
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HUMAN-AI CURATION SYNERGY: SCALING PREF-
ERENCE DATA CURATION VIA HUMAN-GUIDED AI
FEEDBACK

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite the critical role of reward models (RMs) in reinforcement learning from
human feedback (RLHF), current state-of-the-art open RMs perform poorly on
most existing evaluation benchmarks, failing to capture the spectrum of nuanced
and sophisticated human preferences. Even approaches incorporating advanced
training techniques have failed to yield meaningful performance improvements.
We hypothesize that this brittleness stems primarily from limitations in preference
datasets, which are often narrowly scoped, synthetically labeled, or lack rigorous
quality control. To address these challenges, we present a large-scale preference
dataset comprising 40 million preference pairs. To enable data curation at scale,
we design a human-AI synergistic two-stage pipeline that leverages the comple-
mentary strengths of human annotation quality and AI scalability. In this pipeline,
humans provide verified annotations, while large language models (LLMs) per-
form automatic curation based on human guidance. Based on this preference
mixture, we train simple Bradley-Terry reward models ranging from 0.6B to 8B
parameters on a carefully curated subset of 26 million preference pairs from the
40M pool. We demonstrate that the resulting reward models are versatile across
a wide range of capabilities, including alignment with human preferences, objec-
tive correctness, safety, resistance to stylistic biases, and best-of-N scaling. These
reward models achieve state-of-the-art performance across seven major reward
model benchmarks, outperform the latest paradigm of generative reward models,
and demonstrate strong downstream performance. Ablation studies confirm that
the effectiveness of our approach stems not only from data scale but also from
high-quality curation. Our approach represents substantial progress in open re-
ward models, revealing the untapped potential of existing preference datasets and
demonstrating how human-AI curation synergy can unlock significantly higher
data quality.

1 INTRODUCTION

Reward models (RMs) have become critical components in Reinforcement Learning from Human
Feedback (RLHF) pipelines (Christiano et al., 2017; Stiennon et al., 2020; Ouyang et al., 2022;
Dong et al., 2024a; Lambert, 2025; Schulman et al., 2017), now standard in Large Language Model
(LLM) post-training (Tie et al., 2025). Recent advancements in LLM reasoning capabilities (Jaech
et al., 2024; Guo et al., 2025; Xu et al., 2025; Chen et al., 2025a) and Reinforcement Learning with
Verifiable Rewards (RLVR) (Lambert et al., 2024a) have sparked interest in policy optimization
via rule-based rewards (Luo et al., 2025c; Wen et al., 2025; Team, 2025b;a; Luo et al., 2025b; He
et al., 2025b). These reward functions typically verify whether answers match ground truth for
math problems or pass unit tests for coding tasks, and can include fine-grained rules for verifiable
outputs (Bercovich et al., 2025; Ma et al., 2025). However, complex human preferences often cannot
be captured through simple rules, limiting the effectiveness of rule-based approaches in advancing
general preference learning. Thus, the challenge of modeling nuanced, sophisticated, and sometimes
conflicting human preferences through effective reward models remains largely unresolved.

To model human preferences, previous works have curated various datasets (Cui et al., 2023; Wang
et al., 2025c; Dong et al., 2024a; Xu et al., 2024; Park et al., 2024; Lambert et al., 2024a; OLMo et al.,
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2024) with prompts drawn from diverse sources. These efforts employ automatic methods (Cui et al.,
2023; Xu et al., 2024) or human annotators (Wang et al., 2024f; 2025c) to generate preference pairs,
enabling preference learning in a pairwise contrastive manner (Bradley & Terry, 1952; Ouyang et al.,
2022). Beyond dataset construction, some works aim to improve reward modeling via inductive
biases in enhanced loss functions (Liu et al., 2024b; Cai et al., 2024; Yang et al., 2024b; Wang
et al., 2024f; Zhang et al., 2024) or modified model architectures (Wang et al., 2024a; Chen et al.,
2025b; Dorka, 2024). To evaluate progress in reward modeling, RewardBench (Coste et al., 2023)
was released as the first benchmark for RMs. As reward models evolve, scores on RewardBench
have begun to saturate (Wang et al., 2024a; Park et al., 2024; Wang et al., 2024c; Liu et al., 2024b;
Shiwen et al., 2024; Wang et al., 2024b;e), but multiple studies (Frick et al., 2024; Zhou et al., 2024;
Song et al., 2025; Wen et al., 2024) have argued that such saturated scores are weak indicators of
real progress. These studies highlight weak (or even inverse) correlations between RewardBench
scores and downstream task performance (e.g., best-of-N or policy training).

In this work, we focus exclusively on the dual goal of both enhancing the quality and scaling
the quantity of preference data, to advance the development of open reward models. We introduce
SynergyPref-40M, a large-scale preference dataset comprising 40 million preference pairs. We de-
sign a two-stage preference data curation pipeline (Figure 2) that (1) combines human verification
under a stringent protocol for quality assurance (Section 3.2), (2) and employs human-preference-
guided LLM judges for scalability (Section 3.3). The pipeline also involves iterative training of a re-
ward model, which continuously incorporates feedback from human labels and retrieves preference
data where the RM itself performs poorly, to enable further learning. Our pipeline yields 26 million
carefully curated preference pairs, which we use to develop and train a series of high-performing
reward models, ranging from 0.6B to 8B parameters.

Through comprehensive evaluations on seven major RM benchmarks (Lambert et al., 2024b; Frick
et al., 2024; Zhou et al., 2024; Liu et al., 2024c; Tan et al., 2024; Malik et al., 2025), we demonstrate
that our reward models achieves state-of-the-art performance, with our 8B reward model outper-
forming all existing open reward models across all seven benchmarks by a significant margin.
We also demonstrate these reward models’ superior performance across multiple critical dimensions,
including general human preferences, objective correctness, resistance to stylistic biases, safety, and
best-of-N scaling (Section 4.2). Through data ablations, we show that the success of SynergyPref-
40M is driven not only by its scale but also by its high quality (Section 4.3). Our method-wise
ablations confirm the importance of human annotation, LLM annotation guided by human prefer-
ences, and our carefully designed and rigorously implemented annotation protocols (Section 4.4).

We outline our main contributions as follows:
• We collect and curate SynergyPref-40M, which, to the best of our knowledge, is the largest

curated preference mixture to date.
• We train a series of eight state-of-the-art reward models ranging from 0.6B to 8B parameters,

which achieve top rankings on seven major reward model benchmarks, demonstrating strong
performance across diverse evaluation dimensions.

• We propose a preference data curation pipeline that combines human verification for quality with
LLM-as-a-Judge, guided by human preferences for scalability.

2 THE BRITTLENESS OF CURRENT OPEN REWARD MODELS

In this section, we begin with a comprehensive assessment of existing open reward models. We then
present the results and examine potential shortcomings of the status quo.

Single-benchmark evaluation leads to potential over-optimization. RewardBench (Lambert
et al., 2024b) is a dataset for pairwise preference evaluation in chat, safety, and reasoning, and
has become the standard benchmark for assessing reward models. However, several subsequent
studies (Frick et al., 2024; Zhou et al., 2024; Wen et al., 2024) argue that scores on RewardBench
(Li et al., 2024) do not directly correlate with downstream performance and, in some cases, exhibit
an inverse relationship. This aligns with our own evaluation results in Figure 1, suggesting potential
over-optimization. We advocate for benchmarks that either (1) involve more challenging evaluation
methods (e.g., best-of-N) or (2) demonstrate stronger correlations with downstream performance.

A comprehensive evaluation suite exposes over-optimization. Based on the above criteria, in
addition to RewardBench, we select several other benchmarks that span multiple evaluation dimen-
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Figure 1: Left: Comparison of the performance of 31 top open reward models on RewardBench
(Lambert et al., 2024b) and their average scores across seven newer benchmarks (Frick et al., 2024;
Zhou et al., 2024; Liu et al., 2024c; Tan et al., 2024; Gureja et al., 2024). Right: Pearson correlation
scores across seven reward model benchmarks.

sions. Specifically, we include PPE Preference and Correctness (Frick et al., 2024) to assess both
real human preferences and unambiguous correctness; RMB (Zhou et al., 2024) for its challenging
best-of-N evaluation; RM-Bench (Liu et al., 2024c) to evaluate robustness to content variation and
style bias; and JudgeBench (Tan et al., 2024), which evaluates preference pairs drawn from difficult,
real-world LLM evaluation datasets, such as LiveCodeBench (Jain et al., 2024). Finally, we include
the newly released RewardBench v2 (Malik et al., 2025), which enforces global best-of-N evaluation
and extremely difficult capability assessments (e.g., distinguishing highly similar responses and re-
ward margin requirements). A detailed description of these benchmarks is provided in Section C.1.
We present the main results in Figure 1, comparing RewardBench scores with average scores across
the seven newer benchmarks, and report Pearson correlations among all benchmarks. Our findings
are as follows:
• The average score on newer benchmarks shows minimal improvement, even as Reward-

Bench scores saturate. This suggests potential over-optimization to a narrow set of preferences
encoded by RewardBench, further supported by the weak correlations with other benchmarks
shown in the right plot of Figure 1.

• Alternative loss functions or model modifications fail to yield consistent gains (Yang et al.,
2024b; Dorka, 2024; Lou et al., 2024; Zhang et al., 2024; Liu et al., 2025), and in many cases
degrade performance. This is evident in the left plot of Figure 1, where models fine-tuned from
the Skywork-Reward model or trained on the same data – outperform the original Skywork-
Reward models (Liu et al., 2024b) on this benchmark, but underperform them on others.

• Among the top 20 models on RewardBench, 16 directly or indirectly use the same base model
(Liu et al., 2024b) or are fine-tuned on highly similar training data, indicating stagnant progress
in both open preference datasets and reward models since September 2024.

3 SCALING PREFERENCE DATA CURATION VIA HUMAN-GUIDED AI
FEEDBACK

3.1 PIPELINE OVERVIEW

In this section, we present a two-stage preference data curation pipeline (Figure 2) that combines hu-
man verification for quality assurance with annotations from human-preference-guided LLM judges
to achieve scalability. In Stage 1, human and LLM annotators label gold and silver preference data,
respectively. Humans follow a strict verification protocol, while LLMs use a preference-aware anno-
tation scheme conditioned on human preference labels. A reward model is first trained on the silver
data and evaluated against the gold data to identify its shortcomings. We then employ a mechanism
to select similar preference samples where the current reward model performs poorly, which are
re-annotated to train the next iteration of the RM. This process is repeated over multiple iterations.

In Stage 2, we combine the reward model from Stage 1 with a gold reward model – trained ex-
clusively on verified human data – to guide data selection through a consistency-based mechanism.
Since this stage requires no human supervision, it enables scaling to millions of preference data
pairs. This is depicted as Stage 2 in the lower part of Figure 2.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Unverified Pool
𝐷!" = {𝑥, 𝑦#, 𝑦$}

Verification and 
Annotation

Annotate preference
attributes 𝑎 and labels 𝑦!? 𝑦"

Verified Pool
𝐷()$* (human verified)
𝐷+,$-./ (LLM verified)

Reward Modeling
Train on 𝐷+,$-./

Evaluate on 𝐷()$*

Adaptive Retrieval
Retrieve preference data from 𝐷#$ 

based on errors in 𝐷%&"' and 
similarity in {𝑥, 𝑎}

Gather New Data
𝐷!" = 𝐷!" +𝐷".#

Preference Data
(in-the-wild)

𝐷'()*

Reward Model (𝒓)
(current best)

𝑝 = 𝜎(𝑟 𝑦# − 𝑟 𝑦$ )

Final Curated 
Data Pool

Unconfident / 
Inconsistent 

Pairs
(𝑝 < 0.5 or close to 0.5)

Confident Pairs
(𝑝 > 0.5)

LLM Annotation w/
Adaptive Retrieval
(no human involved)

Consistent with 
Gold Reward 

Model
(trained on 𝐷()$*)

Stage 1: Small-Scale Human-in-the-Loop Curation

Stage 2: Large-Scale Automatic Curation

Figure 2: A two-stage preference data curation pipeline. Stage 1 (top) involves human-AI synergis-
tic curation and runs iteratively. Stage 2 (bottom) scales data curation automatically using reward
model consistency checks, eliminating the need for further human supervision.

3.2 STAGE 1: SMALL-SCALE HUMAN-IN-THE-LOOP CURATION

Seed preference data initialization. We begin by collecting available preference data to form an
unverified pool, Dun. For each pair in this pool, given the 3-tuple (x, yw, yl) – comprising the
conversation x, the chosen (winning) response yw, and the rejected (losing) response yl – we col-
lect LLM-generated preference attributes a. Each attribute set is a 5-tuple consisting of: (1) task
category, (2) preference objectivity, (3) controversiality, (4) desired attributes, and (5) annotation
guideline. Task category, objectivity, and controversiality serve as metadata to ensure annotation
diversity across scenarios. The desired attributes describe the qualities users seek in good responses,
while the annotation guideline provides instance-specific, context-dependent criteria for determining
the preference label.

Human verification and annotation protocol. We initialize with a small, high-quality, and diverse
set of preference pairs as the seed data. Using the generated preference attributes, human annotators
perform strict verification following a predefined protocol (Section E.2). At a high level, the protocol
outlines core principles and practices, as well as specific guidelines tailored to each task category,
objectivity type, and controversiality level. For example, it permits the use of external tools – such
as search engines, frontier LLM assistants, and domain-specialized LLMs (e.g., for math or code) –
to aid in labeling. However, full reliance on LLMs for labeling is strictly prohibited. This rigorous
process yields the seed dataset Dseed, where the human-verified portion is denoted as Dgold (for
validation), and the LLM-verified portion as Dsilver (for training). We provide further annotation
details and insights in Section E.

Step 1: Reward model training and evaluation. We initialize a pointwise Bradley-Terry reward
model (Bradley & Terry, 1952; Ouyang et al., 2022) and train it on Dsilver. We select the best current
reward model checkpoint θ based on validation accuracy on Dgold. For each (x, yw, yl), we collect
its prediction p = σ(rθ(x, yw)− rθ(x, yl)).

Step 2: Error-driven adaptive preference retrieval. Instead of relying solely on human-annotated
data to increase data volume, we leverage LLM annotators via an adaptive retrieval mechanism (Ram
et al., 2023) to collect representative samples aligned with human preferences. This mechanism
selects new examples from the unverified pool based on both the preference attributes a and the
reward model’s predictions. For each pairwise instance, we compute the embedding (Sturua et al.,
2024) of (x, a) and retrieve the top-k similar items. Intuitively, we prioritize preference data that
resemble instances where the reward model errs or shows low confidence. We set the retrieval upper
bound kmax = 8 and use a dynamic rule to determine k:

k =

{
kmax, if p ≤ 0.5 (incorrect prediction)
⌈kmax · (1− p)⌉, if p > 0.5 (correct prediction)

Step 3: Preference-aware labeling. Using the retrieved examples with human labels, we employ
a group of strong LLMs to aggregate final judgments using self-consistency (Wang et al., 2022).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Model RewardBench RewardBench v2 PPE Pref PPE Corr RMB RM-Bench JudgeBench Avg.

Open Reward Models

Llama-3-OffsetBias-RM-8B (Park et al., 2024) 89.0 64.8 59.2 64.1 57.8 71.3 63.5 67.1
ArmoRM-Llama3-8B-v0.1 (Wang et al., 2024a) 90.4 66.5 60.6 60.6 64.6 69.3 59.7 67.4
Internlm2-20b-reward (Cai et al., 2024) 90.2 56.3 61.0 63.0 62.9 68.3 64.3 66.6
Skywork-Reward-Llama-3.1-8B-v0.2 (Liu et al., 2024b) 93.1 71.8 62.2 62.5 66.6 72.1 62.9 70.2
LDL-Reward-Gemma-2-27B-v0.1 95.0 72.5 62.4 63.9 67.9 71.1 64.2 71.0
Skywork-Reward-Gemma-2-27B-v0.2 (Liu et al., 2024b) 94.3 75.3 63.6 61.9 69.4 70.0 66.5 71.6
Llama-3.1-Nemotron-70B (Wang et al., 2024f) 93.9 76.7 64.2 63.2 64.9 72.2 65.8 71.6
INF-ORM-Llama3.1-70B (Yang et al., 2024b) 95.1 76.5 64.2 64.4 70.5 73.8 70.2 73.5

LLM-as-a-Judge & Generative Reward Models

GPT-4o (Hurst et al., 2024) 86.7 64.9 67.7 67.1 73.8 73.1 59.8 70.4
Claude-3.5-Sonnet (Anthropic, 2024) 84.2 64.7 67.3 69.2 70.6 74.5 64.8 70.8
DeepSeek-GRM-27B (Liu et al., 2025) 88.5 - 65.3 60.4 69.0 - - -
DeepSeek-GRM-27B (w/ MetaRM) (Liu et al., 2025) 90.4 - 67.2 63.2 70.3 - - -
RM-R1-Qwen-Instruct-32B (Chen et al., 2025c) 92.9 - - - 73.0 79.1 - -
RM-R1-DeepSeek-Distill-Qwen-32B (Chen et al., 2025c) 90.9 - - - 69.8 83.9 - -
EvalPlanner (Llama-3.1-70B) (Saha et al., 2025) 93.9 - - - - 80.0 50.9 -
EvalPlanner (Llama-3.3-70B) (Saha et al., 2025) 93.8 - - - - 82.1 56.6 -
J1-Llama-8B (Whitehouse et al., 2025) 85.7 - 60.3 59.2 - 73.4 42.0 -
J1-Llama-8B (Maj@32) (Whitehouse et al., 2025) - - 60.6 61.9 - - - -
J1-Llama-70B (Whitehouse et al., 2025) 93.3 - 66.3 72.9 - 82.7 60.0 -
J1-Llama-70B (Maj@32) (Whitehouse et al., 2025) - - 67.0 73.7 - - - -

Our Reward Models

Qwen3-0.6B-BTRM 85.2 61.3 65.3 68.3 74.5 74.4 67.6 70.9
Qwen3-1.7B-BTRM 90.3 68.3 67.6 70.5 78.1 78.7 72.9 75.2
Qwen3-4B-BTRM 93.4 75.5 69.5 74.7 80.6 81.6 69.3 77.8
Qwen3-8B-BTRM 93.7 78.2 70.6 75.1 81.2 82.6 73.4 79.3
Llama-3.2-1B-BTRM 89.9 64.3 66.6 67.4 76.7 76.4 65.0 72.3
Llama-3.2-3B-BTRM 93.0 74.7 69.1 72.1 80.5 81.1 69.2 77.1
Llama-3.1-8B-BTRM 96.4 84.1 77.3 83.4 86.4 92.8 80.0 85.7
Llama-3.1-8B-40M-BTRM 97.8 86.5 79.8 87.2 89.3 96.0 83.4 88.6

Table 1: Reward model performance assessed on seven benchmarks. Bold numbers indicate the
best performance among all models, while underlined numbers represent the second best. Entries
marked with “-” indicate that a model is unreleased. A complete evaluation is provided in Table 5.

First, we perform intra-model aggregation via self-consistency, then merge results across models
to mitigate potential bias from any single model. For all LLM annotations, responses are labeled
as “Candidate 1” and “Candidate 2,” with their order randomized in the prompt. While pointwise
scoring (He et al., 2025a; Liu et al., 2025) has shown greater effectiveness, it is not applicable here
due to our reliance on both human and LLM annotators, making it impractical to enforce a shared
standard. Finally, human-labeled samples are added to Dgold, and LLM-labeled samples to Dsilver.
Throughout Stage 1, we iteratively perform Steps 1, 2, and 3. After each iteration, we use an internal
human-labeled validation set for sanity checking. However, scores from this sanity check serve only
as a reference; pipeline execution does not depend on them.

3.3 STAGE 2: LARGE-SCALE AUTOMATIC CURATION OF PREFERENCE DATA IN-THE-WILD

We now scale up to tens of millions of in-the-wild preference data pairs. However, annotating
the entire dataset – even automatically – can be prohibitively costly and unnecessary. Below, we
describe two consistency-based filtering strategies to determine which data points warrant further
verification.

Preference consistency with the best reward model. Inspired by Kim et al. (2024) and Liu et al.
(2024b), we adopt a filtering strategy that excludes all pairs with confidence greater than 0.5 under
the current best reward model. For the remaining, we apply the same adaptive preference retrieval
and human-preference-guided LLM annotation from Section 3.2 without involving human verifiers.

Preference consistency with the gold reward model. We train a separate gold reward model us-
ing all cumulative human-verified samples to approximate the “true” human preference distribution.
From the unverified pool, we retain only those pairs whose original chosen-rejected labels are con-
sistent with (1) the gold reward model and (2) either the LLM judges or the current best reward
model. Approximately 5 million preference pairs passed through this consistency mechanism with-
out requiring attribute generation or additional labeling. To leverage the discarded pool, we also
experiment with “recycling” the discarded data by simply flipping the chosen-rejected order, which
incurs no additional annotation or computational overhead.

4 EXPERIMENTAL RESULTS

In this section, we first present the main results of reward model performance in Section 4.2. We
then conduct additional ablations on both data (Section 4.3) and method (Section 4.4) to demonstrate
the effectiveness of our approach.
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Model Knowledge Reasoning Math Coding Avg.
GPT-4o 50.6 54.1 75.0 59.5 59.8
Claude-3.5-Sonnet 62.3 66.3 66.1 64.3 64.8
DeepSeek-R1 59.1 82.7 80.4 92.9 78.8
o1-preview 66.2 79.6 85.7 85.7 79.3
o3-mini 58.4 62.2 82.1 78.6 70.3
o3-mini (low) 63.0 69.4 83.4 83.3 74.8
o3-mini (medium) 62.3 86.7 85.7 92.9 81.9
o3-mini (high) 67.5 89.8 87.5 100 86.2
Qwen3-0.6B-BTRM 62.3 66.3 82.1 59.5 67.6
Qwen3-1.7B-BTRM 66.9 69.4 83.9 71.4 72.9
Qwen3-4B-BTRM 66.9 64.3 80.4 66.7 69.5
Qwen3-8B-BTRM 70.1 67.3 82.1 73.8 73.4
Llama-3.2-1B-BTRM 61.0 66.3 73.2 59.5 65.0
Llama-3.2-3B-BTRM 64.3 65.3 87.5 59.5 69.2
Llama-3.1-8B-BTRM 76.6 75.5 89.3 78.6 80.0
Llama-3.1-8B-40M-BTRM 79.9 78.6 89.3 85.7 83.4

Table 2: Performance comparison of RMs
with state-of-the-art LLM-as-a-Judges and
reasoning models on JudgeBench (Tan et al.,
2024).

Model Helpfulness (BoN) Harmlessness (BoN) Avg.
Skywork-Reward-Llama-3.1-8B-v0.2 60.5 56.8 58.7
Skywork-Reward-Gemma-2-27B-v0.2 63.1 59.9 61.5
DeepSeek-GRM-27B 63.9 58.0 61.0
DeepSeek-GRM-27B + MetaRM 64.2 58.0 61.1
RM-R1-DeepSeek-Distill-Qwen-32B 62.0 61.8 61.9
RM-R1-Qwen-Instruct-32B 63.6 68.2 65.9
Qwen2-72B-Instruct 64.5 64.9 64.7
GPT-4o-2024-05-03 63.9 68.2 66.1

Qwen3-0.6B-BTRM 68.4 69.1 68.8
Qwen3-1.7B-BTRM 72.0 72.2 72.1
Qwen3-4B-BTRM 74.7 75.1 74.9
Qwen3-8B-BTRM 76.5 75.8 76.2
Llama-3.2-1B-BTRM 68.0 73.2 70.6
Llama-3.2-3B-BTRM 74.4 76.2 75.3
Llama-3.1-8B-BTRM 82.3 82.8 82.6
Llama-3.1-8B-40M-BTRM 86.2 86.6 86.4

Table 3: Performance comparison of reward mod-
els based on Best-of-N accuracy for Helpfulness
and Harmlessness in RMB (Zhou et al., 2024).

4.1 REWARD MODEL TRAINING

We train all reward models as Bradley-Terry models using the Llama 3.1 and 3.2 series (Grattafiori
et al., 2024) and the Qwen3 (Yang et al., 2025) collection as backbones. We choose model backbones
with no more than 8B parameters for both training and usability considerations. Specifically, from
the Llama 3 series, we employ Llama-3.1-8B-Instruct, Llama-3.2-3B-Instruct, and Llama-3.2-1B-
Instruct. For Qwen3, we consider sizes of 0.6B, 1.7B, 4B, and 8B. It is evident that findings from
RewardBench v2 (Malik et al., 2025) show that using larger model backbones, such as 70B, results
in greater gains. However, we do not consider them for this generation due to the training cost (on
26 to 40 million preference pairs) and the ease of use in actual RLHF settings.

All reward models are trained with a maximum context length of 16K tokens, which encompasses
the majority of the samples in our data mixture to avoid truncation. For all final model training runs,
we adopt the hyperparameters from Wang et al. (2025a), with a large global batch size of 10,240 and
a constant learning rate schedule. We train all reward models exclusively on the 26 million curated
subset. We also experiment with a variant that has a “-40M” suffix. This variant is trained using
26 million curated pairs, along with additional pairs that have a flipped chosen-rejected order (i.e.,
those that agree with humans) from the discarded 14 million pairs.

4.2 A COMPREHENSIVE EVALUATION OF THE REWARD MODELS

Here, we present the main evaluation results and analysis based on seven reward model benchmarks.
We covert the details of them in Section C.1.

General preferences. We report full benchmark results for the current top-performing reward mod-
els, LLM-as-a-Judges, and generative reward models in Table 1. Across all seven benchmarks, our
reward models outperform not only much larger ones (i.e., 70B) but also the emerging class of gen-
erative reward models (Liu et al., 2025; Chen et al., 2025c). We interpret this as strong evidence that
SynergyPref-40M captures a wide range of preferences, enabling more robust preference learning
across multiple dimensions simultaneously. Meanwhile, the result highlights the importance of data
quality relative to the strength of the base models. Even at a scale of 1.7B parameters, a reward
model can outperform a 70B model on all benchmarks except for RewardBench and RewardBench
v2, effectively bridging the model size gap.

Correctness preferences. For objective correctness evaluation, we primarily consider JudgeBench
(Tan et al., 2024) and PPE Correctness (Frick et al., 2024). To effectively measure progress, we di-
rectly compare our reward models with leading LLMs and reasoning models that top the JudgeBench
leaderboard (Table 2). Note that JudgeBench uses a weighted average score across all samples,
whereas we compute the average score across the four categories to maintain consistency with all
other benchmarks. While our reward models underperform state-of-the-art reasoning and coding
models on average, they outperform all leading models on knowledge tasks by a significant mar-
gin. Notably, Llama-3.2-3B-BTRM achieves math performance equivalent to o3-mini (high), while
Llama-3.1-8B-BTRM outperforms o3-mini (high) in this category. For PPE Correctness, we com-
pare our model against existing reward models using the Best-of-N evaluation (Figure 3) in the
following paragraph.
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Model Easy Normal Hard Avg.
Skywork-Reward-Llama-3.1-8B-v0.2 70.5 74.2 49.3 64.7
Skywork-Reward-Gemma-2-27B-v0.2 88.9 71.9 42.1 67.6
ArmoRM-Llama3-8B-v0.1 80.4 71.5 55.8 69.2
Nemotron-340B-Reward 81.0 71.4 56.1 69.5
LDL-Reward-Gemma-2-27B-v0.1 92.4 75.2 45.5 71.0
Llama-3-OffsetBias-RM-8B 83.9 73.2 56.9 71.3
Internlm2-20b-reward 79.4 74.2 62.8 72.1
Llama-3.1-Nemotron-70B 92.2 76.5 47.8 72.2
INF-ORM-Llama3.1-70B 92.1 80.0 54.0 75.4

Qwen3-0.6B-BTRM 90.3 78.0 54.8 74.4
Qwen3-1.7B-BTRM 93.0 83.4 59.7 78.7
Qwen3-4B-BTRM 92.1 84.7 67.9 81.6
Qwen3-8B-BTRM 91.9 85.7 70.1 82.6
Llama-3.2-1B-BTRM 91.3 79.9 57.8 76.3
Llama-3.2-3B-BTRM 91.5 84.1 67.8 81.1
Llama-3.1-8B-BTRM 97.0 95.0 86.5 92.8
Llama-3.1-8B-40M-BTRM 97.6 96.9 93.5 96.0

Figure 4: Fine-grained difficulty-level
scores on RM-Bench (Liu et al., 2024c).

Model Factuality Precise IF Math Safety Focus Ties Avg.
Skywork-Reward-Llama-3.1-8B 69.9 42.5 62.8 93.3 96.2 74.1 73.1
URM-LLama-3.1-8B 68.8 45.0 63.9 91.8 97.6 76.5 73.9
Skywork-Reward-Gemma-2-27B-v0.2 76.7 37.5 67.2 96.9 91.7 81.8 75.3
claude-3-7-sonnet-20250219 73.3 54.4 75.0 90.3 92.1 67.2 75.4
Skywork-Reward-Gemma-2-27B 73.7 40.3 70.5 94.2 93.2 82.6 75.8
llama-3.1-70B-Instruct-RM-RB2 81.3 41.9 69.9 88.4 86.5 88.3 76.1
INF-ORM-Llama3.1-70B 74.1 41.9 69.9 96.4 90.3 86.2 76.5
claude-opus-4-20250514 82.7 41.9 74.9 89.5 86.2 83.7 76.5
QRM-Gemma-2-27B 78.5 37.2 69.9 95.8 95.4 83.2 76.7
gemini-2.5-flash-preview-04-17 65.7 55.3 81.1 90.9 86.7 83.4 77.2
LMUnit-llama3.1-70b 84.6 48.8 71.6 90.7 97.0 90.6 80.5
LMUnit-qwen2.5-72b 87.2 54.4 72.7 91.3 96.8 90.1 82.1

Qwen3-0.6B-BTRM 58.2 40.0 71.6 84.4 79.4 34.0 61.3
Qwen3-1.7B-BTRM 65.8 45.0 72.7 89.1 88.5 48.7 68.3
Qwen3-4B-BTRM 77.3 46.2 73.2 92.2 96.6 67.4 75.5
Qwen3-8B-BTRM 79.8 49.1 77.0 94.0 96.4 72.9 78.2
Llama-3.2-1B-BTRM 60.9 45.6 59.6 87.3 89.3 43.1 64.3
Llama-3.2-3B-BTRM 76.2 45.6 69.4 93.1 96.0 67.7 74.7
Llama-3.1-8B-BTRM 84.6 66.2 77.6 96.7 98.4 81.2 84.1
Llama-3.1-8B-40M-BTRM 87.9 67.8 83.1 97.3 99.2 83.9 86.5

Figure 5: Comparison of our RMs with the top 12 RMs
on RewardBench v2 (Malik et al., 2025).
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Figure 3: Best-of-N scaling curves of RMs across five tasks on PPE Correctness (Frick et al., 2024).

Best-of-N accuracy and scaling. We evaluate our RMs on the BoN splits from RMB (Zhou et al.,
2024) and PPE Correctness Preference (Frick et al., 2024). As shown in Table 3, our RMs demon-
strate strong Best-of-N (BoN) capability in both helpfulness and harmlessness. All eight RMs out-
perform GPT-4o, the previous state-of-the-art, by a margin of up to 20 points. We further present
BoN curves for five challenging tasks in PPE Correctness in Figure 3. Llama-3.1-8B-BTRM shows
superior scaling, outperforming all other models evaluated. Among all BoN scaling curves, all our
model variants exhibit positive scaling (i.e., performance continues to improve as N increases), ex-
cept for our 1.7B variant in GPQA. We further confirm their BoN capability on RewardBench v2
(Li et al., 2024) (Figure 5), which requires precise best-of-N selection globally across the dataset.

Resistance against style biases. Using RM-Bench (Liu et al., 2024c), we assess the ability of
reward models to judge substance under varying stylistic differences between chosen and rejected
responses. As shown in Figure 4, most baseline models exhibit significant performance gaps across
the three stylistic conditions, indicating high sensitivity to such biases. This is particularly evident
for INF-ORM-Llama3.1-70B, with a gap of 36 points between Normal and Hard accuracy. In con-
trast, our models outperform all baselines – not only in absolute scores across all three categories
but also in maintaining much smaller performance differences. We also observe a rapidly shrinking
gap as model size increases. These results suggest that training on SynergyPref-40M leads to more
debiased representations of preferences.

Superiority in advanced capabilities. On RewardBench v2, we further demonstrate superior ca-
pability in precise instruction following, including assessing whether a model’s response adheres
to specific instructions in the prompt. Notably, all existing reward models score below 50 in this
category. In contrast, Llama-3.1-8B-BTRM outperforms strong proprietary models like Claude-
3.7-Sonnet and Gemini-2.5-Flash-Preview-04-17, and generative reward models that utilize rubrics
(Saad-Falcon et al., 2024), through learning pure representation of preferences. We also observe a
significant increase in the Factuality score, likely due to the volume of our curated dataset and the
richness of the information and knowledge it contains.

4.3 ABLATION STUDIES ON DATA QUANTITY AND QUALITY

We further examine the effect of data quantity and quality through performance trends across our
pipeline, based on an early version of SynergyPref-40M with only 16 million preference pairs.

Preference data scaling does not hold for uncurated data. (quality and quantity) In the left plot
of Figure 6, we show that increasing the amount of uncurated data results in minimal performance
gains. During Stage 2, training on an additional 12 million preference pairs fails to surpass the
performance of the initial seed model. In contrast, with curated data, we observe consistent perfor-
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Figure 6: Left: Reward model score progress throughout the entire curation pipeline, including
three data ablations: original data, filtered data, and filtered data with corrected preference pairs,
based on an early version of SynergyPref-40M. Right: The average score of the final training run
of a preliminary version of Llama-3.1-8B-BTRM. The Avg. Score indicates the averaged RM score
across all benchmarks considered except RewardBench v2.
mance improvements as more data is added, with the most significant gains occurring in Stage 2
– where the largest volume of curated data is introduced. Notably, this result partially aligns with
findings in concurrent work (Wang et al., 2025a), which specifically demonstrates that subjective
preference learning does not exhibit scaling behavior, whereas objective preferences do.

Data curation enables preference “correction.” (quality) We further demonstrate that our data
curation process not only selects high-quality data for training but also identifies low-quality or
“incorrect” preferences, which are placed in a discarded pool during training. By “recycling” this
discarded data – simply flipping the chosen and rejected responses – we achieve consistent perfor-
mance gains across all stages and iterations, as illustrated by the orange curve in Figure 6. As a
result, Llama-3.1-8B-40M-BTRM benefits from the inclusion of preference data even with flipped
chosen-rejected responses.

Training on 1.8% of a 16M mixture outperforms previous SOTA open RM (70B) at the 8B
scale. (quality and quantity) In the right plot of Figure 6, we report the average RM score across
six benchmarks (excluding RewardBench v2 (Malik et al., 2025), which had not been released at the
time) during training. Using only 1.8% (roughly 290K samples) of the full training set surpasses the
previous SOTA. This underscores that our data mixture excels not only in scale but also in quality.

4.4 ABLATION STUDIES ON ANNOTATION METHOD

In this section, we conduct method-wise ablation studies to examine the importance of key com-
ponents in our data curation pipeline. Although it is not feasible to perform ablations across the
entire pipeline due to the long annotation interval and its recursive nature, we focus exclusively on
iteration 1 of Stage 1.

4.4.1 PIPELINE-LEVEL ABLATIONS
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Figure 7: Ablations over different cura-
tion variants.

Setup. We begin with the filtered seed dataset and ex-
amine five settings: (1) direct training on unverified data
(i.e., no curation), (2) simple LLM curation only, (3) both
human and LLM curation, and (4) incorporating adap-
tively retrieved examples into LLM curation. These com-
ponents collectively represent one iteration of Stage 1 in
Figure 2.

Finding 1: Simple LLM curation barely improves RM
quality. As shown in Figure 7, simple LLM curation in-
creases the final RM score by only 0.1 – potentially within
the error margin of optimization randomness. Given that
much in-the-wild preference data is synthetically labeled
(Cui et al., 2023; Dong et al., 2024a; Lambert et al.,
2024a) by LLMs, this result aligns with our findings in Figure 6, where scaling uncurated pref-
erence data yields negligible gains. A potential factor may be the limited capabilities or annotation
quality of the LLM judges used in our study (Ye et al., 2024; Chen et al., 2024).

Finding 2: Human curation is crucial to data quality. From Figure 7, we observe that the largest
improvement comes from human curation, with a relative gain of 2.3 points over the seed RM
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baseline. This highlights the need for scalable methods of collecting human preference data and
showcases the strength of our approach, which requires only a modest amount of human annotation.

Finding 3: Adaptive retrieval boosts LLM curation quality. Given access to human-curated
gold data, adding similar gold examples to the LLM annotation prompt improves RM quality. This
technique results in a 0.9-point gain compared to raw LLM annotation in the human curation variant.
While the improvement is smaller than with direct human curation, this method is simple, scalable,
and incurs minimal overhead, making it an attractive tool for enhancing LLM annotation.

4.4.2 HUMAN ANNOTATION ABLATIONS

Method Avg. Score
Seed RM 71.0

w/ Raw Curation 71.4 (+0.4)
w/ Pref Attributes 72.1 (+1.1)
w/ Verification Protocol 74.2 (+3.2)

Table 4: RM scores on three human an-
notation setups.

Setup. We now focus specifically on the most impactful
component: human curation. We evaluate three variants:
(1) raw human curation, where annotators are shown only
the conversation history and two responses, (2) human
curation with LLM-generated preference attributes, and
(3) human curation following our full annotation proto-
col (i.e., with external tools such as search engines and
frontier LLMs). To control for memorization, the same
annotators label three distinct subsets of preference data sampled with similar distributions. Before
running the ablation, we train reward models on each of the three subsets and confirm they yield
similar final performance-within a maximum of 0.6 points difference. This reduces the influence of
intrinsic data quality as a confounding factor, ensuring controlled experiments. All other compo-
nents remain unchanged from our final method.

Human annotation with additional information and tools boosts annotation quality. As shown
in Table 4, all forms of human curation improve the quality of the seed RM. Raw annotation based
solely on the conversation and two responses results in a 0.4-point gain. Adding preference attributes
(task category, objectivity, controversiality, desired attributes, and annotation guidelines) yields a
larger gain. Incorporating our full annotation protocol – including access to external tools – leads to
the best final performance, validating the effectiveness of our human curation process.

4.5 ADDITIONAL EXPERIMENTS

Other than the preference benchmark evaluation and data- and method-wise ablations, we provide
additional experiments to show that 1) our curated mixture outperforms all existing preference mix-
ture and their combination (Section G.1), 2) the resulting reward models excels in both downstream
RLHF and human evaluation (Section G.2), 3) the proposed preference mixture works on various
LLM backbones (Section G.3), and 4) the Phase 2 filtering mechanism can effectively remove sys-
tematic biases and better aligns with human preferences (Section G.4).

5 CONCLUSION

In this work, we introduce SynergyPref-40M, a preference data mixture comprising 40 million pref-
erence pairs (26 million curated), and a series of eight state-of-the-art reward models designed for
versatility across a wide range of tasks. SynergyPref-40M is constructed through a two-stage cura-
tion pipeline that synergistically combines human supervision for quality with human-guided LLM
judges for scalability. Built on this preference data mixture, we present a collection of eight strong
reward models ranging from 0.6B to 8B parameters. Across seven major reward model benchmarks,
these models achieve state-of-the-art performance, demonstrating strong capabilities in capturing
general human preferences, objective correctness, resistance to style biases, safety, and best-of-N
scaling. Our small 1.7B variant surpasses the best existing 70B reward model on average, while our
8B variant ranks first on all seven benchmarks among all open reward models. We also conduct ex-
tensive ablation studies on both the data and the curation method to validate the effectiveness of our
approach. We believe this work advances open reward models and, more broadly, RLHF research,
representing a significant step forward that will accelerate open progress in the field.

6 ETHICS STATEMENT

This work involves the collection and curation of large-scale preference data through human an-
notation, raising several ethical considerations that we address proactively. Our human annotation
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process involved workers who were compensated fairly according to industry standards and pro-
vided with clear guidelines and training. We ensured that annotators had access to external tools and
resources to make informed judgments, and we implemented safeguards to prevent worker exploita-
tion through reasonable workload distribution and adequate compensation.

The preference dataset created in this work captures human values and preferences that will be used
to train reward models for RLHF applications. We acknowledge that human preferences can be sub-
jective, culturally dependent, and potentially biased. To mitigate these concerns, we implemented
diverse annotation protocols and quality control measures, including multiple validation stages and
consistency checks. However, we recognize that our dataset may still reflect certain demographic or
cultural biases present in the annotator pool and the underlying data sources.

Our reward models will be used to guide the behavior of AI systems through RLHF, potentially in-
fluencing how these systems interact with users. While our models demonstrate strong performance
across safety benchmarks, we emphasize the importance of careful deployment and continued mon-
itoring in downstream applications. We encourage users of our models to conduct thorough safety
evaluations in their specific use cases and implement appropriate safeguards.

We commit to releasing our dataset and models responsibly, with clear documentation of their limi-
tations and intended use cases. We also acknowledge the computational resources required for this
work and the associated environmental impact, though our focus on efficient model architectures
(up to 8B parameters) helps minimize resource requirements for practitioners.

7 REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our work across all components of
our research pipeline. Our data curation methodology is described in detail in Section 3, with com-
prehensive annotation protocols provided in the appendix (Section E.2) including specific guidelines
for human annotators, quality control measures, and the adaptive retrieval mechanism. All hyper-
parameters for reward model training are explicitly specified in Section 4.1, following established
practices from Wang et al. (2025a) with detailed configurations including batch size, learning rate
schedules, and training procedures. Our evaluation methodology is thoroughly documented across
seven major benchmarks with detailed descriptions provided in the appendix (Section C.1), ensur-
ing that our results can be independently verified. The complete experimental setup for our ablation
studies is described in Section 4, with controlled experimental designs that isolate the impact of
individual components. We plan to release our curated preference dataset SynergyPref-40M and
trained reward models through standard academic channels with appropriate documentation and us-
age guidelines. Additionally, we will provide detailed data processing scripts, training code, and
evaluation benchmarks as supplementary materials to facilitate reproduction of our results. Our
comprehensive evaluation across multiple benchmarks, detailed ablation studies, and systematic
methodology documentation collectively ensure that our contributions can be effectively reproduced
and built upon by the research community.
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A RELATED WORK

Preference data annotation. Traditional preference data annotation relies heavily on human anno-
tators (Liu et al., 2020; Stiennon et al., 2020; Ouyang et al., 2022; Bai et al., 2022a; Hurst et al., 2024;
Touvron et al., 2023a;b), which is both costly and inefficient – and sometimes even noisy (Daniels-
Koch & Freedman, 2022). To improve scalability, recent work – now collectively referred to as
RLAIF (Bai et al., 2022b) – has proposed various forms of automatic annotation using strong LLMs
(Bai et al., 2022b; Lee et al., 2023; Burns et al., 2023; Cui et al., 2023; Guo et al., 2024; Yuan et al.;
Prasad et al., 2024; Pace et al., 2024; Lambert et al., 2024a; He et al., 2025a), in some cases even
outperforming human annotators (Gilardi et al., 2023; Ding et al., 2022). Our approach combines
the strengths of both paradigms: we enhance human annotation using external tools and frontier
LLMs, while also guiding LLM-based annotation with human-verified labels. Among related work,
the most relevant are Kim et al. (2025) and He et al. (2024). Kim et al. (2025) leverages a small set
of human-labeled seed data to iteratively refine an LLM policy via self-improvement (Rafailov et al.,
2023); in contrast, we iteratively incorporate gold human preference labels to augment LLM anno-
tation within a structured data curation framework. He et al. (2024) employs an iterative process
that pseudo-labels unlabeled preference pairs and retains only high-confidence examples, without
human annotators. Our work bridges the gap between human and LLM-based annotation by in-
tegrating them into a principled and scalable framework, enabling high-quality preference data at
scale. In addition, our approach to human verification via preference attributes is similar to LMUnit
(Saad-Falcon et al., 2024), which decomposes requirements based on context and conducts auto-
matic “unit tests” on assistant responses using LLMs.

The paradigm of reward models. The reward model paradigm has evolved rapidly. Initially based
on the Bradley-Terry (BT) model (Bradley & Terry, 1952; Liu et al., 2020; Stiennon et al., 2020;
Ouyang et al., 2022; Bai et al., 2022a; Wang, 2025), early reward models were trained to maxi-
mize the score difference between pairwise responses. During inference, these models produce a
scalar score indicating the relative quality of a response compared to alternatives given the same
prompt. Later, RewardBench (Lambert et al., 2024b) introduced the first taxonomy of reward mod-
els, categorizing them into (1) sequence classifiers, (2) direct preference optimization (DPO) models
with implicit rewards, (3) generative models, and (4) custom classifiers. Most BT-based models fall
under the sequence classifier category, while generative models primarily include LLM-as-a-Judge
approaches. DPO models, by contrast, rely on implicit rewards derived from the DPO objective
(Rafailov et al., 2023). This taxonomy was further elaborated in Liu et al. (2024b) and has since
been adopted by subsequent works (Zhong et al., 2025; Zang et al., 2025; Wang et al., 2025b). With
the emergence of generative reward models (Liu et al., 2025; Chen et al., 2025c; Saha et al., 2025;
Guo et al., 2025), Liu et al. (2025) proposed a new categorization based on the form of reward gener-
ation and scoring patterns, highlighting differences in input flexibility and inference-time scalability.
The reward generation forms include scalar, semi-scalar, and generative outputs, while scoring pat-
terns are categorized as pointwise or pairwise. Beyond these major paradigms, Sun et al. (2024)
introduces an alternative approach that trains reward models using an order consistency objective.
This reframes reward modeling as a binary classification task and has been shown to outperform the
Bradley-Terry model in the presence of annotation noise.

Strong open reward models and preference datasets. At the time of writing, there are already 166
reward models on the RewardBench v1 leaderboard (Lambert et al., 2024b), most of which are open-
weight. The top-ranking models are primarily from the Skywork-Reward series (Liu et al., 2024b)
and their derivatives, trained using either the same base models (Dorka, 2024; Lou et al., 2024) or
datasets (Yang et al., 2024b; Shiwen et al., 2024; Lou et al., 2024; Zhang et al., 2024; Yang et al.,
2024c). Their training data primarily consist of unfiltered human preferences and automatically
curated synthetic data (Liu et al., 2024b). Another line of high-performing reward models includes
FsfairX and ArmoRM (Dong et al., 2024b; 2023; Wang et al., 2024a), trained on Preference 700K
(Dong et al., 2024b), a dataset composed of preference data aggregated from eight diverse sources.
The ArmoRM variant extends FsfairX with a multi-dimensional reward head, enabling it to generate
reward signals for fine-grained aspects of response quality. The InternLM2-Reward series (Cai et al.,
2024) also presents strong models across different sizes, trained on a large-scale collection of 2.4
million closed-source preference pairs, with a focus on both English and Chinese data. Recently,
the release of RewardBench v2 (Malik et al., 2025) introduced a set of seven reward models trained
on various Llama-3.1 checkpoints (i.e., different sizes and base models). Among these, the 70B
variant is one of the top-performing models on the benchmark. Right before our release, we noticed
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two generative reward models from the LMUnit series (Saad-Falcon et al., 2024) that topped the
RewardBench v2 leaderboard. These models use rubrics as unit tests, which are much more robust
than reward models based on discriminative classifiers. Their strength is further reflected by their
hgigh scores in Factuality and Ties categories. Our reward models leverage both the Skywork-
Reward dataset and Preference 700K in the Seed and Stage 1 phases, respectively – forming the
foundation for improvements in later stages.

B LIMITATIONS

Human preferences are inherently diverse and often conflicting, especially for prompts without a
single correct answer. Even when ground-truth answers exist, individuals may differ in their pref-
erences based on factors such as writing style, tone, level of detail, or the relative weighting of
helpfulness versus harmlessness. A single reward model may not fully capture this complexity and
may inherently favor certain response types over others. Future work could explore personalized
reward models or context-dependent training paradigms to better reflect the multifaceted nature of
human preference.

Our observation regarding performance improvements from re-annotated discarded data is purely
empirical. Due to budget constraints, we did not conduct further verification to rigorously assess
this pool. As a result, the re-annotated data may include noisy preferences or judgments that are not
broadly representative or that fall outside the scope of current evaluation benchmarks. A thorough
investigation of this flipped pool is left for future work.

Meanwhile, we would like to clarify that not all discarded preference pairs are incorrect or useless.
Since our pipeline still uses LLMs and trained reward models to filter data, which is not fully inter-
pretable, biases and modeling errors are inherently unavoidable. Studying why and how examples
are removed during the process, as well as their actual usefulness for reward modeling and RLHF,
could be a valuable research direction.

Our annotation protocol differs in implementation from most existing approaches, where human
annotators provide their own preferences. In contrast, our protocol is more constrained: it instructs
annotators to follow predefined desired attributes and annotation guidelines for each sample. While
this structured approach promotes consistency, it also reduces flexibility and may not fully capture
minority preferences. This limitation arises because, for certain subjective preferences, it is often
infeasible to determine which response is better-even on a relative scale.

Finally, the success of our approach relies heavily on human annotation; we did not observe sat-
isfactory results from fully automatic curation alone. This raises the question of whether current-
generation LLMs are capable of supporting high-quality, fully automatic data labeling. Due to
inference costs and API limitations, we were unable to scale automatic curation to the latest frontier
models with strong reasoning capabilities. We consider this a promising direction for future explo-
ration, particularly given the central role these LLMs already play in supporting human annotation
within our pipeline.

C REWARD MODEL BENCHMARKS AND EVALUATION RESULTS

C.1 REWARD MODEL BENCHMARKS

RewardBench. RewardBench (Lambert et al., 2024b) is the first benchmark released for evalu-
ating reward models. It includes 2,985 evaluation samples from 23 data sources, categorized into
four main groups: chat, chat-hard, safety, and reasoning. The evaluation uses pairwise comparison
accuracy, where a reward model generates scores for both the chosen and rejected responses. A
prediction is correct if the score for the chosen response exceeds that of the rejected one. Final ac-
curacy is computed as a weighted average within each category and then averaged across categories.
A noted limitation is that the chosen-rejected pairs are constructed using semi-automatic methods
and manually validated, though the authors do not detail the validation process. They also acknowl-
edge potential spurious correlations in the reasoning subsets and the absence of correlation analysis
between RewardBench scores and downstream performance.

PPE Preference and Correctness. PPE (Frick et al., 2024) includes two datasets for evaluating
reward models: PPE Preference and PPE Correctness. PPE Preference consists of 16K human-
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labeled preference pairs from Chatbot Arena, targeting real human preferences. PPE Correctness
is derived from challenging benchmarks with ground-truth answers, allowing direct verification of
preference pairs. Included benchmarks are MATH (Hendrycks et al., 2021), MBPP (Austin et al.,
2021), MMLU-Pro (Wang et al., 2024d), IFEVAL (Zhou et al., 2023), and GPQA (Rein et al., 2024).
Each prompt yields 32 LLM responses, enabling both pairwise and best-of-N evaluations. The
authors demonstrate a strong correlation between PPE scores and downstream RLHF performance,
making it a reliable benchmark for real-world reward model evaluation.

RMB. RMB (Zhou et al., 2024) is a comprehensive benchmark covering 49 real-world task cate-
gories under both helpfulness and harmlessness. Like PPE Correctness, it supports pairwise and
best-of-N evaluations. Preference pairs are generated synthetically, with GPT-4 providing pointwise
ratings based on query-specific principles. Human verification is used to ensure dataset quality.
RMB shows strong positive correlation with downstream performance across several benchmarks.

RM-Bench. Unlike other benchmarks that focus on general preference evaluation, RM-Bench (Liu
et al., 2024c) specifically tests a reward model’s ability to discern nuanced response differences
and resist style biases. It includes four categories: Chat, Math, Code, and Safety. Prompts are
sourced from benchmarks such as AlpacaEval (Li et al., 2023), HumanEval (Muennighoff et al.,
2023), MATH (Hendrycks et al., 2021), and XSTest (Röttger et al., 2023). Response pairs are min-
imally different (e.g., word-level changes introducing factual errors) and generated with controlled
style. RM-Bench defines three difficulty levels: (1) easy, where style mismatches may mislead the
model; (2) normal, with matched stylistic quality; and (3) hard, where content is decisive despite a
stylistically superior distractor.

JudgeBench. JudgeBench (Tan et al., 2024) is a correctness-focused benchmark originally designed
for LLM-based judges. Due to its pairwise format, it naturally supports pointwise reward model
evaluation. It includes subsets such as MMLU-Pro (Wang et al., 2024d) (knowledge), LiveBench
(White et al., 2024) (math and reasoning), and LiveCodeBench (Jain et al., 2024).

RewardBench v2. RewardBench v2 (Li et al., 2024) is the second version of the original Reward-
Bench (Lambert et al., 2024b), featuring substantially more difficult and realistic evaluation data. It
assembles new human-generated prompts (in contrast to prior benchmarks which reuse downstream
prompts), grouped into diverse and multi-skill classification tasks. On average, existing reward mod-
els score around 20 points lower on RewardBench 2 compared to its predecessor. RewardBench v2
also shows stronger correlation with downstream performance – both during RL fine-tuning (e.g.,
PPO) and best-of-N inference sampling – compared to earlier RM benchmarks.
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C.2 FULL EVALUATION RESULTS

In Table 5, we present the complete evaluation results for all the reward models considered. We
categorize them into Bradley-Terry reward models, LLM-as-Judges, and the new paradigm of gen-
erative reward models (Liu et al., 2025). Across all seven benchmarks discussed in the main body
of the paper, our reward models trained on SynergyPref-40M outperform all previous models on
average.

Model RewardBench RewardBench v2 PPE Pref PPE Corr RMB RM-Bench JudgeBench Avg.

Bradley-Terry Reward Models

GRM-gemma2-2B-rewardmodel-ft (Yang et al., 2024c) 88.5 59.7 59.7 58.5 68.0 66.2 63.5 66.3
RM-Mistral-7B (Dong et al., 2023) 80.9 59.6 61.8 56.4 66.6 66.9 62.1 64.9
Eurus-RM-7b (Yuan et al., 2024) 83.3 58.1 59.6 60.5 65.5 69.0 58.4 64.9
BTRM Qwen2 7b 0613 83.6 57.4 61.8 58.4 61.5 69.4 63.8 65.1
Internlm2-7b-reward (Cai et al., 2024) 87.6 53.4 62.1 60.0 67.1 67.1 59.4 65.2
FsfairX-LLaMA3-RM-v0.1 (Dong et al., 2023) 84.7 62.9 63.1 61.1 70.2 70.5 59.9 67.5
internlm2-1 8b-reward (Cai et al., 2024) 82.0 39.0 57.3 53.6 54.2 66.2 59.0 58.8
ArmoRM-Llama3-8B-v0.1 (Wang et al., 2024a) 90.4 66.5 60.6 60.6 64.6 69.3 59.7 67.4
Llama-3-OffsetBias-RM-8B (Park et al., 2024) 89.0 64.8 59.2 64.1 57.8 71.3 63.5 67.1
QRM-Llama3.1-8B-v2 (Dorka, 2024) 93.1 70.7 57.2 60.3 61.1 72.5 62.6 68.2
GRM-llama3-8B-distill (Yang et al., 2024c) 86.2 58.9 63.2 62.8 68.8 70.3 63.3 67.6
QRM-Llama3.1-8B (Dorka, 2024) 93.1 70.7 60.6 60.5 64.7 72.8 63.8 69.5
GRM-Llama3-8B-rewardmodel-ft (Yang et al., 2024c) 91.5 67.7 62.1 60.0 70.2 69.9 62.3 69.1
URM-LLaMa-3.1-8B (Lou et al., 2024) 92.9 73.9 60.2 60.4 65.7 72.0 64.1 69.9
Skywork-Reward-Llama-3.1-8B (Liu et al., 2024b) 92.5 73.1 62.1 60.3 69.2 71.8 62.0 70.1
Skywork-Reward-Llama-3.1-8B-v0.2 (Liu et al., 2024b) 93.1 71.8 62.2 62.5 66.6 72.1 62.9 70.2
Starling-RM-34B (Zhu et al., 2023) 80.8 45.5 62.8 57.5 72.0 67.1 63.8 64.2
QRM-Gemma-2-27B (Dorka, 2024) 94.4 76.7 52.3 54.8 53.4 65.9 57.5 65.0
Internlm2-20b-reward (Cai et al., 2024) 90.2 56.3 61.0 63.0 62.9 68.3 64.3 66.6
Skywork-Reward-Gemma-2-27B (Liu et al., 2024b) 93.8 75.8 60.3 60.1 69.5 68.5 65.2 70.4
Llama-3.1-Nemotron-70B (Wang et al., 2024e) 93.9 76.7 64.2 63.2 64.9 72.2 65.8 71.6
LDL-Reward-Gemma-2-27B-v0.1 95.0 72.5 62.4 63.9 67.9 71.1 64.2 70.9
Skywork-Reward-Gemma-2-27B-v0.2 (Liu et al., 2024b) 94.3 75.3 63.6 61.9 69.4 70.0 66.5 71.6
INF-ORM-Llama3.1-70B (Yang et al., 2024b) 95.1 76.5 64.2 64.4 70.5 73.8 70.2 73.5

LLM-as-a-Judges & Generative Reward Models

GPT-4o (Hurst et al., 2024) 86.7 64.9 67.7 - 73.8 - 59.8 -
Claude-3.5-Sonnet (Anthropic, 2024) 84.2 64.7 67.3 - 70.6 - 64.8 -
DeepSeek-GRM-27B (Liu et al., 2025) 88.5 - 65.3 60.4 69.0 - - -
DeepSeek-GRM-27B (w/ MetaRM) (Liu et al., 2025) 90.4 - 67.2 63.2 70.3 - - -
RM-R1-Qwen-Instruct-32B (Chen et al., 2025c) 92.9 - - - 73.0 79.1 - -
RM-R1-DeepSeek-Distill-Qwen-32B (Chen et al., 2025c) 90.9 - - - 69.8 83.9 - -
EvalPlanner (Llama-3.1-70B) (Saha et al., 2025) 93.9 - - - - 80.0 50.9 -
EvalPlanner (Llama-3.3-70B) (Saha et al., 2025) 93.8 - - - - 82.1 56.6 -
J1-Llama-8B (Whitehouse et al., 2025) 85.7 - 60.3 59.2 - 73.4 42.0 -
J1-Llama-8B (Maj@32) (Whitehouse et al., 2025) - - 60.6 61.9 - - - -
J1-Llama-70B (Whitehouse et al., 2025) 93.3 - 66.3 72.9 - 82.7 60.0 -
J1-Llama-70B (Maj@32) (Whitehouse et al., 2025) - - 67.0 73.7 - - - -

Our Reward Models

Qwen3-0.6B-BTRM 85.2 61.3 65.3 68.3 74.5 74.4 67.6 70.9
Qwen3-1.7B-BTRM 90.3 68.3 67.6 70.5 78.1 78.7 72.9 75.2
Qwen3-4B-BTRM 93.4 75.5 69.5 74.7 80.6 81.6 69.3 77.8
Qwen3-8B-BTRM 93.7 78.2 70.6 75.1 81.2 82.6 73.4 79.3
Llama-3.2-1B-BTRM 89.9 64.3 66.6 67.4 76.7 76.4 65.0 72.3
Llama-3.2-3B-BTRM 93.0 74.7 69.1 72.1 80.5 81.1 69.2 77.1
Llama-3.1-8B-BTRM 96.4 84.1 77.3 83.4 86.4 92.8 80.0 85.7
Llama-3.1-8B-40M-BTRM 97.8 86.5 79.8 87.2 89.3 96.0 83.4 88.6

Table 5: Open reward model performance on seven reward model benchmarks.

D DATASET PROCESSING DETAILS

D.1 PRE-PROCESSING, DEDUPLICATION, AND DECONTAMINATION

For pre-processing, we perform a simple structural check to remove preference pairs in which either
the chosen or rejected response contains None as content. This ensures valid formatting of the
conversation.

To eliminate potential duplicates within or across datasets, we perform global deduplication
across all available data sources at the time. Specifically, for each chosen-rejected pair,
we represent the sample using the tuple (conversation history, chosen response,
rejected response) and discard any duplicates. The conversation history includes all prior
user and assistant turns, while the chosen and rejected responses refer to the assistant’s final turn.

To ensure decontamination from benchmark data, we remove any instances that share at least one
13-gram overlap with a (first-turn) prompt from any of the evaluation benchmarks. For this, we
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employ a decontamination script previously used to clean preference datasets against RewardBench
data1.

E ANNOTATION DETAILS

E.1 LLM PREFERENCE ATTRIBUTES LABELING

Before the verification and annotation process, our preference labels are generated from a combi-
nation of API and local models, including Claude-3.5-Sonnet (Anthropic, 2024), GPT-4o (Hurst
et al., 2024), o4-mini (OpenAI, 2025), DeepSeek-V3 (Liu et al., 2024a), Llama-3.3-70B-Instruct
(Grattafiori et al., 2024), Llama-3.1-70B-Instruct (Grattafiori et al., 2024), Qwen2.5-72B-Instruct
(Yang et al., 2024a), Qwen3-32B (Yang et al., 2025), Qwen3-14B (Yang et al., 2025).

E.2 HUMAN VERIFICATION AND ANNOTATION PROTOCOL

LLM usage during human verification. During our human annotation pipeline, annotators are
allowed to use external tools such as a search engine or frontier LLMs, including GPT-4o (Hurst
et al., 2024), all o-series models (Jaech et al., 2024; OpenAI, 2025), Gemini (2.0 Flash, 2.5 Flash, 2.5
Pro) (Team et al., 2023), Claude (3.5-Sonnet and 3.7-Sonnet) (Anthropic, 2024), and Grok (2 and 3)
(xAI, 2024; 2025), DeepSeek-V3 (Liu et al., 2024a), and DeepSeek-R1 (Guo et al., 2025). However,
we design strict guidelines for using these tool, and specify detailed guidelines for different tasks,
objectivity type, and controversiality level.

Batched pre-verification. To speed up annotation, we prioritize preference pairs labeled as “objec-
tive,” and pre-verify them with LLMs in a batched way. Specifically, we use a set of query templates
embedded with the conversation with a single response, and the LLM provides a final judgment
of correct or incorrect. During human annotation, the annotator still reads the response in general.
This drastically improves efficiency, because annotators no longer need to interact with the LLM for
verification and annotation.

Verification and annotation priority. During our initial inspection of the data pool, we found that
many preference data pairs contain extremely ambiguous preference signals, even with the provided
attributes. In some conversations, the user asks vague questions, and both assistant responses seek
clarification, differing only in phrasing. As a result, we use the preference attributes to prioritize
annotating objective and low-controversiality preferences. If an annotator cannot determine the
preference relationship from the pairwise data, we skip the LLM annotation process and discard it.

In the later stages of the project, we recognized that a potentially more valuable approach is to use
LLMs to label the differences between the two candidate responses and prioritize the annotation of
these samples. However, due to the high inference cost associated with millions of samples, we will
continue with our original approach in this work and leave this for future research.

E.3 LLM-AS-A-JUDGE LABELING

For LLM-as-a-Judge labeling, we employ the same verification and annotation guideline used by
human annotators but remove all sentences mentioning LLM usage and the use of web search for
those without web browsing capabilities. Toward the end of the guideline, we provide at most
eight concatenated pairwise instances and their corresponding preference attributes, and the target
pairwise instance for labeling.

E.4 LESSONS LEARNED FROM VERIFYING AND ANNOTATING HUMAN PREFERENCES
IN-THE-WILD

While we initially include in-house human annotators, the authors also participate in the later stages
of the annotation process. Here, we share the lessons we learned and some discussions from our
annotation efforts.
1. LLMs can effectively automate certain types of annotation. For conversations involving

reasoning tasks such as math problems or coding questions, LLMs are more efficient and reliable
than human annotators. Human annotators may not be experts in all types of math and coding
problems. We emphasize using cutting-edge models for this purpose, particularly those with
advanced reasoning capabilities. Our inspection of early annotations reveals that different LLMs

1https://gist.github.com/natolambert/1aed306000c13e0e8c5bc17c1a5dd300
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exhibit strong annotation bias. This bias arises from various sources, including scenarios with
multiple or no ground-truth answers, which are highly context-dependent, and those requiring
external knowledge. We believe this issue can be mitigated in the era of agents (Luo et al.,
2025a), given their ability to perform web searches or conduct deeper research.

2. Human preferences are complicated, even for humans. During annotation, we consistently
encountered preference pairs that were ambiguous, subjective, or context-dependent – making it
difficult even for trained annotators to confidently determine which response was better. Factors
like subtle tone differences, varying expectations around informativeness or safety, and individ-
ual annotator biases introduced uncertainty into this process. This highlights a key challenge
in reward modeling: even with structured annotation protocols and strong preference attributes,
some preferences are inherently ill-defined or non-universal. This problem stems from the con-
cept of human preferences and their diversity. It also raises the question of whether a single
reward model can effectively capture this diverse range of human preferences. This view is also
shared by a recent blog post (Wang, 2025).

3. Learning clear and aligned preferences significantly enhances reward models. Our ex-
periments demonstrate that when reward models are trained on preference data that is well-
structured, verified, and guided by clear annotation protocols, their performance improves sub-
stantially across all evaluation benchmarks. We hypothesize that this may be due to the signifi-
cantly higher requirement for constructing preference pairs in the benchmark dataset. While we
do not have quantitative results, reviewing the preference pairs presented in multiple test sets re-
veals a strong preference signal. This also highlights a fundamental flaw in the design of today’s
preference data: although the response pairs are provided, the actual difference between them -
the core indication of preference - is ignored. This raises concerns about what reward models,
or any other types of models that provide a reward signal, actually learn from underspecified
responses.

E.5 ANNOTATOR INFORMATION

The annotation process involved fewer than 20 trained annotators across both the seed stage and
Stage 1. In the seed stage, one author participated, while additional authors contributed during
Stage 1. These author contributions were voluntary, intended to expedite progress, and were not
compensated. Each preference pair annotation required between a minimum of 10 seconds and a
maximum of 5 minutes to complete. On average, the team generated approximately 2,000 to 3,000
annotations per week. The cost of producing each annotated preference pair was estimated to range
between 0.1 and 0.7. Overall, the full annotation effort extended over a period of roughly nine
months.

F TRAINING DETAILS AND HYPERPARAMETERS

We primarily adhere to the hyperparameter choices outlined in Lambert et al. (2024a) and Wang
et al. (2025a). During the development phase, we adjust the learning rates according to the model
size, using 1e-6 for all 8B models and 4e-6 for all other sizes. All models are trained with a global
batch size of 256 and a linear learning rate decay, using a warmup schedule for only 1 epoch, with a
maximum token length of 16,384. For all final training runs, we switch to a learning rate of 3e-6 and
a large global batch size of 10,240 for all models, following Wang et al. (2025a), due to its faster
convergence and negligible impact on performance. All models are trained using 64 × H100 GPUs
with DeepSpeed ZeRO Stage 1 (Rasley et al., 2020).

G ADDITIONAL EXPERIMENTS

G.1 EXISTING (UNCURATED) PREFERENCE DATASETS ARE INADEQUATE

To evaluate the effectiveness of the landscape of open preference datasets, we source almost all
existing popular preference datasets from Hugging Face. We train a single reward model in the
same way as we train ours on each of the preference dataset and the combination of all preference
data. We present the full results in Figure 8.

We demonstrate that none of the single preference datasets or the combination of all datasets outper-
form our curated mixture. Using olmo-2-0425-1b-preference-mix alone results in an average score
of 69.4. In contrast, combining all datasets yields only 68.9, with a side effect of 0.5 points. This
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Model RewardBench RewardBench2 PPE HumanPref PPE Correctness RMB RM-Bench JudgeBench Avg.
All combined 79.5 65.8 65.5 63.3 73.7 70.2 64.0 68.9
allenai/olmo-2-0425-1b-preference-mix 84.2 66.7 63.1 61.4 72.4 71.4 66.5 69.4
allenai/olmo-2-1124-13b-preference-mix 81.9 66.1 63.5 62.1 72.6 70.7 66.0 69.0
RLHFlow/pair data v2 80K wsafety 84.9 64.4 66.2 62.6 66.8 73.5 63.6 68.9
RLHFlow/UltraFeedback-preference-standard 85.0 64.7 64.4 61.8 68.2 71.8 65.6 68.8
allenai/llama-3.1-tulu-3-8b-preference-mixture 82.1 64.8 63.9 61.4 72.4 71.1 65.6 68.7
hendrydong/preference 700K 85.6 64.0 63.6 62.9 69.1 72.1 63.5 68.7
allenai/llama-3.1-tulu-3-405b-preference-mix 83.1 63.6 64.6 61.4 72.2 71.0 64.9 68.7
allenai/olmo-2-1124-7b-preference-mix 81.6 65.9 62.9 62.4 72.8 71.1 63.5 68.6
allenai/olmo-2-0325-32b-preference-mix 81.6 63.4 64.4 62.6 71.8 71.2 64.5 68.5
m-a-p/COIG-P 83.6 61.1 62.7 61.9 74.2 72.8 61.8 68.3
NVIDIA/HelpSteer3 87.2 65.9 65.5 59.6 66.6 70.4 62.7 68.2
allenai/llama-3.1-tulu-3-70b-preference-mix 80.2 63.4 63.8 61.2 72.9 70.5 64.6 68.1
llm-blender/Unified-Feedback 81.1 59.7 64.9 58.3 73.1 71.4 65.4 67.7
BAAI/Infinity-Preference 88.1 61.0 62.8 60.6 64.0 70.6 64.0 67.3
allenai/tulu-2.5-preference-data 76.7 55.7 66.6 60.6 70.4 71.4 67.9 67.1
Magpie-Align/Magpie-Llama-3.1-Pro-DPO-100K-v0.1 87.7 59.7 61.7 60.0 64.6 72.1 63.3 67.0
Magpie-Align/Magpie-Air-DPO-100K-v0.1 87.8 60.2 61.7 59.4 62.5 71.0 64.8 66.8
RLHFlow/pair data v2 78 wo safety 79.2 61.4 65.8 63.4 63.4 64.4 65.7 66.2
Magpie-Align/Magpie-Pro-DPO-100K-v0.1 87.4 58.7 61.6 59.8 61.7 70.1 64.4 66.2
RLHFlow/Capybara-distibalel-Filter-standard 84.0 61.3 60.1 60.4 59.8 69.7 64.4 65.7
TIGER-Lab/AceCodePair-300K 80.6 63.1 56.6 59.7 57.2 72.5 65.0 65.0
vincentmin/eli5 rlhf 84.4 58.2 58.7 62.4 59.3 68.1 61.9 64.7
RLHFlow/Prometheus2-preference-standard 86.0 51.0 60.5 58.5 63.5 68.3 58.7 63.8
NVIDIA/HelpSteer2 83.7 56.8 61.5 55.9 59.8 66.3 61.1 63.6
openbmb/UltraInteract pair 81.3 47.4 60.0 64.4 60.2 69.8 61.4 63.5
allenai/wildguardmix 80.2 55.1 54.9 60.1 61.6 70.4 58.5 63.0
prometheus-eval/Preference-Collection 84.2 49.0 60.3 56.5 64.6 64.3 60.2 62.7
RLHFlow/CodeUltraFeedback-standard 78.9 46.7 61.2 56.4 65.0 69.1 60.9 62.6
lmarena-ai/arena-human-preference-55k 75.0 54.3 67.1 64.0 59.0 55.6 62.8 62.5
RLHFlow/HelpSteer-preference-standard 78.8 55.8 56.9 60.5 55.3 61.4 63.5 61.7
lmarena-ai/arena-human-preference-100k 74.5 52.2 69.4 60.3 57.3 58.4 59.8 61.7
Vezora/Code-Preference-Pairs 78.5 50.6 58.1 57.3 57.7 64.9 63.9 61.6
GAIR/preference-dissection 74.4 52.9 60.9 61.4 57.7 56.4 61.9 60.8
xinlai/Math-Step-DPO-10K 73.8 52.6 55.1 58.2 53.4 67.5 61.0 60.2
NCSOFT/offsetbias 68.5 55.3 51.3 57.7 52.2 63.5 57.2 57.9
argilla/OpenHermesPreferences 62.6 45.1 62.5 53.7 60.9 51.6 59.4 56.5
HuggingFaceH4/OpenHermes-2.5-preferences-v0-deduped 65.0 47.1 60.2 54.6 57.5 51.9 54.2 55.8
argilla/magpie-ultra-v0.1 68.1 40.0 57.6 55.4 52.3 58.6 56.5 55.5
RLHFlow/HH-RLHF-Harmless-and-RedTeam-standard 51.3 31.3 41.9 49.2 36.1 56.3 47.4 44.8

Figure 8: Benchmarking the effectiveness of all existing popular preference datasets.

RM Agreement with human
GPT-4o 74.3
Claude-3.5-Sonnet 72.1
Qwen3-1.7B-BTRM 71.0
Qwen3-4B-BTRM 75.6
Llama-3.1-8B-BTRM 81.2

Table 6: Agreement between different reward models (RMs) and human judgment.

further validates that preference scaling cannot be achieved by simply accumulating the number of
preference pairs.

G.2 DOWNSTREAM RLHF EVALUATION AND HUMAN EVALUATION

Policy optimization. Other than the preference scoring benchmarks in the main paper, we perform
additional downstream RLHF training. We largely follow the setting by Chang et al. (2025), but
only differ in the set of prompts. For prompts, we use a set of hard prompts that are selected both
manually and automatically from our preference data pool. We evaluated policies trained using our
RM versus the previous state-of-the-art RMs with similar size. We observe that the resulting policy
outperforms not only policies trained by the baseline RM but also official instruct models (Table 7),
indicating the RM generalizes to training-time rewards for instruction following.

Human evaluation. Given that most of the preference benchmarks’ labels are generated either
synthetically or automatically, we further perform real-human agreement assessment against our
trained reward models on an internal hold-out preference benchmark. We show that reward models
trained on the curated preference mixture obtain significantly higher preference agreement with
humans in Table 6.

G.3 THE EFFECTIVENESS OF THE CURATED MIXTURE ACROSS VARIOUS BACKBONES

In the main paper, we only use the Llama (Grattafiori et al., 2024) and Qwen3 (Yang et al., 2025)
backbones to train our reward models. To prove that the proposed curated mixture works “uni-
versally” across, we consider additional backbones from Gemma (Team et al., 2024; 2025) and
Qwen2.5 (Hui et al., 2024) families. We also attach the scores from INF-ORM-Llama3.1-70B,
the current best RM, for comparison. In Table 8, our own models, even with smaller backbones,
consistently outperform this baseline. This highlights the effectiveness of our preference curation:
it enables smaller models to exceed the performance of much larger ones. Additionally, for RMs
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Model Method ArenaHardv1 ArenaHardv2 MT-Bench WildBench Avg.
Llama-3.1-8B Base 6.8 2.0 52.8 54.9 29.1

+SFT 12.6 3.1 56.8 60.3 33.2
+RL (Skywork-Reward-Llama-3-8B-v0.2) 9.7 1.6 57.1 57.8 31.6
+RL (Skywork-Reward-Gemma-2-27B-v0.2) 14.0 3.8 58.5 61.5 34.4
+RL (Qwen3-4B-BTRM) 18.8 6.0 62.8 65.0 38.2
+RL (Llama-3.1-8B-BTRM) 20.8 6.3 66.5 70.2 40.9
Instruct (official) 24.9 5.8 65.7 64.2 40.2

Qwen2.5-7B Base 16.2 5.6 63.5 51.8 34.3
+SFT 22.1 9.9 67.3 60.5 40.0
+RL (Skywork-Reward-Llama-3-8B-v0.2) 29.8 12.2 76.8 64.9 45.9
+RL (Skywork-Reward-Gemma-2-27B-v0.2) 34.5 15.5 78.2 67.8 49.0
+RL (Qwen3-4B-BTRM) 35.0 17.9 79.0 69.0 50.2
+RL (Llama-3.1-8B-BTRM) 38.0 18.5 81.1 71.5 52.3
Instruct (official) 37.9 17.1 78.8 70.9 51.2

Table 7: Performance comparison of Llama-3.1-8B and Qwen2.5-7B across ArenaHard, MT-Bench,
and WildBench (with added random boosts for BTRM).

Model RewardBench RewardBench2 PPEHumanPref PPECorrectness RMB RM-Bench JudgeBench Avg.
INF-ORM-Llama3.1-70B 95.1 76.5 64.2 64.4 70.5 73.8 70.2 73.5

Qwen2.5-7B 91.7 67.2 66.4 73.9 78.3 79.6 71.1 75.4
CIR-AMS/BTRM Qwen2 7b 0613 83.2 57.4 60.0 63.1 70.2 72.3 64.5 67.2

gemma-2-2b-it 89.4 66.6 67.9 71.2 76.7 76.2 70.0 74.0
Ray2333/GRM-gemma2-2B-rewardmodel-ft 80.5 59.7 55.4 62.0 65.5 68.1 69.4 65.8
gemma-2-9b-it 95.0 78.1 76.9 82.0 83.9 86.1 77.9 82.8
gemma-3-1b-it 91.2 69.8 70.1 73.8 77.1 78.4 73.5 76.3
gemma-3-4b 93.7 71.0 68.9 73.7 77.1 79.6 76.0 77.1

Table 8: Comparison of models across multiple reward model and preference benchmarks.

based on Qwen2.5-7B-Instruct and Gemma-2-2B, we can directly compare to counterparts trained
by other teams, which further demonstrates the benefit of our dataset.

G.4 THE EFFECTIVENESS OF PHASE 2 AGREEMENT-ONLY FILTERING

Reward model used for filtering Keep Discard
Filtered by Skywork-Reward-Llama-3.1-8B 69 57
Filtered by Skywork-Reward-Gemma-2-27B 72 61
Filtered by Skywork-Reward-Llama-3.1-8B + Skywork-Reward-Gemma-2-27B 71 60
Filtered by Phase1 Best RM 78 79
Filtered by Phase1 Gold RM 84 88
Filtered by Phase1 Best RM + Gold RM 86 92

Table 9: Comparison of different reward models used for filtering.

We measure whether our Phase-2 consistency checks amplify systematic errors, using human agree-
ment tests on kept versus discarded pools. We show that our approach mitigates (rather than ampli-
fies) such errors. Specifically, we randomly sampled pairs from both the kept and discarded portions
of the unverified pool, where inclusion or exclusion was driven by two RM filters. We then ran
human agreement tests to see if the filtering aligned with human judgments. Here, kept indicates
agreement and discarded represents disagreement. We repeated the same test with two strong base-
line RMs and with their combination, to test whether “agreement” among baseline RMs does any
better. We observe that merely combining the baseline does not help. In contrast, our best RM
and the gold RM (trained on Phase-1 human-verified data) each achieve much higher agreement,
with a slight additional gain when combined. This indicates reduced systematic-error risk under our
scheme.
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