws+1),
−→
W −

−→
W s+1⟩+

1

2c
∥
−→
W −

−→
W s+1∥2Hs

. (41)

According to Lemma 18, we have

Ls(W ) ≤ L̃s(W ) + e6∥
−→
W−

−→
W s+1∥2

2∥
−→
W −

−→
W s+1∥2∇ℓs(Ws+1)

.

Then, we can low bound the term in the expectation by

EW∼Ps

[
e−ℓs(W )

]
=

1

Zs

∫
RKd

e−Ls(W )dW

≥ 1

Zs

∫
RKd

e
−L̃s(W )−e6∥

−→
W−

−→
Ws+1∥22∥

−→
W−

−→
W s+1∥2

∇ℓs(Ws+1)dW

=
e−Ls(Ws+1)

Zs

∫
RKd

f̃s+1(W ) · e−⟨∇Ls(Ws+1),
−→
W−

−→
W s+1⟩dW, (42)

where we define the function f̃s : W 7→ R as

f̃s+1(W ) = exp

(
− 1

2c
∥
−→
W −

−→
W s+1∥2Hs

− e6∥
−→
W−

−→
W s+1∥2

2∥
−→
W −

−→
W s+1∥2∇2ℓs(Ws+1)

)
.

Denote by Z̃s+1 =
∫
W∈RKd f̃s+1(W )dW ≤ +∞ the normalization factor and P̃s+1 the distribution

whose density function is f̃s+1(W )/Z̃s+1, we can further rewrite the last line of the above displayed
equation (42) as

EW∼Ps

[
e−ℓs(W )

]
≥ e−Ls(Ws+1)Z̃s+1

Zs
EW∼P̃s+1

[
e−⟨∇Ls(Ws+1),

−→
W−

−→
W s+1⟩

]
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≥ e−Ls(Ws+1)Z̃s+1

Zs
exp

(
−EW∼P̃s+1

[⟨∇Ls(Ws+1),
−→
W −

−→
W s+1⟩]

)
=
e−Ls(Ws+1)Z̃s+1

Zs
, (43)

where the second inequality is due to the Jensen’s inequality and the last equality comes from the fact
that f̃s+1(W )/Z̃s+1 is symmetry around

−→
W s+1 and thus EW∼P̃s+1

[⟨∇Ls(Ws+1),
−→
W−

−→
W s+1⟩] = 0.

Plugging (43) into (40), we arrive

ℓ(z̃s,ys) ≤ Ls(Ws+1) + lnZs − ln Z̃s+1, (44)

where we can further convert the last term − ln Z̃s+1 to

− ln Z̃s+1 = − ln

(∫
W∈RKd

e
− 1

2c∥
−→
W−

−→
W s+1∥2

Hs
−e6∥

−→
W−

−→
Ws+1∥22∥

−→
W−

−→
W s+1∥2

∇2ℓs(Ws+1)dW

)
= − ln

(
Ẑs+1 · EW∼P̂s+1

[
e
−e6∥

−→
W−

−→
Ws+1∥22∥

−→
W−

−→
W s+1∥2

∇2ℓs(Ws+1)

])
≤ − ln Ẑs+1 + EW∼P̂s+1

[
e6∥

−→
W−

−→
W s+1∥2

2∥
−→
W −

−→
W s+1∥2∇2ℓs(Ws+1)

]
=− lnZs + EW∼P̂s+1

[
e6∥

−→
W−

−→
W s+1∥2

2∥
−→
W −

−→
W s+1∥2∇2ℓs(Ws+1)

]
︸ ︷︷ ︸

:=Ωs

(45)

where P̂s+1 = N (
−→
W s+1, cH

−1
s ) and Ẑs+1 =

∫
RKd e

− 1
2c∥

−→
W−

−→
W s+1∥2

HsdW . In above, the first
equality is by definition of Z̃s+1 and the second one comes from the definition of P̂s+1. The last
second inequality is due to the Jensen’s inequality such that ln(E[a]) ≥ E[ln a] for the random
variable a ∈ R. The last equality is by the fact Ẑs+1 =

∫
RKd e

− 1
2c∥

−→
W−

−→
W s+1∥2

HsdW = Zs.

Combining (44) and (45) and taking the summation overt t iterations, we have
t∑

s=1

ℓ(z̃s,ys) =

t∑
s=1

Ls(Ws+1) +

t∑
s=1

Ωs., (46)

Following a similar argument in [27], we can bound the last term as follows. Specifically, by the
Cauchy-Schwarz inequality, we can decompose the term Ωs as

Ωs ≤
√
EW∼P̂s+1

[
e12∥

−→
W−

−→
W s+1∥2

2

]
︸ ︷︷ ︸

term (a-1)

√
EW∼P̂s+1

[
∥
−→
W −

−→
W s+1∥4∇2ℓs(Ws+1)

]
︸ ︷︷ ︸

term (a-2)

,

Then, remarking that P̂s+1 = N
(
Ws+1, cH

−1
s

)
, the key observation here is that

−→
W −

−→
W s+1 also

follows the same distribution as
Kd∑
i=1

√
cλi
(
H−1
s

)
Xiei, where Xi

i.i.d.∼ N (0, 1), ∀i ∈ [Kd], (47)

where {ei ∈ RKd}Kdi=1 is a set of certain orthogonal basis and λi := λi(H
−1
s ) denotes the i-th largest

eigenvalue of H−1
s . Then, we can bound the first term of term (a-1) by

term (a-1) ≤
√
EXi

[
ΠKdi=1e

12cλiX2
i

]
≤
√

ΠKdi=1EXi

[
e

12c
λ X2

i

]
=
(
EX∼χ2

[
e

12c
λ X

])Kd
2 ≤ EX∼χ2

[
e

6Kdc
λ X

]
,

where χ is the chi-square distribution and the last second inequality is due to Hs ≽ λIKd and thus
λi ≤ 1/λ. The last inequality is due to the Jensen’s inequality since Kd > 1. Then, by further
requiring λ ≥ 24Kdc, we have

term (a-1) ≤ EX∼χ2

[
e

X
4

]
≤

√
2, (48)
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where the last inequality is because the moment-generating function for χ2-distribution is bounded
by EX∼χ2

[
etX
]
≤ 1/

√
1− 2t for all t ≤ 1/2.

Then, we consider the second on the upper bound of term (b). A direct calculation gives,

term (a-2) = E
W∼N

(
0,αH−1

s

) [∥(∇2ℓs(Ws+1))
1
2
−→
W∥4

]
= E

W∼N
(
0,αH̃−1

s

) [∥−→W∥42
]
,

where H̃s = (∇2ℓs(Ws+1))
− 1

2Hs(∇2ℓs(Ws+1))
− 1

2 . Then, let λ̃i := λi

(
cH̃−1

s

)
be the i-th largest

eigenvalue of the matrix. A similar decomposition as (47) shows that

term (a-2) =

√√√√EXi∼N (0,1)

[∥∥∥∥ Kd∑
i=1

√
λ̃iXiei

∥∥∥∥4
2

]
=

√√√√EXi∼N (0,1)

[( Kd∑
i=1

λ̃iX2
i

)2
]

=

√∑
i=1

∑
j=1

λ̃iλ̃jEXi,Xj∼N (0,1)[X
2
iX

2
j ] ≤

√√√√3

Kd∑
i=1

Kd∑
j=1

λ̃iλ̃j =
√
3cTr

(
H̃−1
s

)
,

where the last inequality is due to EXi,Xj∼N (0,1)[X
2
iX

2
j ] ≤ 3 for all i, j ∈ [Kd] and the last equality

comes from the fact that
∑Kd
i=1 λ̃i = Tr

(
cH̃−1

s

)
. The notation Tr(A) is used to denote the trace of

the matrix A.

Then, we proceed to bound the trace Tr
(
H̃−1
s

)
with H̃s = Hs∇2ℓs(Ws+1). Recall the definition of

Hs = λIKd +
∑s−1
τ=1 ∇2ℓτ (Wτ+1). We define Ms+1 = λIKd/2 +

∑s
τ=1 ∇2ℓτ (Wτ+1). Under the

condition λ ≥ 2 for any s ∈ [T ], we have ∇2ℓs(W ) ≼ IKd ≤ λ
2 IKd for any s ∈ [T ] and W ∈ W .

Then, we have Hs ≽Ms+1. Then, we can bound the trace by

Tr
(
H̃−1
s

)
= Tr

(
H−1
s ∇2ℓs(Ws+1)

)
≤ Tr

(
M−1
s+1∇2ℓs(Ws+1)

)
= Tr

(
M−1
s+1(Ms+1 −Ms))

)
≤ log

|Ms+1|
|Ms|

.

where the last inequality is due to Lemma 4.5 of [16]. As a consequence, we have term (a-2) ≤√
3c ln(|Ms+1|/|Ms|), which leads to

Ωs ≤ term (a-1) · term (a-2) ≤
√
6c ln

(
|Ms+1|
|Ms|

)
(49)

Combining (46) and (49), we obtain that
t∑

s=1

ℓ(z̃s,ys)−
t∑

s=1

ℓs(Ws+1) ≤
1

c

t∑
s=1

∥
−→
W s −

−→
W s+1∥2Hs

+
√
6c

t∑
s=1

ln

(
|Ms+1|
|Ms|

)
.

W can further bound the last term of the displayed equality by
∑t
s=1 ln (|Ms+1|/|Ms|) ≤

ln (|Mt+1|/|λ/2 · IKd|) ≤ Kd ln
(
1 + (t+1)L

2λ

)
, which completes the proof.

C.1.5 Useful Lemmas

Proof of Lemma 15. The proof of Lemma 15 shares the same spirit as that of Lemma 6. Let H̄t =∑t−1
s=1∥zs∥2Σs

. We can also defined the function

Mt(ξ) = exp(ξSt − ξ2H̄t)

for any t ≥ 1 and ξ ∈ R. For t = 0, we let M0(ξ) = 0. Following the similar arguments in the proof
of Lemma 7, one can show that the sequence {Mt(ξ)}∞t=1 is a non-negative super-martingale when
ξ ≤ 1

2 . Then, let h(ξ) be the density of the normal distribution with precision 2λ truncated on the
1-dimensional ball 1

2B(1). We can define

M̄t =

∫
ξ

exp(ξSt − ξ2H̄t)dh(ξ).
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By the similar arguments in deriving (17), we have

Pr
[
sup
t∈N

log(M̄t) ≥ log

(
1

δ

)]
= Pr

[
sup
t∈N

M̄t ≥
1

δ

]
≤ δ. (50)

Following the arguments in the proof of [8, Theorem 1], for any t ≥ 1, we have

M̄t ≥ exp(ξSt − ξ2Ht) ·
N(g)

N(h)

for any |ξ| ≤ 1/4. In the above, g(ξ) is the normal distribution with precision 2Ht truncated on the

interval [−1/4, 1/4]. Then, let ξ0 = 1
4

√
λ
Ht

, we have ξ0 ≤ 1/4 since Ht ≥ λ. We can obtain that

log(M̄t) ≥ ξ0St − ξ20Ht + log

(
N(g)

N(h)

)
=

√
λ

4
· St√

Ht

− λ

16
+ log

(
N(g)

N(h)

)
. (51)

A combination of (50) and (51) shows that

Pr

[
∀t ≥ 1,

√
λ

4
· St√

Ht

− λ

16
+ log

(
N(g)

N(h)

)
≤ log

(
1

δ

)]
≥ 1− δ,

which indicates

Pr

[
∀t ≥ 1, St ≤

√
Ht

(√
λ

4
+

4√
λ
log

(
N(h)

δN(g)

))]
≥ 1− δ.

We complete the proof with Lemma 6 of [8], which shows that log (N(h)/N(g)) ≤ log
(
(2
√
Ht)/λ

)
.

Lemma 16 (Proposition 4.1 of [49]). Let the wt+1 be the solution of the update rule

wt+1 = argmin
w∈V

ηℓt(w) +Dψ(w,wt),

where V ⊆ W ⊆ Rd is a non-empty convex set and Dψ(w1,w2) = ψ(w1) − ψ(w2) −
⟨∇ψ(w2),w1 − w2⟩ is the Bregman Divergence w.r.t. a strictly convex and continuously dif-
ferentiable function ψ : W 7→ R. Further supposing ψ(w) is 1-strongly convex w.r.t. a certain norm
∥·∥ in W , then there exists a g′

t ∈ ∂ℓt(wt+1) such that

⟨ηtg′
t,wt+1 − u⟩ ≤ ⟨∇ψ(wt)−∇ψ(wt+1),wt+1 − u⟩

for any u ∈ W .

Lemma 17. Let ℓ(z, y) =
∑K
k=0 1{y = k} · log

(
1

[σ(z)]k

)
and z ∈ RK be a K-dimensional vector.

Define zµ ≜ σ+
(
smoothµ(σ(z))

)
, where smoothµ(p) = (1 − µ)p + µ1/(K + 1). Then, for

µ ∈ [0, 1/2], we have

ℓ(zµ, y)− ℓ(z, y) ≤ 2µ

for any y ∈ {0} ∪ [K]. We also have ∥zµ∥∞ ≤ log(K/µ).

Proof of Lemma 17. The proof of Lemma 17 is extracted from the proof of [26, Lemma 3] with
a slight modification to the logistic loss used in this paper. According to the definition of zµ

and the fact that σ(σ+(p)) = p for any p ∈ {q ∈ [0, 1]K |∥q∥1 < 1}, we have σ(zµ) =
(1− µ)σ(z) + µ1/(K + 1). Then, we have

ℓ(zµ, y)− ℓ(z, y) =

K∑
k=0

1{y = k} · log
(

[σ(z)]k
(1− µ)[σ(z)]k + µ1/(K + 1)

)
≤ log(1− µ) ≤ 2µ,

where the first inequality is due to
∑K
k=0 1{y = k} = 1 and the last inequality is due to log(1/(1−

a)) ≤ a for a ∈ [0, 1/2]. Besides, let p̃ = σ(z). According to the definition of zµ, we have

∥zµ∥∞ = max
k∈[K]

{∣∣∣∣log( (1− µ)p̃k + µ/(K + 1)

(1−Kµ/(K + 1))− (1− µ)∥p̃∥1

)∣∣∣∣} .
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Since the term inside the logarithmic function can be bounded by

µ

1 +K(1− µ)
≤ log

(
(1− µ)p̃k + µ/(K + 1)

(1−Kµ/(K + 1))− (1− µ)∥p̃∥1

)
≤ 1 +

K + 1

µ

and µ/(1 +K(1− µ)) ≤ 1, we have ∥zµ∥∞ ≤ log(1 + (K + 1)/µ).

Lemma 18. Let Ls(W ) = ℓs(W ) + 1
2c∥

−→
W −

−→
W s∥2Hs

. Then, for any W,Ws+1 ∈ W , the quadratic

approximation L̃s(W ) = Ls(Ws+1) + ⟨∇Ls(Ws+1),
−→
W −

−→
W s+1⟩ + 1

2c∥
−→
W −

−→
W s+1∥2Hs

defined
as (41) satisfies

Ls(W ) ≤ L̃s(W ) + e6∥
−→
W−

−→
W s+1∥2

2∥
−→
W −

−→
W s+1∥2∇ℓs(Ws+1)

.

Proof of Lemma 18. According to [19, Lemma 4], ℓs is a
√
6-self-concordant-like function. Then,

by Lemma 5 and the fact c(x) ≤ ex
2

for any x ≥ 0, then for any W ∈ W , we have

ℓs(W ) ≤ ℓs(Ws+1) + ⟨∇ℓs(Ws+1),
−→
W −

−→
W s+1⟩+ e6∥

−→
W−

−→
W s+1∥2

2∥
−→
W −

−→
W s+1∥2∇2ℓs(Ws+1)

.

(52)

Besides, since gs(W ) = 1
2c∥

−→
W −

−→
W s∥2Hs

is a quadratic function, we have

gs(W ) = gs(Ws+1) + ⟨∇gs(Ws+1),
−→
W −

−→
W s+1⟩+

1

2c
∥
−→
W −

−→
W s+1∥2Hs

. (53)

Then combing (52) and (53), we can obtain an upper bound of Ls(W ) = ℓs(W ) + gs(W ) by

Ls(W ) ≤ Ls(Ws+1) + ⟨∇Ls(Ws+1),
−→
W −

−→
W s+1⟩

+
1

2c
∥
−→
W −

−→
W s+1∥2Hs

+ e6∥
−→
W−

−→
W s+1∥2

2∥
−→
W −

−→
W s+1∥2∇2ℓs(Ws+1)

≤ L̃s(W ) + e6∥
−→
W−

−→
W s+1∥2

2∥
−→
W −

−→
W s+1∥2∇2ℓs(Ws+1)

,

We have complete the proof.

C.2 Proof of Proposition 1

This section presents the proof of Proposition 1.

C.2.1 Main Proof

Proof of Proposition 1. Since ρ⊤σ(W∗x) ≤ ρ⊤σ(Wtx) + |ρ⊤σ(W∗x) − ρ⊤σ(Wtx)|, to show
r̃OLt (x) = ρ⊤σ(Wtx) + ϵfstt (x) + ϵsndt (x) is an optimistic estimate, it is sufficient to prove that
|ρ⊤σ(W∗x)− ρ⊤σ(Wtx)| ≤ ϵfstt (x) + ϵsndt (x). We have the following decomposition:

|ρ⊤σ(W∗x)− ρ⊤σ(Wtx)|

=

∣∣∣∣∣
K∑
k=1

ρk(σk(W∗x)− σk(Wtx))

∣∣∣∣∣
=

∣∣∣∣∣
K∑
k=1

ρk∇σk(Wtx)
⊤(W∗ −Wt)x+

K∑
k=1

ρk∥(W∗ −Wt)x∥2Ξk,t

∣∣∣∣∣
≤

∣∣∣∣∣
K∑
k=1

ρk∇σk(Wtx)
⊤(W∗ −Wt)x

∣∣∣∣∣︸ ︷︷ ︸
term (a)

+

∣∣∣∣∣
K∑
k=1

ρk∥(W∗ −Wt)x∥2Ξk,t

∣∣∣∣∣︸ ︷︷ ︸
term (b)

,
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where σk : x 7→ [σ(x)]k is the k-th output of the vector-valued function σ(x) and Ξk,t =
∫ 1

ν=0
(1−

ν)∇2σk((Wt + ν(W∗ −Wt))x)dν. In the above, the last equality is due to the integral formulation
of the Taylor series.

Then, we proceed to analyze term (a) and term (b), respectively.

term (a) = |ρ⊤∇σ(Wtx)(W∗ −Wt)x|

= |ρ⊤∇σ(Wtx)(IK ⊗ x⊤)(
−→
W ∗ −

−→
W t)|

= |ρ⊤∇σ(Wtx)(IK ⊗ x⊤)H
− 1

2
t H

1
2
t (

−→
W ∗ −

−→
W t)|

≤ ∥
−→
W ∗ −

−→
W t∥Ht

· ∥H− 1
2

t (IK ⊗ x)∇σ(Wtx)ρ∥2

≤ βOLt (δ) · ∥H− 1
2

t (IK ⊗ x)∇σ(Wtx)ρ∥2
= ϵfstt (x),

where the last inequality is due to Theorem 3.

Then, we upper bound term (b) by ϵsndt with the following arguments. For notation simplicity, we
denote by ξt,ν =Wtx+ ν(W∗ −Wt)x. Then, Lemma 11 indicates that

Ξk,t =

∫ 1

ν=0

(1− ν)∇2σk(ξt,ν)dν ≼ 3IK

∫ 1

ν=0

(1− ν)dν ≼ 3IK .

As a consequence, we can bound term (b) by

term (b) ≤ 3

∣∣∣∣∣
K∑
k=1

ρk∥(W∗ −Wt)x∥22

∣∣∣∣∣
≤ 3R∥(W∗ −Wt)x∥22
= 3R∥(Id ⊗ x⊤)(

−→
W ∗ −

−→
W t)∥22

=≤ 3R∥
−→
W ∗ −

−→
W t∥2Ht

· ∥(IK ⊗ x⊤)H
− 1

2
t ∥22

≤ 3R
(
βOLt
)2 · ∥(IK ⊗ x⊤)H

− 1
2

t ∥22
= ϵsndt (x),

where the first inequality is due to Assumption 2 and the last inequality is due to Theorem 3.
Combining the upper bound for term (a) and term (b), we have

|ρ⊤σ(W∗x)− ρ⊤σ(Wtx)| ≤ ϵfstt (x) + ϵsndt (x), (54)

for any x ∈ X . We complete the proof by ρ⊤σ(W∗x) ≤ ρ⊤σ(Wtx)+ |ρ⊤σ(W∗x)−ρ⊤σ(Wtx)|.

C.3 Proof of Theorem 4

Proof of Theorem 4. We first prove the regret bound and then discuss the computation cost.

C.3.1 Main Proof

Regret Analysis. We can bound the regret by two times of the bonus term over xt.

RegT =

T∑
t=1

(
ρ⊤σ(W∗x∗)− ρ⊤σ(W∗xt)

)
≤

T∑
t=1

(
ρ⊤σ(Wtx∗) + ϵfstt (x∗) + ϵsndt (x∗)− ρ⊤σ(W∗xt)

)
≤

T∑
t=1

(
ρ⊤σ(Wtxt) + ϵfstt (xt) + ϵsndt (xt)− ρ⊤σ(W∗xt)

)
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≤ 2

T∑
t=1

ϵfstt (xt) + 2

T∑
t=1

ϵsndt (xt), (55)

where the first inequality is due to Proposition 1 and the second inequality is due to the rule of
constructing the optimistic reward. The last inequality is due to (54).

Then, we turn to analyze the upper bound for the first term and second term respectively.

T∑
t=1

ϵfstt (xt)

=

T∑
t=1

βOLt (δ) · ∥H− 1
2

t (IK ⊗ xt)∇σ(Wtxt)ρ∥2

≤ βOLT (δ)

T∑
t=1

∥H− 1
2

t (IK ⊗ xt)∇σ(Wtxt)ρ∥2

≤ βOLT (δ)

T∑
t=1

∥H− 1
2

t (IK ⊗ xt)∇σ(Wt+1xt)ρ∥2︸ ︷︷ ︸
term (a)

+βOLT (δ)

T∑
t=1

∥H− 1
2

t (IK ⊗ xt) (∇σ(Wtxt)−∇σ(Wt+1xt))ρ∥2︸ ︷︷ ︸
term (b)

.

(56)

For the first term, we have

term (a) ≤
T∑
t=1

∥ρ∥∇σ(Wt+1xt) · ∥H
− 1

2
t (IK ⊗ xt)∇σ

1
2 (Wt+1x)∥2

≤ R

T∑
t=1

√
λmax

(
(∇σ

1
2 (Wt+1x)⊗ x⊤

t )H
−1
t (∇σ

1
2 (Wt+1x)⊗ xt)

)

= R

T∑
t=1

√
λmax

(
(∇σ(Wt+1xt)⊗ xtx⊤

t )H
−1
t

)

≤ R
√
T

√√√√ T∑
t=1

λmax

(
(∇σ(Wt+1xt)⊗ xtx⊤

t )H
−1
t

)

≤ R
√
T

√
Kd ln

(
1 +

TL

2λ

)
where the first inequality is due to the fact that ∥Ab∥2 ≤ ∥A∥2 · ∥b∥ for a matrix A and vector b.
The second inequality is due to the definition of the induced norm for the matrix is defined as ∥A∥2 =√
λmax(ATA) and the mixed-product property of the Kronecker production. The first equality is

due to the cycle property of the maximum eigenvalue such that λmax(ABC) = λmax(CAB) for
matrices A,B and C. The last second inequality is due to the Cauchy-Schwarz inequality. Finally,
we can obtain the last inequality by Lemma 19, which can be seen as a matrix version of the elliptical
potential lemma.

Then, we can bound term (b) as follows.

term (b) ≤
T∑
t=1

∥H− 1
2

t (IK ⊗ xt)∥2 · ∥(∇σ(Wtxt)−∇σ(Wt+1xt))ρ∥2

=

T∑
t=1

∥H− 1
2

t (IK ⊗ xt)∥2 ·

∥∥∥∥∥
K∑
k=1

ρk(∇σk(Wtxt)−∇σk(Wt+1xt))

∥∥∥∥∥
2

=

T∑
t=1

∥H− 1
2

t (IK ⊗ xt)∥2 ·

∥∥∥∥∥
K∑
k=1

ρk∇2σk(ξt,k)(Wt −Wt+1)xt

∥∥∥∥∥
2
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=

T∑
t=1

∥H− 1
2

t (IK ⊗ xt)∥2 ·

∥∥∥∥∥
K∑
k=1

ρk∇2σk(ξt,k)(IK ⊗ xt)
⊤(

−→
W t −

−→
W t+1)

∥∥∥∥∥
2

(57)

In the above, the second equality is due to the mean-value theorem, where denote by ξt,k ∈ RK a
certain point on the line connecting Wtxt and Wt+1xt. We can further bound the second term of the
right hand side of the above displayed inequality by∥∥∥∥∥

K∑
k=1

ρk∇2σk(ξt,k)(IK ⊗ x⊤
t )(

−→
W t −

−→
W t+1)

∥∥∥∥∥
2

=

∥∥∥∥∥
K∑
k=1

ρk∇2σk(ξt,k)(IK ⊗ x⊤
t )H

− 1
2

t H
1
2
t (

−→
W t −

−→
W t+1)

∥∥∥∥∥
2

≤

∥∥∥∥∥
K∑
k=1

ρk∇2σk(ξt,k)(IK ⊗ x⊤
t )H

− 1
2

t

∥∥∥∥∥
2

· ∥
−→
W t −

−→
W t+1∥Ht

≤ α
√
K

λ

∥∥∥∥∥
K∑
k=1

ρk∇2σk(ξt,k)(IK ⊗ x⊤
t )H

− 1
2

t

∥∥∥∥∥
2

≤ α
√
K

λ

K∑
k=1

ρk∥∇2σk(ξt,k)∥2 ·
∥∥∥(IK ⊗ x⊤

t )H
− 1

2
t

∥∥∥
2

≤ 3αKR

λ

∥∥∥(IK ⊗ x⊤
t )H

− 1
2

t

∥∥∥
2

(58)

where the first inequality is by the fact ∥Ab∥2 ≤ ∥A∥2 · ∥b∥2 for any matrix A and vector b.
The second inequality is due to Lemma 20. The last inequality is due to Lemma 11 such that
∇σk(z) ≼ 3Ik for any z ∈ RK and

∑K
k=1 ρk ≤

√
KR.

Then plugging (58) into (57), we can bound term (b) by

term (b) ≤ 3αKR

λ

T∑
t=1

∥H− 1
2

t (IK ⊗ xt)∥22 ≤ 3κKdRα

λ
ln

(
1 +

T

λκ

)
,

where the last inequality is due to Lemma 21. Combining the upper bound for term (a) and term (b)
and plugging them into (56), we have

T∑
t=1

ϵfstt (xt) ≤ βOLT (δ)

(
R
√
T

√
Kd ln

(
1 +

TL

2λ

))
+

3κKdRαβOLT (δ)

λ
ln

(
1 +

T

λκ

)
= O

(
Kd logK(log T )

3
2

√
T + κK

3
2 d

3
2 (logK)2(log T )2

)
. (59)

As for the term
∑T
t=1 ϵ

snd
t (xt), we have

T∑
t=1

ϵsndt (xt) = 3R
(
βOLt
)2 · ∥(IK ⊗ x⊤

t )H
− 1

2
t ∥22

≤ 3R
(
βOLt
)2
κd ln

(
1 +

T

λκ

)
= O

(
κKd2(logK)2(log T )3

)
. (60)

Combining (59) and (60) with (55), we have

RegT ≤ 2

T∑
t=1

ϵfstt (xt) + 2

T∑
t=1

ϵsndt (xt)

≤ 2βOLT (δ)R
√
T

√
d ln

(
1 +

TL

2λ

)
+

6κKdRαβOLT (δ)

λ
ln

(
1 +

T

λκ

)
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+ 6R
(
βOLt
)2
κd ln

(
1 +

T

λκ

)
= O

(
Kd logK(log T )

3
2

√
T + κK

3
2 d2(logK)2(log T )3

)
.

which completes the proof for the regret bound.

C.3.2 Additional Guarantee for Algorithm 2

This part shows that the OFUL-MLogB (Algorithm 2) also achieves an Õ(
√
κKT ) regret bound.

Theorem 5. Under the same condition as Theorem 3, Algorithm 2 ensures

RegT ≤ O
(
d logK(log T )

3
2

√
κKT + κK

3
2 d2(logK)2(log T )3

)
.

Proof of Theorem 5. The proof of Theorem 5 is almost the same as that for Theorem 4. We can
decompose the regret as

RegT ≤ 2

T∑
t=1

ϵfstt (xt) +

T∑
t=1

ϵsndt (xt)

following the same arguments (55). The only difference is that we can bound the
∑T
t=1 ϵ

fst
t (xt)

in (55) with a different arguments based on the local matrix V̄t ≜ λIKd +
1
κ

∑t−1
s=1 IK ⊗ xsx

⊤
s .

T∑
t=1

ϵfstt (xt)

=

T∑
t=1

βOLt (δ) · ∥H− 1
2

t (IK ⊗ xt)∇σ(Wtxt)ρ∥2

≤ RβOLT (δ)

T∑
t=1

∥V̄ − 1
2

t (IK ⊗ xt)∥2

≤ RβOLT (δ)

√
κdT log

(
1 +

T

κλd

)
= O(d logK(log T )

2
3

√
κKT ) (61)

where the first inequality is by the fact that Ht ≽ V̄t, ∇σ(Wtxt) ≼ IK , and ∥ρ∥2 ≤ R. The second
inequality can be obtained ϵsndt with the same arguments as (60):

T∑
t=1

ϵsndt (x) ≤ O
(
κKd2(logK)2(log T )3

)
.

We completed the proof by combining the above three displayed bounds.

C.3.3 Useful Lemmas

Lemma 19. Let Ht = λIKd +
∑t−1
s=1 ∇σ(Ws+1xs)⊗ xsx

⊤
s . Then, when λ > 2, we have

T∑
t=1

λmax

(
(∇σ(Wt+1xt)⊗ xtx

⊤
t )H

−1
t

)
≤ Kd ln

(
1 +

TL

2λ

)
,

where L = maxx∈X ,W∈W λmax(∇σ(Wx))

Proof of Lemma 19. Let Mt =
λ
2 IKd +

∑t
s=1 ∇σ(Ws+1xs)⊗ xsx

⊤
s . Then, we have Ht −Mt =

λ
2 IKd−∇σ(Wt+1xt)⊗xtx

⊤
t . Since ∇σ(Wt+1xt)⊗xtx

⊤
t ≼ IKd, we haveHt ≽Mt when λ > 2.

Then, we have
T∑
t=1

λmax

(
(∇σ(Wt+1xt)⊗ xtx

⊤
t )H

−1
t

)
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≤
T∑
t=1

Tr
(
(∇σ(Wt+1xt)⊗ xtx

⊤
t )H

−1
t

)
≤

T∑
t=1

Tr
(
Mt −Mt−1)M

−1
t

)
≤

T∑
t=1

log
|Mt|

|Mt−1|

≤ Kd ln

(
1 +

TL

2λ

)
where we denote by Tr(A) the trace of matrix A. The second inequality is by the condition Ht ≽Mt.
The last second inequality is due to Lemma 4.5 of [16].

Lemma 20. Let
−→
W t+1 = argminW∈W⟨∇ℓt(

−→
W t),

−→
W ⟩+ 1

α∥
−→
W −

−→
W t∥2H̃t

. Then, we have

∥
−→
W t+1 −

−→
W t∥Ht ≤

α

2λ
∥∇ℓt(

−→
W t)∥2 ≤ α

√
K

λ
.

Proof of Lemma 20. Let Ft(
−→
W ) = ⟨∇ℓt(

−→
W t),

−→
W ⟩ + 1

α∥
−→
W −

−→
W t∥2H̃t

. Since
−→
W t+1 =

argminW∈W Ft(
−→
W ), we have Ft(

−→
W t+1) ≤ Ft(

−→
W t), which implies

1

α
∥
−→
W t+1 −

−→
W t∥2H̃t

≤ ⟨∇ℓt(
−→
W t),

−→
W t −

−→
W t+1⟩.

Then, by the Hölder’s inequality, we can further bound the inner product term by

⟨∇ℓt(
−→
W t),

−→
W t −

−→
W t+1⟩ ≤ ∥

−→
W t+1 −

−→
W t∥H̃t

· ∥∇ℓt(
−→
W t)∥H̃−1

t
,

which indicates that

∥
−→
W t+1 −

−→
W t∥H̃t

≤ α∥∇ℓt(
−→
W t)∥H̃−1

t
.

Since H̃t ≽ Ht and H̃−1
t ≼ IKd/λ, we can further have,

∥
−→
W t+1 −

−→
W t∥Ht ≤ ∥

−→
W t+1 −

−→
W t∥H̃t

≤ α∥∇ℓt(
−→
W t)∥H̃−1

t
≤ α

2λ
∥∇ℓt(

−→
W t)∥2 ≤ α

√
K

λ
,

where the last inequality is due to the definition of ∇ℓt(
−→
W t) = (σt(

−→
W t) − yt) ⊗ xt such that

∥∇ℓt(
−→
W t)∥2 ≤ 2

√
K.

Lemma 21. Let Ht = λIKd +
∑t−1
s=1 ∇σ(Ws+1xs)⊗ xsx

⊤
s . Then, we have

T∑
t=1

∥H− 1
2

t (IK ⊗ xt)∥22 ≤ κd ln

(
1 +

T

λκ

)
,

where λ > 2.

Proof of Lemma 21. The proof of Lemma 21 shares the same spirits with that of Lemma 19. Let
V̄t =

λ
2 IKd +

1
κ

∑t
s=1 IK ⊗ xsx

⊤
s . We have Ht ≽ V̄t when λ > 2. We can prove the lemma by

T∑
t=1

∥H− 1
2

t (IK ⊗ xt)∥22

=

T∑
t=1

λmax

(
(IK ⊗ x⊤

t )H
−1
t (IK ⊗ xt)

)
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≤
T∑
t=1

λmax

(
(IK ⊗ x⊤

t )V̄
−1
t (IK ⊗ xt)

)
=

T∑
t=1

λmax

(
(IK ⊗ x⊤

t )

(
IK ⊗

(
λId +

1

κ

t∑
s=1

xsx
⊤
s

)−1
)
(IK ⊗ xt)

)

=

T∑
t=1

λmax

(
IK ⊗

(
x⊤
t

(
λId +

1

κ

t∑
s=1

xsx
⊤
s

)−1

xt

))

= x⊤
t

(
λId +

1

κ

t∑
s=1

xsx
⊤
s

)−1

xt ≤ κd ln

(
1 +

T

λκ

)
,

where the first inequality is due to Ht ≽ V̄t. The second equality is due to the definition of V̄t and the
third equality is due to the mixed-product property of the Kronecker product. The last inequality can
be obtain by the standard elliptical potential lemma [3, Lemma 11].

C.3.4 Computation Cost of Algorithm 2

Algorithm 2 OFUL-MLogB
Input: regularization coefficient λ, probability δ, step size η.
1: Initialize H1 = λIKd and

−→
W 1 as any point in W

2: for t = 1, . . . , T do
3: Select the arm by xt = argmaxx∈X r̃t(x) and receive yt.
4: Update H̃t = Ht + η∇σ(Wtxt)⊗ xtx

⊤
t

5: Update the estimator
−→
W t+1 for the next iteration by (6)

6: Update Ht+1 = Ht +∇σ(Wt+1xt)⊗ xtx
⊤
t and

7: Construct the optimistic reward by r̃t+1(x) = ρ⊤σ(Wt+1x) + ϵfstt+1(x) + ϵsndt+1(x) as (8).
8: end for

Here, we discuss about the computation cost of the Algorithm 2. For each iteration, our algorithm
requires to maintain the inverse of matrix Ht+1 = Ht + ∇σ(Wt+1xt) ⊗ xtx

⊤
t and H̃t = Ht +

η∇σ(Wtxt)⊗xtx
⊤
t . Since ∇σ(Wt+1xt)⊗xtx

⊤
t and ∇σ(Wtxt)⊗xtx

⊤
t are both rank-K matrix,

then one can mainHt and H̃t with O(K3d2) computation cost per iteration by the Sherman-Morrison-
Woodbury formula. Given the H−1

t and H̃−1
t , we discuss the computation cost of the construction of

the optimistic reward 8 and the update rule for the estimator (6).

Computation Cost of the Estimator (6). As shown by the discussion in Section 3.2, the update
rule (6) is identical to

−→
Z t+1 =

−→
W t − ηH̃−1

t ∇ℓt(
−→
W t) and

−→
W t+1 = argmin

−→
W∈W

∥
−→
W −

−→
Z t+1∥H̃t

.

Given the H̃−1
t , we can perform the gradient step with O(K2d2) time complexity. As for the

projection step, the optimization problem can be solved in O(K3d3) time [18, Section 4]. As a
consequence, the overall time complexity for obtaining the estimator (6) is O(K3d3).

Computation Cost of Building Optimistic Reward. As shown by (8), we construct the optimistic
reward by r̃OLt (x) = ρ⊤σ(W OL

t x) + ϵfstt (x) + ϵsndt (x). We can compute ϵfstt (x) with the following
equivalent formulation

ϵfstt (x) = βOLt (δ) · ∥H− 1
2

t (IK ⊗ x)∇σ(Wt)ρ∥2

= βOLt (δ)

√
ρ⊤(∇σ(Wtx)⊗ x⊤)H−1

t ρ⊤(∇σ(Wtx)⊗ x)ρ.

Given H−1
t , it will take O(K2d2) to calculate ϵfstt (x). As for the term ϵfstt (x), it can also be

rewritten as

ϵsndt (x) = 3R
(
βOLt
)2 · ∥(IK ⊗ x⊤)H

−1/2
t ∥22
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= 3R
(
βOLt
)2√

λmax

(
(IK ⊗ xx⊤)H−1

t

)
,

It would take O(K3d3) time to perform the eigenvalue decomposition. Given there are |X | arm, the
time complexity for identify the arm xt = argmaxx∈X r̃t(x) is in total O(|X |K3d3).

Overall, Algorithm 2 can be implemented in O(|X |K3d3) time, which is independent of T .

C.4 Proof of Corollary 1

C.4.1 Main Proof

In the binary case, we select the arm by (xt, w̃t) = argmaxx∈X ,W∈Ct(δ) w
⊤x. In such a case,

we show Algorithm 2 achieves an Õ(T/κ∗) bound with a constant computation cost. The proof
is almost the same as that of [10, Theorem 2]. The main difference is that we complete the proof
with the confidence set of the efficient online estimator (Theorem 3). We present the proof here for
self-containedness.

Proof of Corollary 1. When K = 1 and ρ1 = 1, the MLogB problem recovers the binary logistic
bandit problem with the feedback yt = {0, 1} and the reward model Pr[y = 1|x] = σ(w⊤

∗ x). In
such a case, we can decompose the regret by

RegT =

T∑
t=1

σ(w⊤
∗ x∗)−

T∑
t=1

σ(w⊤
∗ xt)

≤
T∑
t=1

σ(w̃⊤
t xt)−

T∑
t=1

σ(w⊤
∗ xt)

=

T∑
t=1

σ′(w⊤
∗ xt)(w̃

⊤
t −w∗)

⊤xt +

T∑
t=1

σ′′(ξtxt)((w̃t −w∗)
⊤xt)

2

=
∑
t∈I1

σ′(w⊤
∗ xt)(w̃

⊤
t −w∗)

⊤xt︸ ︷︷ ︸
term (a)

+
∑
t∈I2

σ′(w⊤
∗ xt)(w̃

⊤
t −w∗)

⊤xt︸ ︷︷ ︸
term (b)

+

T∑
t=1

σ′′(ξtxt)((w̃t −w∗)
⊤xt)

2

︸ ︷︷ ︸
term (c)

,

where the first inequality is due to the arm selection rule. The first equality is due to the Taylor series
and ξt ∈ Rd is a certain point on the line connecting w̃t and w∗. For the last equality, we divide the
time horizon into two parts I1 = {t ∈ [T ] | σ′(w⊤

∗ xt) ≥ σ′(w⊤
t+1xt)} and I2 = [T ]/I1.

For term (a), we have
term (a)

=
∑
t∈I1

σ′(w⊤
∗ xt)(w̃

⊤
t −w∗)

⊤xt

≤
∑
t∈I1

σ′(w⊤
t+1xt)(w̃t −w∗)

⊤xt +
∑
t∈I1

|(wt+1 −w∗)
⊤xt|(w̃t −w∗)

⊤xt

≤
∑
t∈I1

√
σ′(w⊤

t+1xt) · ∥w̃t −w∗∥Ht · ∥
√
σ′(w⊤

t+1xt)xt∥H−1
t︸ ︷︷ ︸

term (a-1)

+
∑
t∈I1

∥xt∥2H−1
t

∥w̃t −w∗∥Ht · ∥wt+1 −w∗∥Ht+1︸ ︷︷ ︸
term (a-2)

,

where the first inequality is due to the mean value theorem and the condition that |σ′′(z)| ≤ 1 for
any z ∈ R. The second inequality is due to the Cauchy-Schwarz inequality and Ht ≼ Ht+1. We can
further bound term (a-1) by

term (a-1) =
∑
t∈I1

√
σ′(w⊤

t+1xt) · ∥w̃t −w∗∥Ht
· ∥
√
σ′(w⊤

t+1xt)xt∥H−1
t

39



≤ 2βT (δ)

√∑
t∈I1

σ′(w⊤
t+1xt)

√∑
t∈I1

∥
√
σ′(w⊤

t+1xt)xt∥2H−1
t

≤ 2βT (δ)

√∑
t∈I1

σ′(w⊤
∗ xt)

√∑
t∈I1

∥
√
σ′(w⊤

t+1xt)xt∥2H−1
t

≤ 4βT (δ) ·
√

RegT +Tσ′(w⊤
∗ x∗) ·

√
d log(1 +

T

λ
), (62)

where the first inequality is due to w̃t and w∗ are both contained in Ct(δ) and βt(δ) = O(log t) is
the radius of Ct(δ) as shown in Theorem 3. The last second inequality is by the condition such that
σ′(w⊤

∗ xt) ≥ σ′(w⊤
t+1xt) for all t ∈ I1. Then, following the same argument in the proof of [10,

Theorem 2], one can show√∑
t∈I1

σ′(w⊤
∗ xt) ≤

√∑
t∈T

σ′(w⊤
∗ xt) ≤

√
RegT +Tσ′(w⊤

∗ x∗), (63)

which leads to the last inequality. We also use the elliptical potential lemma [10, Lemma 9] in the
last inequality.

As for term (a-2), we have

term (a-2) ≤ (βT (δ))
2
∑
t∈[T ]

∥xt∥2H−1
t

≤ κd(βT (δ))
2 ln(1 +

T

λκ
), (64)

where the first inequality holds because w∗ and w̃t are contained in Ct(δ). The second inequality
can be obtained following the similar argument in obtaining (60). Combining the upper bound for
term (a-1) and term (a-2), we have

term (a) ≤ 4βT (δ)

√
d log(1 +

T

λ
) ·
√

RegT +Tσ′(w⊤
∗ x∗) + κd(βT (δ))

2 ln(1 +
T

λκ
).

As for term (b), we have σ′(w⊤
∗ xt) < σ′(w⊤

t+1xt) for all t ∈ I2. Then, we have

term (b) ≤
∑
t∈I2

√
σ′(w⊤

∗ xt) · ∥w̃t −w∗∥Ht
· ∥
√
σ′(w⊤

∗ xt)xt∥H−1
t

≤
∑
t∈I2

√
σ′(w⊤

∗ xt) · ∥w̃t −w∗∥Ht
· ∥
√
σ′(w⊤

t+1xt)xt∥H−1
t

≤ 4βT (δ)

√
d log(1 +

T

λ
) ·
√

RegT +Tσ′(w⊤
∗ x∗),

where the second inequality is due to the condition σ′(w⊤
∗ xt) < σ′(w⊤

t+1xt) and the last inequality
can be obtained using similar arguments as those used to derive (62).

Regarding term (c), the application of similar arguments used to derive equation (62) demonstrates.

term (c) ≤ κd(βT (δ))
2 ln(1 +

T

λκ
).

Then, combining the upper bounds for term (a), term (b) and term (c), we have

RegT ≤ 8βT (δ)

√
d log(1 +

T

λ
) ·
√

RegT +Tσ′(w⊤
∗ x∗) + 2κd(βT (δ))

2 ln(1 +
T

λκ
).

Resolving the above displayed inequality leads to

RegT ≤ 32βT (δ)

√
d log(1 +

T

λ
)
√
Tσ′(w⊤

t x∗) + (8κ+ 64)d(βT (δ))
2 ln(1 +

T

λ
).

In the binary case, βT (δ) = O(
√
d log T ). Then we have RegT = O(d log

3
2 T
√
T/κ∗+κd

2 log3 T ),
which completes the proof.
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C.4.2 Computation Cost for Binary Case

Since the binary logistic bandit is a special case of the MLogB problem, the time complexity
analysis in Appendix C.3.4 is also applicable in the binary case. The only difference is that we
select the arm as (xt, w̃t) = argmaxx ∈ X ,W ∈ Ct(δ)w⊤x in the binary case. As Ct(δ) ≜
{w ∈ W | ∥w −w∗∥Ht

≤ βt(δ)} is an ellipsoid, the optimization can be rewritten as:

xt = argmax
x∈X

(
max

∥w−wt∥Ht≤βt(δ)
w⊤x

)
= argmax

x∈X

(
max

∥u∥Ht≤βt(δ)
w⊤
t x+ u⊤x

)
= argmax

x∈X
w⊤
t x+ βt(δ)∥x∥H−1

t
.

Given H−1
t , the above optimization problem can be solved in O(d2) time.

C.5 On the Minimax Optimal Bound for the MLogB

In the binary case, we have achieved the minimax dynamic regret bound Õ(
√
T/κ∗) up to a

logarithmic factor in terms of T . In the MLogB problem, the best-known result is Õ(K
√
T ). A

natural question arises: can we obtain a similar minimax optimal result in the MLogB problem?
However, we find that it remains challenging both in terms of regret analysis and the design of
efficient algorithms.

Challenge in Regret Analysis. To establish the minimax optimal bound for the binary case, as
demonstrated in [9, 10] and we restate in (63), a critical step involves showing√∑

t∈T
σ′(w⊤

∗ xt) ≤
√

RegT +Tσ′(w⊤
∗ x∗).

In the MLogB problem, in order to obtain a similar result to the minimax optimal bound achieved in
the binary case, it is sufficient to demonstrate√√√√ T∑

t=1

ρ⊤∇σ(W∗xt)ρ ≤

√√√√2R · RegT +

T∑
t=1

ρ⊤Σ(W∗x∗)ρ. (65)

However, it is unclear how to prove such a relationship as the binary case. Indeed, denoting by
rt = σ(W∗x∗)− σ(W∗xt) the reward vector and rt,k by its k-th entry, we can further rewrite the
k-th entry of the vector ρ⊤Σ(W∗xt) can be further written as

[ρ⊤Σ(W∗xt)]k = σk(W∗xt)ρ
⊤(ek − σ(W∗xt))

= (σk(W∗x∗)− rt,k)ρk − (σk(W∗x∗)− rt,k)ρ
⊤(σ(W∗x∗)− rt)

= σk(W∗x∗)ρk − σk(W∗x∗)ρ
⊤σ(W∗x∗) + (σk(W∗x∗))ρ

⊤rt + rt,kρ
⊤(σ(W∗xt)− ek)

= [ρ⊤Σ(W∗x∗)]k + σk(W∗x∗)ρ
⊤rt + rt,kρ

⊤(σ(W∗xt)− ek).

In such a case, we can bound the left hand side of (65) by√√√√ T∑
t=1

ρ⊤Σ(W∗xt)ρ =

√√√√(ρ⊤Σ(W∗x∗)ρ+ ρ⊤rt · ρ⊤ (σ(W∗xt) + σ(W∗x∗))−
K∑
k=1

ρ2krt,k

)

≤

√√√√ T∑
t=1

ρ⊤Σ(W∗x∗)ρ+ 2R · RegT −
T∑
t=1

K∑
k=1

ρ2krt,k. (66)

In the binary case, In the binary case, the additional term becomes −
∑T
t=1 rt = −RegT < 0,

thereby resulting in the derivation of (63). Nevertheless, in the context of the MLogB problem, this
particular term has the potential to assume positive values, posing challenges in determining an upper
bound for it.
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Figure 3: More results for binary logistic bandit.
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Figure 4: More results for multinomial logistic bandit.

Challenge in Efficient Algorithm Design. When extending algorithms that achieve minimax opti-
mal bounds from the binary case to the multinomial case, there are computational concerns to address.
In the binary case, the minimax optimal regret bound relies on constructing an optimistic reward
through r̃t(x) = argmaxw∈Ct(δ) σ(w

⊤x). Since σ(z) is an increasing function, the optimization
problem can be simplified to

r̃t(x) = argmax
w∈Ct(δ)

w⊤x,

which becomes a convex optimization problem when Ct(δ) is a convex set. However, when applying
this analysis to the multinomial case, solving the problem requires optimizing

r̃t(x) = argmax
W∈Ct(δ)

ρ⊤σ(Wx).

Here, the loss function is non-concave, rendering the maximization problem challenging to effi-
ciently solve. Consequently, new approaches for constructing the optimistic reward function may be
necessary.

D Omitted Details for Experiments

In this section, we presents more empirical results for other configurations and introduced the
parameter configurations for the contenders.

Experimental Details. For each configuration, both the arm set X and the underlying unknown
parameter W∗ are randomly selected. In the binary case, the norm of the unknown parameter is set
as ∥w∗∥2 = S with S = 5. As for the multinomial case, each row of W∗ are randomly sampled
with ∥w(k)

∗ ∥2 = S̃ for all k ∈ [K] with S̃ = 1. The parameter of all contenders are set according
to their order as suggested in the corresponding paper. We use λ = d log(T ) for Log-UCB1, λ = d

for OL2M, λ = 1 for ada-OFU-ECOLog and λ =
√
KαS for OFU-MLogB. The step size for OFU-

MLogB is set as η = S/2 + ln(K + 1)/4. The experiments are run on Xeon E-2288G processors (8
cores, 3.7GHz base, 5.0GHz boost).

More Results. Figure 3 provides additional empirical results for the binary logistic bandit problem.
These results align with the trends observed in the main paper, wherein our OFU-MLogB algorithm
shows performance comparable to ada-OFU-ECOLog but with reduced computational overhead.
Meanwhile, more results for the multinomial case are provided by Figure 4. The cumulative running
time for MNL-UCB increase at a rate of O(t2). In contrast, the running time for our OFU-MLogB
exhibits a linear dependence with t, attributable to the constant computation cost per round.
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