

000 HUMAN-AI CURATION SYNERGY: SCALING PREFERENCE 001 DATA CURATION VIA HUMAN-GUIDED AI 002 FEEDBACK

003
004
005
006 **Anonymous authors**
007 Paper under double-blind review
008
009
010
011
012

ABSTRACT

013 Despite the critical role of reward models (RMs) in reinforcement learning from
014 human feedback (RLHF), current state-of-the-art open RMs perform poorly on
015 most existing evaluation benchmarks, failing to capture the spectrum of nuanced
016 and sophisticated human preferences. Even approaches incorporating advanced
017 training techniques have failed to yield meaningful performance improvements.
018 We hypothesize that this brittleness stems primarily from limitations in preference
019 datasets, which are often narrowly scoped, synthetically labeled, or lack rigorous
020 quality control. To address these challenges, we present a large-scale preference
021 dataset comprising 40 million preference pairs. To enable data curation at scale,
022 we design a human-AI synergistic two-stage pipeline that leverages the comple-
023 mentary strengths of human annotation quality and AI scalability. In this pipeline,
024 humans provide verified annotations, while large language models (LLMs) per-
025 form automatic curation based on human guidance. Based on this preference
026 mixture, we train simple Bradley-Terry reward models ranging from 0.6B to 8B
027 parameters on a carefully curated subset of 26 million preference pairs from the
028 40M pool. We demonstrate that the resulting reward models are versatile across
029 a wide range of capabilities, including alignment with human preferences, objec-
030 tive correctness, safety, resistance to stylistic biases, and best-of-N scaling. These
031 reward models achieve state-of-the-art performance across seven major reward
032 model benchmarks, outperform the latest paradigm of generative reward models,
033 and demonstrate strong downstream performance. Ablation studies confirm that
034 the effectiveness of our approach stems not only from data scale but also from
035 high-quality curation. Our approach represents substantial progress in open re-
036 ward models, revealing the untapped potential of existing preference datasets and
037 demonstrating how human-AI curation synergy can unlock significantly higher
038 data quality.

1 INTRODUCTION

039 Reward models (RMs) have become critical components in Reinforcement Learning from Human
040 Feedback (RLHF) pipelines (Christiano et al., 2017; Stiennon et al., 2020; Ouyang et al., 2022;
041 Dong et al., 2024a; Lambert, 2025; Schulman et al., 2017), now standard in Large Language Model
042 (LLM) post-training (Tie et al., 2025). Recent advancements in LLM reasoning capabilities (Jaech
043 et al., 2024; Guo et al., 2025; Xu et al., 2025; Chen et al., 2025a) and Reinforcement Learning with
044 Verifiable Rewards (RLVR) (Lambert et al., 2024a) have sparked interest in policy optimization
045 via rule-based rewards (Luo et al., 2025c; Wen et al., 2025; Team, 2025b;a; Luo et al., 2025b; He
046 et al., 2025b). These reward functions typically verify whether answers match ground truth for
047 math problems or pass unit tests for coding tasks, and can include fine-grained rules for verifiable
048 outputs (Bercovich et al., 2025; Ma et al., 2025). However, complex human preferences often cannot
049 be captured through simple rules, limiting the effectiveness of rule-based approaches in advancing
050 general preference learning. Thus, the challenge of modeling nuanced, sophisticated, and sometimes
051 conflicting human preferences through effective reward models remains largely unresolved.

052 To model human preferences, previous works have curated various datasets (Cui et al., 2023; Wang
053 et al., 2025c; Dong et al., 2024a; Xu et al., 2024; Park et al., 2024; Lambert et al., 2024a; OLMo et al.,

054 2024) with prompts drawn from diverse sources. These efforts employ automatic methods (Cui et al.,
 055 2023; Xu et al., 2024) or human annotators (Wang et al., 2024f; 2025c) to generate preference pairs,
 056 enabling preference learning in a pairwise contrastive manner (Bradley & Terry, 1952; Ouyang et al.,
 057 2022). Beyond dataset construction, some works aim to improve reward modeling via inductive
 058 biases in enhanced loss functions (Liu et al., 2024b; Cai et al., 2024; Yang et al., 2024b; Wang
 059 et al., 2024f; Zhang et al., 2024b) or modified model architectures (Wang et al., 2024a; Chen et al.,
 060 2025b; Dorka, 2024). To evaluate progress in reward modeling, RewardBench (Coste et al., 2023)
 061 was released as the first benchmark for RMs. As reward models evolve, scores on RewardBench
 062 have begun to saturate (Wang et al., 2024a; Park et al., 2024; Wang et al., 2024c; Liu et al., 2024b;
 063 Shiwen et al., 2024; Wang et al., 2024b; e), but multiple studies (Frick et al., 2024; Zhou et al., 2024;
 064 Song et al., 2025; Wen et al., 2024) have argued that such saturated scores are weak indicators of
 065 real progress. These studies highlight weak (or even inverse) correlations between RewardBench
 066 scores and downstream task performance (e.g., best-of-N or policy training).

067 In this work, **we focus exclusively on the dual goal of both enhancing the quality and scaling**
 068 **the quantity of preference data**, to advance the development of open reward models. We introduce
 069 SynergyPref-40M, a large-scale preference dataset comprising 40 million preference pairs. We de-
 070 sign a two-stage preference data curation pipeline (Figure 2) that (1) combines human verification
 071 under a stringent protocol for quality assurance (Section 3.2), (2) and employs human-preference-
 072 guided LLM judges for scalability (Section 3.3). The pipeline also involves iterative training of a re-
 073 ward model, which continuously incorporates feedback from human labels and retrieves preference
 074 data where the RM itself performs poorly, to enable further learning. Our pipeline yields 26 million
 075 carefully curated preference pairs, which we use to develop and train a series of high-performing
 076 reward models, ranging from 0.6B to 8B parameters.

077 Through comprehensive evaluations on seven major RM benchmarks (Lambert et al., 2024b; Frick
 078 et al., 2024; Zhou et al., 2024; Liu et al., 2024c; Tan et al., 2024; Malik et al., 2025), we demon-
 079 strate that our reward models achieves state-of-the-art performance, with our 8B reward model **outper-**
 080 **forming all existing open reward models across all seven benchmarks by a significant margin**.
 081 We also demonstrate these reward models’ superior performance across multiple critical dimensions,
 082 including general human preferences, objective correctness, resistance to stylistic biases, safety, and
 083 best-of-N scaling (Section 4.2). Through data ablations, we show that the success of SynergyPref-
 084 40M is driven not only by its scale but also by its high quality (Section 4.3). Our method-wise
 085 ablations confirm the importance of human annotation, LLM annotation guided by human prefer-
 086 ences, and our carefully designed and rigorously implemented annotation protocols (Section 4.4).

087 We outline our main contributions as follows:

- 088 • We collect and curate SynergyPref-40M, which, to the best of our knowledge, is the largest
 089 curated preference mixture to date.
- 090 • We train a series of eight state-of-the-art reward models ranging from 0.6B to 8B parameters,
 091 which achieve top rankings on seven major reward model benchmarks, demonstrating strong
 092 performance across diverse evaluation dimensions.
- 093 • We propose a preference data curation pipeline that combines human verification for quality with
 094 LLM-as-a-Judge, guided by human preferences for scalability.

095 2 THE BRITTLENESS OF CURRENT OPEN REWARD MODELS

096 In this section, we begin with a comprehensive assessment of existing open reward models. We then
 097 present the results and examine potential shortcomings of the status quo.

098 **Single-benchmark evaluation has limitations.** RewardBench (Lambert et al., 2024b) is a dataset
 099 for pairwise preference evaluation in chat, safety, and reasoning, and has become the standard bench-
 100 mark for assessing reward models. However, several subsequent studies (Frick et al., 2024; Zhou
 101 et al., 2024; Wen et al., 2024) argue that scores on RewardBench (Li et al., 2024) do not directly
 102 correlate with downstream performance and, in some cases, exhibit an inverse relationship. **Our**
 103 **evaluation results in Figure 1 corroborate this concern: while RewardBench shows positive cor-**
 104 **relation with other benchmarks overall, improvements on RewardBench from ~80 to 90+ do not**
 105 **consistently translate to gains on other benchmarks.** We advocate for benchmarks that either (1) in-
 106 involve more challenging evaluation methods (e.g., best-of-N) or (2) demonstrate stronger correlations
 107 with downstream performance.

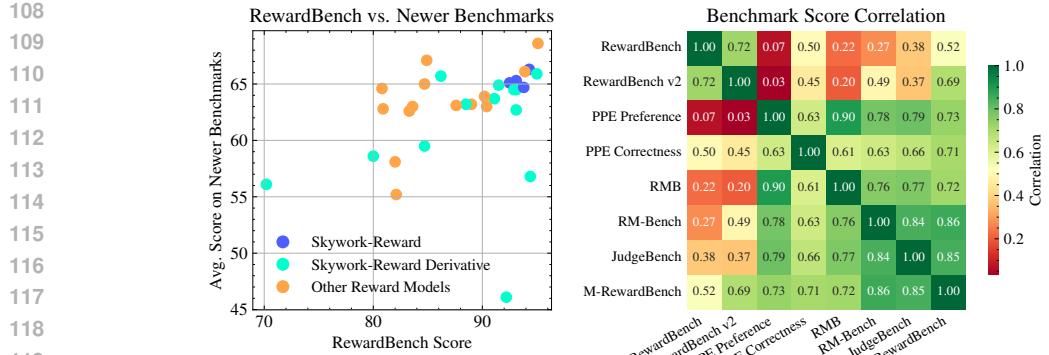


Figure 1: **Left:** Comparison of the performance of 31 top open reward models on RewardBench (Lambert et al., 2024b) and their average scores across seven newer benchmarks (Frick et al., 2024; Zhou et al., 2024; Liu et al., 2024c; Tan et al., 2024; Gureja et al., 2024). **Right:** Pearson correlation scores across seven reward model benchmarks.

A comprehensive evaluation suite reveals inconsistent improvements. Based on the above criteria, in addition to RewardBench, we select several other benchmarks that span multiple evaluation dimensions. Specifically, we include PPE Preference and Correctness (Frick et al., 2024) to assess both real human preferences and unambiguous correctness; RMB (Zhou et al., 2024) for its challenging best-of-N evaluation; RM-Bench (Liu et al., 2024c) to evaluate robustness to content variation and style bias; and JudgeBench (Tan et al., 2024), which evaluates preference pairs drawn from difficult, real-world LLM evaluation datasets, such as LiveCodeBench (Jain et al., 2024). Finally, we include the newly released RewardBench v2 (Malik et al., 2025), which enforces global best-of-N evaluation and extremely difficult capability assessments (e.g., distinguishing highly similar responses and reward margin requirements). A detailed description of these benchmarks is provided in Section C.1. We present the main results in Figure 1, comparing RewardBench scores with average scores across the seven newer benchmarks, and report Pearson correlations among all benchmarks. Our findings are as follows:

- **Improvements on RewardBench do not guarantee broader gains.** As model scores on RewardBench increase from ~ 80 to $90+$, performance on other benchmarks does not consistently improve – it may get better, worse, or remain approximately the same. This inconsistency, combined with the weak correlations shown in the right plot of Figure 1, suggests that researchers and practitioners should avoid interpreting reward model quality based on a single benchmark.
- **Alternative loss functions or model modifications fail to yield consistent gains for the Gemma-2-27B variants** (Yang et al., 2024b; Dorka, 2024; Lou et al., 2024; Zhang et al., 2024b; Liu et al., 2025). When examining the 27B models derived from Gemma in our experiments (see Table 5 in the appendix), the original Skywork-Reward-Gemma-2-27B-v0.2 remains the best RM in terms of average performance, while all variants with loss modifications fall behind. However, we acknowledge this claim is limited to this specific model series and does not generalize to all model modifications.
- Among the top 20 models on RewardBench, 16 directly or indirectly use the same base model (Liu et al., 2024b) or are fine-tuned on highly similar training data, indicating **stagnant progress in both open preference datasets and reward models** since September 2024.

3 SCALING PREFERENCE DATA CURATION VIA HUMAN-GUIDED AI FEEDBACK

3.1 PIPELINE OVERVIEW

In this section, we present a two-stage preference data curation pipeline (Figure 2) that combines human verification for quality assurance with annotations from human-preference-guided LLM judges to achieve scalability. In **Stage 1**, human and LLM annotators label *gold* and *silver* preference data, respectively. Humans follow a strict verification protocol, while LLMs use a preference-aware annotation scheme conditioned on human preference labels. A reward model is first trained on the *silver* data and evaluated against the *gold* data to identify its shortcomings. We then employ a mechanism

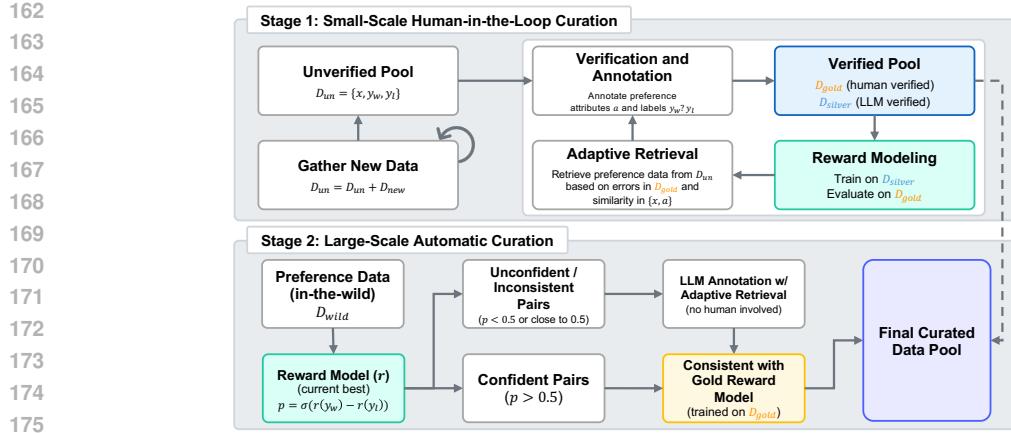


Figure 2: A two-stage preference data curation pipeline. **Stage 1 (top)** involves human-AI synergistic curation and runs iteratively. **Stage 2 (bottom)** scales data curation automatically using reward model consistency checks, eliminating the need for further human supervision.

to select similar preference samples where the current reward model performs poorly, which are re-annotated to train the next iteration of the RM. This process is repeated over multiple iterations.

In **Stage 2**, we combine the reward model from Stage 1 with a gold reward model – trained exclusively on verified human data – to guide data selection through a consistency-based mechanism. Since this stage requires no human supervision, it enables scaling to millions of preference data pairs. This is depicted as Stage 2 in the lower part of Figure 2.

3.2 STAGE 1: SMALL-SCALE HUMAN-IN-THE-LOOP CURATION

Overview. Stage 1 is an iterative procedure consisting of 8 iterations. In each iteration, we focus on two things: (1) collecting more unverified preference pairs D_{un} , and (2) producing a silver set D_{silver} via LLM annotation and a gold set D_{gold} via human annotation to train and identify flaws in the current reward model. Throughout Stage 1, we accumulate roughly 1M preference pairs in total.

Seed preference data initialization. We begin by collecting available preference data to form an unverified pool, D_{un} . During preference data collection, we source our data from publicly available preference pairs, primarily collected from a wide range of sources (over 40+) on Hugging Face, provided that the licenses and terms of use permit it (see Section D.2 for detailed composition and licensing information). For each pair in this pool, given the 3-tuple (x, y_w, y_l) – comprising the conversation x , the chosen (winning) response y_w , and the rejected (losing) response y_l – we collect LLM-generated preference attributes a . Each attribute set is a 5-tuple consisting of: (1) task category, (2) preference objectivity, (3) controversiality, (4) desired attributes, and (5) annotation guideline. Task category, objectivity, and controversiality serve as metadata to ensure annotation diversity across scenarios. The desired attributes describe the qualities users seek in good responses, while the annotation guideline provides instance-specific, context-dependent criteria for determining the preference label. We provide examples of these attributes and quality analysis in Section E.

Human verification and annotation protocol. We initialize with a small, high-quality, and diverse set of preference pairs as the *seed data*. Using the generated preference attributes, human annotators perform strict verification following a predefined protocol (detailed in Section E.2). At a high level, the protocol outlines core principles and practices, as well as specific guidelines tailored to each task category, objectivity type, and controversiality level. For example, it permits the use of external tools – such as search engines, frontier LLM assistants, and domain-specialized LLMs (e.g., for math or code) – to aid in labeling. However, full reliance on LLMs for labeling is strictly prohibited. Specifically, annotators provide a final judgment based on the attributes and the instance-specific guideline. For tasks involving fact-checking, annotators are required to use a search engine; for code correctness, annotators instruct an LLM to execute the code and verify correctness. Even when LLMs and external tools are used, annotators remain responsible for the final judgment. (Note that we still consider this process “human annotation.”) Preference pairs produced during this process are collected as D_{gold} . This rigorous process yields the seed dataset D_{seed} , where the human-verified portion is denoted as D_{gold} (for validation), and the LLM-verified portion as D_{silver} (for training).

216 Importantly, the preference attributes in D_{gold} are also edited and verified by human annotators,
 217 ensuring higher quality.
 218

219 **Step 1: Reward model training and evaluation.** We initialize a pointwise Bradley-Terry reward
 220 model (Bradley & Terry, 1952; Ouyang et al., 2022) and train it on \mathcal{D}_{silver} . We select the best current
 221 reward model checkpoint θ based on validation accuracy on \mathcal{D}_{gold} . **This checkpoint is referred to as**
 222 **the “best reward model” throughout the paper, including in Stage 2 filtering.** For each (x, y_w, y_l) ,
 223 we collect its prediction $p = \sigma(r_\theta(x, y_w) - r_\theta(x, y_l))$.
 224

225 **Step 2: Error-driven adaptive preference retrieval.** Instead of relying solely on human-annotated
 226 data to increase data volume, we leverage LLM annotators via an adaptive retrieval mechanism (Ram
 227 et al., 2023) to collect representative samples aligned with human preferences. **This step involves**
 228 **two separate retrieval processes.** First, we identify pairs where the current RM performs poorly: we
 229 evaluate the current reward model on D_{gold} to identify pairs it misclassifies, then sample new pairs
 230 from D_{un} that are similar to these misclassified pairs. This first retrieval selects samples at the cur-
 231 rent RM’s weak spots for subsequent LLM annotation. This mechanism selects new examples from
 232 the unverified pool based on both the preference attributes a and the reward model’s predictions.
 233 For each pairwise instance, we compute the embedding (Sturua et al., 2024) of (x, a) and retrieve
 234 the top- k similar items. Intuitively, we prioritize preference data that resemble instances where the
 235 reward model errs or shows low confidence. We set the retrieval upper bound $k_{max} = 8$ and use a
 236 dynamic rule to determine k :
 237

$$k = \begin{cases} k_{max}, & \text{if } p \leq 0.5 \text{ (incorrect prediction)} \\ \lceil k_{max} \cdot (1 - p) \rceil, & \text{if } p > 0.5 \text{ (correct prediction)} \end{cases}$$

238 **Step 3: Preference-aware labeling.** To augment LLM annotation with gold human labels, we
 239 perform a second retrieval step: for each pair selected in Step 2, we retrieve similar pairs from
 240 D_{gold} (which are human-labeled) and insert them as few-shot examples to guide the LLM in making
 241 the final judgment. This ensures that LLM annotation is conditioned on human-verified examples
 242 throughout the process. Using the retrieved examples with human labels, we employ a group of
 243 strong LLMs to aggregate final judgments using self-consistency (Wang et al., 2022). First, we
 244 perform intra-model aggregation via self-consistency, then merge results across models to mitigate
 245 potential bias from any single model. **The list of LLMs used and the annotation prompts are provided**
 246 **in Section E.** For all LLM annotations, responses are labeled as “Candidate 1” and “Candidate 2,”
 247 with their order randomized in the prompt. While pointwise scoring (He et al., 2025a; Liu et al.,
 248 2025) has shown greater effectiveness, it is not applicable here due to our reliance on both human
 249 and LLM annotators, making it impractical to enforce a shared standard. Finally, human-labeled
 250 samples are added to \mathcal{D}_{gold} , and LLM-labeled samples to \mathcal{D}_{silver} . Throughout Stage 1, we iteratively
 251 perform Steps 1, 2, and 3. After each iteration, we use an internal human-labeled validation set
 252 for sanity checking. However, scores from this sanity check serve only as a reference; pipeline
 253 execution does not depend on them.
 254

3.3 STAGE 2: LARGE-SCALE AUTOMATIC CURATION OF PREFERENCE DATA IN-THE-WILD

255 We now scale up to tens of millions of in-the-wild preference data pairs. **We denote this set as**
 256 **D_{wild} , which contains the remaining publicly available preference pairs not allocated to D_{un} in**
 257 **Stage 1. Like D_{un} , D_{wild} is sourced from publicly available preference pairs collected from over 40**
 258 **diverse sources on Hugging Face, provided that licenses and terms of use permit it. We allocate all**
 259 **originally human-labeled pairs to D_{un} (used in Stage 1) and leave the rest to D_{wild} (used in Stage**
 260 **2). See Section D.2 for full details.** However, annotating the entire dataset – even automatically
 261 – can be prohibitively costly and unnecessary. Below, we describe two consistency-based filtering
 262 strategies to determine which data points warrant further verification. **Importantly, Stage 2 involves**
 263 **no human annotation; all annotation and filtering are performed by LLMs and the best reward model**
 264 **checkpoint from Stage 1.**

265 **Preference consistency with the best reward model.** Inspired by Kim et al. (2024) and Liu et al.
 266 (2024b), we adopt a filtering strategy that excludes all pairs with confidence greater than 0.5 under
 267 the current best reward model. **By “skip,” we mean that we directly incorporate these pairs into**
 268 **the final dataset without any further modification or annotation.** For the remaining pairs where a
 269 mismatch is detected (i.e., the preference pair does not agree with the current best reward model),
 270 we **fallback to LLM annotation to make the final judgment.** This LLM annotation step uses exactly
 271 the same procedure as in Stage 1: we retrieve similar pairs from D_{gold} and insert them as few-shot

270	Model	RewardBench	RewardBench v2	PPE Pref	PPE Corr	RMB	RM-Bench	JudgeBench	Avg.
<i>Open Reward Models</i>									
272	Llama-3-OffsetBias-RM-8B (Park et al., 2024)	89.0	64.8	59.2	64.1	57.8	71.3	63.5	67.1
273	ArMoRM-Llama3-8B-v0.1 (Wang et al., 2024a)	90.4	66.5	60.6	60.6	64.6	69.3	59.7	67.4
274	InternLM2-20b-reward (Cai et al., 2024)	90.2	56.3	61.0	63.0	62.9	68.3	64.3	66.6
275	Skywork-Reward-Llama-3.1-8B-v0.2 (Liu et al., 2024b)	93.1	71.8	62.2	62.5	66.6	72.1	62.9	70.2
276	LDL-Reward-Gemma-2-27B-v0.1	95.0	72.5	62.4	63.9	67.9	71.1	64.2	71.0
277	Skywork-Reward-Gemma-2-27B-v0.2 (Liu et al., 2024b)	94.3	75.3	63.6	61.9	69.4	70.0	66.5	71.6
278	Llama-3.1-Nemotron-70B (Wang et al., 2024f)	93.9	76.7	64.2	63.2	64.9	72.2	65.8	71.6
279	INF-ORM-Llama3.1-70B (Yang et al., 2024b)	95.1	76.5	64.2	64.4	70.5	73.8	70.2	73.5
<i>LLM-as-a-Judge & Generative Reward Models</i>									
280	GPT-40 (Hrus et al., 2024)	86.7	64.9	67.7	67.1	73.8	73.1	59.8	70.4
281	Claude-3.5-Sonnet (Anthropic, 2024)	84.2	64.7	67.3	69.2	70.6	74.5	64.8	70.8
282	DeepSeek-GRM-27B (Liu et al., 2025)	88.5	-	65.3	60.4	69.0	-	-	-
283	DeepSeek-GRM-27B (w/ MetaRM) (Liu et al., 2025)	90.4	-	67.2	63.2	70.3	-	-	-
284	RM-R1-Qwen-Instruct-32B (Chen et al., 2025c)	92.9	-	-	-	73.0	79.1	-	-
285	RM-R1-DeepSeek-Distill-Qwen-32B (Chen et al., 2025c)	90.9	-	-	-	69.8	83.9	-	-
286	EvalPlanner (Llama-3.1-70B) (Saha et al., 2025)	93.9	-	-	-	-	80.0	50.9	-
287	EvalPlanner (Llama-3.3-70B) (Saha et al., 2025)	93.8	-	-	-	-	82.1	56.6	-
288	J1-Llama-8B (Whitehouse et al., 2025)	85.7	-	60.3	59.2	-	73.4	42.0	-
289	J1-Llama-8B (Maj@32) (Whitehouse et al., 2025)	-	-	60.6	61.9	-	-	-	-
290	J1-Llama-70B (Whitehouse et al., 2025)	93.3	-	66.3	72.9	-	82.7	60.0	-
291	J1-Llama-70B (Maj@32) (Whitehouse et al., 2025)	-	-	67.0	73.7	-	-	-	-
<i>Our Reward Models</i>									
292	Qwen3-0.6B-BTRM	85.2	61.3	65.3	68.3	74.5	74.4	67.6	70.9
293	Qwen3-1.7B-BTRM	90.3	68.3	67.6	70.5	78.1	78.7	72.9	75.2
294	Qwen3-4.4B-BTRM	93.4	75.5	69.5	74.7	80.6	81.6	69.3	77.8
295	Qwen3-8B-BTRM	93.7	78.2	70.6	75.1	81.2	82.6	73.4	79.3
296	Llama-3.2-1B-BTRM	89.9	64.3	66.6	67.4	76.7	76.4	65.0	72.3
297	Llama-3.2-3B-BTRM	93.0	74.7	69.1	72.1	80.5	81.1	69.2	77.1
298	Llama-3.1-8B-BTRM	96.4	84.1	77.3	83.4	86.4	92.8	80.0	85.7
299	Llama-3.1-8B-40M-BTRM	97.8	86.5	79.8	87.2	89.3	96.0	83.4	88.6

Table 1: Reward model performance assessed on seven benchmarks. **Bold** numbers indicate the best performance among all models, while underlined numbers represent the second best. Entries marked with “-” indicate that a model is unreleased. A complete evaluation is provided in Table 5.

examples to help the LLM make the final judgment. We apply the same adaptive preference retrieval and human-preference-guided LLM annotation from Section 3.2 without involving human verifiers.

Preference consistency with the gold reward model. We train a separate gold reward model using all cumulative human-verified samples to approximate the “true” human preference distribution. From the unverified pool, we retain only those pairs whose original chosen-rejected labels are consistent with (1) the gold reward model and (2) either the LLM judges or the current best reward model. Approximately 5 million preference pairs passed through this consistency mechanism without requiring attribute generation or additional labeling. To leverage the discarded pool, we also experiment with “recycling” the discarded data by simply flipping the chosen-rejected order, which incurs no additional annotation or computational overhead.

4 EXPERIMENTAL RESULTS

In this section, we first present the main results of reward model performance in Section 4.2. We then conduct additional ablations on both data (Section 4.3) and method (Section 4.4) to demonstrate the effectiveness of our approach.

4.1 REWARD MODEL TRAINING

We train all reward models as Bradley-Terry models using the Llama 3.1 and 3.2 series (Grattafiori et al., 2024) and the Qwen3 (Yang et al., 2025) collection as backbones. We choose model backbones with no more than 8B parameters for both training and usability considerations. Specifically, from the Llama 3 series, we employ Llama-3.1-8B-Instruct, Llama-3.2-3B-Instruct, and Llama-3.2-1B-Instruct. For Qwen3, we consider sizes of 0.6B, 1.7B, 4B, and 8B. It is evident that findings from RewardBench v2 (Malik et al., 2025) show that using larger model backbones, such as 70B, results in greater gains. However, we do not consider them for this generation due to the training cost (on 26 to 40 million preference pairs) and the ease of use in actual RLHF settings.

All reward models are trained with a maximum context length of 16K tokens, which encompasses the majority of the samples in our data mixture to avoid truncation. For all final model training runs, we adopt the hyperparameters from Wang et al. (2025a), with a large global batch size of 10,240 and a constant learning rate schedule. We train all reward models exclusively on the 26 million curated subset. We also experiment with a variant that has a “-40M” suffix. This variant is trained using 26 million curated pairs, along with additional pairs that have a flipped chosen-rejected order (i.e., those that agree with humans) from the discarded 14 million pairs.

Model	Knowledge	Reasoning	Math	Coding	Avg.
GPT-4o	50.6	54.1	75.0	59.5	59.8
Claude-3.5-Sonnet	62.3	66.3	66.1	64.3	64.8
DeepSeek-R1	59.1	82.7	80.4	92.9	78.8
o1-preview	66.2	79.6	85.7	85.7	79.3
o3-mini	58.4	62.2	82.1	78.6	70.3
o3-mini (low)	63.0	69.4	83.4	83.3	74.8
o3-mini (medium)	62.3	86.7	85.7	92.9	81.9
o3-mini (high)	67.5	89.8	<u>87.5</u>	100	86.2
Qwen3-0.6B-BTRM	62.3	66.3	82.1	59.5	67.6
Qwen3-1.7B-BTRM	66.9	69.4	83.9	71.4	72.9
Qwen3-4B-BTRM	66.9	64.3	80.4	66.7	69.5
Qwen3-8B-BTRM	70.1	67.3	82.1	73.8	73.4
Llama-3.2-1B-BTRM	61.0	66.3	73.2	59.5	65.0
Llama-3.2-3B-BTRM	64.3	65.3	87.5	59.5	69.2
Llama-3.1-8B-BTRM	76.6	75.5	89.3	78.6	80.0
Llama-3.1-8B-40M-BTRM	79.9	78.6	89.3	85.7	<u>83.4</u>

Table 2: Performance comparison of RMs with state-of-the-art LLM-as-a-Judges and reasoning models on JudgeBench (Tan et al., 2024).

4.2 A COMPREHENSIVE EVALUATION OF THE REWARD MODELS

Here, we present the main evaluation results and analysis based on seven reward model benchmarks. We cover the details of them in Section C.1.

General preferences. We report full benchmark results for the current top-performing reward models, LLM-as-a-Judges, and generative reward models in Table 1. Across all seven benchmarks, our reward models outperform not only much larger ones (i.e., 70B) but also the emerging class of generative reward models (Liu et al., 2025; Chen et al., 2025c). We interpret this as strong evidence that SynergyPref-40M captures a wide range of preferences, enabling more robust preference learning across multiple dimensions simultaneously. Meanwhile, the result highlights the importance of data quality relative to the strength of the base models. Even at a scale of 1.7B parameters, a reward model can outperform a 70B model on all benchmarks except for RewardBench and RewardBench v2, effectively bridging the model size gap.

Correctness preferences. For objective correctness evaluation, we primarily consider JudgeBench (Tan et al., 2024) and PPE Correctness (Frick et al., 2024). To effectively measure progress, we directly compare our reward models with leading LLMs and reasoning models that top the JudgeBench leaderboard (Table 2). Note that JudgeBench uses a weighted average score across all samples, whereas we compute the average score across the four categories to maintain consistency with all other benchmarks. While our reward models underperform state-of-the-art reasoning and coding models on average, they outperform all leading models on knowledge tasks by a significant margin. Notably, Llama-3.2-3B-BTRM achieves math performance equivalent to o3-mini (high), while Llama-3.1-8B-BTRM outperforms o3-mini (high) in this category. For PPE Correctness, we compare our model against existing reward models using the Best-of-N evaluation (Figure 3) in the following paragraph.

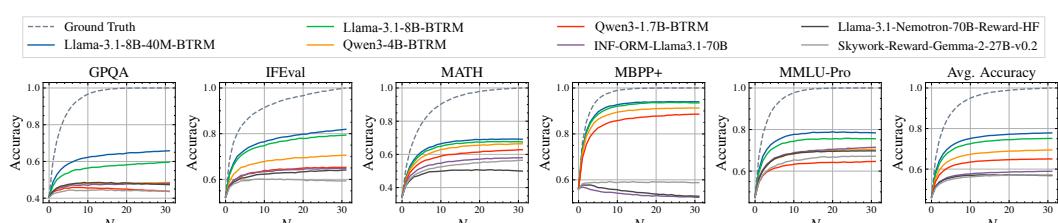


Figure 3: Best-of-N scaling curves of RMs across five tasks on PPE Correctness (Frick et al., 2024).

Best-of-N accuracy and scaling. We evaluate our RMs on the BoN splits from RMB (Zhou et al., 2024) and PPE Correctness Preference (Frick et al., 2024). As shown in Table 3, our RMs demonstrate strong Best-of-N (BoN) capability in both helpfulness and harmlessness. All eight RMs outperform GPT-4o, the previous state-of-the-art, by a margin of up to 20 points. We further present BoN curves for five challenging tasks in PPE Correctness in Figure 3. Llama-3.1-8B-BTRM shows superior scaling, outperforming all other models evaluated. Among all BoN scaling curves, all our model variants exhibit positive scaling (i.e., performance continues to improve as N increases), except for our 1.7B variant in GPQA. We further confirm their BoN capability on RewardBench v2 (Li et al., 2024) (Figure 5), which requires precise best-of-N selection globally across the dataset.

378	Model	Easy	Normal	Hard	Avg.	Model	Factuality	Precise IF	Math	Safety	Focus	Tie	Avg.
379	Skywork-Reward-Llama-3.1-8B-v0.2	70.5	74.2	49.3	64.7	Skywork-Reward-Llama-3.1-8B	69.9	42.5	62.8	93.3	96.2	74.1	73.1
380	Skywork-Reward-Gemma-2-27B-v0.2	88.9	71.9	42.1	67.6	URM-Llama-3.1-8B	68.8	45.0	63.9	91.8	97.6	76.5	73.9
381	ArmoRM-Llama3-8B-v0.1	80.4	71.5	55.8	69.2	Skywork-Reward-Gemma-2-27B-v0.2	76.7	37.5	67.2	96.9	91.7	81.8	75.3
382	Nemotron-340B-Reward	81.0	71.4	56.1	69.5	claude-3.7-somnet-20250219	73.3	54.4	75.0	90.3	92.1	67.2	75.4
383	LDL-Reward-Gemma-2-27B-v0.1	92.4	75.2	45.5	71.0	Skywork-Reward-Gemma-2-27B	73.7	40.3	70.5	94.2	93.2	82.6	75.8
384	Llama-3-OffsetBias-RM-8B	83.9	73.2	56.9	71.3	llama-3.1-70B-Instruct-RM-RB2	81.3	41.9	69.9	88.4	86.5	88.3	76.1
385	Internlm2-20B-reward	79.4	74.2	62.8	72.1	INF-ORM-Llama3.1-70B	74.1	41.9	69.9	96.4	90.3	86.2	76.5
386	Llama-3.1-Nemotron-70B	92.2	76.5	47.8	72.2	claude-opus-4-20250514	82.7	41.9	74.9	89.5	86.2	83.7	76.5
387	INF-ORM-Llama3.1-70B	92.1	80.0	54.0	75.4	QRM-Gemma-2-27B	78.5	37.2	69.9	95.8	95.4	83.2	76.7
388	Qwen3-0.6B-BTRM	90.3	78.0	54.8	74.4	gemma-2.5-flash-preview-04-17	65.7	55.3	81.1	90.9	86.7	83.4	77.2
389	Qwen3-1.7B-BTRM	93.0	83.4	59.7	78.7	LMUnit-llama3.1-70b	84.6	48.8	71.6	90.7	97.0	90.6	80.5
390	Qwen3-4B-BTRM	92.1	84.7	67.9	81.6	LMUnit-qwen2.5-72b	87.2	54.4	72.7	91.3	96.8	90.1	82.1
391	Qwen3-8B-BTRM	91.9	85.7	70.1	82.6	Qwen3-0.6B-BTRM	58.2	40.0	71.6	84.4	79.4	34.0	61.3
392	Llama-3.2-1B-BTRM	91.3	79.9	57.8	76.3	Qwen3-1.7B-BTRM	65.8	45.0	72.7	89.1	88.5	48.7	68.3
393	Llama-3.2-3B-BTRM	91.5	84.1	67.8	81.1	Qwen3-8B-BTRM	77.3	46.2	73.2	92.2	96.6	67.4	75.5
394	Llama-3.1-8B-BTRM	97.0	95.0	86.5	92.8	Llama-3.2-1B-BTRM	60.9	49.1	77.0	94.0	96.4	72.9	78.2
395	Llama-3.1-8B-40M-BTRM	97.6	96.9	93.5	96.0	Llama-3.2-3B-BTRM	76.2	45.6	69.4	93.1	96.0	67.7	74.7
396					Llama-3.1-8B-BTRM	84.6	66.2	77.6	96.7	98.4	81.2	84.1	
397					Llama-3.1-8B-40M-BTRM	87.9	67.8	83.1	97.3	99.2	83.9	86.5	

Figure 4: Fine-grained difficulty-level scores on RM-Bench (Liu et al., 2024c). Figure 5: Comparison of our RMs with the top 12 RMs on RewardBench v2 (Malik et al., 2025).

Resistance against style biases. Using RM-Bench (Liu et al., 2024c), we assess the ability of reward models to judge substance under varying stylistic differences between chosen and rejected responses. As shown in Figure 4, most baseline models exhibit significant performance gaps across the three stylistic conditions, indicating high sensitivity to such biases. This is particularly evident for INF-ORM-Llama3.1-70B, with a gap of 36 points between Normal and Hard accuracy. In contrast, our models outperform all baselines – not only in absolute scores across all three categories but also in maintaining much smaller performance differences. We also observe a rapidly shrinking gap as model size increases. These results suggest that training on SynergyPref-40M leads to more debiased representations of preferences.

Superiority in advanced capabilities. On RewardBench v2, we further demonstrate superior capability in precise instruction following, including assessing whether a model’s response adheres to specific instructions in the prompt. Notably, all existing reward models score below 50 in this category. In contrast, Llama-3.1-8B-BTRM outperforms strong proprietary models like Claude-3.7-Sonnet and Gemini-2.5-Flash-Preview-04-17, and generative reward models that utilize rubrics (Saad-Falcon et al., 2024), through learning pure representation of preferences. We also observe a significant increase in the Factuality score, likely due to the volume of our curated dataset and the richness of the information and knowledge it contains.

4.3 ABLATION STUDIES ON DATA QUANTITY AND QUALITY

We further examine the effect of data quantity and quality through performance trends across our pipeline, based on an early version of SynergyPref-40M with only 16 million preference pairs.

Preference data scaling does not hold for uncurated data. (quality and quantity) In the left plot of Figure 6, we show that increasing the amount of uncurated data results in minimal performance gains. During Stage 2, training on an additional 12 million preference pairs fails to surpass the performance of the initial seed model. In contrast, with curated data, we observe consistent performance improvements as more data is added, with the most significant gains occurring in Stage 2 – where the largest volume of curated data is introduced. The “Filtered” curve represents preference pairs that pass both human labeling and LLM annotation in terms of agreement – from the Stage 1 perspective, this is simply the concatenation of D_{gold} and D_{silver} at each specific iteration. The “Corrected” curve includes the “Filtered” subset plus the subset of preference pairs that pass neither human labeling nor LLM annotation, but with their preference labels flipped (i.e., chosen-rejected swapped). This latter subset corresponds to data where either humans or LLMs consider the rejected response to be better. Each point on the curves represents a reward model trained with all curated preference pairs accumulated up to that iteration (cumulative from iterations 1 through N). Notably, this result partially aligns with findings in concurrent work (Wang et al., 2025a), which specifically demonstrates that subjective preference learning does not exhibit scaling behavior, whereas objective preferences do.

Data curation enables preference “correction.” (quality) We further demonstrate that our data curation process not only selects high-quality data for training but also identifies low-quality or “incorrect” preferences, which are placed in a discarded pool during training. By “recycling” this discarded data – simply flipping the chosen and rejected responses – we achieve consistent performance gains across all stages and iterations, as illustrated by the orange curve in Figure 6. As a

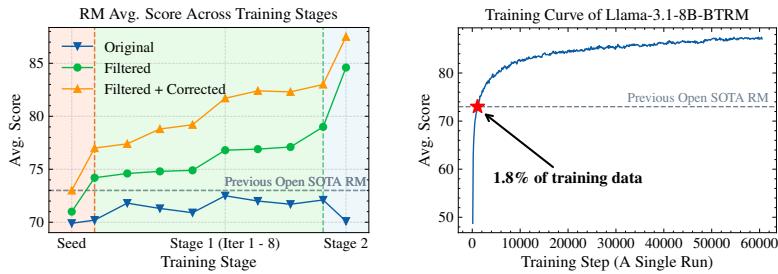


Figure 6: **Left:** Reward model score progress throughout the entire curation pipeline, including three data ablations: [original data](#), [filtered data](#), and [filtered data with corrected](#) preference pairs, based on an early version of SynergyPref-40M. **Right:** The average score of the final training run of a preliminary version of Llama-3.1-8B-BTRM. The Avg. Score indicates the averaged RM score across all benchmarks considered except RewardBench v2.

result, Llama-3.1-8B-40M-BTRM benefits from the inclusion of preference data even with flipped chosen-rejected responses.

Training on 1.8% of a 16M mixture outperforms previous SOTA open RM (70B) at the 8B scale. (quality and quantity) In the right plot of Figure 6, we report the average RM score across six benchmarks (excluding RewardBench v2 (Malik et al., 2025), which had not been released at the time) during training. Using only 1.8% (roughly 290K samples) of the full training set surpasses the previous SOTA. This underscores that our data mixture excels not only in scale but also in quality.

4.4 ABLATION STUDIES ON ANNOTATION METHOD

In this section, we conduct method-wise ablation studies to examine the importance of key components in our data curation pipeline. Although it is not feasible to perform ablations across the entire pipeline due to the long annotation interval and its recursive nature, we focus exclusively on iteration 1 of Stage 1.

4.4.1 PIPELINE-LEVEL ABLATIONS

Setup. We begin with the filtered seed dataset and examine five settings: (1) direct training on unverified data (i.e., no curation), (2) simple LLM curation only, (3) both human and LLM curation, and (4) incorporating adaptively retrieved examples into LLM curation. These components collectively represent one iteration of Stage 1 in Figure 2. [Note that the text labels in Figure 7 describe the change](#) between two consecutive settings rather than the settings themselves. Bar 1 represents training on seed data only (the baseline RM we start with). Bar 2 corresponds to seed data plus randomly sampled unverified preference pairs from D'_{un} (a randomly sampled subset from D_{un}), representing no curation. Bar 3 uses seed data plus D'_{un} filtered by pure LLM annotation using ensemble aggregation with self-consistency. Bar 4 employs seed data plus D'_{un} filtered by human annotation. Finally, Bar 5 uses seed data plus D'_{un} curated with our full recipe (human-guided LLM annotation with adaptive retrieval). Bar 2 has more data than Bar 1 because it includes randomly sampled pairs, while Bars 3, 4, and 5 have less data than Bar 2 because they are filtered by LLM and/or human annotation.

Finding 1: Simple LLM curation barely improves RM quality. As shown in Figure 7, simple LLM curation increases the final RM score by only 0.1 – potentially within the error margin of optimization randomness. Given that much in-the-wild preference data is synthetically labeled (Cui et al., 2023; Dong et al., 2024a; Lambert et al., 2024a) by LLMs, this result aligns with our findings in Figure 6, where scaling uncurated preference data yields negligible gains. A potential factor may be the limited capabilities or annotation quality of the LLM judges used in our study (Ye et al., 2024; Chen et al., 2024).

Finding 2: Human curation is crucial to data quality. From Figure 7, we observe that the largest improvement comes from human curation, with a relative gain of 2.3 points over the seed RM

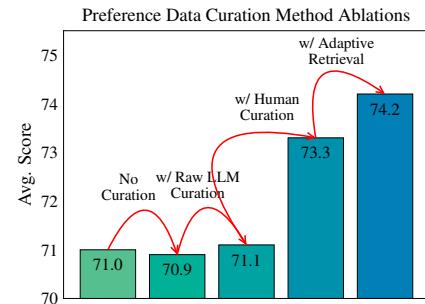


Figure 7: Ablations over different curation variants.

486 baseline. This highlights the need for scalable methods of collecting human preference data and
 487 showcases the strength of our approach, which requires only a modest amount of human annotation.
 488

489 **Finding 3: Adaptive retrieval boosts LLM curation quality.** Given access to human-curated
 490 gold data, adding similar gold examples to the LLM annotation prompt improves RM quality. This
 491 technique results in a 0.9-point gain compared to raw LLM annotation in the human curation variant.
 492 While the improvement is smaller than with direct human curation, this method is simple, scalable,
 493 and incurs minimal overhead, making it an attractive tool for enhancing LLM annotation.

494 4.4.2 HUMAN ANNOTATION ABLATIONS

495 **Setup.** We now focus specifically on the most impactful
 496 component: human curation. We evaluate three variants:
 497 (1) raw human curation, where annotators are shown only
 498 the conversation history and two responses, (2) human
 499 curation with LLM-generated preference attributes, and
 500 (3) human curation following our full annotation proto-
 501 col (i.e., with external tools such as search engines and
 502 frontier LLMs). To control for memorization, the same
 503 annotators label three distinct subsets of preference data sampled with similar distributions. Before
 504 running the ablation, we train reward models on each of the three subsets and confirm they yield
 505 similar final performance-within a maximum of 0.6 points difference. This reduces the influence of
 506 intrinsic data quality as a confounding factor, ensuring controlled experiments. All other compo-
 507 nents remain unchanged from our final method.

508 **Human annotation with additional information and tools boosts annotation quality.** As shown
 509 in Table 4, all forms of human curation improve the quality of the seed RM. Raw annotation based
 510 solely on the conversation and two responses results in a 0.4-point gain. Adding preference attributes
 511 (task category, objectivity, controversiality, desired attributes, and annotation guidelines) yields a
 512 larger gain. Incorporating our full annotation protocol – including access to external tools – leads to
 513 the best final performance, validating the effectiveness of our human curation process.

514 4.5 ADDITIONAL EXPERIMENTS

515 Other than the preference benchmark evaluation and data- and method-wise ablations, we provide
 516 additional experiments to show that 1) our curated mixture outperforms all existing preference mix-
 517 ture and their combination (Section H.1), 2) the resulting reward models excels in both downstream
 518 RLHF and human evaluation (Section H.2), 3) the proposed preference mixture works on various
 519 LLM backbones (Section H.3), and 4) the Phase 2 filtering mechanism can effectively remove sys-
 520 tematic biases and better aligns with human preferences (Section H.4).

521 5 CONCLUSION

522 In this work, we introduce SynergyPref-40M, a preference data mixture comprising 40 million pref-
 523 erence pairs (26 million curated), and a series of eight state-of-the-art reward models designed for
 524 versatility across a wide range of tasks. SynergyPref-40M is constructed through a two-stage cura-
 525 tion pipeline that synergistically combines human supervision for quality with human-guided LLM
 526 judges for scalability. Built on this preference data mixture, we present a collection of eight strong
 527 reward models ranging from 0.6B to 8B parameters. Across seven major reward model benchmarks,
 528 these models achieve state-of-the-art performance, demonstrating strong capabilities in capturing
 529 general human preferences, objective correctness, resistance to style biases, safety, and best-of-N
 530 scaling. Our small 1.7B variant surpasses the best existing 70B reward model on average, while our
 531 8B variant ranks first on all seven benchmarks among all open reward models. We also conduct ex-
 532 tensive ablation studies on both the data and the curation method to validate the effectiveness of our
 533 approach. We believe this work advances open reward models and, more broadly, RLHF research,
 534 representing a significant step forward that will accelerate open progress in the field.

535 6 ETHICS STATEMENT

536 This work involves the collection and curation of large-scale preference data through human an-
 537 notation, raising several ethical considerations that we address proactively. Our human annotation

Method	Avg. Score
Seed RM	71.0
w/ Raw Curation	71.4 (+0.4)
w/ Pref Attributes	72.1 (+1.1)
w/ Verification Protocol	74.2 (+3.2)

Table 4: RM scores on three human annotation setups.

540 process involved workers who were compensated fairly according to industry standards and pro-
 541 vided with clear guidelines and training. We ensured that annotators had access to external tools and
 542 resources to make informed judgments, and we implemented safeguards to prevent worker exploita-
 543 tion through reasonable workload distribution and adequate compensation.

544 The preference dataset created in this work captures human values and preferences that will be used
 545 to train reward models for RLHF applications. We acknowledge that human preferences can be sub-
 546 jective, culturally dependent, and potentially biased. To mitigate these concerns, we implemented
 547 diverse annotation protocols and quality control measures, including multiple validation stages and
 548 consistency checks. However, we recognize that our dataset may still reflect certain demographic or
 549 cultural biases present in the annotator pool and the underlying data sources.

550 Our reward models will be used to guide the behavior of AI systems through RLHF, potentially in-
 551 fluencing how these systems interact with users. While our models demonstrate strong performance
 552 across safety benchmarks, we emphasize the importance of careful deployment and continued mon-
 553 itoring in downstream applications. We encourage users of our models to conduct thorough safety
 554 evaluations in their specific use cases and implement appropriate safeguards.

555 We commit to releasing our dataset and models responsibly, with clear documentation of their limi-
 556 tations and intended use cases. We also acknowledge the computational resources required for this
 557 work and the associated environmental impact, though our focus on efficient model architectures
 558 (up to 8B parameters) helps minimize resource requirements for practitioners.

560 7 REPRODUCIBILITY STATEMENT

561 We have made extensive efforts to ensure the reproducibility of our work across all components of
 562 our research pipeline. Our data curation methodology is described in detail in Section 3, with com-
 563 prehensive annotation protocols provided in the appendix (Section E.2) including specific guidelines
 564 for human annotators, quality control measures, and the adaptive retrieval mechanism. All hyper-
 565 parameters for reward model training are explicitly specified in Section 4.1, following established
 566 practices from Wang et al. (2025a) with detailed configurations including batch size, learning rate
 567 schedules, and training procedures. Our evaluation methodology is thoroughly documented across
 568 seven major benchmarks with detailed descriptions provided in the appendix (Section C.1), ensur-
 569 ing that our results can be independently verified. The complete experimental setup for our ablation
 570 studies is described in Section 4, with controlled experimental designs that isolate the impact of
 571 individual components. We plan to release our curated preference dataset SynergyPref-40M and
 572 trained reward models through standard academic channels with appropriate documentation and us-
 573 age guidelines. Additionally, we will provide detailed data processing scripts, training code, and
 574 evaluation benchmarks as supplementary materials to facilitate reproduction of our results. Our
 575 comprehensive evaluation across multiple benchmarks, detailed ablation studies, and systematic
 576 methodology documentation collectively ensure that our contributions can be effectively reproduced
 577 and built upon by the research community.

578 REFERENCES

580 Anthropic. Claude 3.5 sonnet model card addendum. [https://www.anthropic.com/news/](https://www.anthropic.com/news/claude-3-5-sonnet)
 581 [claude-3-5-sonnet](#), 2024.

582

583 Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
 584 Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
 585 models. *arXiv preprint arXiv:2108.07732*, 2021.

586

587 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
 588 Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
 589 assistant with reinforcement learning from human feedback. *arXiv preprint arXiv:2204.05862*,
 590 2022a.

591

592 Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
 593 Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harm-
 lessness from ai feedback. *arXiv preprint arXiv:2212.08073*, 2022b.

594 Akhiad Bercovich, Itay Levy, Izik Golan, Mohammad Dabbah, Ran El-Yaniv, Omri Puny, Ido Galil,
 595 Zach Moshe, Tomer Ronen, Najeeb Nabwani, Ido Shahaf, Oren Tropp, Ehud Karpas, Ran Zil-
 596 berstein, Jiaqi Zeng, Soumye Singhal, Alexander Bukharin, Yian Zhang, Tugrul Konuk, Ger-
 597 ald Shen, Ameya Sunil Mahabaleshwar, Bilal Kartal, Yoshi Suhara, Olivier Delalleau, Zijia
 598 Chen, Zhilin Wang, David Mosallanezhad, Adi Renduchintala, Haifeng Qian, Dima Rekesh,
 599 Fei Jia, Somshubra Majumdar, Vahid Noroozi, Wasi Uddin Ahmad, Sean Narenthiran, Alek-
 600 sander Ficek, Mehrzad Samadi, Jocelyn Huang, Siddhartha Jain, Igor Gitman, Ivan Moshkov,
 601 Wei Du, Shubham Toshniwal, George Armstrong, Branislav Kisacanin, Matvei Novikov, Daria
 602 Gitman, Evelina Bakhturina, Jane Polak Scowcroft, John Kamalu, Dan Su, Kezhi Kong, Markus
 603 Kliegl, Rabeeh Karimi, Ying Lin, Sanjeev Satheesh, Jupinder Parmar, Pritam Gundecha, Bran-
 604 don Norick, Joseph Jennings, Shrimai Prabhuloye, Syeda Nahida Akter, Mostofa Patwary,
 605 Abhinav Khattar, Deepak Narayanan, Roger Waleffe, Jimmy Zhang, Bor-Yiing Su, Guyue
 606 Huang, Terry Kong, Parth Chadha, Sahil Jain, Christine Harvey, Elad Segal, Jining Huang,
 607 Sergey Kashirsky, Robert McQueen, Izzy Puterman, George Lam, Arun Venkatesan, Sherry
 608 Wu, Vinh Nguyen, Manoj Kilaru, Andrew Wang, Anna Warno, Abhilash Somasamudramath,
 609 Sandip Bhaskar, Maka Dong, Nave Assaf, Shahar Mor, Omer Ullman Argov, Scot Junkin, Olek-
 610 sandr Romanenko, Pedro Larroy, Monika Katariya, Marco Rovinelli, Viji Balas, Nicholas Edel-
 611 man, Anahita Bhiwandiwalla, Muthu Subramaniam, Smita Ithape, Karthik Ramamoorthy, Yut-
 612 ing Wu, Suguna Varshini Velury, Omri Almog, Joyjit Daw, Denys Fridman, Erick Galinkin,
 613 Michael Evans, Katherine Luna, Leon Derczynski, Nikki Pope, Eileen Long, Seth Schneider,
 614 Guillermo Siman, Tomasz Grzegorzek, Pablo Ribalta, Monika Katariya, Joey Conway, Trisha
 615 Saar, Ann Guan, Krzysztof Pawelec, Shyamala Prayaga, Oleksii Kuchaiev, Boris Ginsburg,
 616 Oluwatobi Olabiyi, Kari Briski, Jonathan Cohen, Bryan Catanzaro, Jonah Alben, Yonatan Geif-
 617 man, Eric Chung, and Chris Alexiuk. Llama-nemotron: Efficient reasoning models, 2025. URL
<https://arxiv.org/abs/2505.00949>.

618 Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
 619 of paired comparisons. *Biometrika*, 39(3/4):324–345, 1952.

621 Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner, Bowen Baker, Leo Gao, Leopold Aschenbren-
 622 ner, Yining Chen, Adrien Ecoffet, Manas Joglekar, Jan Leike, et al. Weak-to-strong general-
 623 ization: Eliciting strong capabilities with weak supervision. *arXiv preprint arXiv:2312.09390*,
 624 2023.

625 Zheng Cai, Maosong Cao, Haojong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui
 626 Chen, Zhi Chen, Pei Chu, Xiaoyi Dong, Haodong Duan, Qi Fan, Zhaoye Fei, Yang Gao, Jiaye
 627 Ge, Chenya Gu, Yuzhe Gu, Tao Gui, Aijia Guo, Qipeng Guo, Conghui He, Yingfan Hu, Ting
 628 Huang, Tao Jiang, Penglong Jiao, Zhenjiang Jin, Zhikai Lei, Jiaxing Li, Jingwen Li, Linyang Li,
 629 Shuaibin Li, Wei Li, Yining Li, Hongwei Liu, Jiangning Liu, Jiawei Hong, Kaiwen Liu, Kuikun
 630 Liu, Xiaoran Liu, Chengqi Lv, Haijun Lv, Kai Lv, Li Ma, Runyuan Ma, Zerun Ma, Wenchang
 631 Ning, Linke Ouyang, Jiantao Qiu, Yuan Qu, Fukai Shang, Yunfan Shao, Demin Song, Zifan Song,
 632 Zhihao Sui, Peng Sun, Yu Sun, Huanze Tang, Bin Wang, Guoteng Wang, Jiaqi Wang, Jiayu Wang,
 633 Rui Wang, Yudong Wang, Ziyi Wang, Xingjian Wei, Qizhen Weng, Fan Wu, Yingtong Xiong,
 634 Chao Xu, Ruiliang Xu, Hang Yan, Yirong Yan, Xiaogui Yang, Haochen Ye, Huaiyuan Ying, Jia
 635 Yu, Jing Yu, Yuhang Zang, Chuyu Zhang, Li Zhang, Pan Zhang, Peng Zhang, Ruijie Zhang, Shuo
 636 Zhang, Songyang Zhang, Wenjian Zhang, Wenwei Zhang, Xingcheng Zhang, Xinyue Zhang, Hui
 637 Zhao, Qian Zhao, Xiaomeng Zhao, Fengzhe Zhou, Zaida Zhou, Jingming Zhuo, Yicheng Zou,
 638 Xipeng Qiu, Yu Qiao, and Dahu Lin. Internlm2 technical report, 2024.

639 Yapei Chang, Yekyung Kim, Michael Krumdick, Amir Zadeh, Chuan Li, Chris Tanner, and Mohit
 640 Iyyer. Bleuber: Bleu is a surprisingly effective reward for instruction following. *arXiv preprint*
 641 *arXiv:2505.11080*, 2025.

643 Guiming Hardy Chen, Shunian Chen, Ziche Liu, Feng Jiang, and Benyou Wang. Humans or llms as
 644 the judge? a study on judgement biases. *arXiv preprint arXiv:2402.10669*, 2024.

646 Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
 647 Yuhang Zhou, Te Gao, and Wanxiang Che. Towards reasoning era: A survey of long chain-of-
 thought for reasoning large language models. *arXiv preprint arXiv:2503.09567*, 2025a.

648 Shikai Chen, Jin Yuan, Yang Zhang, Zhongchao Shi, Jianping Fan, Xin Geng, and Yong
 649 Rui. Ldl-reward-gemma-2-27b-v0.1. [https://huggingface.co/ShikaiChen/](https://huggingface.co/ShikaiChen/LDL-Reward-Gemma-2-27B-v0.1)
 650 LDL-Reward-Gemma-2-27B-v0.1, 2025b. Label Distribution Learning for Reward Mod-
 651 eling. Tech report forthcoming.

652 Xiusi Chen, Gaotang Li, Ziqi Wang, Bowen Jin, Cheng Qian, Yu Wang, Hongru Wang, Yu Zhang,
 653 Denghui Zhang, Tong Zhang, et al. Rm-r1: Reward modeling as reasoning. *arXiv preprint*
 654 *arXiv:2505.02387*, 2025c.

655 Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
 656 reinforcement learning from human preferences. *Advances in neural information processing sys-
 657 tems*, 30, 2017.

658 Thomas Coste, Usman Anwar, Robert Kirk, and David Krueger. Reward model ensembles help
 659 mitigate overoptimization. *arXiv preprint arXiv:2310.02743*, 2023.

660 Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Bingxiang He, Wei Zhu, Yuan Ni, Guotong
 661 Xie, Ruobing Xie, Yankai Lin, et al. Ultrafeedback: Boosting language models with scaled ai
 662 feedback. *arXiv preprint arXiv:2310.01377*, 2023.

663 Oliver Daniels-Koch and Rachel Freedman. The expertise problem: Learning from specialized
 664 feedback. *arXiv preprint arXiv:2211.06519*, 2022.

665 Bosheng Ding, Chengwei Qin, Linlin Liu, Yew Ken Chia, Shafiq Joty, Boyang Li, and Lidong Bing.
 666 Is gpt-3 a good data annotator? *arXiv preprint arXiv:2212.10450*, 2022.

667 Hanze Dong, Wei Xiong, Deepanshu Goyal, Rui Pan, Shizhe Diao, Jipeng Zhang, Kashun Shum,
 668 and Tong Zhang. Raft: Reward ranked finetuning for generative foundation model alignment.
 669 *arXiv preprint arXiv:2304.06767*, 2023.

670 Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen
 671 Sahoo, Caiming Xiong, and Tong Zhang. Rlhf workflow: From reward modeling to online rlhf.
 672 *arXiv preprint arXiv:2405.07863*, 2024a.

673 Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen
 674 Sahoo, Caiming Xiong, and Tong Zhang. Rlhf workflow: From reward modeling to online
 675 rlhf. *Transactions on Machine Learning Research*, 2024b. URL [https://arxiv.org/abs/](https://arxiv.org/abs/2405.07863)
 676 2405.07863.

677 Nicolai Dorka. Quantile regression for distributional reward models in rlhf. *arXiv preprint*
 678 *arXiv:2409.10164*, 2024.

679 Yongren Duan, Rafael Rafailov, Pi-Chun Chiang, Rémi Munos, Stefano Ermon, and Chelsea Finn.
 680 Scaling laws for reward model overoptimization in direct alignment algorithms. *arXiv preprint*
 681 *arXiv:2409.19325*, 2024.

682 Evan Frick, Tianle Li, Connor Chen, Wei-Lin Chiang, Anastasios N Angelopoulos, Jiantao Jiao,
 683 Banghua Zhu, Joseph E Gonzalez, and Ion Stoica. How to evaluate reward models for rlhf. *arXiv*
 684 *preprint arXiv:2410.14872*, 2024.

685 Fabrizio Gilardi, Meysam Alizadeh, and Maël Kubli. Chatgpt outperforms crowd workers for text-
 686 annotation tasks. *Proceedings of the National Academy of Sciences*, 120(30):e2305016120, 2023.

687 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 688 Al-Dahle, Alesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
 689 of models. *arXiv preprint arXiv:2407.21783*, 2024.

690 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 691 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 692 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

693 Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu, Misha Khalman, Felipe Llinares, Alexandre
 694 Rame, Thomas Mesnard, Yao Zhao, Bilal Piot, et al. Direct language model alignment from
 695 online ai feedback. *arXiv preprint arXiv:2402.04792*, 2024.

702 Srishti Gureja, Lester James V Miranda, Shayekh Bin Islam, Rishabh Maheshwary, Dr-
 703 ishti Sharma, Gusti Winata, Nathan Lambert, Sebastian Ruder, Sara Hooker, and Marzieh
 704 Fadaee. M-rewardbench: Evaluating reward models in multilingual settings. *arXiv preprint*
 705 *arXiv:2410.15522*, 2024.

706 Bingxiang He, Wenbin Zhang, Jiaxi Song, Cheng Qian, Zixuan Fu, Bowen Sun, Ning Ding, Haiwen
 707 Hong, Longtao Huang, Hui Xue, et al. Air: A systematic analysis of annotations, instructions,
 708 and response pairs in preference dataset. *arXiv preprint arXiv:2504.03612*, 2025a.

709 Jujie He, Jiacai Liu, Chris Yuhao Liu, Rui Yan, Chaojie Wang, Peng Cheng, Xiaoyu Zhang, Fuxiang
 710 Zhang, Jiacheng Xu, Wei Shen, et al. Skywork open reasoner 1 technical report. *arXiv preprint*
 711 *arXiv:2505.22312*, 2025b.

712 Yifei He, Haoxiang Wang, Ziyan Jiang, Alexandros Papangelis, and Han Zhao. Semi-supervised
 713 reward modeling via iterative self-training. *arXiv preprint arXiv:2409.06903*, 2024.

714 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 715 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv*
 716 *preprint arXiv:2103.03874*, 2021.

717 Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
 718 Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. *arXiv preprint arXiv:2409.12186*,
 719 2024.

720 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 721 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 722 *arXiv:2410.21276*, 2024.

723 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 724 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv*
 725 *preprint arXiv:2412.16720*, 2024.

726 Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
 727 Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
 728 evaluation of large language models for code. *arXiv preprint arXiv:2403.07974*, 2024.

729 Dongyoung Kim, Kimin Lee, Jinwoo Shin, and Jaehyung Kim. Spread preference annotation: Direct
 730 preference judgment for efficient llm alignment. In *The Thirteenth International Conference on*
 731 *Learning Representations*, 2025.

732 Joongwon Kim, Anirudh Goyal, Aston Zhang, Bo Xiong, Rui Hou, Melanie Kambadur, Dhruv
 733 Mahajan, Hannaneh Hajishirzi, and Liang Tan. A systematic examination of preference learning
 734 through the lens of instruction-following. *arXiv preprint arXiv:2412.15282*, 2024.

735 Nathan Lambert. Reinforcement learning from human feedback. *arXiv preprint arXiv:2504.12501*,
 736 2025.

737 Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
 738 man, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. T\ulu 3: Pushing
 739 frontiers in open language model post-training. *arXiv preprint arXiv:2411.15124*, 2024a.

740 Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
 741 Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, et al. Rewardbench: Evaluating reward
 742 models for language modeling. *arXiv preprint arXiv:2403.13787*, 2024b.

743 Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas Mesnard, Johan Ferret, Kellie Lu, Colton
 744 Bishop, Ethan Hall, Victor Carbune, Abhinav Rastogi, et al. Rlaif vs. rlhf: Scaling reinforcement
 745 learning from human feedback with ai feedback. *arXiv preprint arXiv:2309.00267*, 2023.

746 Lei Li, Yuancheng Wei, Zhihui Xie, Xuqing Yang, Yifan Song, Peiyi Wang, Chenxin An, Tianyu
 747 Liu, Sujian Li, Bill Yuchen Lin, et al. Vlrewardbench: A challenging benchmark for vision-
 748 language generative reward models. *arXiv preprint arXiv:2411.17451*, 2024.

756 Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
 757 Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
 758 models. https://github.com/tatsu-lab/alpaca_eval, 5 2023.

759

760 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 761 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 762 *arXiv:2412.19437*, 2024a.

763

764 Chris Yuhao Liu, Liang Zeng, Jiacai Liu, Rui Yan, Jujie He, Chaojie Wang, Shuicheng Yan, Yang
 765 Liu, and Yahui Zhou. Skywork-reward: Bag of tricks for reward modeling in llms. *arXiv preprint*
 766 *arXiv:2410.18451*, 2024b.

767

768 Fei Liu et al. Learning to summarize from human feedback. In *Proceedings of the 58th Annual*
 769 *Meeting of the Association for Computational Linguistics*, pp. 583–592, 2020.

770

771 Yantao Liu, Zijun Yao, Rui Min, Yixin Cao, Lei Hou, and Juanzi Li. Rm-bench: Benchmarking
 772 reward models of language models with subtlety and style. *arXiv preprint arXiv:2410.16184*,
 773 2024c.

774

775 Zijun Liu, Peiyi Wang, Runxin Xu, Shirong Ma, Chong Ruan, Peng Li, Yang Liu, and Yu Wu.
 776 Inference-time scaling for generalist reward modeling. *arXiv preprint arXiv:2504.02495*, 2025.

777

778 Xingzhou Lou, Dong Yan, Wei Shen, Yuzi Yan, Jian Xie, and Junge Zhang. Uncertainty-
 779 aware reward model: Teaching reward models to know what is unknown. *arXiv preprint*
 780 *arXiv:2410.00847*, 2024.

781

782 Junyu Luo, Weizhi Zhang, Ye Yuan, Yusheng Zhao, Junwei Yang, Yiyang Gu, Bohan Wu, Binqi
 783 Chen, Ziyue Qiao, Qingqing Long, et al. Large language model agent: A survey on methodology,
 784 applications and challenges. *arXiv preprint arXiv:2503.21460*, 2025a.

785

786 Michael Luo, Sijun Tan, Roy Huang, Ameen Patel, Alpay Ariyak, Qingyang
 787 Wu, Xiaoxiang Shi, Rachel Xin, Colin Cai, Maurice Weber, Ce Zhang, Li Er-
 ran Li, Raluca Ada Popa, and Ion Stoica. Deepcoder: A fully open-source
 788 14b coder at o3-mini level. <https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-Mini-Level-1cf81902c14680b3bee5eb349>
 789 2025b. Notion Blog.

790

791 Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Tang, Manan Roongta, Colin Cai, Jef-
 792 frey Luo, Tianjun Zhang, Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing o1-
 793 preview with a 1.5b model by scaling rl. <https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005b>
 794 2025c. Notion Blog.

795

796 Xueguang Ma, Qian Liu, Dongfu Jiang, Ge Zhang, Zejun Ma, and Wenhui Chen. General-reasoner:
 797 Advancing llm reasoning across all domains. *arXiv preprint arXiv:2505.14652*, 2025.

798

799 Saumya Malik, Valentina Pyatkin, Sander Land, Jacob Morrison, Noah A Smith, Hannaneh Ha-
 800 jishirzi, and Nathan Lambert. Rewardbench 2: Advancing reward model evaluation. *arXiv*
 801 *preprint arXiv:2506.01937*, 2025.

802

803 Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo,
 804 Swayam Singh, Xiangru Tang, Leandro Von Werra, and Shayne Longpre. Octopack: Instruc-
 805 tion tuning code large language models. In *NeurIPS 2023 Workshop on Instruction Tuning and*
 806 *Instruction Following*, 2023.

807

808 Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita
 809 Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan, et al. 2 olmo 2 furious. *arXiv preprint*
 810 *arXiv:2501.00656*, 2024.

811

812 OpenAI. OpenAI o3 and o4-mini System Card, April 2025. URL <https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf>.

810 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 811 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 812 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 813 27730–27744, 2022.

814 Alizée Pace, Jonathan Mallinson, Eric Malmi, Sebastian Krause, and Aliaksei Severyn. West-of-n:
 815 Synthetic preference generation for improved reward modeling. *arXiv preprint arXiv:2401.12086*,
 816 2024.

817 Junsoo Park, Seungyeon Jwa, Meiying Ren, Daeyoung Kim, and Sanghyuk Choi. Offsetbias: Lever-
 818 aging debiased data for tuning evaluators, 2024.

819 Archiki Prasad, Weizhe Yuan, Richard Yuanzhe Pang, Jing Xu, Maryam Fazel-Zarandi, Mohit
 820 Bansal, Sainbayar Sukhbaatar, Jason Weston, and Jane Yu. Self-consistency preference opti-
 821 mization. *arXiv preprint arXiv:2411.04109*, 2024.

822 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 823 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances
 824 in Neural Information Processing Systems*, 36:53728–53741, 2023.

825 Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay, Amnon Shashua, Kevin Leyton-Brown, and
 826 Yoav Shoham. In-context retrieval-augmented language models. *Transactions of the Association
 827 for Computational Linguistics*, 11:1316–1331, 2023.

828 Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System opti-
 829 mizations enable training deep learning models with over 100 billion parameters. In *Proceedings
 830 of the 26th ACM SIGKDD international conference on knowledge discovery & data mining*, pp.
 831 3505–3506, 2020.

832 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
 833 rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
 834 mark. In *First Conference on Language Modeling*, 2024.

835 Paul Röttger, Hannah Rose Kirk, Bertie Vidgen, Giuseppe Attanasio, Federico Bianchi, and Dirk
 836 Hovy. Xtest: A test suite for identifying exaggerated safety behaviours in large language models.
 837 *arXiv preprint arXiv:2308.01263*, 2023.

838 Jon Saad-Falcon, Rajan Vivek, William Berrios, Nandita Shankar Naik, Matija Franklin, Bertie
 839 Vidgen, Amanpreet Singh, Douwe Kiela, and Shikib Mehri. Lmunit: Fine-grained evaluation
 840 with natural language unit tests. *arXiv preprint arXiv:2412.13091*, 2024.

841 Swarnadeep Saha, Xian Li, Marjan Ghazvininejad, Jason Weston, and Tianlu Wang. Learning to
 842 plan & reason for evaluation with thinking-llm-as-a-judge. *arXiv preprint arXiv:2501.18099*,
 843 2025.

844 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 845 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

846 Tu Shiwen, Zhao Liang, Chris Yuhao Liu, Liang Zeng, and Yang Liu. Skywork critic model series,
 847 2024.

848 Mingyang Song, Zhaochen Su, Xiaoye Qu, Jiawei Zhou, and Yu Cheng. Prmbench: A fine-grained
 849 and challenging benchmark for process-level reward models. *arXiv preprint arXiv:2501.03124*,
 850 2025.

851 Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
 852 Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. *Advances
 853 in neural information processing systems*, 33:3008–3021, 2020.

854 Saba Sturua, Isabelle Mohr, Mohammad Kalim Akram, Michael Günther, Bo Wang, Markus Krim-
 855 mel, Feng Wang, Georgios Mastrapas, Andreas Koukounas, Andreas Koukounas, Nan Wang,
 856 and Han Xiao. jina-embeddings-v3: Multilingual embeddings with task lora, 2024. URL
 857 <https://arxiv.org/abs/2409.10173>.

864 Hao Sun, Yunyi Shen, and Jean-Francois Ton. Rethinking bradley-terry models in preference-based
 865 reward modeling: Foundations, theory, and alternatives. *arXiv preprint arXiv:2411.04991*, 2024.
 866

867 Sijun Tan, Siyuan Zhuang, Kyle Montgomery, William Y Tang, Alejandro Cuadron, Chenguang
 868 Wang, Raluca Ada Popa, and Ion Stoica. Judgebench: A benchmark for evaluating llm-based
 869 judges. *arXiv preprint arXiv:2410.12784*, 2024.

870 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricu,
 871 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 872 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

873 Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
 874 patiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma
 875 2: Improving open language models at a practical size. *arXiv preprint arXiv:2408.00118*, 2024.

876

877 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 878 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
 879 report. *arXiv preprint arXiv:2503.19786*, 2025.

880 Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025a. URL
 881 <https://qwenlm.github.io/blog/qwq-32b/>.

882 TinyR1 Team. Superdistillation achieves near-r1 performance with just 5 URL <https://huggingface.co/qihoo360/TinyR1-32B-Preview>.
 883

884 Guiyao Tie, Zeli Zhao, Dingjie Song, Fuyang Wei, Rong Zhou, Yurou Dai, Wen Yin, Zhejian Yang,
 885 Jiangyue Yan, Yao Su, et al. A survey on post-training of large language models. *arXiv preprint
 886 arXiv:2503.06072*, 2025.

887

888 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 889 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 890 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023a.

891

892 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 893 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 894 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023b.

895

896 Binghai Wang, Runji Lin, Keming Lu, Le Yu, Zhenru Zhang, Fei Huang, Chujie Zheng, Kai Dang,
 897 Yang Fan, Xingzhang Ren, et al. Worldpm: Scaling human preference modeling. *arXiv preprint
 898 arXiv:2505.10527*, 2025a.

900

901 Haoxiang Wang, Wei Xiong, Tengyang Xie, Han Zhao, and Tong Zhang. Interpretable preferences
 902 via multi-objective reward modeling and mixture-of-experts. *arXiv preprint arXiv:2406.12845*,
 903 2024a.

904

905 Peifeng Wang, Austin Xu, Yilun Zhou, Caiming Xiong, and Shafiq Joty. Direct judgement prefer-
 906 ence optimization. 2024b.

907

908 Tianlu Wang, Ilia Kulikov, Olga Golovneva, Ping Yu, Weizhe Yuan, Jane Dwivedi-Yu,
 909 Richard Yuanzhe Pang, Maryam Fazel-Zarandi, Jason Weston, and Xian Li. Self-taught eval-
 910 uators. *arXiv preprint arXiv:2408.02666*, 2024c.

911

912 Xiaokun Wang, Chris, Jiangbo Pei, Wei Shen, Yi Peng, Yunzhuo Hao, Weijie Qiu, Ai Jian, Tianyidan
 913 Xie, Xuchen Song, Yang Liu, and Yahui Zhou. Skywork-vl reward: An effective reward model for
 914 multimodal understanding and reasoning, 2025b. URL <https://arxiv.org/abs/2505.07263>.

915

916 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
 917 ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
 918 *arXiv preprint arXiv:2203.11171*, 2022.

919

920 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
 921 Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-
 922 task language understanding benchmark. In *The Thirty-eight Conference on Neural Information
 923 Processing Systems Datasets and Benchmarks Track*, 2024d.

918 Zhilin Wang. Reward model evaluation in june 2025. Jun 2025. URL <https://zhilin123.github.io/blog/2025/reward/>.

919

920

921 Zhilin Wang, Alexander Bukharin, Olivier Delalleau, Daniel Egert, Gerald Shen, Jiaqi Zeng, Oleksii
922 Kuchaiev, and Yi Dong. Helpsteer2-preference: Complementing ratings with preferences. *arXiv*
923 *preprint arXiv:2410.01257*, 2024e.

924

925 Zhilin Wang, Yi Dong, Olivier Delalleau, Jiaqi Zeng, Gerald Shen, Daniel Egert, Jimmy J Zhang,
926 Makesh Narsimhan Sreedhar, and Oleksii Kuchaiev. Helpsteer2: Open-source dataset for training
927 top-performing reward models. *arXiv preprint arXiv:2406.08673*, 2024f.

928

929 Zhilin Wang, Jiaqi Zeng, Olivier Delalleau, Daniel Egert, Ellie Evans, Hoo-Chang Shin, Felipe
930 Soares, Yi Dong, and Oleksii Kuchaiev. Dedicated feedback and edit models empower inference-
931 time scaling for open-ended general-domain tasks. *arXiv preprint arXiv:2503.04378*, 2025c.

932

933 Liang Wen, Yunke Cai, Fenrui Xiao, Xin He, Qi An, Zhenyu Duan, Yimin Du, Junchen Liu, Lifu
934 Tang, Xiaowei Lv, et al. Light-r1: Curriculum sft, dpo and rl for long cot from scratch and beyond.
935 *arXiv preprint arXiv:2503.10460*, 2025.

936

937 Xueru Wen, Jie Lou, Yaojie Lu, Hongyu Lin, Xing Yu, Xinyu Lu, Ben He, Xianpei Han, Debing
938 Zhang, and Le Sun. Rethinking reward model evaluation: Are we barking up the wrong tree?
939 *arXiv preprint arXiv:2410.05584*, 2024.

940

941 Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-
942 Ziv, Neel Jain, Khalid Saifullah, Siddartha Naidu, et al. Livebench: A challenging, contamination-
943 free llm benchmark. *arXiv preprint arXiv:2406.19314*, 2024.

944

945 Chenxi Whitehouse, Tianlu Wang, Ping Yu, Xian Li, Jason Weston, Ilia Kulikov, and Swarnadeep
946 Saha. J1: Incentivizing thinking in llm-as-a-judge via reinforcement learning. *arXiv preprint*
947 *arXiv:2505.10320*, 2025.

948

949 xAI. Grok 2 beta release. <https://x.ai/blog/grok-2>, 2024.

950

951 xAI. Grok 3 beta — the age of reasoning agents. <https://x.ai/news/grok-3>, 2025.

952

953 Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang, Yunke Zhang, Jingyi Wang, Xiaochong Lan,
954 Jiahui Gong, Tianjian Ouyang, Fanjin Meng, et al. Towards large reasoning models: A survey of
955 reinforced reasoning with large language models. *arXiv preprint arXiv:2501.09686*, 2025.

956

957 Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yuntian Deng, Radha Poovendran, Yejin Choi, and
958 Bill Yuchen Lin. Magpie: Alignment data synthesis from scratch by prompting aligned llms with
959 nothing. *arXiv preprint arXiv:2406.08464*, 2024.

960

961 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
962 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint*
963 *arXiv:2412.15115*, 2024a.

964

965 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
966 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*
967 *arXiv:2505.09388*, 2025.

968

969 Minghao Yang, Chao Qu, and Xiaoyu Tan. Inf-orm-llama3.1-70b, 2024b. URL
970 <https://huggingface.co/infly/INF-ORM-Llama3.1-70B> [<https://huggingface.co/infly/INF-ORM-Llama3.1-70B>].

971

972 Rui Yang, Ruomeng Ding, Yong Lin, Huan Zhang, and Tong Zhang. Regularizing hidden states
973 enables learning generalizable reward model for llms. In *Advances in Neural Information Pro-
974 cessing Systems*, 2024c.

975

976 Jiayi Ye, Yanbo Wang, Yue Huang, Dongping Chen, Qihui Zhang, Nuno Moniz, Tian Gao, Werner
977 Geyer, Chao Huang, Pin-Yu Chen, et al. Justice or prejudice? quantifying biases in llm-as-a-
978 judge. *arXiv preprint arXiv:2410.02736*, 2024.

972 Lifan Yuan, Ganqu Cui, Hanbin Wang, Ning Ding, Xingyao Wang, Jia Deng, Boji Shan, Huimin
 973 Chen, Ruobing Xie, Yankai Lin, Zhenghao Liu, Bowen Zhou, Hao Peng, Zhiyuan Liu, and
 974 Maosong Sun. Advancing llm reasoning generalists with preference trees, 2024.
 975

976 Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Xian Li, Sainbayar Sukhbaatar, Jing Xu, and
 977 Jason Weston. Self-rewarding language models, 2024. *URL* <https://arxiv.org/abs/2401.10020>.
 978

979 Yuhang Zang, Xiaoyi Dong, Pan Zhang, Yuhang Cao, Ziyu Liu, Shengyuan Ding, Shenxi Wu, Yubo
 980 Ma, Haodong Duan, Wenwei Zhang, et al. Internlm-xcomposer2. 5-reward: A simple yet effective
 981 multi-modal reward model. *arXiv preprint arXiv:2501.12368*, 2025.
 982

983 Haoran Zhang, Chang Liu, Xi Chen, Jie Dai, and Tie-Yan Liu. Mechanism design for llm fine-tuning
 984 with multiple reward models. *arXiv preprint arXiv:2409.18417*, 2024a.
 985

986 Yifan Zhang, Ge Zhang, Yue Wu, Kangping Xu, and Quanquan Gu. General preference modeling
 987 with preference representations for aligning language models. *arXiv preprint arXiv:2410.02197*,
 988 2024b.
 989

990 Jialun Zhong, Wei Shen, Yanzeng Li, Songyang Gao, Hua Lu, Yicheng Chen, Yang Zhang, Wei
 991 Zhou, Jinjie Gu, and Lei Zou. A comprehensive survey of reward models: Taxonomy, applica-
 992 tions, challenges, and future. *arXiv preprint arXiv:2504.12328*, 2025.
 993

994 Enyu Zhou, Guodong Zheng, Binghai Wang, Zhiheng Xi, Shihan Dou, Rong Bao, Wei Shen, Limao
 995 Xiong, Jessica Fan, Yurong Mou, et al. Rmb: Comprehensively benchmarking reward models in
 996 llm alignment. *arXiv preprint arXiv:2410.09893*, 2024.
 997

998 Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
 999 Zhou, and Le Hou. Instruction-following evaluation for large language models. *arXiv preprint
 1000 arXiv:2311.07911*, 2023.
 1001

1002 Banghua Zhu, Evan Frick, Tianhao Wu, Hanlin Zhu, and Jiantao Jiao. Starling-7b: Improving
 1003 llm helpfulness & harmlessness with rlaif, November 2023. *URL* <https://starling.cs.berkeley.edu/>.
 1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026 A RELATED WORK

1028 **Preference data annotation.** Traditional preference data annotation relies heavily on human anno-
 1029 tators (Liu et al., 2020; Stiennon et al., 2020; Ouyang et al., 2022; Bai et al., 2022a; Hurst et al., 2024;
 1030 Touvron et al., 2023a;b), which is both costly and inefficient – and sometimes even noisy (Daniels-
 1031 Koch & Freedman, 2022). To improve scalability, recent work – now collectively referred to as
 1032 RLAIF (Bai et al., 2022b) – has proposed various forms of automatic annotation using strong LLMs
 1033 (Bai et al., 2022b; Lee et al., 2023; Burns et al., 2023; Cui et al., 2023; Guo et al., 2024; Yuan et al.;
 1034 Prasad et al., 2024; Pace et al., 2024; Lambert et al., 2024a; He et al., 2025a), in some cases even
 1035 outperforming human annotators (Gilardi et al., 2023; Ding et al., 2022). Our approach combines
 1036 the strengths of both paradigms: we enhance human annotation using external tools and frontier
 1037 LLMs, while also guiding LLM-based annotation with human-verified labels. Among related work,
 1038 the most relevant are Kim et al. (2025) and He et al. (2024). Kim et al. (2025) leverages a small set
 1039 of human-labeled seed data to iteratively refine an LLM policy via self-improvement (Rafailov et al.,
 1040 2023); in contrast, we iteratively incorporate gold human preference labels to augment LLM anno-
 1041 tation within a structured data curation framework. He et al. (2024) employs an iterative process
 1042 that pseudo-labels unlabeled preference pairs and retains only high-confidence examples, without
 1043 human annotators. Our work bridges the gap between human and LLM-based annotation by in-
 1044 tegrating them into a principled and scalable framework, enabling high-quality preference data at
 1045 scale. In addition, our approach to human verification via preference attributes is similar to LMUnit
 1046 (Saad-Falcon et al., 2024), which decomposes requirements based on context and conducts auto-
 1047 matic “unit tests” on assistant responses using LLMs.

1048 **The paradigm of reward models.** The reward model paradigm has evolved rapidly. Initially based
 1049 on the Bradley-Terry (BT) model (Bradley & Terry, 1952; Liu et al., 2020; Stiennon et al., 2020;
 1050 Ouyang et al., 2022; Bai et al., 2022a; Wang, 2025), early reward models were trained to maxi-
 1051 mize the score difference between pairwise responses. During inference, these models produce a
 1052 scalar score indicating the relative quality of a response compared to alternatives given the same
 1053 prompt. Later, RewardBench (Lambert et al., 2024b) introduced the first taxonomy of reward mod-
 1054 els, categorizing them into (1) sequence classifiers, (2) direct preference optimization (DPO) models
 1055 with implicit rewards, (3) generative models, and (4) custom classifiers. Most BT-based models fall
 1056 under the sequence classifier category, while generative models primarily include LLM-as-a-Judge
 1057 approaches. DPO models, by contrast, rely on implicit rewards derived from the DPO objective
 1058 (Rafailov et al., 2023). This taxonomy was further elaborated in Liu et al. (2024b) and has since
 1059 been adopted by subsequent works (Zhong et al., 2025; Zang et al., 2025; Wang et al., 2025b). With
 1060 the emergence of generative reward models (Liu et al., 2025; Chen et al., 2025c; Saha et al., 2025;
 1061 Guo et al., 2025), Liu et al. (2025) proposed a new categorization based on the form of reward gen-
 1062 eration and scoring patterns, highlighting differences in input flexibility and inference-time scalability.
 1063 The reward generation forms include scalar, semi-scalar, and generative outputs, while scoring pat-
 1064 terns are categorized as pointwise or pairwise. Beyond these major paradigms, Sun et al. (2024)
 1065 introduces an alternative approach that trains reward models using an order consistency objective.
 This reframes reward modeling as a binary classification task and has been shown to outperform the
 Bradley-Terry model in the presence of annotation noise.

1066 **Strong open reward models and preference datasets.** At the time of writing, there are already 166
 1067 reward models on the RewardBench v1 leaderboard (Lambert et al., 2024b), most of which are open-
 1068 weight. The top-ranking models are primarily from the Skywork-Reward series (Liu et al., 2024b)
 1069 and their derivatives, trained using either the same base models (Dorka, 2024; Lou et al., 2024) or
 1070 datasets (Yang et al., 2024b; Shiwen et al., 2024; Lou et al., 2024; Zhang et al., 2024b; Yang et al.,
 1071 2024c). Their training data primarily consist of unfiltered human preferences and automatically
 1072 curated synthetic data (Liu et al., 2024b). Another line of high-performing reward models includes
 1073 FsfairX and ArmoRM (Dong et al., 2024b; 2023; Wang et al., 2024a), trained on Preference 700K
 1074 (Dong et al., 2024b), a dataset composed of preference data aggregated from eight diverse sources.
 1075 The ArmoRM variant extends FsfairX with a multi-dimensional reward head, enabling it to generate
 1076 reward signals for fine-grained aspects of response quality. The InternLM2-Reward series (Cai et al.,
 1077 2024) also presents strong models across different sizes, trained on a large-scale collection of 2.4
 1078 million closed-source preference pairs, with a focus on both English and Chinese data. Recently,
 1079 the release of RewardBench v2 (Malik et al., 2025) introduced a set of seven reward models trained
 on various Llama-3.1 checkpoints (i.e., different sizes and base models). Among these, the 70B
 variant is one of the top-performing models on the benchmark. Right before our release, we noticed

1080 two generative reward models from the LMUnit series (Saad-Falcon et al., 2024) that topped the
 1081 RewardBench v2 leaderboard. These models use rubrics as unit tests, which are much more robust
 1082 than reward models based on discriminative classifiers. Their strength is further reflected by their
 1083 high scores in Factuality and Ties categories. Our reward models leverage both the Skywork-
 1084 Reward dataset and Preference 700K in the Seed and Stage 1 phases, respectively – forming the
 1085 foundation for improvements in later stages.

1086

1087 B LIMITATIONS

1088

1089 Human preferences are inherently diverse and often conflicting, especially for prompts without a
 1090 single correct answer. Even when ground-truth answers exist, individuals may differ in their pref-
 1091 erences based on factors such as writing style, tone, level of detail, or the relative weighting of
 1092 helpfulness versus harmlessness. A single reward model may not fully capture this complexity and
 1093 may inherently favor certain response types over others. Future work could explore personalized
 1094 reward models or context-dependent training paradigms to better reflect the multifaceted nature of
 1095 human preference.

1096

1097 Our observation regarding performance improvements from re-annotated discarded data is purely
 1098 empirical. Due to budget constraints, we did not conduct further verification to rigorously assess
 1099 this pool. As a result, the re-annotated data may include noisy preferences or judgments that are not
 1100 broadly representative or that fall outside the scope of current evaluation benchmarks. A thorough
 1101 investigation of this flipped pool is left for future work.

1102

1103 Meanwhile, we would like to clarify that not all discarded preference pairs are incorrect or useless.
 1104 Since our pipeline still uses LLMs and trained reward models to filter data, which is not fully inter-
 1105 pretable, biases and modeling errors are inherently unavoidable. Studying why and how examples
 1106 are removed during the process, as well as their actual usefulness for reward modeling and RLHF,
 1107 could be a valuable research direction.

1108

1109 Our annotation protocol differs in implementation from most existing approaches, where human
 1110 annotators provide their own preferences. In contrast, our protocol is more constrained: it instructs
 1111 annotators to follow predefined desired attributes and annotation guidelines for each sample. While
 1112 this structured approach promotes consistency, it also reduces flexibility and may not fully capture
 1113 minority preferences. This limitation arises because, for certain subjective preferences, it is often
 1114 infeasible to determine which response is better-even on a relative scale.

1115

1116 Finally, the success of our approach relies heavily on human annotation; we did not observe sat-
 1117 isfactory results from fully automatic curation alone. This raises the question of whether current-
 1118 generation LLMs are capable of supporting high-quality, fully automatic data labeling. Due to
 1119 inference costs and API limitations, we were unable to scale automatic curation to the latest frontier
 1120 models with strong reasoning capabilities. We consider this a promising direction for future explo-
 1121 ration, particularly given the central role these LLMs already play in supporting human annotation
 1122 within our pipeline.

1123

1124 C REWARD MODEL BENCHMARKS AND EVALUATION RESULTS

1125

1126 C.1 REWARD MODEL BENCHMARKS

1127

1128 RewardBench. RewardBench (Lambert et al., 2024b) is the first benchmark released for eval-
 1129 uating reward models. It includes 2,985 evaluation samples from 23 data sources, categorized into
 1130 four main groups: chat, chat-hard, safety, and reasoning. The evaluation uses pairwise comparison
 1131 accuracy, where a reward model generates scores for both the chosen and rejected responses. A
 1132 prediction is correct if the score for the chosen response exceeds that of the rejected one. Final
 1133 accuracy is computed as a weighted average within each category and then averaged across categories.
 A noted limitation is that the chosen-rejected pairs are constructed using semi-automatic methods
 and manually validated, though the authors do not detail the validation process. They also acknowl-
 edge potential spurious correlations in the reasoning subsets and the absence of correlation analysis
 between RewardBench scores and downstream performance.

1134

1135 PPE Preference and Correctness. PPE (Frick et al., 2024) includes two datasets for evaluating
 1136 reward models: PPE Preference and PPE Correctness. PPE Preference consists of 16K human-

1134 labeled preference pairs from Chatbot Arena, targeting real human preferences. PPE Correctness
 1135 is derived from challenging benchmarks with ground-truth answers, allowing direct verification of
 1136 preference pairs. Included benchmarks are MATH (Hendrycks et al., 2021), MBPP (Austin et al.,
 1137 2021), MMLU-Pro (Wang et al., 2024d), IFEVAL (Zhou et al., 2023), and GPQA (Rein et al., 2024).
 1138 Each prompt yields 32 LLM responses, enabling both pairwise and best-of-N evaluations. The
 1139 authors demonstrate a strong correlation between PPE scores and downstream RLHF performance,
 1140 making it a reliable benchmark for real-world reward model evaluation.

1141 **RMB.** RMB (Zhou et al., 2024) is a comprehensive benchmark covering 49 real-world task cate-
 1142 gories under both helpfulness and harmlessness. Like PPE Correctness, it supports pairwise and
 1143 best-of-N evaluations. Preference pairs are generated synthetically, with GPT-4 providing pointwise
 1144 ratings based on query-specific principles. Human verification is used to ensure dataset quality.
 1145 RMB shows strong positive correlation with downstream performance across several benchmarks.

1146 **RM-Bench.** Unlike other benchmarks that focus on general preference evaluation, RM-Bench (Liu
 1147 et al., 2024c) specifically tests a reward model’s ability to discern nuanced response differences
 1148 and resist style biases. It includes four categories: Chat, Math, Code, and Safety. Prompts are
 1149 sourced from benchmarks such as AlpacaEval (Li et al., 2023), HumanEval (Muennighoff et al.,
 1150 2023), MATH (Hendrycks et al., 2021), and XSTest (Röttger et al., 2023). Response pairs are min-
 1151 imally different (e.g., word-level changes introducing factual errors) and generated with controlled
 1152 style. RM-Bench defines three difficulty levels: (1) easy, where style mismatches may mislead the
 1153 model; (2) normal, with matched stylistic quality; and (3) hard, where content is decisive despite a
 1154 stylistically superior distractor.

1155 **JudgeBench.** JudgeBench (Tan et al., 2024) is a correctness-focused benchmark originally designed
 1156 for LLM-based judges. Due to its pairwise format, it naturally supports pointwise reward model
 1157 evaluation. It includes subsets such as MMLU-Pro (Wang et al., 2024d) (knowledge), LiveBench
 1158 (White et al., 2024) (math and reasoning), and LiveCodeBench (Jain et al., 2024).

1159 **RewardBench v2.** RewardBench v2 (Li et al., 2024) is the second version of the original Reward-
 1160 Bench (Lambert et al., 2024b), featuring substantially more difficult and realistic evaluation data. It
 1161 assembles new human-generated prompts (in contrast to prior benchmarks which reuse downstream
 1162 prompts), grouped into diverse and multi-skill classification tasks. On average, existing reward
 1163 models score around 20 points lower on RewardBench 2 compared to its predecessor. RewardBench v2
 1164 also shows stronger correlation with downstream performance – both during RL fine-tuning (e.g.,
 1165 PPO) and best-of-N inference sampling – compared to earlier RM benchmarks.

1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

1188 C.2 FULL EVALUATION RESULTS
1189

1190 In Table 5, we present the complete evaluation results for all the reward models considered. We
1191 categorize them into Bradley-Terry reward models, LLM-as-Judges, and the new paradigm of gen-
1192 erative reward models (Liu et al., 2025). Across all seven benchmarks discussed in the main body
1193 of the paper, our reward models trained on SynergyPref-40M outperform all previous models on
1194 average.

Model	RewardBench	RewardBench v2	PPE Pref	PPE Corr	RMB	RM-Bench	JudgeBench	Avg.
<i>Bradley-Terry Reward Models</i>								
GRM-gemma2-2B-rewardmodel-ft (Yang et al., 2024c)	88.5	59.7	59.7	58.5	68.0	66.2	63.5	66.3
RM-Mistral-7B (Dong et al., 2023)	80.9	59.6	61.8	56.4	66.6	66.9	62.1	64.9
Eurus-RM-7b (Yuan et al., 2024)	83.3	58.1	59.6	60.5	65.5	69.0	58.4	64.9
BTRM_Qwen2.7b_0613	83.6	57.4	61.8	58.4	61.5	69.4	63.8	65.1
Internlm2-7b-reward (Cai et al., 2024)	87.6	53.4	62.1	60.0	67.1	67.1	59.4	65.2
FsfairX-LLaMA3-RM-v0.1 (Dong et al., 2023)	84.7	62.9	63.1	61.1	70.2	70.5	59.9	67.5
internlm2-1.8b-reward (Cai et al., 2024)	82.0	39.0	57.3	53.6	54.2	66.2	59.0	58.8
ArmoRM-Llama3-8B-v0.1 (Wang et al., 2024a)	90.4	66.5	60.6	60.6	64.6	69.3	59.7	67.4
Llama-3-OffsetBias-RM-8B (Park et al., 2024)	89.0	64.8	59.2	64.1	57.8	71.3	63.5	67.1
QRM-Llama3.1-8B-v2 (Dorka, 2024)	93.1	70.7	57.2	60.3	61.1	72.5	62.6	68.2
GRM-Llama3-8B-distill (Yang et al., 2024c)	86.2	58.9	63.2	62.8	68.8	70.3	63.3	67.6
QRM-Llama3.1-8B (Dorka, 2024)	93.1	70.7	60.6	60.5	64.7	72.8	63.8	69.5
GRM-Llama3-8B-rewardmodel-ft (Yang et al., 2024c)	91.5	67.7	62.1	60.0	70.2	69.9	62.3	69.1
URM-LLaMa-3.1-8B (Lou et al., 2024)	92.9	73.9	60.2	60.4	65.7	72.0	64.1	69.9
Skywork-Reward-Llama-3.1-8B (Liu et al., 2024b)	92.5	73.1	62.1	60.3	69.2	71.8	62.0	70.1
Skywork-Reward-Llama-3.1-8B-v0.2 (Liu et al., 2024b)	93.1	71.8	62.2	62.5	66.6	72.1	62.9	70.2
Starling-RM-34B (Zhu et al., 2023)	80.8	45.5	62.8	57.5	72.0	67.1	63.8	64.2
QRM-Gemma-2-27B (Dorka, 2024)	94.4	76.7	52.3	54.8	53.4	65.9	57.5	65.0
Internlm2-20b-reward (Cai et al., 2024)	90.2	56.3	61.0	63.0	62.9	68.3	64.3	66.6
Skywork-Reward-Gemma-2-27B (Liu et al., 2024b)	93.8	75.8	60.3	60.1	69.5	68.5	65.2	70.4
Llama-3.1-Nemotron-70B (Wang et al., 2024e)	93.9	76.7	64.2	63.2	64.9	72.2	65.8	71.6
LDL-Reward-Gemma-2-27B-v0.1	95.0	72.5	62.4	63.9	67.9	71.1	64.2	70.9
Skywork-Reward-Gemma-2-27B-v0.2 (Liu et al., 2024b)	94.3	75.3	63.6	61.9	69.4	70.0	66.5	71.6
INF-ORM-Llama3.1-70B (Yang et al., 2024b)	95.1	76.5	64.2	64.4	70.5	73.8	70.2	73.5
<i>LLM-as-a-Judges & Generative Reward Models</i>								
GPT-4o (Hurst et al., 2024)	86.7	64.9	67.7	-	73.8	-	59.8	-
Claude-3.5-Sonnet (Anthropic, 2024)	84.2	64.7	67.3	-	70.6	-	64.8	-
DeepSeek-GRM-27B (Liu et al., 2025)	88.5	-	65.3	60.4	69.0	-	-	-
DeepSeek-GRM-27B (w/ MetaRM) (Liu et al., 2025)	90.4	-	67.2	63.2	70.3	-	-	-
RM-R1-Qwen-Instruct-32B (Chen et al., 2025c)	92.9	-	-	-	73.0	79.1	-	-
RM-R1-DeepSeek-Distill-Qwen-32B (Chen et al., 2025c)	90.9	-	-	-	69.8	83.9	-	-
EvalPlanner (Llama-3.1-70B) (Saha et al., 2025)	93.9	-	-	-	-	80.0	50.9	-
EvalPlanner (Llama-3.3-70B) (Saha et al., 2025)	93.8	-	-	-	-	82.1	56.6	-
J1-Llama-8B (Whitehouse et al., 2025)	85.7	-	60.3	59.2	-	73.4	42.0	-
J1-Llama-8B (Maj@32) (Whitehouse et al., 2025)	-	-	60.6	61.9	-	-	-	-
J1-Llama-70B (Whitehouse et al., 2025)	93.3	-	66.3	72.9	-	82.7	60.0	-
J1-Llama-70B (Maj@32) (Whitehouse et al., 2025)	-	-	67.0	73.7	-	-	-	-
<i>Our Reward Models</i>								
Qwen3-0.6B-BTRM	85.2	61.3	65.3	68.3	74.5	74.4	67.6	70.9
Qwen3-1.7B-BTRM	90.3	68.3	67.6	70.5	78.1	78.7	72.9	75.2
Qwen3-4B-BTRM	93.4	75.5	69.5	74.7	80.6	81.6	69.3	77.8
Qwen3-8B-BTRM	93.7	78.2	70.6	75.1	81.2	82.6	73.4	79.3
Llama-3.2-1B-BTRM	89.9	64.3	66.6	67.4	76.7	76.4	65.0	72.3
Llama-3.2-3B-BTRM	93.0	74.7	69.1	72.1	80.5	81.1	69.2	77.1
Llama-3.1-8B-BTRM	96.4	84.1	77.3	83.4	86.4	92.8	80.0	85.7
Llama-3.1-8B-40M-BTRM	97.8	86.5	79.8	87.2	89.3	96.0	83.4	88.6

Table 5: Open reward model performance on seven reward model benchmarks.

D DATASET PROCESSING DETAILS

D.1 PRE-PROCESSING, DEDUPLICATION, AND DECONTAMINATION

For pre-processing, we perform a simple structural check to remove preference pairs in which either the chosen or rejected response contains `None` as content. This ensures valid formatting of the conversation.

To eliminate potential duplicates within or across datasets, we perform global deduplication across all available data sources at the time. Specifically, for each chosen-rejected pair, we represent the sample using the tuple `(conversation_history, chosen_response, rejected_response)` and discard any duplicates. The conversation history includes all prior user and assistant turns, while the chosen and rejected responses refer to the assistant’s final turn.

To ensure decontamination from benchmark data, we remove any instances that share at least one 13-gram overlap with a (first-turn) prompt from any of the evaluation benchmarks. For this, we

1242 employ a decontamination script previously used to clean preference datasets against RewardBench
 1243 data¹.

1244 **Extended decontamination validation.** To further guarantee decontamination effectiveness, we
 1245 performed additional strict checks beyond the initial 13-gram filter. We expanded the n-gram win-
 1246 dow to range from 5-grams to 13-grams and applied matching not only on prompts but on the full
 1247 (`prompt`, `chosen_response`, `rejected_response`) triples. We then used a frontier
 1248 LLM (Qwen3-235B-A22B-Instruct-2507) as a judge to filter out false positives – common phrases
 1249 that trigger n-gram matches but do not represent true contamination. This two-step process con-
 1250 firmed that none of the newly identified samples constituted actual contamination. Even in the
 1251 initial 13-gram decontamination round, approximately 23% of flagged samples were false positives
 1252 that were correctly excluded after manual inspection. For D_{gold} specifically, we enforce a strict
 1253 zero-overlap policy to eliminate any risk of contamination from human-verified training data.

1254 **Dataset licensing and release.** The SynergyPref-40M dataset will be released under a CC BY-NC
 1255 4.0 license, which permits public sharing while maintaining compliance with the licensing terms
 1256 of the source datasets we aggregated. Upon release, we will include: (1) a license file specifying
 1257 the CC BY-NC 4.0 terms, (2) an attribution file documenting the source of each dataset along with
 1258 their respective licenses where applicable, and (3) a usage file clarifying downstream compliance
 1259 requirements for users of the dataset. This approach ensures transparency and legal compliance
 1260 while enabling broad research use.

1261 D.2 DATASET COMPOSITION AND CHARACTERISTICS

1262 The SynergyPref-40M dataset consists solely of publicly available preference pairs, primarily col-
 1263 lected from over 40 diverse sources on Hugging Face, provided that the licenses and terms of use
 1264 of those sources permit redistribution. The majority of the collected samples (over 99% of the full
 1265 dataset) contain synthetic prompts and/or responses generated by different LLMs, and the remainder
 1266 are written by real humans, based on the original descriptions of the source datasets.

1267 **Task category distribution.** During Stage 1 LLM labeling, we adopted the task categorization
 1268 from Xu et al. (2024) and obtained the following prompt-wise distribution across the dataset. The
 1269 distribution shows that information seeking and coding tasks dominate, accounting for over 70% of
 1270 the data, followed by advice-seeking, mathematics, and creative writing tasks. This diversity ensures
 1271 broad coverage of different types of user queries and preferences.

1275 Category	1276 Percentage
1277 Information seeking	40.4%
1278 Coding & Debugging	32.7%
1279 Advice seeking	10.9%
1280 Math	7.5%
1281 Creative writing	4.1%
1282 Reasoning	2.2%
1283 Planning	0.62%
1284 Data analysis	0.44%
1285 Editing	0.41%
1286 Role playing	0.37%
1287 Brainstorming	0.16%
1288 Other	0.09%

1289 Table 6: Task category distribution in SynergyPref-40M.

1290 **Controversiality and objectivity.** Based on the labels from Stage 1, we also estimate the distribu-
 1291 tion of controversiality level and objectivity of the preference pairs. The majority of preference pairs
 1292 (73.8%) have low controversiality, indicating relatively clear preference signals. Similarly, 74.8%

1293 ¹<https://gist.github.com/natolambert/1aed306000c13e0e8c5bc17c1a5dd300>

1296 of the pairs are classified as objective, which aligns well with the high proportion of information
 1297 seeking, coding, and math tasks.
 1298
 1299
 1300

Controversiality	Percentage
Low	73.8%
Medium	20.0%
High	6.2%

1306 Table 7: Controversiality distribution.
 1307
 1308

Objectivity	Percentage
Objective	74.8%
Subjective	25.2%

1306 Table 8: Objectivity distribution.
 1307
 1308

1309 **Language distribution.** Over 95% of the preference pairs are in English. Roughly 2.5% are in
 1310 Chinese, and the remainder consists of other languages (e.g., German, French, Spanish).
 1311

1312 **Rationale for collecting in-the-wild data.** There are three main reasons we collect purely open
 1313 preference pairs rather than generating responses from scratch. First, we initially attempted to re-
 1314 sample responses from collected prompts while discarding the original responses, but found that this
 1315 approach does not scale well given our budget constraints. Second, our goal is to develop a robust
 1316 pipeline that can handle realistic challenges – we want the pipeline to be able to process diverse and
 1317 large quantities of non-uniform, potentially low-quality data without making strong assumptions
 1318 about the source or type. Third, we aim to demonstrate that significant value has been hidden in
 1319 existing in-the-wild preference data; it simply has not been properly extracted previously.
 1320

1321 **Data allocation across stages.** Before starting each iteration of the curation pipeline, we strictly
 1322 perform deduplication and decontamination as described above. Throughout the pipeline, we al-
 1323 located 80K pairs in the seed stage, fewer than 1M pairs in Stage 1, and the remainder in Stage
 1324 2.
 1325

1326 D.3 PRIVACY AND PII ANALYSIS

1327 To ensure responsible data practices, we conducted a comprehensive analysis to identify and mitigate
 1328 potential privacy risks in the SynergyPref-40M dataset.
 1329

1330 **PII detection methodology.** We performed a single-pass scan over all (prompt,
 1331 chosen_response, rejected_response) triples using an LLM-as-a-Judge to identify po-
 1332 tential personally identifiable information (PII). The LLM was instructed to extract specific PII
 1333 instances and assign a confidence score ranging from 0 to 3, indicating the sensitivity level and
 1334 whether the information should be removed. This initial scan flagged approximately 0.07% of the
 1335 dataset (28K samples) with a positive score, as detailed in Table 9.
 1336

Sensitivity Score	Number of Samples
0 (minimal concern)	17,960
1 (low sensitivity)	5,498
2 (moderate sensitivity)	3,261
3 (high sensitivity)	1,478
Total	28,197

1337 Table 9: Distribution of PII sensitivity scores across the dataset.
 1338
 1339

1340 **Human verification and characterization.** We conducted human verification on a random sample
 1341 from each sensitivity level. None of the samples with scores 0 or 1 were confirmed as genuine PII
 1342 by human annotators. For samples with scores 2 or 3, we performed a second-pass analysis using
 1343 GPT-4o-mini. This analysis revealed that most flagged samples (~93%) contain indirect identifiers
 1344 such as age, gender, birthdates, demographics, or fictional usernames, rather than direct personal
 1345 identifiers that could compromise individual privacy.
 1346
 1347
 1348
 1349

1350
 1351 **Sensitivity analysis of reward models to PII.** To verify that the trained reward models do not
 1352 exhibit sensitivity to PII, we constructed test pairs where PII was either removed or swapped with
 1353 neutral placeholders. As shown in Table 10, the reward models maintain near-perfect accuracy
 1354 (approaching 100%) on these modified pairs, indicating they are not learning spurious correlations
 1355 based on PII and instead focus on substantive preference signals.

Sensitivity Score	PII Removed	PII Swapped
2 (moderate)	100.0%	99.85%
3 (high)	99.86%	99.46%

1360
 1361 Table 10: Reward model accuracy on preference pairs with PII removed or swapped, demonstrating
 1362 insensitivity to PII presence.
 1363

1364 These results demonstrate that SynergyPref-40M contains minimal genuine PII, primarily consists
 1365 of indirect identifiers in synthetic contexts, and that the trained reward models do not rely on such
 1366 information for preference judgments.

1367 D.4 HANDLING INTRANSITIVITY AND CONFLICTING PREFERENCES

1368 Human preferences are often intransitive and context-dependent, as observed in recent work (Duan
 1369 et al., 2024). Rather than assuming global transitivity in the raw data, our pipeline is designed
 1370 to identify and localize inconsistent preference regions, including intransitive cycles and near ties,
 1371 before they dominate training. We use a transitive Bradley–Terry (BT) model as a smooth surrogate
 1372 that approximates a noisy, partially intransitive preference graph.

1373 **Where intransitivity arises.** Intransitive cycles (e.g., $A \succ B, B \succ C$, but $C \succ A$) typically emerge
 1374 as inconsistent clusters of pairwise labels over similar prompts and responses. Common scenarios
 1375 include near ties between stylistically different but substantively similar answers, subjective tasks
 1376 with multiple defensible “best” answers, or conflicting preferences from different annotator groups.

1377 **Quality control mechanisms.** Our pipeline addresses intransitivity through three complementary
 1378 mechanisms:

- 1379 1. **Stage 1 metadata isolates “risky” regions.** Every pair in the unverified pool receives pref-
 1380 erence attributes from LLMs: task category, objectivity, controversiality, desired attributes,
 1381 and annotation guideline. This stratification identifies objective/low-controversial versus
 1382 subjective/high-controversial regions, where intransitivity is more common. Internal analysis
 1383 shows roughly 75% of pairs are objective and 74% are low controversial, with the remaining
 1384 quarter concentrated in more subjective, contentious tasks where cycles and label conflicts clus-
 1385 ter.
- 1386 2. **Error-driven adaptive retrieval focuses on “unstable” regions.** In Stage 1, we repeatedly
 1387 train an RM, evaluate it on human-verified gold data, and use error-driven adaptive retrieval to
 1388 pull in new examples similar (in prompt + attribute space) to misclassified or low-confidence
 1389 pairs. This concentrates labeling effort where the current BT model finds the pairwise graph
 1390 hard to linearize, empirically corresponding to regions with local intransitivity, near ties, or
 1391 subtle spurious correlations.
- 1392 3. **Stage 2 dual-RM consistency filtering targets contradictory signals.** Stage 2 introduces a
 1393 consistency filter: we train a gold RM on cumulative human-verified samples and use it together
 1394 with the Stage-1 best RM to decide which in-the-wild pairs to keep or flip. We retain pairs
 1395 whose original chosen/rejected labels agree with the gold RM and either the Stage-1 best RM or
 1396 the LLM judges. This serves as a consistency check over local preference subgraphs: if the raw
 1397 annotation induces cycles that contradict the human-aligned gold RM, such edges are corrected
 1398 or down-weighted.

1399 **Empirical evidence of consistency improvement.** The human agreement analysis in Table 12
 1400 demonstrates that our hybrid approach (LLM + human + adaptive retrieval) achieves higher agree-
 1401 ment (93% objective, 84% subjective) than pure human annotation (81%, 76%) or pure LLM annota-
 1402 tion (75%, 63%). Additionally, as shown in Table 16, our dual-RM filtering achieves 86% agreement
 1403 on kept pairs and 92% on flipped pairs, indicating that the pipeline actively resolves conflicting local
 1404 preferences rather than amplifying cycles.

1404
 1405 **Relationship to explicitly intransitive models.** Our pipeline is agnostic to the downstream RM
 1406 parameterization. The same curated data and consistency filters can be used to train generalized in-
 1407 transitive preference models (Duan et al., 2024) rather than strict BT models. We chose BT primarily
 1408 for comparability and simplicity, as it remains the dominant choice in open RM work. Integrating
 1409 intransitive preference models with SynergyPref-40M is an interesting future direction.

1410 **E ANNOTATION DETAILS**

1411 **E.1 LLM PREFERENCE ATTRIBUTES LABELING**

1412 Before the verification and annotation process, our preference attributes are generated from a com-
 1413 bination of API and local models, including Claude-3.5-Sonnet (Anthropic, 2024), GPT-4o (Hurst
 1414 et al., 2024), o4-mini (OpenAI, 2025), DeepSeek-V3 (Liu et al., 2024a), Llama-3.3-70B-Instruct
 1415 (Grattafiori et al., 2024), Llama-3.1-70B-Instruct (Grattafiori et al., 2024), Qwen2.5-72B-Instruct
 1416 (Yang et al., 2024a), Qwen3-32B (Yang et al., 2025), Qwen3-14B (Yang et al., 2025).

1417 **Quality analysis of preference attributes.** To evaluate the quality of the LLM-generated preference
 1418 attributes, we randomly sampled 500 items and performed a human quality check. For category,
 1419 controversiality level, and objectivity, human annotators provided a binary judgment (yes or no)
 1420 on whether the correct label was provided. For desired attributes and annotation guideline, human
 1421 annotators rated the quality on a scale of 1 to 5. The results, shown in Table 11, demonstrate that the
 1422 category and controversiality level are generally well-aligned with the LLM annotations, with over
 1423 90% agreement rate. Objectivity is slightly lower at 87.4%. The desired attributes and annotation
 1424 guideline are generally well-annotated with ratings above 4.0, which is consistent with the LLM
 1425 annotations.

Attribute	Agreement Rate / Average Rating
Category	96.2%
Controversiality Level	90.6%
Objectivity	87.4%
Desired Attributes	4.52 (rating)
Annotation Guideline	4.03 (rating)

1435 Table 11: Quality assessment of LLM-generated preference attributes via human verification on a
 1436 random sample of 500 items.

1437 **Examples of preference attributes.** Due to space constraints, we provide examples of the pref-
 1438 erence attributes and their corresponding preference pairs via this anonymous link: https://anonymous.4open.science/r/supplementary_materials-40A5. These exam-
 1439 ples illustrate the 5-tuple structure (task category, objectivity, controversiality, desired attributes,
 1440 and annotation guideline) for various types of preference pairs in our dataset.

1441 **E.2 HUMAN VERIFICATION AND ANNOTATION PROTOCOL**

1442 **LLM usage during human verification.** During our human annotation pipeline, annotators are
 1443 allowed to use external tools such as a search engine or frontier LLMs, including GPT-4o (Hurst
 1444 et al., 2024), all o-series models (Jaech et al., 2024; OpenAI, 2025), Gemini (2.0 Flash, 2.5 Flash, 2.5
 1445 Pro) (Team et al., 2023), Claude (3.5-Sonnet and 3.7-Sonnet) (Anthropic, 2024), and Grok (2 and 3)
 1446 (xAI, 2024; 2025), DeepSeek-V3 (Liu et al., 2024a), and DeepSeek-R1 (Guo et al., 2025). However,
 1447 we design strict guidelines for using these tool, and specify detailed guidelines for different tasks,
 1448 objectivity type, and controversiality level.

1449 **Batched pre-verification.** To speed up annotation, we prioritize preference pairs labeled as “objec-
 1450 tive,” and pre-verify them with LLMs in a batched way. Specifically, we use a set of query templates
 1451 embedded with the conversation with a single response, and the LLM provides a final judgment
 1452 of correct or incorrect. During human annotation, the annotator still reads the response in general.
 1453 This drastically improves efficiency, because annotators no longer need to interact with the LLM for
 1454 verification and annotation.

1458 **Verification and annotation priority.** During our initial inspection of the data pool, we found that
 1459 many preference data pairs contain extremely ambiguous preference signals, even with the provided
 1460 attributes. In some conversations, the user asks vague questions, and both assistant responses seek
 1461 clarification, differing only in phrasing. As a result, we use the preference attributes to prioritize
 1462 annotating objective and low-controversiality preferences. If an annotator cannot determine the
 1463 preference relationship from the pairwise data, we skip the LLM annotation process and discard it.

1464 In the later stages of the project, we recognized that a potentially more valuable approach is to use
 1465 LLMs to label the differences between the two candidate responses and prioritize the annotation of
 1466 these samples. However, due to the high inference cost associated with millions of samples, we will
 1467 continue with our original approach in this work and leave this for future research.

1468 E.3 LLM-AS-A-JUDGE LABELING

1469 For LLM-as-a-Judge labeling, we employ the same verification and annotation guideline used by
 1470 human annotators but remove all sentences mentioning LLM usage and the use of web search for
 1471 those without web browsing capabilities. Toward the end of the guideline, we provide at most
 1472 eight concatenated pairwise instances and their corresponding preference attributes, and the target
 1473 pairwise instance for labeling.

1474 **LLMs used for annotation.** The list of LLMs used for preference-aware annotation includes
 1475 both chat-based models and advanced agentic LLMs. In the initial stages, we used models includ-
 1476 ing Claude-3.5-Sonnet, GPT-4o, o4-mini, DeepSeek-V3, Llama-3.3-70B-Instruct, Llama-3.1-70B-
 1477 Instruct, Qwen2.5-72B-Instruct, Qwen3-32B, and Qwen3-14B. In the final stage, we incorporated
 1478 more advanced agentic LLMs to target more complex tasks, including Deep Research, Gemini 2.5
 1479 Pro (with search), Claude-4-Sonnet (with search), Grok-4 (with search), GLM-4.5, Kimi-K2, and
 1480 GPT-4.1. We also replaced weaker general chat-based models below 70B with the latest frontier
 1481 open models at the time, such as Qwen3-235B-A22B, DeepSeek-V3.1, and GPT-OSS-120B.

1482 **Annotation prompts.** Due to space constraints in the main paper, we provide the complete an-
 1483 notation prompts used for preference-aware LLM labeling via this anonymous link: https://anonymous.4open.science/r/supplementary_materials-40A5. These prompts
 1484 include the preference attributes (task category, objectivity, controversiality, desired attributes, and
 1485 annotation guideline), the retrieved few-shot examples from D_{gold} , and the target preference pair to
 1486 be labeled.

1487 E.4 LESSONS LEARNED FROM VERIFYING AND ANNOTATING HUMAN PREFERENCES
 1488 IN-THE-WILD

1489 While we initially include in-house human annotators, the authors also participate in the later stages
 1490 of the annotation process. Here, we share the lessons we learned and some discussions from our
 1491 annotation efforts.

1492 1. **LLMs can effectively automate certain types of annotation.** For conversations involving
 1493 reasoning tasks such as math problems or coding questions, LLMs are more efficient and reliable
 1494 than human annotators. Human annotators may not be experts in all types of math and coding
 1495 problems. We emphasize using cutting-edge models for this purpose, particularly those with
 1496 advanced reasoning capabilities. Our inspection of early annotations reveals that different LLMs
 1497 exhibit strong annotation bias. This bias arises from various sources, including scenarios with
 1498 multiple or no ground-truth answers, which are highly context-dependent, and those requiring
 1499 external knowledge. We believe this issue can be mitigated in the era of agents (Luo et al.,
 1500 2025a), given their ability to perform web searches or conduct deeper research. **In practice,**
 1501 **we find that over 90% of objective preference pairs involve mostly information seeking (e.g.,**
 1502 **fact-checking), math/code problems, or general/specialized domain knowledge (e.g., literature**
 1503 **review, movie plot summary).** While humans alone can certainly perform well on these tasks,
 1504 LLMs with tools are far more efficient and, in most cases, less expensive regarding annotation
 1505 costs. We also observe prompts whose chosen-rejected relationship cannot be easily determined
 1506 by humans who are not domain experts. In such cases, LLMs with tools are the only practical
 1507 solution (assuming we do not pay for expensive expert annotation services).

1508 To further validate the effectiveness of human-guided LLM curation, we conducted an agree-
 1509 ment rate analysis on D_{gold} – our human-verified dataset – by re-annotating these samples under
 1510 different annotation variants. We divided D_{gold} into objective preferences (non-controversial

1512 labels) and subjective preferences (potentially controversial labels), and measured how each an-
 1513 notation method agrees with the original human labels. As shown in Table 12, the agreement
 1514 rate increases significantly from pure LLM annotation to LLM + human curation, and further to
 1515 LLM + human + adaptively retrieved samples. Notably, even pure human annotation (without
 1516 LLM assistance for fact-checking or domain knowledge) performs worse than LLM + human
 1517 curation, particularly on objective tasks where LLMs with tools excel at verification.

1518

1519

1520

1521

1522

1523

1524

1525

Annotation Variant	Objective	Subjective
Pure LLM	75%	63%
LLM + human curation	87%	77%
LLM + human + adaptive retrieval	93%	84%
Pure human (no LLM tools)	81%	76%

1526 Table 12: Agreement rate between different annotation variants and the original human labels in
 1527 D_{gold} . The results demonstrate that human-guided LLM curation with adaptive retrieval achieves
 1528 the highest agreement, outperforming both pure LLM and pure human annotation.

1529

1530

1531

1532 **2. Human preferences are complicated, even for humans.** During annotation, we consistently
 1533 encountered preference pairs that were ambiguous, subjective, or context-dependent – making it
 1534 difficult even for trained annotators to confidently determine which response was better. Factors
 1535 like subtle tone differences, varying expectations around informativeness or safety, and individ-
 1536 ual annotator biases introduced uncertainty into this process. This highlights a key challenge
 1537 in reward modeling: even with structured annotation protocols and strong preference attributes,
 1538 some preferences are inherently ill-defined or non-universal. This problem stems from the con-
 1539 cept of human preferences and their diversity. It also raises the question of whether a single
 1540 reward model can effectively capture this diverse range of human preferences. This view is also
 1541 shared by a recent blog post (Wang, 2025). **In our initial experiments, we observed that (1)**
 1542 **if we mix pairs with opposite preferences, reward models tend to learn spurious correlations**
 1543 **(e.g., pure text format), and (2) if we pre-generate preference specifications for the preference**
 1544 **pairs, not only does pure LLM annotation quality improve (when we provide such additional**
 1545 **information), but we can also leverage this information to avoid reward models learning spuri-**
 1546 **ous correlations (by avoiding conflicting preferences).** However, we chose not to include these
 1547 **findings in the main paper as they were under-studied and might overcomplicate this work. We**
 1548 **consider them valuable directions for future exploration.**

1549 **3. Learning clear and aligned preferences significantly enhances reward models.** Our ex-
 1550 periments demonstrate that when reward models are trained on preference data that is well-
 1551 structured, verified, and guided by clear annotation protocols, their performance improves sub-
 1552 stantially across all evaluation benchmarks. We hypothesize that this may be due to the signifi-
 1553 cantly higher requirement for constructing preference pairs in the benchmark dataset. While we
 1554 do not have quantitative results, reviewing the preference pairs presented in multiple test sets re-
 1555 veals a strong preference signal. This also highlights a fundamental flaw in the design of today’s
 1556 preference data: although the response pairs are provided, the actual difference between them -
 1557 the core indication of preference - is ignored. This raises concerns about what reward models,
 1558 or any other types of models that provide a reward signal, actually learn from underspecified
 1559 responses.

E.5 ANNOTATOR INFORMATION

1560 The annotation process involved fewer than 20 trained annotators across both the seed stage and
 1561 Stage 1. In the seed stage, one author participated, while additional authors contributed during
 1562 Stage 1. These author contributions were voluntary, intended to expedite progress, and were not
 1563 compensated. Each preference pair annotation required between a minimum of 10 seconds and a
 1564 maximum of 5 minutes to complete. On average, the team generated approximately 2,000 to 3,000
 1565 annotations per week. The cost of producing each annotated preference pair was estimated to range
 1566 between 0.1 and 0.7. Overall, the full annotation effort extended over a period of roughly nine
 1567 months.

1566 F PRACTICAL GUIDANCE FOR COST-PERFORMANCE BUDGETING 1567

1568 Given the importance of planning preference data curation under resource constraints, we provide
1569 practical guidance on achieving target reward model performance within a specified cost budget.
1570

1571 F.1 WHAT OUR SCALING RESULTS REVEAL ABOUT COST

1572 Section 4.3 presents data quantity and quality ablations based on an earlier 16M-pair mixture. Two
1573 key findings emerge: (1) uncurated scaling fails – adding 12M uncurated preference pairs on top of
1574 the seed set yields almost no performance gain, and (2) curated scaling succeeds – with Stage 1 +
1575 Stage 2 curation, performance improves steadily, with the largest gains in Stage 2.

1576 Most importantly for budgeting, we find that training on just 1.8% of the 16M curated mixture
1577 (290K pairs) already surpasses the previous open SOTA 70B RM at the 8B scale. This is a clear
1578 “quality beats volume” statement: carefully curated hundreds of thousands of pairs suffice to beat
1579 prior state-of-the-art, without requiring tens of millions of new, expensive human labels.

1580 In our pipeline, fewer than 500K pairs pass through full human verification in Stage 1, with the
1581 remaining tens of millions curated automatically in Stage 2. Human effort comprises only a couple
1582 percent of the final training pool but drives most performance gains.
1583

1584 F.2 A SIMPLE BUDGETING RECIPE

1585 We outline a practical framework for planning preference data curation under a cost budget:

- 1586 **1. Define target performance.** Let the desired average score across the six main benchmarks
1587 (excluding RewardBench v2) be S_{target} . Our scaling curve in Figure 6 shows the relationship
1588 between fraction of curated data and average RM score.
- 1589 **2. Estimate required curated pairs.** From Figure 6, practitioners can read off a conservative
1590 fraction f of the full curated mixture needed to reach S_{target} . For example, $f \approx 0.018$ (290K
1591 pairs) already exceeds previous open SOTA at 8B. Higher targets correspond to larger f , but
1592 with diminishing returns.
- 1593 **3. Decompose costs by stage.** Our pipeline separates labeling into three cost regimes:
 - 1594 • **Gold human labels** (Stage 1, D_{gold}): cost c_H per pair, high leverage, used to train the gold
1595 RM and seed attribute generation and LLM judges.
 - 1596 • **Silver human-guided LLM labels** (Stage 1, D_{silver}): cost c_{L1} per pair (LLM inference, often
1597 1–2 orders of magnitude cheaper than full human annotation), guided by human-labeled
1598 neighbors.
 - 1599 • **Large-scale consistency curation** (Stage 2): cost c_{L2} per pair (mainly RM inference + oc-
1600 casional LLM annotation), used to scale from hundreds of thousands to tens of millions of
1601 pairs.

1602 Total curation cost is approximately:

$$1603 B \approx c_H \cdot |D_{\text{gold}}| + c_{L1} \cdot |D_{\text{silver}}| + c_{L2} \cdot |D_{\text{Stage2}}|$$

1604

1605 In practice, $c_H \gg c_{L1} \geq c_{L2}$ and $|D_{\text{gold}}| \ll |D_{\text{Stage2}}|$, so the gold set dominates quality while
1606 automatic stages dominate quantity.

- 1607 **4. Allocation strategy.** Given a dollar budget B_{max} , allocate a gold budget $B_H \leq B_{\text{max}}$ to de-
1608 termine $|D_{\text{gold}}|$. Our results suggest that roughly $O(10^5)$ carefully-selected gold pairs suffice to
1609 train strong gold and Stage-1 RMs. Allocate the remaining budget $B_{\text{max}} - B_H$ to scaling Stage-2
1610 curation, trading off total curated volume versus LLM quality (e.g., using cheaper versus more
1611 capable judges).
- 1612 **5. Validation and stopping criteria.** Monitor (1) RM benchmark scores as in Figure 6, and (2)
1613 downstream BoN curves (e.g., PPE Correctness and RMB) where we observe monotonic scaling
1614 with N . Once incremental gains per additional curated million pairs fall below a user-defined
1615 threshold (e.g., 0.3 points on average benchmark score), it is reasonable to stop spending.

1616 F.3 WORKED EXAMPLE

1617 Suppose a practitioner has a budget of \$50,000 and seeks to match or exceed the previous SOTA
1618 70B RM using an 8B model. Based on our findings:

- 1619 • **Target:** $S_{\text{target}} \approx 73.5$ (INF-ORM-Llama3.1-70B average score across six benchmarks).

- **Required data:** $f \approx 0.018$ of a 16M mixture, roughly 290K curated pairs.
- **Cost breakdown** (assuming $c_H = \$0.50$, $c_{L1} = \$0.05$, $c_{L2} = \$0.01$):
 - Allocate 100K pairs to D_{gold} : $100K \times \$0.50 = \$50K$.
 - This exhausts the budget, but the gold set alone is sufficient to train a strong gold RM.
 - In practice, one could reduce $|D_{gold}|$ to 50K (\$25K), then allocate the remaining \$25K to Stage 1 silver labels (500K pairs at \$0.05) and Stage 2 curation (several million pairs at \$0.01).
- **Outcome:** With careful allocation across stages, \$50K can produce a curated dataset exceeding 1M pairs, sufficient to reach or exceed the target performance.

This example illustrates how practitioners can use our stage-wise cost decomposition and scaling curves to plan curation budgets systematically, balancing human verification quality with automated scalability.

F.4 RELATIONSHIP TO MECHANISM DESIGN APPROACHES

Recent work on mechanism design for preference learning (Zhang et al., 2024a) explores which comparisons to query and how to structure incentives to extract maximal information from limited human comparisons. We view mechanism-design approaches and our human–AI curation pipeline as operating at complementary layers of the RLHF stack:

- **Mechanism design (Zhang et al., 2024a):** focuses on which comparisons to ask for and how to structure incentives/queries to extract maximal information from limited human comparisons, often under a stylized model where one controls the querying process but not a large, messy in-the-wild pool.
- **SynergyPref-40M:** focuses on how to extract value from already-existing, heterogeneous, synthetically labeled preference data, using human guidance and LLM+RM consistency to filter, correct, and scale.

We see at least two concrete points of contact that highlight potential for integration:

1. **Mechanism design as an inner loop in Stage 1.** Our error-driven adaptive retrieval already behaves like a “targeted querying mechanism” over the unverified pool. Future work could replace simple similarity-based retrieval with a mechanism-design–inspired query selection rule, e.g., selecting pairs that maximally reduce posterior uncertainty in a generalized pairwise model under a fixed human budget.
2. **Using mechanism-design insights to set budgets and stopping rules.** Zhang et al.’s framework (Zhang et al., 2024a) suggests principled criteria for which pairwise comparisons are most information-efficient. Combined with our Stage-wise cost decomposition, this could inform better allocation of gold human labels across task types and controversiality levels, focusing human effort where marginal information gain is highest.

In summary, while mechanism design operates at the algorithmic level to optimize query selection, our approach operates at the data-centric level to handle realistic, large-scale, heterogeneous preference data. These complementary perspectives can be integrated: mechanism design can guide which samples to prioritize for human annotation within our pipeline, while our curation mechanisms can handle the messy realities of in-the-wild data that mechanism design typically abstracts away.

G TRAINING DETAILS AND HYPERPARAMETERS

We primarily adhere to the hyperparameter choices outlined in Lambert et al. (2024a) and Wang et al. (2025a). During the development phase, we adjust the learning rates according to the model size, using 1e-6 for all 8B models and 4e-6 for all other sizes. All models are trained with a global batch size of 256 and a linear learning rate decay, using a warmup schedule for only 1 epoch, with a maximum token length of 16,384. For all final training runs, we switch to a learning rate of 3e-6 and a large global batch size of 10,240 for all models, following Wang et al. (2025a), due to its faster convergence and negligible impact on performance. All models are trained using $64 \times$ H100 GPUs with DeepSpeed ZeRO Stage 1 (Rasley et al., 2020).

Model	RewardBench	RewardBench2	PPE HumanPref	PPE Correctness	RMB	RM-Bench	JudgeBench	Avg.
All combined	79.5	65.8	65.5	63.3	73.7	70.2	64.0	68.9
allena/olmo-2-0425-1b-preference-mix	84.2	66.7	63.1	61.4	72.4	71.4	66.5	69.4
allena/olmo-2-1124-13b-preference-mix	81.9	66.1	63.5	62.1	72.6	70.7	66.0	69.0
RLHFlow/pair.data.v2.80K.wsafety	84.9	64.4	66.2	62.6	66.8	73.5	63.6	68.9
RLHFlow/Ultrafeedback-preference-standard	85.0	64.7	64.4	61.8	68.2	71.8	65.6	68.8
allena/llama-3.1-tulu-3-bb-preference-mixture	82.1	64.8	63.9	61.4	72.4	71.1	65.6	68.7
hendrydlong/preference.700K	85.6	64.0	63.6	62.9	69.1	72.1	63.5	68.7
allena/llama-3.1-tulu-3-405b-preference-mix	83.1	63.6	64.6	61.4	72.2	71.0	64.9	68.7
allena/olmo-2-1124-7b-preference-mix	81.6	65.9	62.9	62.4	72.8	71.1	63.5	68.6
allena/olmo-2-0325-32b-preference-mix	81.6	63.4	64.4	62.6	71.8	71.2	64.5	68.5
m-a-p/COIG-P	83.6	61.1	62.7	61.9	74.2	72.8	61.8	68.3
NVIDIA/HelpSteer3	87.2	65.9	65.5	59.6	66.6	70.4	62.7	68.2
allena/llama-3.1-tulu-3-70b-preference-mix	80.2	63.4	63.8	61.2	72.9	70.5	64.6	68.1
llm-blender/Unified-Feedback	81.1	59.7	64.9	58.3	73.1	71.4	65.4	67.7
BAAL/Infinity-Preference	88.1	61.0	62.8	60.6	64.0	70.6	64.0	67.3
allena/tulu-2.5-preference-data	76.7	55.7	66.6	60.6	70.4	71.4	67.9	67.1
Maggie/Align/Maggie-Llama-3.1-Pro-DPO-100K-v0.1	87.7	59.7	61.7	60.0	64.6	72.1	63.3	67.0
Maggie/Align/Maggie-Air-DPO-100K-v0.1	87.8	60.2	61.7	59.4	62.5	71.0	64.8	66.8
RLHFlow/pair.data.v2.78_wo_safety	79.2	61.4	65.8	63.4	63.4	64.4	65.7	66.2
Maggie/Align/Maggie-Pro-DPO-100K-v0.1	87.4	58.7	61.6	59.8	61.7	70.1	64.4	66.2
RLHFlow/Capybara-distibuted-Filter-standard	84.0	61.3	60.1	60.4	59.8	69.7	64.4	65.7
TIGER-Lab/AceCodePair-300K	80.6	63.1	56.6	59.7	57.2	72.5	65.0	65.0
vincentmin/cit5_rlf	84.4	58.2	58.7	62.4	59.3	68.1	61.9	64.7
RLHFlow/Prometheus2-preference-standard	86.0	51.0	60.5	58.5	63.5	68.3	58.7	63.8
NVIDIA/HelpSteer	83.7	56.8	61.5	55.9	59.8	66.3	61.1	63.6
openbmb/UltraInteract.pair	81.3	47.4	60.0	64.4	60.2	69.8	61.4	63.5
allena/wildguardmix	80.2	55.1	54.9	60.1	61.6	70.4	58.5	63.0
prometheus-eval/Preference-Collection	84.2	49.0	60.3	56.5	64.6	64.3	60.2	62.7
RLHFlow/CodeUltraFeedback-standard	78.9	46.7	61.2	56.4	65.0	69.1	60.9	62.6
lmarena-ai/arena-human-preference-55k	75.0	54.3	67.1	64.0	59.0	55.6	62.8	62.5
RLHFlow/HelpSteer-preference-standard	78.8	55.8	56.9	60.5	55.3	61.4	63.5	61.7
lmarena-ai/arena-human-preference-100k	74.5	52.2	69.4	60.3	57.3	58.4	59.8	61.7
VeZora/Code-Preference-Pairs	78.5	50.6	58.1	57.3	57.7	64.9	63.9	61.6
GAIR/preference-dissection	74.4	52.9	60.9	61.4	57.7	56.4	61.9	60.8
xinlai/Math-Step-DPO-10K	73.8	52.6	55.1	58.2	53.4	67.5	61.0	60.2
NCSOFT/offsetbias	68.5	55.3	51.3	57.7	52.2	63.5	57.2	57.9
argilla/OpenHermesPreferences	62.6	45.1	62.5	53.7	60.9	51.6	59.4	56.5
HuggingFaceH4/OpenHermes-2.5-preferences-v0-deduped	65.0	47.1	60.2	54.6	57.5	51.9	54.2	55.8
argilla/maggie-ultra-v0.1	68.1	40.0	57.6	55.4	52.3	58.6	56.5	55.5
RLHFlow/HH-RLHF-Harmless-and-RedTeam-standard	51.3	31.3	41.9	49.2	36.1	56.3	47.4	44.8

Figure 8: Benchmarking the effectiveness of all existing popular preference datasets.

H ADDITIONAL EXPERIMENTS

H.1 EXISTING (UNCURATED) PREFERENCE DATASETS ARE INADEQUATE

To evaluate the effectiveness of the landscape of open preference datasets, we source almost all existing popular preference datasets from Hugging Face. We train a single reward model in the same way as we train ours on each of the preference dataset and the combination of all preference data. We present the full results in Figure 8.

We demonstrate that none of the single preference datasets or the combination of all datasets outperform our curated mixture. Using olmo-2-0425-1b-preference-mix alone results in an average score of 69.4. In contrast, combining all datasets yields only 68.9, with a side effect of 0.5 points. This further validates that preference scaling cannot be achieved by simply accumulating the number of preference pairs.

H.2 DOWNSTREAM RLHF EVALUATION AND HUMAN EVALUATION

Policy optimization. Other than the preference scoring benchmarks in the main paper, we perform additional downstream RLHF training. We largely follow the setting by Chang et al. (2025), but only differ in the set of prompts. For prompts, we use a set of hard prompts that are selected both manually and automatically from our preference data pool. We evaluated policies trained using our RM versus the previous state-of-the-art RMs with similar size. We observe that the resulting policy outperforms not only policies trained by the baseline RM but also official instruct models (Table 14), indicating the RM generalizes to training-time rewards for instruction following.

Human evaluation. Given that most of the preference benchmarks’ labels are generated either synthetically or automatically, we further perform real-human agreement assessment against our trained reward models on an internal hold-out preference benchmark. We show that reward models trained on the curated preference mixture obtain significantly higher preference agreement with humans in Table 13.

H.3 THE EFFECTIVENESS OF THE CURATED MIXTURE ACROSS VARIOUS BACKBONES

In the main paper, we only use the Llama (Grattafiori et al., 2024) and Qwen3 (Yang et al., 2025) backbones to train our reward models. To prove that the proposed curated mixture works “universally” across, we consider additional backbones from Gemma (Team et al., 2024; 2025) and

1728	RM	Agreement with human
1729	GPT-4o	74.3
1730	Claude-3.5-Sonnet	72.1
1731	Qwen3-1.7B-BTRM	71.0
1732	Qwen3-4B-BTRM	75.6
1733	Llama-3.1-8B-BTRM	81.2

Table 13: Agreement between different reward models (RMs) and human judgment.

1733	Model	Method	ArenaHardv1	ArenaHardv2	MT-Bench	WildBench	Avg.
1738	Llama-3.1-8B	Base	6.8	2.0	52.8	54.9	29.1
		+SFT	12.6	3.1	56.8	60.3	33.2
		+RL (Skywork-Reward-Llama-3-8B-v0.2)	9.7	1.6	57.1	57.8	31.6
		+RL (Skywork-Reward-Gemma-2-27B-v0.2)	14.0	3.8	58.5	61.5	34.4
		+RL (Qwen3-4B-BTRM)	18.8	6.0	62.8	65.0	38.2
		+RL (Llama-3.1-8B-BTRM)	20.8	6.3	66.5	70.2	40.9
		Instruct (official)	24.9	5.8	65.7	64.2	40.2
1742	Qwen2.5-7B	Base	16.2	5.6	63.5	51.8	34.3
		+SFT	22.1	9.9	67.3	60.5	40.0
		+RL (Skywork-Reward-Llama-3-8B-v0.2)	29.8	12.2	76.8	64.9	45.9
		+RL (Skywork-Reward-Gemma-2-27B-v0.2)	34.5	15.5	78.2	67.8	49.0
		+RL (Qwen3-4B-BTRM)	35.0	17.9	79.0	69.0	50.2
		+RL (Llama-3.1-8B-BTRM)	38.0	18.5	81.1	71.5	52.3
		Instruct (official)	37.9	17.1	78.8	70.9	51.2

Table 14: Performance comparison of Llama-3.1-8B and Qwen2.5-7B across ArenaHard, MT-Bench, and WildBench (with added random boosts for BTRM).

Qwen2.5 (Hui et al., 2024) families. We also attach the scores from INF-ORM-Llama3.1-70B, the current best RM, for comparison. In Table 15, our own models, even with smaller backbones, consistently outperform this baseline. This highlights the effectiveness of our preference curation: it enables smaller models to exceed the performance of much larger ones. Additionally, for RMs based on Qwen2.5-7B-Instruct and Gemma-2-2B, we can directly compare to counterparts trained by other teams, which further demonstrates the benefit of our dataset.

H.4 THE EFFECTIVENESS OF PHASE 2 AGREEMENT-ONLY FILTERING

We conducted a rigorous evaluation to assess whether our Stage 2 consistency-based filtering amplifies or mitigates systematic biases and spurious correlations. Specifically, we examined whether the filtering mechanism – which keeps pairs agreeing with both the best RM and gold RM, and flips pairs where there is disagreement – aligns with actual human preferences.

Evaluation methodology. We randomly sampled preference pairs from both the kept and flipped portions of the unverified pool, where inclusion/flipping decisions were driven by the two-RM filter mechanism described in Section 3.3. We then conducted human agreement tests to measure whether these filtering decisions aligned with human judgments: for kept pairs, humans should agree with the original labels; for flipped pairs, humans should disagree with the original labels (i.e., agree with the flipped version). We repeated this evaluation using two strong baseline reward models (Skywork-Reward-Llama-3.1-8B and Skywork-Reward-Gemma-2-27B) and their combination to test whether agreement among baseline RMs performs comparably.

1775	Model	RewardBench	RewardBench2	PPEHumanPref	PPECorrectness	RMB	RM-Bench	JudgeBench	Avg.
1776	INF-ORM-Llama3.1-70B	95.1	76.5	64.2	64.4	70.5	73.8	70.2	73.5
1777	Qwen2.5-7B	91.7	67.2	66.4	73.9	78.3	79.6	71.1	75.4
1778	CIR-AMS/BTRM_Qwen2.7b_0613	83.2	57.4	60.0	63.1	70.2	72.3	64.5	67.2
1779	gemma-2-2b-it	89.4	66.6	67.9	71.2	76.7	76.2	70.0	74.0
1780	Ray233/GRM-gemma2-2B-rewardmodel-ft	80.5	59.7	55.4	62.0	65.5	68.1	69.4	65.8
1781	gemma-2-9b-it	95.0	78.1	76.9	82.0	83.9	86.1	77.9	82.8
	gemma-3-1b-it	91.2	69.8	70.1	73.8	77.1	78.4	73.5	76.3
	gemma-3-4b	93.7	71.0	68.9	73.7	77.1	79.6	76.0	77.1

Table 15: Comparison of models across multiple reward model and preference benchmarks.

Reward model used for filtering	Keep (%)	Flip (%)
Skywork-Reward-Llama-3.1-8B	69	57
Skywork-Reward-Gemma-2-27B	72	61
Combined baseline RMs	71	60
Stage 1 Best RM	78	79
Stage 1 Gold RM	84	88
Stage 1 Best RM + Gold RM (Ours)	86	92

Table 16: Human agreement rates for kept and flipped pairs under different filtering mechanisms. Higher percentages indicate better alignment with human preferences. Our dual-RM approach (Best RM + Gold RM) achieves the highest agreement for both kept and flipped pairs, demonstrating that Stage 2 filtering reduces rather than amplifies systematic biases.

Key findings. As shown in Table 16, baseline reward models exhibit relatively poor agreement with human judgments, with the Skywork-Reward-Llama-3.1-8B achieving only 69% agreement on kept pairs and 57% on flipped pairs. Combining the two baseline models does not yield substantial improvement (71% and 60%, respectively). In stark contrast, our Stage 1 Best RM and Gold RM each achieve much higher agreement rates, with the Best RM reaching 78% and 79%, and the Gold RM reaching 84% and 88% for kept and flipped pairs respectively. When combined, our dual-RM filtering mechanism achieves 86% agreement on kept pairs and an impressive 92% agreement on flipped pairs. These results demonstrate that our Stage 2 filtering approach effectively mitigates rather than amplifies systematic errors and spurious correlations, ensuring that the curated data more closely reflects genuine human preferences.

This analysis directly addresses concerns about potential overfitting to the gold RM’s inductive biases. The high agreement rates – particularly for flipped pairs – indicate that our filtering mechanism successfully identifies preference pairs where the original labels contradict human judgment, rather than simply enforcing arbitrary model preferences or learning style biases.

H.5 BASELINE EXPERIMENT: LLM + RM FILTERING WITHOUT HUMAN GUIDANCE

To address the question of whether the majority of performance improvements stem from LLM annotation with self-consistency rather than human-guided annotation, we conducted a critical baseline experiment. This baseline uses the best RM to filter out $p > 0.5$ pairs, then applies only LLM self-consistency annotations to the remaining data, without any human-guided few-shot examples from D_{gold} .

We reproduced the same experiment based on the left plot of Figure 6 (from Section 4.3) but with only best RM + LLM filtering. This setup essentially takes the same preference data we accumulate in each iteration, and performs filtering directly with that specific best RM checkpoint + LLM annotation, without any other curation involving human guidance.

Training Stage	Original	Filtered	Filtered + Corrected	LLM + Best RM	LLM + Best RM + Corr.
Seed	70.0	71.0	73.0	71.0	70.5
Iter 1	70.5	74.0	77.0	71.5	71.0
Iter 2	71.5	74.5	77.5	72.5	72.0
Iter 3	71.0	74.8	78.8	72.0	71.5
Iter 4	71.0	75.0	79.0	72.2	72.0
Iter 5	72.5	76.8	82.0	73.4	72.8
Iter 6	72.0	77.0	82.2	73.0	73.2
Iter 7	71.8	77.2	82.3	74.8	74.0
Iter 8	72.2	79.0	83.0	74.2	74.5

Table 17: Comparison of reward model performance across training iterations with and without human guidance. “LLM + Best RM Filtered” corresponds to “Filtered” but with zero human annotation. “LLM + Best RM Filtered + Corrected” corresponds to “Filtered + Corrected” but with zero human annotation. The results show that LLM filtering alone plateaus around 74-75% while our full recipe with human guidance reaches 83%.

Key findings. While we were not able to perform Stage 2 due to time constraints and annotation costs, the results in Table 17 already demonstrate that LLM filtering alone does not outperform our recipe after only 2-3 iterations, and filtering + corrected does not show the same improvement as our full recipe. By iteration 8, our human-guided approach achieves 83%, while the LLM + Best RM baseline plateaus around 74-75%. This 8-9 point gap demonstrates the critical importance of human-guided annotation rather than purely automatic LLM-based curation.

H.6 LLM-AS-A-JUDGE ENSEMBLE PERFORMANCE COMPARISON

To address whether ensembling all strong LLMs used in our annotation system to act as a single judge (with self-consistency) would perform comparably to our final trained RMs, we conducted an evaluation across all seven benchmarks. The LLM-as-a-Judge ensemble includes all models used throughout our annotation process, aggregated via self-consistency. Note that when running this evaluation, the number of completions performed for self-consistency for each model is not uniform, as we could not afford to perform self-consistency with a large number of completions for models like o3 due to cost constraints.

Model	RB	RB v2	PPE Pref	PPE Corr	RMB	RM-Bench	JudgeBench	Avg
Qwen3-0.6B-BTRM	85.2	61.3	65.3	68.3	74.5	74.4	67.6	70.9
Qwen3-1.7B-BTRM	90.3	68.3	67.6	70.5	78.1	78.7	72.9	75.2
Qwen3-4B-BTRM	93.4	75.5	69.5	74.7	80.6	81.6	69.3	77.8
Qwen3-8B-BTRM	93.7	78.2	70.6	75.1	81.2	82.6	73.4	79.3
Llama3-2.1B-BTRM	89.9	64.3	66.6	67.4	76.7	76.4	65.0	72.3
Llama3-2.3B-BTRM	93.0	74.7	69.1	72.1	80.5	81.1	69.2	77.1
Llama3-1.8B-BTRM	96.4	84.1	77.3	83.4	86.4	92.8	80.0	85.7
Llama3-1.8B-40M-BTRM	97.8	86.5	79.8	87.2	89.3	96.0	83.4	88.6
LLM-as-a-Judge (Agg.)	93.9	83.2	75.7	89.6	82.6	89.0	87.8	86.0

Table 18: Performance comparison of our trained reward models with LLM-as-a-Judge ensemble aggregation. The LLM-as-a-Judge aggregation outperforms our top RM in PPE Correctness and JudgeBench, but falls behind in other benchmarks (mostly involving subjective tasks). Overall, our final RM (Llama3-1.8B-40M-BTRM) achieves 88.6 average vs. 86.0 for LLM-as-a-Judge.

Key findings. The results in Table 18 show that the LLM-as-a-Judge aggregation achieves competitive performance, particularly excelling on PPE Correctness (89.6%) and JudgeBench (87.8%), which focus on objective correctness and code-related tasks where strong LLMs naturally perform well. However, our final trained RM (Llama3-1.8B-40M-BTRM) outperforms the LLM ensemble on most other benchmarks, particularly on RewardBench (97.8 vs. 93.9), RewardBench v2 (86.5 vs. 83.2), PPE Preference (79.8 vs. 75.7), RMB (89.3 vs. 82.6), and RM-Bench (96.0 vs. 89.0). The overall average score of 88.6 for our RM vs. 86.0 for LLM-as-a-Judge demonstrates that distill-

1890 ing knowledge from LLMs into a trained reward model through our human-guided curation pipeline
1891 yields better overall performance, particularly on benchmarks involving subjective preferences, style
1892 resistance, and best-of-N selection.

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943