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ABSTRACT

Despite the critical role of reward models (RMs) in reinforcement learning from
human feedback (RLHF), current state-of-the-art open RMs perform poorly on
most existing evaluation benchmarks, failing to capture the spectrum of nuanced
and sophisticated human preferences. Even approaches incorporating advanced
training techniques have failed to yield meaningful performance improvements.
We hypothesize that this brittleness stems primarily from limitations in preference
datasets, which are often narrowly scoped, synthetically labeled, or lack rigorous
quality control. To address these challenges, we present a large-scale preference
dataset comprising 40 million preference pairs. To enable data curation at scale,
we design a human-Al synergistic two-stage pipeline that leverages the comple-
mentary strengths of human annotation quality and Al scalability. In this pipeline,
humans provide verified annotations, while large language models (LLMs) per-
form automatic curation based on human guidance. Based on this preference
mixture, we train simple Bradley-Terry reward models ranging from 0.6B to 8B
parameters on a carefully curated subset of 26 million preference pairs from the
40M pool. We demonstrate that the resulting reward models are versatile across
a wide range of capabilities, including alignment with human preferences, objec-
tive correctness, safety, resistance to stylistic biases, and best-of-N scaling. These
reward models achieve state-of-the-art performance across seven major reward
model benchmarks, outperform the latest paradigm of generative reward models,
and demonstrate strong downstream performance. Ablation studies confirm that
the effectiveness of our approach stems not only from data scale but also from
high-quality curation. Our approach represents substantial progress in open re-
ward models, revealing the untapped potential of existing preference datasets and
demonstrating how human-Al curation synergy can unlock significantly higher
data quality.

1 INTRODUCTION

Reward models (RMs) have become critical components in Reinforcement Learning from Human
Feedback (RLHF) pipelines (Christiano et al., [2017; [Stiennon et al.| 2020; |Ouyang et al.| 2022}
Dong et al., [2024a}; |Lambert, [2025}; [Schulman et al.,|2017)), now standard in Large Language Model
(LLM) post-training (Tie et al.| 2025). Recent advancements in LLM reasoning capabilities (Jaech
et al.| 2024} Guo et al., 2025} |Xu et al.| 2025} |Chen et al.,[2025a) and Reinforcement Learning with
Verifiable Rewards (RLVR) (Lambert et al., [2024a) have sparked interest in policy optimization
via rule-based rewards (Luo et al.l 2025c; |Wen et al., 2025} [Team)| |2025bza; |Luo et al., |2025b; [He
et al.| [2025b)). These reward functions typically verify whether answers match ground truth for
math problems or pass unit tests for coding tasks, and can include fine-grained rules for verifiable
outputs (Bercovich et al.,[2025; Ma et al.| [2025). However, complex human preferences often cannot
be captured through simple rules, limiting the effectiveness of rule-based approaches in advancing
general preference learning. Thus, the challenge of modeling nuanced, sophisticated, and sometimes
conflicting human preferences through effective reward models remains largely unresolved.

To model human preferences, previous works have curated various datasets (Cui et al.| 2023} Wang
et al.,2025¢c;|Dong et al.,|2024a; Xu et al.| 2024} |Park et al.,|2024; Lambert et al., [ 2024a;|OLMo et al.}
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2024) with prompts drawn from diverse sources. These efforts employ automatic methods (Cui et al.,
2023; Xu et al., 2024) or human annotators (Wang et al., 2024f; 2025¢) to generate preference pairs,
enabling preference learning in a pairwise contrastive manner (Bradley & Terry,|1952;|Ouyang et al.,
2022). Beyond dataset construction, some works aim to improve reward modeling via inductive
biases in enhanced loss functions (Liu et al., 2024bj [Cai et al., 2024; |Yang et al., 2024b; Wang
et al., |20244; [Zhang et al., 2024b) or modified model architectures (Wang et al., [2024a; |Chen et al.,
2025b; |Dorkal, [2024). To evaluate progress in reward modeling, RewardBench (Coste et al., [2023)
was released as the first benchmark for RMs. As reward models evolve, scores on RewardBench
have begun to saturate (Wang et al., [2024a; |Park et al., 2024} [Wang et al., [2024c} |Liu et al., [2024b;
Shiwen et al., 2024} Wang et al.,[2024bfe)), but multiple studies (Frick et al.||[2024;Zhou et al., |2024;
Song et al.l [2025; [Wen et al., 2024) have argued that such saturated scores are weak indicators of
real progress. These studies highlight weak (or even inverse) correlations between RewardBench
scores and downstream task performance (e.g., best-of-N or policy training).

In this work, we focus exclusively on the dual goal of both enhancing the quality and scaling
the quantity of preference data, to advance the development of open reward models. We introduce
SynergyPref-40M, a large-scale preference dataset comprising 40 million preference pairs. We de-
sign a two-stage preference data curation pipeline (Figure |2)) that (1) combines human verification
under a stringent protocol for quality assurance (Section [3.2)), (2) and employs human-preference-
guided LLM judges for scalability (Section[3.3)). The pipeline also involves iterative training of a re-
ward model, which continuously incorporates feedback from human labels and retrieves preference
data where the RM itself performs poorly, to enable further learning. Our pipeline yields 26 million
carefully curated preference pairs, which we use to develop and train a series of high-performing
reward models, ranging from 0.6B to 8B parameters.

Through comprehensive evaluations on seven major RM benchmarks (Lambert et al.| 2024b; [Frick
et al., 2024;Zhou et al., [2024; L1u et al., [2024c} [Tan et al., 2024} [Malik et al.| [2025]), we demonstrate
that our reward models achieves state-of-the-art performance, with our 8B reward model outper-
forming all existing open reward models across all seven benchmarks by a significant margin.
We also demonstrate these reward models’ superior performance across multiple critical dimensions,
including general human preferences, objective correctness, resistance to stylistic biases, safety, and
best-of-N scaling (Section f.2). Through data ablations, we show that the success of SynergyPref-
40M is driven not only by its scale but also by its high quality (Section {.3). Our method-wise
ablations confirm the importance of human annotation, LLM annotation guided by human prefer-
ences, and our carefully designed and rigorously implemented annotation protocols (Section {.4).

We outline our main contributions as follows:

* We collect and curate SynergyPref-40M, which, to the best of our knowledge, is the largest
curated preference mixture to date.

e We train a series of eight state-of-the-art reward models ranging from 0.6B to 8B parameters,
which achieve top rankings on seven major reward model benchmarks, demonstrating strong
performance across diverse evaluation dimensions.

* We propose a preference data curation pipeline that combines human verification for quality with
LLM-as-a-Judge, guided by human preferences for scalability.

2 THE BRITTLENESS OF CURRENT OPEN REWARD MODELS

In this section, we begin with a comprehensive assessment of existing open reward models. We then
present the results and examine potential shortcomings of the status quo.

Single-benchmark evaluation has limitations. RewardBench (Lambert et al.,[2024b) is a dataset
for pairwise preference evaluation in chat, safety, and reasoning, and has become the standard bench-
mark for assessing reward models. However, several subsequent studies (Frick et al., 2024} Zhou
et al.} 2024; |Wen et al., 2024) argue that scores on RewardBench (Li et al., [2024) do not directly
correlate with downstream performance and, in some cases, exhibit an inverse relationship. Our
evaluation results in Figure [T] corroborate this concern: while RewardBench shows positive cor-
relation with other benchmarks overall, improvements on RewardBench from ~80 to 90+ do not
consistently translate to gains on other benchmarks. We advocate for benchmarks that either (1) in-
volve more challenging evaluation methods (e.g., best-of-N) or (2) demonstrate stronger correlations
with downstream performance.
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Figure 1: Left: Comparison of the performance of 31 top open reward models on RewardBench

(Cambert et al.,2024b)) and their average scores across seven newer benchmarks (Frick et al. 2024
[Zhou et al.,[2024; Liu et al,[2024c} [Tan et al.} 2024; |Gureja et al.,[2024). Right: Pearson correlation

scores across seven reward model benchmarks.

A comprehensive evaluation suite reveals inconsistent improvements. Based on the above crite-
ria, in addition to RewardBench, we select several other benchmarks that span multiple evaluation
dimensions. Specifically, we include PPE Preference and Correctness (Frick et al., 2024) to as-
sess both real human preferences and unambiguous correctness; RMB (Zhou et al., [2024) for its
challenging best-of-N evaluation; RM-Bench to evaluate robustness to content
variation and style bias; and JudgeBench 2024), which evaluates preference pairs drawn
from difficult, real-world LLM evaluation datasets, such as LiveCodeBench 2024). Fi-
nally, we include the newly released RewardBench v2 (Malik et al.l [2025), which enforces global
best-of-N evaluation and extremely difficult capability assessments (e.g., distinguishing highly sim-
ilar responses and reward margin requirements). A detailed description of these benchmarks is
provided in Section [C.I] We present the main results in Figure [I] comparing RewardBench scores
with average scores across the seven newer benchmarks, and report Pearson correlations among all
benchmarks. Our findings are as follows:

* Improvements on RewardBench do not guarantee broader gains. As model scores on Re-
wardBench increase from ~80 to 90+, performance on other benchmarks does not consistently
improve — it may get better, worse, or remain approximately the same. This inconsistency, com-
bined with the weak correlations shown in the right plot of Figure [I] suggests that researchers
and practitioners should avoid interpreting reward model quality based on a single benchmark.

¢ Alternative loss functions or model modifications fail to yield consistent gains for the
Gemma-2-27B variants (Yang et al.|[2024b};[Dorka, 2024} [Lou et al.| 2024} [Zhang et al.,[2024D};
2025)). When examining the 27B models derived from Gemma in our experiments (see
Table 5 in the appendix), the original Skywork-Reward-Gemma-2-27B-v0.2 remains the best RM
in terms of average performance, while all variants with loss modifications fall behind. However,
we acknowledge this claim is limited to this specific model series and does not generalize to all
model modifications.

* Among the top 20 models on RewardBench, 16 directly or indirectly use the same base model

(Liu et al.,2024b) or are fine-tuned on highly similar training data, indicating stagnant progress
in both open preference datasets and reward models since September 2024.

3 SCALING PREFERENCE DATA CURATION VIA HUMAN-GUIDED Al
FEEDBACK

3.1 PIPELINE OVERVIEW

In this section, we present a two-stage preference data curation pipeline (Figure[2) that combines hu-
man verification for quality assurance with annotations from human-preference-guided LLM judges
to achieve scalability. In Stage 1, human and LLLM annotators label gold and silver preference data,
respectively. Humans follow a strict verification protocol, while LLMs use a preference-aware anno-
tation scheme conditioned on human preference labels. A reward model is first trained on the silver
data and evaluated against the gold data to identify its shortcomings. We then employ a mechanism
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Figure 2: A two-stage preference data curation pipeline. Stage 1 (top) involves human-Al synergis-
tic curation and runs iteratively. Stage 2 (bottom) scales data curation automatically using reward
model consistency checks, eliminating the need for further human supervision.

to select similar preference samples where the current reward model performs poorly, which are
re-annotated to train the next iteration of the RM. This process is repeated over multiple iterations.

In Stage 2, we combine the reward model from Stage 1 with a gold reward model — trained ex-
clusively on verified human data — to guide data selection through a consistency-based mechanism.
Since this stage requires no human supervision, it enables scaling to millions of preference data
pairs. This is depicted as Stage 2 in the lower part of Figure 2}

3.2 STAGE 1: SMALL-SCALE HUMAN-IN-THE-LOOP CURATION

Overview. Stage 1 is an iterative procedure consisting of 8 iterations. In each iteration, we focus
on two things: (1) collecting more unverified preference pairs D,,,, and (2) producing a silver set
Dgj1ver via LLM annotation and a gold set D 4,4 via human annotation to train and identify flaws in
the current reward model. Throughout Stage 1, we accumulate roughly 1M preference pairs in total.

Seed preference data initialization. We begin by collecting available preference data to form an
unverified pool, Dy,. During preference data collection, we source our data from publicly available
preference pairs, primarily collected from a wide range of sources (over 40+) on Hugging Face,
provided that the licenses and terms of use permit it (see Section [D.2] for detailed composition
and licensing information). For each pair in this pool, given the 3-tuple (z,y.,,y;) — comprising
the conversation x, the chosen (winning) response y,,, and the rejected (losing) response y; — we
collect LLM-generated preference attributes a. Each attribute set is a 5-tuple consisting of: (1) task
category, (2) preference objectivity, (3) controversiality, (4) desired attributes, and (5) annotation
guideline. Task category, objectivity, and controversiality serve as metadata to ensure annotation
diversity across scenarios. The desired attributes describe the qualities users seek in good responses,
while the annotation guideline provides instance-specific, context-dependent criteria for determining
the preference label. We provide examples of these attributes and quality analysis in Section [E]

Human verification and annotation protocol. We initialize with a small, high-quality, and diverse
set of preference pairs as the seed data. Using the generated preference attributes, human annotators
perform strict verification following a predefined protocol (detailed in Section[E2). At a high level,
the protocol outlines core principles and practices, as well as specific guidelines tailored to each
task category, objectivity type, and controversiality level. For example, it permits the use of external
tools — such as search engines, frontier LLM assistants, and domain-specialized LLMs (e.g., for
math or code) — to aid in labeling. However, full reliance on LLMs for labeling is strictly prohibited.
Specifically, annotators provide a final judgment based on the attributes and the instance-specific
guideline. For tasks involving fact-checking, annotators are required to use a search engine; for
code correctness, annotators instruct an LLM to execute the code and verify correctness. Even when
LLMs and external tools are used, annotators remain responsible for the final judgment. (Note that
we still consider this process “human annotation.”) Preference pairs produced during this process are
collected as Dgyq1q. This rigorous process yields the seed dataset Dyeeq, Where the human-verified
portion is denoted as Dgoiq (for validation), and the LLM-verified portion as Dgjye, (for training).
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Importantly, the preference attributes in Dg,q are also edited and verified by human annotators,
ensuring higher quality.

Step 1: Reward model training and evaluation. We initialize a pointwise Bradley-Terry reward
model (Bradley & Terryl [1952;|Ouyang et al.,[2022) and train it on Dyjjyer. We select the best current
reward model checkpoint § based on validation accuracy on Dggg. This checkpoint is referred to as
the “best reward model” throughout the paper, including in Stage 2 filtering. For each (x, ., y1),
we collect its prediction p = o (rg(x, yw) — 70 (2, y1))-

Step 2: Error-driven adaptive preference retrieval. Instead of relying solely on human-annotated
data to increase data volume, we leverage LLM annotators via an adaptive retrieval mechanism (Ram
et al., [2023) to collect representative samples aligned with human preferences. This step involves
two separate retrieval processes. First, we identify pairs where the current RM performs poorly: we
evaluate the current reward model on D4 to identify pairs it misclassifies, then sample new pairs
from D,,,, that are similar to these misclassified pairs. This first retrieval selects samples at the cur-
rent RM’s weak spots for subsequent LLM annotation. This mechanism selects new examples from
the unverified pool based on both the preference attributes a and the reward model’s predictions.
For each pairwise instance, we compute the embedding (Sturua et al., 2024) of (z, a) and retrieve
the top-k similar items. Intuitively, we prioritize preference data that resemble instances where the
reward model errs or shows low confidence. We set the retrieval upper bound k,,x = 8 and use a
dynamic rule to determine k:

J— Kmax, if p < 0.5 (incorrect prediction)
~ [kmax - (1 —=p)], ifp>0.5 (correct prediction)

Step 3: Preference-aware labeling. To augment LLM annotation with gold human labels, we
perform a second retrieval step: for each pair selected in Step 2, we retrieve similar pairs from
D 4014 (which are human-labeled) and insert them as few-shot examples to guide the LLM in making
the final judgment. This ensures that LLM annotation is conditioned on human-verified examples
throughout the process. Using the retrieved examples with human labels, we employ a group of
strong LLMs to aggregate final judgments using self-consistency (Wang et al., |2022). First, we
perform intra-model aggregation via self-consistency, then merge results across models to mitigate
potential bias from any single model. The list of LLMs used and the annotation prompts are provided
in Section @ For all LLM annotations, responses are labeled as “Candidate 1” and “Candidate 2,”
with their order randomized in the prompt. While pointwise scoring (He et al.l |2025a; [Liu et al.,
20235) has shown greater effectiveness, it is not applicable here due to our reliance on both human
and LLM annotators, making it impractical to enforce a shared standard. Finally, human-labeled
samples are added to Dgoq, and LLM-labeled samples to Dgjiyer. Throughout Stage 1, we iteratively
perform Steps 1, 2, and 3. After each iteration, we use an internal human-labeled validation set
for sanity checking. However, scores from this sanity check serve only as a reference; pipeline
execution does not depend on them.

3.3 STAGE 2: LARGE-SCALE AUTOMATIC CURATION OF PREFERENCE DATA IN-THE-WILD

We now scale up to tens of millions of in-the-wild preference data pairs. We denote this set as
D.i14, which contains the remaining publicly available preference pairs not allocated to D,,, in
Stage 1. Like D,,;,, Dyyi14 1s sourced from publicly available preference pairs collected from over 40
diverse sources on Hugging Face, provided that licenses and terms of use permit it. We allocate all
originally human-labeled pairs to D,,,, (used in Stage 1) and leave the rest to D,,;;4 (used in Stage
2). See Section [D.2] for full details. However, annotating the entire dataset — even automatically
— can be prohibitively costly and unnecessary. Below, we describe two consistency-based filtering
strategies to determine which data points warrant further verification. Importantly, Stage 2 involves
no human annotation; all annotation and filtering are performed by LLMs and the best reward model
checkpoint from Stage 1.

Preference consistency with the best reward model. Inspired by |[Kim et al.|(2024) and [Liu et al.
(2024b)), we adopt a filtering strategy that excludes all pairs with confidence greater than 0.5 under
the current best reward model. By “skip,” we mean that we directly incorporate these pairs into
the final dataset without any further modification or annotation. For the remaining pairs where a
mismatch is detected (i.e., the preference pair does not agree with the current best reward model),
we fallback to LLM annotation to make the final judgment. This LLM annotation step uses exactly
the same procedure as in Stage 1: we retrieve similar pairs from D4 and insert them as few-shot
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Model RewardBench RewardBench v2 PPE Pref PPE Corr RMB RM-Bench JudgeBench Avg.
Open Reward Models
Llama-3-OffsetBias-RM-8B (Park et al.|[2024) 89.0 64.8 59.2 64.1 57.8 71.3 63.5 67.1
ArmoRM-Llama3-8B-v0.1 (Wang et al.|[2024a) 90.4 66.5 60.6 60.6 64.6 69.3 59.7 67.4
Internim2-20b-reward (Cai et al.||2024} 90.2 56.3 61.0 63.0 629 68.3 64.3 66.6
Skywork-Reward-Llama-3.T-8B-v0.2 {Liu et al.|2024b} 93.1 71.8 62.2 62.5 66.6 72.1 629 70.2
LDL-Reward-Gemma-2-27B-v0.1 95.0 725 62.4 63.9 679 71.1 64.2 71.0
Skywork-Reward-Gemma-2-27B-v0.2 (Liu et al.|[2024b) 94.3 753 63.6 61.9 69.4 70.0 66.5 71.6
Llama-3.1-Nemotron-70B (Wang et al.|[2024f) 93.9 76.7 64.2 63.2 64.9 722 65.8 71.6
INF-ORM-Llama3.1-70B (Yang et al.||2024b} 95.1 76.5 64.2 64.4 70.5 73.8 70.2 735
LLM-as-a-Judge & Generative Reward Models
GPT-40 (Hurst et al.||2024) 86.7 64.9 67.7 67.1 73.8 73.1 59.8 70.4
Claude-3.5-Sonnet (Anthropic)[2024} 84.2 64.7 67.3 69.2 70.6 74.5 64.8 70.8
DeepSeek-GRM-27B (Liu et al.|[2025} 88.5 - 65.3 60.4 69.0 - - -
DeepSeek-GRM-27B (w/ MetaRM) (Liu et al.|[2025} 90.4 - 67.2 63.2 70.3 -
RM-R1-Qwen-Instruct-32B (Chen et al.|2025c¢| 929 - - - 73.0 79.1
RM-R1-DeepSeek-Distill-Qwen-32B (Chen et al.2025c) 90.9 - - - 69.8 839 -
EvalPlanner (Llama-3.1-70B) (Saha et al.|[2025} 93.9 - - - - 80.0 50.9
EvalPlanner (Llama-3.3-70B) (Saha et al.}[2025) 93.8 - - - - 82.1 56.6
J1-Llama-8B (Whitehouse et al.|[2025] 85.7 - 60.3 59.2 - 73.4 42.0
J1-Llama-8B (Maj@32) (Whitehouse et al.|[2025} - - 60.6 619 - - -
J1-Llama-70B (Whitehouse et al.|[2025] 933 - 66.3 729 - 82.7 60.0
J1-Llama-70B (Maj@32) (Whitehouse et al.|2025} - - 67.0 73.7 - - -
Our Reward Models
Qwen3-0.6B-BTRM 852 61.3 65.3 68.3 74.5 74.4 67.6 70.9
Qwen3-1.7B-BTRM 90.3 68.3 67.6 70.5 78.1 78.7 729 752
Qwen3-4B-BTRM 93.4 755 69.5 74.7 80.6 81.6 69.3 77.8
Qwen3-8B-BTRM 93.7 782 70.6 75.1 812 82.6 734 79.3
Llama-3.2-1B-BTRM 89.9 64.3 66.6 67.4 76.7 76.4 65.0 723
Llama-3.2-3B-BTRM 93.0 74.7 69.1 72.1 80.5 81.1 69.2 77.1
Llama-3.1-8B-BTRM 96.4 84.1 71.3 834 86.4 92.8 80.0 85.7
Llama-3.1-8B-40M-BTRM 97.8 86.5 79.8 87.2 89.3 96.0 834 88.6

Table 1: Reward model performance assessed on seven benchmarks. Bold numbers indicate the
best performance among all models, while underlined numbers represent the second best. Entries
marked with “-” indicate that a model is unreleased. A complete evaluation is provided in Table E}

examples to help the LLM make the final judgment. We apply the same adaptive preference retrieval
and human-preference-guided LLM annotation from Section [3.2] without involving human verifiers.

Preference consistency with the gold reward model. We train a separate gold reward model us-
ing all cumulative human-verified samples to approximate the “true”” human preference distribution.
From the unverified pool, we retain only those pairs whose original chosen-rejected labels are con-
sistent with (1) the gold reward model and (2) either the LLM judges or the current best reward
model. Approximately 5 million preference pairs passed through this consistency mechanism with-
out requiring attribute generation or additional labeling. To leverage the discarded pool, we also
experiment with “recycling” the discarded data by simply flipping the chosen-rejected order, which
incurs no additional annotation or computational overhead.

4 EXPERIMENTAL RESULTS

In this section, we first present the main results of reward model performance in Section[4.2] We
then conduct additional ablations on both data (Section4.3)) and method (Section[d.4) to demonstrate
the effectiveness of our approach.

4.1 REWARD MODEL TRAINING

We train all reward models as Bradley-Terry models using the Llama 3.1 and 3.2 series (Grattafiori
et al.,[2024) and the Qwen3 (Yang et al.,|2025) collection as backbones. We choose model backbones
with no more than 8B parameters for both training and usability considerations. Specifically, from
the Llama 3 series, we employ Llama-3.1-8B-Instruct, Llama-3.2-3B-Instruct, and Llama-3.2-1B-
Instruct. For Qwen3, we consider sizes of 0.6B, 1.7B, 4B, and 8B. It is evident that findings from
RewardBench v2 (Malik et al.,|2025) show that using larger model backbones, such as 70B, results
in greater gains. However, we do not consider them for this generation due to the training cost (on
26 to 40 million preference pairs) and the ease of use in actual RLHF settings.

All reward models are trained with a maximum context length of 16K tokens, which encompasses
the majority of the samples in our data mixture to avoid truncation. For all final model training runs,
we adopt the hyperparameters from Wang et al.|(2025a)), with a large global batch size of 10,240 and
a constant learning rate schedule. We train all reward models exclusively on the 26 million curated
subset. We also experiment with a variant that has a “-40M” suffix. This variant is trained using
26 million curated pairs, along with additional pairs that have a flipped chosen-rejected order (i.e.,
those that agree with humans) from the discarded 14 million pairs.
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Model Knowledge Reasoning Math Coding Avg. Model E (BoN) Har (BoN) Avg.
GPT-40 50.6 54.1 75.0 59.5 59.8 Skywork-Reward-Llama-3.1-8B-v0.2 60.5 56.8 58.7
Claude-3.5-Sonnet 62.3 66.3 66.1 64.3 64.8 Skywork-Reward-Gemma-2-27B-v0.2 63.1 59.9 61.5
DeepSeek-R1 59.1 82.7 80.4 92.9 78.8 DeepSeek-GRM-27B 63.9 58.0 61.0
ol-preview 66.2 79.6 85.7 85.7 79.3 DeepSeek-GRM-27B + MetaRM 64.2 58.0 61.1
03-mini 58.4 62.2 82.1 78.6 703 RM-R1-DeepSeek-Distill-Qwen-32B 62.0 61.8 61.9
03-mini (low) 63.0 69.4 83.4 833 74.8 RM-R1-Qwen-Instruct-32B 63.6 68.2 65.9
03-mini (medium) 62.3 86.7 85.7 929 81.9 Qwen2-72B-Instruct 64.5 64.9 64.7
03-mini (high) 67.5 89.8 875 100 86.2 GPT-40-2024-05-03 63.9 68.2 66.1
Qwen3-0.6B-BTRM 62.3 66.3 82.1 59.5 67.6 Qwen3-0.6B-BTRM 68.4 69.1 68.8
Qwen3-1.7B-BTRM 66.9 69.4 83.9 714 729 Qwen3-1.7B-BTRM 72.0 72.2 72.1
Qwen3-4B-BTRM 66.9 64.3 80.4 66.7 69.5 Qwen3-4B-BTRM 74.7 75.1 74.9
Qwen3-8B-BTRM 70.1 67.3 82.1 73.8 73.4 Qwen3-8B-BTRM 76.5 75.8 76.2
Llama-3.2-1B-BTRM 61.0 66.3 732 59.5 65.0 Llama-3.2-1B-BTRM 68.0 732 70.6
Llama-3.2-3B-BTRM 64.3 65.3 87.5 59.5 69.2 Llama-3.2-3B-BTRM 74.4 76.2 753
Llama-3.1-8B-BTRM 76.6 75.5 89.3 78.6 80.0 Llama-3.1-8B-BTRM 823 82.8 82.6
Llama-3.1-8B-40M-BTRM 79.9 78.6 89.3 857 834 Llama-3.1-8B-40M-BTRM 86.2 86.6 86.4

Table 2: Performance comparison of RMs Table 3: Reward model pairwise accuracy on the
with state-of-the-art LLM-as-a-Judges and Best-of-N split for Helpfulness and Harmlessness
reasoning models on JudgeBench (Tan et al., in RMB (Zhou et al.|,[2024).

2024).

4.2 A COMPREHENSIVE EVALUATION OF THE REWARD MODELS

Here, we present the main evaluation results and analysis based on seven reward model benchmarks.
We covert the details of them in Section [C.1]

General preferences. We report full benchmark results for the current top-performing reward mod-
els, LLM-as-a-Judges, and generative reward models in Table E} Across all seven benchmarks, our
reward models outperform not only much larger ones (i.e., 70B) but also the emerging class of gen-
erative reward models (Liu et al., 2025} |Chen et al., 2025c). We interpret this as strong evidence that
SynergyPref-40M captures a wide range of preferences, enabling more robust preference learning
across multiple dimensions simultaneously. Meanwhile, the result highlights the importance of data
quality relative to the strength of the base models. Even at a scale of 1.7B parameters, a reward
model can outperform a 70B model on all benchmarks except for RewardBench and RewardBench
v2, effectively bridging the model size gap.

Correctness preferences. For objective correctness evaluation, we primarily consider JudgeBench
(Tan et al., 2024) and PPE Correctness (Frick et al.,|2024). To effectively measure progress, we di-
rectly compare our reward models with leading LLMs and reasoning models that top the JudgeBench
leaderboard (Table [2). Note that JudgeBench uses a weighted average score across all samples,
whereas we compute the average score across the four categories to maintain consistency with all
other benchmarks. While our reward models underperform state-of-the-art reasoning and coding
models on average, they outperform all leading models on knowledge tasks by a significant mar-
gin. Notably, Llama-3.2-3B-BTRM achieves math performance equivalent to 03-mini (high), while
Llama-3.1-8B-BTRM outperforms 03-mini (high) in this category. For PPE Correctness, we com-
pare our model against existing reward models using the Best-of-N evaluation (Figure [3) in the
following paragraph.

====Ground Truth —— Llama-3.1-8B-BTRM —— Qwen3-1.7B-BTRM —— Llama-3.1-Nemotron-70B-Reward-HF
—— Llama-3.1-8B-40M-BTRM Qwen3-4B-BTRM —— INF-ORM-Llama3.1-70B Skywork-Reward-Gemma-2-27B-v0.2
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Figure 3: Best-of-N scaling curves of RMs across five tasks on PPE Correctness (Frick et al.|[2024).

Best-of-N accuracy and scaling. We evaluate our RMs on the BoN splits from RMB (Zhou et al.,
2024)) and PPE Correctness Preference (Frick et al [2024). As shown in Table [3} our RMs demon-
strate strong Best-of-N (BoN) capability in both helpfulness and harmlessness. All eight RMs out-
perform GPT-4o, the previous state-of-the-art, by a margin of up to 20 points. We further present
BoN curves for five challenging tasks in PPE Correctness in Figure [3] Llama-3.1-8B-BTRM shows
superior scaling, outperforming all other models evaluated. Among all BoN scaling curves, all our
model variants exhibit positive scaling (i.e., performance continues to improve as IV increases), ex-
cept for our 1.7B variant in GPQA. We further confirm their BoN capability on RewardBench v2
(Li et al., [2024])) (Figure E]), which requires precise best-of-N selection globally across the dataset.
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Model Easy Normal Hard Avg. Model Factuality Precise IF  Math Safety Focus Ties Avg.
Skywork-Reward-Llama-3.1-8Bv02 705 742 493 647  Skywork-Reward-Llama-3.1-8B 69.9 25 628 933 962 741 731
3 URM-LLama-3.1-8B 68.8 45.0 639 918 976 765 739
Skywork-Reward-Gemma-2-27B-v0.2 889 719 421 676 g o Royard Gemma-2-27B-v02 767 375 672 969 917 818 753
ArmoRM-Llama3-8B-v0.1 804 715 558 692 (jude-3-7-sonnet-20250219 733 544 750 903 91 672 754
Nemotron-340B-Reward 81.0 714 56.1 695  skywork-Reward-Gemma-2-27B 737 40.3 705 942 932 826 758
LDL-Reward-Gemma-2-27B-v0.1 924 752 455 710 llama-3.1-70B-Instruct-RM-RB2 813 419 699 884 865 833 761
Llama-3-OffsetBias-RM-8B 839 732 569 71.3 INF-ORM-Llama3.1-70B 74.1 419 699 964 903 862 765
Internlm2-20b-reward 79.4 74.2 62.8 72.1  claude-opus-4-20250514 82.7 41.9 74.9 89.5 862 837 765
ama3 1 R QRM-Gemma-2-27B 785 372 699 958 954 832 767
:‘g&m&;\; E]em”‘;"]" 778}]33 g%? ;(6)8 gzg ;%i gemini-2.5-flash-preview-04-17 65.7 553 811 909 867 834 772
- -Llamas. 1- - - - 2% LMUnit-llama3.1-70b 84.6 488 706 907 970 90.6 80.5
Qwen3-0.6B-BTRM 90.3 78.0 548 744  LMUnit-gwen2.5-72b 87.2 544 72.7 91.3 96.8 90.1 82.1
Qwen3-1.7B-BTRM 93.0 83.4 59.7 7877  Qwen3-0.6B-BTRM 58.2 40.0 71.6 84.4 794 340 613
Qwen3-4B-BTRM 921 847 679 81.6 Qwen3-1.7B-BTRM 65.8 45.0 727 8901 885 487 683
Qwen3-8B-BTRM 919 857 701 826 Qwen3-4B-BTRM 773 462 732 922 966 674 7155
Llama-3.2-1B-BTRM 913 799 578 763 B- o D o G S S
Llama-3.2-3B-BTRM 91.5 84.1 67.8  81.1 g 762 456 694 931 960 617 747
Llama-3.1-8B-BTRM 970 950 86.5  92.8  |jama-3.1-8B-BTRM 84.6 66.2 776 967 984 812 841
Llama-3.1-8B-40M-BTRM 97.6 96.9 93.5 960  Llama-3.1-8B-40M-BTRM 87.9 67.8 831 973 992 839 865

Figure 4: Fine-grained difficulty-level Figure 5: Comparison of our RMs with the top 12 RMs
scores on RM-Bench (Liu et al., 2024c).  on RewardBench v2 (Malik et al.,[2025)).

Resistance against style biases. Using RM-Bench (Liu et al., 2024c), we assess the ability of
reward models to judge substance under varying stylistic differences between chosen and rejected
responses. As shown in Figure ] most baseline models exhibit significant performance gaps across
the three stylistic conditions, indicating high sensitivity to such biases. This is particularly evident
for INF-ORM-Llama3.1-70B, with a gap of 36 points between Normal and Hard accuracy. In con-
trast, our models outperform all baselines — not only in absolute scores across all three categories
but also in maintaining much smaller performance differences. We also observe a rapidly shrinking
gap as model size increases. These results suggest that training on SynergyPref-40M leads to more
debiased representations of preferences.

Superiority in advanced capabilities. On RewardBench v2, we further demonstrate superior ca-
pability in precise instruction following, including assessing whether a model’s response adheres
to specific instructions in the prompt. Notably, all existing reward models score below 50 in this
category. In contrast, Llama-3.1-8B-BTRM outperforms strong proprietary models like Claude-
3.7-Sonnet and Gemini-2.5-Flash-Preview-04-17, and generative reward models that utilize rubrics
(Saad-Falcon et al.|, 2024), through learning pure representation of preferences. We also observe a
significant increase in the Factuality score, likely due to the volume of our curated dataset and the
richness of the information and knowledge it contains.

4.3 ABLATION STUDIES ON DATA QUANTITY AND QUALITY

We further examine the effect of data quantity and quality through performance trends across our
pipeline, based on an early version of SynergyPref-40M with only 16 million preference pairs.

Preference data scaling does not hold for uncurated data. (quality and quantity) In the left plot
of Figure[6] we show that increasing the amount of uncurated data results in minimal performance
gains. During Stage 2, training on an additional 12 million preference pairs fails to surpass the
performance of the initial seed model. In contrast, with curated data, we observe consistent perfor-
mance improvements as more data is added, with the most significant gains occurring in Stage 2 —
where the largest volume of curated data is introduced. The “Filtered” curve represents preference
pairs that pass both human labeling and LLM annotation in terms of agreement — from the Stage
1 perspective, this is simply the concatenation of Dy4;q and Dyjpyer at each specific iteration. The
“Corrected” curve includes the “Filtered” subset plus the subset of preference pairs that pass neither
human labeling nor LLM annotation, but with their preference labels flipped (i.e., chosen-rejected
swapped). This latter subset corresponds to data where either humans or LLMs consider the rejected
response to be better. Each point on the curves represents a reward model trained with all curated
preference pairs accumulated up to that iteration (cumulative from iterations 1 through N). Notably,
this result partially aligns with findings in concurrent work (Wang et al.,|2025a), which specifically
demonstrates that subjective preference learning does not exhibit scaling behavior, whereas objective
preferences do.

Data curation enables preference “correction.” (quality) We further demonstrate that our data
curation process not only selects high-quality data for training but also identifies low-quality or
“incorrect” preferences, which are placed in a discarded pool during training. By “recycling” this
discarded data — simply flipping the chosen and rejected responses — we achieve consistent perfor-
mance gains across all stages and iterations, as illustrated by the orange curve in Figure [f] As a



Under review as a conference paper at ICLR 2026

RM Avg. Score Across Training Stages Training Curve of Llama-3.1-8B-BTRM
—¥— Original i
85 —e— Filtered i ] 80 ]
) HileragConzeed 3 o Previous Open SOTA RM
S 80f ' : 1 S 70l ]
2] i 2]
S ‘ : o
<5 g Tl .
. Previous Open SQTA RM 1.8% of training data
70F v ] sop | ‘ ‘ ‘ ‘ ‘ N
Seed Stage 1 (Iter 1 - 8) Stage 2 0 10000 20000 30000 40000 50000 60000
Training Stage Training Step (A Single Run)
Figure 6: Left: Reward model score progress throughout the entire curation pipeline, including
three data ablations: original data, filtered data, and preference pairs,

based on an early version of SynergyPref-40M. Right: The average score of the final training run
of a preliminary version of Llama-3.1-8B-BTRM. The Avg. Score indicates the averaged RM score
across all benchmarks considered except RewardBench v2.

result, Llama-3.1-8B-40M-BTRM benefits from the inclusion of preference data even with flipped
chosen-rejected responses.

Training on 1.8% of a 16M mixture outperforms previous SOTA open RM (70B) at the 8B
scale. (quality and quantity) In the right plot of Figure[6] we report the average RM score across
six benchmarks (excluding RewardBench v2 2025), which had not been released at the
time) during training. Using only 1.8% (roughly 290K samples) of the full training set surpasses the
previous SOTA. This underscores that our data mixture excels not only in scale but also in quality.

4.4 ABLATION STUDIES ON ANNOTATION METHOD

In this section, we conduct method-wise ablation studies to examine the importance of key com-
ponents in our data curation pipeline. Although it is not feasible to perform ablations across the
entire pipeline due to the long annotation interval and its recursive nature, we focus exclusively on
iteration 1 of Stage 1.

4.4.1 PIPELINE-LEVEL ABLATIONS

Setup. We begin with the filtered seed dataset and ex- Preference Data Curation Method Ablations
amine five settings: (1) direct training on unverified data W Adaptive
(i.e., no curation), (2) simple LLM curation only, (3) both Retrieval
human and LLM curation, and (4) incorporating adap-
tively retrieved examples into LLM curation. These com-
ponents collectively represent one iteration of Stage 1 in
Figure 2] Note that the text labels in Figure [7] describe
the change between two consecutive settings rather than
the settings themselves. Bar 1 represents training on seed
data only (the baseline RM we start with). Bar 2 cor- 71.0
responds to seed data plus randomly sampled unverified 70
preference pairs from D!, (a randomly sampled subset Figure 7: Ablations over different cura-
from D,,), representing no curation. Bar 3 uses seed tion variants.

data plus D!, filtered by pure LLM annotation using ensemble aggregation with self-consistency.
Bar 4 employs seed data plus D, filtered by human annotation. Finally, Bar 5 uses seed data plus
D), curated with our full recipe (human-guided LLM annotation with adaptive retrieval). Bar 2 has
more data than Bar 1 because it includes randomly sampled pairs, while Bars 3, 4, and 5 have less
data than Bar 2 because they are filtered by LLM and/or human annotation.

N
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Finding 1: Simple LLM curation barely improves RM quality. As shown in Figure [7] simple
LLM curation increases the final RM score by only 0.1 — potentially within the error margin of
optimization randomness. Given that much in-the-wild preference data is synthetically labeled
let al.} [Dong et al. [2024a} [Lambert et al.|[2024a) by LLMs, this result aligns with our findings
in Figure|6] where scaling uncurated preference data yields negligible gains. A potential factor may
be the limited capabilities or annotation quality of the LLM judges used in our study

Chen et al.; [2024).

Finding 2: Human curation is crucial to data quality. From Figure[7, we observe that the largest
improvement comes from human curation, with a relative gain of 2.3 points over the seed RM
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baseline. This highlights the need for scalable methods of collecting human preference data and
showcases the strength of our approach, which requires only a modest amount of human annotation.

Finding 3: Adaptive retrieval boosts LLM curation quality. Given access to human-curated
gold data, adding similar gold examples to the LLM annotation prompt improves RM quality. This
technique results in a 0.9-point gain compared to raw LLM annotation in the human curation variant.
While the improvement is smaller than with direct human curation, this method is simple, scalable,
and incurs minimal overhead, making it an attractive tool for enhancing LLM annotation.

4.4.2 HUMAN ANNOTATION ABLATIONS

Setup. We now focus specifically on the most impactful

. . Method Avg. Score
component: human curation. We evaluate three variants: Seed RM o
. (Jd B
(1) raw humar} curation, where annotators are shown only w/ Raw Curation 714 (+0.4)
the conversation history and two responses, (2) human w/ Pref Attributes 72.1 (+1.1)
curation with LLM-generated preference attributes, and w/ Verification Protocol ~ 74.2 (+3.2)

(3) human curation following our full annotation proto-
col (i.e., with external tools such as search engines and
frontier LLMs). To control for memorization, the same
annotators label three distinct subsets of preference data sampled with similar distributions. Before
running the ablation, we train reward models on each of the three subsets and confirm they yield
similar final performance-within a maximum of 0.6 points difference. This reduces the influence of
intrinsic data quality as a confounding factor, ensuring controlled experiments. All other compo-
nents remain unchanged from our final method.

Table 4: RM scores on three human an-
notation setups.

Human annotation with additional information and tools boosts annotation quality. As shown
in Table[d] all forms of human curation improve the quality of the seed RM. Raw annotation based
solely on the conversation and two responses results in a 0.4-point gain. Adding preference attributes
(task category, objectivity, controversiality, desired attributes, and annotation guidelines) yields a
larger gain. Incorporating our full annotation protocol — including access to external tools — leads to
the best final performance, validating the effectiveness of our human curation process.

4.5 ADDITIONAL EXPERIMENTS

Other than the preference benchmark evaluation and data- and method-wise ablations, we provide
additional experiments to show that 1) our curated mixture outperforms all existing preference mix-
ture and their combination (Section , 2) the resulting reward models excels in both downstream
RLHF and human evaluation (Section [H.2)), 3) the proposed preference mixture works on various
LLM backbones (Section [H.3)), and 4) the Phase 2 filtering mechanism can effectively remove sys-
tematic biases and better aligns with human preferences (Section [H.4).

5 CONCLUSION

In this work, we introduce SynergyPref-40M, a preference data mixture comprising 40 million pref-
erence pairs (26 million curated), and a series of eight state-of-the-art reward models designed for
versatility across a wide range of tasks. SynergyPref-40M is constructed through a two-stage cura-
tion pipeline that synergistically combines human supervision for quality with human-guided LLM
judges for scalability. Built on this preference data mixture, we present a collection of eight strong
reward models ranging from 0.6B to 8B parameters. Across seven major reward model benchmarks,
these models achieve state-of-the-art performance, demonstrating strong capabilities in capturing
general human preferences, objective correctness, resistance to style biases, safety, and best-of-N
scaling. Our small 1.7B variant surpasses the best existing 70B reward model on average, while our
8B variant ranks first on all seven benchmarks among all open reward models. We also conduct ex-
tensive ablation studies on both the data and the curation method to validate the effectiveness of our
approach. We believe this work advances open reward models and, more broadly, RLHF research,
representing a significant step forward that will accelerate open progress in the field.

6 ETHICS STATEMENT

This work involves the collection and curation of large-scale preference data through human an-
notation, raising several ethical considerations that we address proactively. Our human annotation
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process involved workers who were compensated fairly according to industry standards and pro-
vided with clear guidelines and training. We ensured that annotators had access to external tools and
resources to make informed judgments, and we implemented safeguards to prevent worker exploita-
tion through reasonable workload distribution and adequate compensation.

The preference dataset created in this work captures human values and preferences that will be used
to train reward models for RLHF applications. We acknowledge that human preferences can be sub-
jective, culturally dependent, and potentially biased. To mitigate these concerns, we implemented
diverse annotation protocols and quality control measures, including multiple validation stages and
consistency checks. However, we recognize that our dataset may still reflect certain demographic or
cultural biases present in the annotator pool and the underlying data sources.

Our reward models will be used to guide the behavior of Al systems through RLHF, potentially in-
fluencing how these systems interact with users. While our models demonstrate strong performance
across safety benchmarks, we emphasize the importance of careful deployment and continued mon-
itoring in downstream applications. We encourage users of our models to conduct thorough safety
evaluations in their specific use cases and implement appropriate safeguards.

We commiit to releasing our dataset and models responsibly, with clear documentation of their limi-
tations and intended use cases. We also acknowledge the computational resources required for this
work and the associated environmental impact, though our focus on efficient model architectures
(up to 8B parameters) helps minimize resource requirements for practitioners.

7 REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our work across all components of
our research pipeline. Our data curation methodology is described in detail in Section 3, with com-
prehensive annotation protocols provided in the appendix (Section[E.2)) including specific guidelines
for human annotators, quality control measures, and the adaptive retrieval mechanism. All hyper-
parameters for reward model training are explicitly specified in Section 4.1, following established
practices from [Wang et al.| (2025a)) with detailed configurations including batch size, learning rate
schedules, and training procedures. Our evaluation methodology is thoroughly documented across
seven major benchmarks with detailed descriptions provided in the appendix (Section [C.T), ensur-
ing that our results can be independently verified. The complete experimental setup for our ablation
studies is described in Section 4] with controlled experimental designs that isolate the impact of
individual components. We plan to release our curated preference dataset SynergyPref-40M and
trained reward models through standard academic channels with appropriate documentation and us-
age guidelines. Additionally, we will provide detailed data processing scripts, training code, and
evaluation benchmarks as supplementary materials to facilitate reproduction of our results. Our
comprehensive evaluation across multiple benchmarks, detailed ablation studies, and systematic
methodology documentation collectively ensure that our contributions can be effectively reproduced
and built upon by the research community.
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A RELATED WORK

Preference data annotation. Traditional preference data annotation relies heavily on human anno-
tators (Liu et al.,[2020; [Stiennon et al.| 2020;Ouyang et al.,|2022; |Bai et al.,[2022a;|Hurst et al.,2024;
Touvron et al.,|2023ajb)), which is both costly and inefficient — and sometimes even noisy (Daniels-
Koch & Freedman), [2022). To improve scalability, recent work — now collectively referred to as
RLAIF (Bai et al.,[2022b) — has proposed various forms of automatic annotation using strong LLMs
(Bai1 et al., 2022b; [Lee et al.,[2023; |Burns et al., [2023}; |Cu1 et al., 2023 /Guo et al., 2024; Yuan et al.;
Prasad et al.| [2024; |Pace et al, [2024; [Lambert et al.| [2024a; [He et al 2025a), in some cases even
outperforming human annotators (Gilardi et al.l [2023; |Ding et al., 2022)). Our approach combines
the strengths of both paradigms: we enhance human annotation using external tools and frontier
LLMs, while also guiding LLM-based annotation with human-verified labels. Among related work,
the most relevant are [Kim et al.|(2025) and |He et al.|(2024). Kim et al.| (2025) leverages a small set
of human-labeled seed data to iteratively refine an LLM policy via self-improvement (Rafailov et al.,
2023)); in contrast, we iteratively incorporate gold human preference labels to augment LLM anno-
tation within a structured data curation framework. [He et al.|(2024)) employs an iterative process
that pseudo-labels unlabeled preference pairs and retains only high-confidence examples, without
human annotators. Our work bridges the gap between human and LLM-based annotation by in-
tegrating them into a principled and scalable framework, enabling high-quality preference data at
scale. In addition, our approach to human verification via preference attributes is similar to LMUnit
(Saad-Falcon et al.| [2024), which decomposes requirements based on context and conducts auto-
matic “unit tests” on assistant responses using LLMs.

The paradigm of reward models. The reward model paradigm has evolved rapidly. Initially based
on the Bradley-Terry (BT) model (Bradley & Terry, [1952; [Liu et al., 2020} |Stiennon et al., 2020;
Ouyang et al., [2022; Bai et al., [2022a}, [Wang, |2025), early reward models were trained to maxi-
mize the score difference between pairwise responses. During inference, these models produce a
scalar score indicating the relative quality of a response compared to alternatives given the same
prompt. Later, RewardBench (Lambert et al., 2024b)) introduced the first taxonomy of reward mod-
els, categorizing them into (1) sequence classifiers, (2) direct preference optimization (DPO) models
with implicit rewards, (3) generative models, and (4) custom classifiers. Most BT-based models fall
under the sequence classifier category, while generative models primarily include LLM-as-a-Judge
approaches. DPO models, by contrast, rely on implicit rewards derived from the DPO objective
(Rafailov et al.| [2023)). This taxonomy was further elaborated in [Liu et al.| (2024b) and has since
been adopted by subsequent works (Zhong et al., [2025}; [Zang et al.,[2025; [Wang et al.,2025b). With
the emergence of generative reward models (Liu et al.| 2025; |Chen et al., [2025c} Saha et al.| 2025;
Guo et al., 2025)), Liu et al.|(2025)) proposed a new categorization based on the form of reward gener-
ation and scoring patterns, highlighting differences in input flexibility and inference-time scalability.
The reward generation forms include scalar, semi-scalar, and generative outputs, while scoring pat-
terns are categorized as pointwise or pairwise. Beyond these major paradigms, |Sun et al.| (2024)
introduces an alternative approach that trains reward models using an order consistency objective.
This reframes reward modeling as a binary classification task and has been shown to outperform the
Bradley-Terry model in the presence of annotation noise.

Strong open reward models and preference datasets. At the time of writing, there are already 166
reward models on the RewardBench v1 leaderboard (Lambert et al.,2024b), most of which are open-
weight. The top-ranking models are primarily from the Skywork-Reward series (Liu et al.| 2024b)
and their derivatives, trained using either the same base models (Dorkal 2024} |[Lou et al., 2024) or
datasets (Yang et al., [2024b; [Shiwen et al., |2024; Lou et al., 2024} [Zhang et al., 2024b; Yang et al.,
2024c). Their training data primarily consist of unfiltered human preferences and automatically
curated synthetic data (Liu et al., 2024b)). Another line of high-performing reward models includes
FsfairX and ArmoRM (Dong et al.| 2024b; [2023; Wang et al., [2024a)), trained on Preference 700K
(Dong et al.,[2024b)), a dataset composed of preference data aggregated from eight diverse sources.
The ArmoRM variant extends FsfairX with a multi-dimensional reward head, enabling it to generate
reward signals for fine-grained aspects of response quality. The InternLM2-Reward series (Cai et al.,
2024) also presents strong models across different sizes, trained on a large-scale collection of 2.4
million closed-source preference pairs, with a focus on both English and Chinese data. Recently,
the release of RewardBench v2 (Malik et al.l [2025)) introduced a set of seven reward models trained
on various Llama-3.1 checkpoints (i.e., different sizes and base models). Among these, the 70B
variant is one of the top-performing models on the benchmark. Right before our release, we noticed
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two generative reward models from the LMUnit series (Saad-Falcon et al., [2024) that topped the
RewardBench v2 leaderboard. These models use rubrics as unit tests, which are much more robust
than reward models based on discriminative classifiers. Their strength is further reflected by their
hgigh scores in Factuality and Ties categories. Our reward models leverage both the Skywork-
Reward dataset and Preference 700K in the Seed and Stage 1 phases, respectively — forming the
foundation for improvements in later stages.

B LIMITATIONS

Human preferences are inherently diverse and often conflicting, especially for prompts without a
single correct answer. Even when ground-truth answers exist, individuals may differ in their pref-
erences based on factors such as writing style, tone, level of detail, or the relative weighting of
helpfulness versus harmlessness. A single reward model may not fully capture this complexity and
may inherently favor certain response types over others. Future work could explore personalized
reward models or context-dependent training paradigms to better reflect the multifaceted nature of
human preference.

Our observation regarding performance improvements from re-annotated discarded data is purely
empirical. Due to budget constraints, we did not conduct further verification to rigorously assess
this pool. As a result, the re-annotated data may include noisy preferences or judgments that are not
broadly representative or that fall outside the scope of current evaluation benchmarks. A thorough
investigation of this flipped pool is left for future work.

Meanwhile, we would like to clarify that not all discarded preference pairs are incorrect or useless.
Since our pipeline still uses LLMs and trained reward models to filter data, which is not fully inter-
pretable, biases and modeling errors are inherently unavoidable. Studying why and how examples
are removed during the process, as well as their actual usefulness for reward modeling and RLHF,
could be a valuable research direction.

Our annotation protocol differs in implementation from most existing approaches, where human
annotators provide their own preferences. In contrast, our protocol is more constrained: it instructs
annotators to follow predefined desired attributes and annotation guidelines for each sample. While
this structured approach promotes consistency, it also reduces flexibility and may not fully capture
minority preferences. This limitation arises because, for certain subjective preferences, it is often
infeasible to determine which response is better-even on a relative scale.

Finally, the success of our approach relies heavily on human annotation; we did not observe sat-
isfactory results from fully automatic curation alone. This raises the question of whether current-
generation LL.Ms are capable of supporting high-quality, fully automatic data labeling. Due to
inference costs and API limitations, we were unable to scale automatic curation to the latest frontier
models with strong reasoning capabilities. We consider this a promising direction for future explo-
ration, particularly given the central role these LLMs already play in supporting human annotation
within our pipeline.

C REWARD MODEL BENCHMARKS AND EVALUATION RESULTS

C.1 REWARD MODEL BENCHMARKS

RewardBench. RewardBench (Lambert et al., [2024b) is the first benchmark released for evalu-
ating reward models. It includes 2,985 evaluation samples from 23 data sources, categorized into
four main groups: chat, chat-hard, safety, and reasoning. The evaluation uses pairwise comparison
accuracy, where a reward model generates scores for both the chosen and rejected responses. A
prediction is correct if the score for the chosen response exceeds that of the rejected one. Final ac-
curacy is computed as a weighted average within each category and then averaged across categories.
A noted limitation is that the chosen-rejected pairs are constructed using semi-automatic methods
and manually validated, though the authors do not detail the validation process. They also acknowl-
edge potential spurious correlations in the reasoning subsets and the absence of correlation analysis
between RewardBench scores and downstream performance.

PPE Preference and Correctness. PPE (Frick et al., [2024) includes two datasets for evaluating
reward models: PPE Preference and PPE Correctness. PPE Preference consists of 16K human-
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labeled preference pairs from Chatbot Arena, targeting real human preferences. PPE Correctness
is derived from challenging benchmarks with ground-truth answers, allowing direct verification of
preference pairs. Included benchmarks are MATH (Hendrycks et al., [2021), MBPP (Austin et al.,
2021), MMLU-Pro (Wang et al.}[2024d)), IFEVAL (Zhou et al., 2023)), and GPQA (Rein et al.,[2024).
Each prompt yields 32 LLM responses, enabling both pairwise and best-of-N evaluations. The
authors demonstrate a strong correlation between PPE scores and downstream RLHF performance,
making it a reliable benchmark for real-world reward model evaluation.

RMB. RMB (Zhou et al.l [2024) is a comprehensive benchmark covering 49 real-world task cate-
gories under both helpfulness and harmlessness. Like PPE Correctness, it supports pairwise and
best-of-N evaluations. Preference pairs are generated synthetically, with GPT-4 providing pointwise
ratings based on query-specific principles. Human verification is used to ensure dataset quality.
RMB shows strong positive correlation with downstream performance across several benchmarks.

RM-Bench. Unlike other benchmarks that focus on general preference evaluation, RM-Bench (Liu
et al [2024c) specifically tests a reward model’s ability to discern nuanced response differences
and resist style biases. It includes four categories: Chat, Math, Code, and Safety. Prompts are
sourced from benchmarks such as AlpacaEval (Li et al., 2023), HumanEval (Muennighoft et al.,
2023), MATH (Hendrycks et al., 2021)), and XSTest (Rottger et al.,|2023)). Response pairs are min-
imally different (e.g., word-level changes introducing factual errors) and generated with controlled
style. RM-Bench defines three difficulty levels: (1) easy, where style mismatches may mislead the
model; (2) normal, with matched stylistic quality; and (3) hard, where content is decisive despite a
stylistically superior distractor.

JudgeBench. JudgeBench (Tan et al.,|2024) is a correctness-focused benchmark originally designed
for LLM-based judges. Due to its pairwise format, it naturally supports pointwise reward model
evaluation. It includes subsets such as MMLU-Pro (Wang et al., |2024d) (knowledge), LiveBench
(White et al., |2024) (math and reasoning), and LiveCodeBench (Jain et al., 2024).

RewardBench v2. RewardBench v2 (Li et al.| 2024)) is the second version of the original Reward-
Bench (Lambert et al.,[2024b), featuring substantially more difficult and realistic evaluation data. It
assembles new human-generated prompts (in contrast to prior benchmarks which reuse downstream
prompts), grouped into diverse and multi-skill classification tasks. On average, existing reward mod-
els score around 20 points lower on RewardBench 2 compared to its predecessor. RewardBench v2
also shows stronger correlation with downstream performance — both during RL fine-tuning (e.g.,
PPO) and best-of-N inference sampling — compared to earlier RM benchmarks.
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C.2 FULL EVALUATION RESULTS

In Table [5] we present the complete evaluation results for all the reward models considered. We
categorize them into Bradley-Terry reward models, LLM-as-Judges, and the new paradigm of gen-
erative reward models 2025). Across all seven benchmarks discussed in the main body
of the paper, our reward models trained on SynergyPref-40M outperform all previous models on
average.

Model RewardBench RewardBench v2 PPE Pref PPE Corr RMB RM-Bench JudgeBench Avg.
Bradley-Terry Reward Models
GRM-gemma2-2B-rewardmodel-ft (Yang el al 024C 88.5 59.7 59.7 58.5 68.0 66.2 63.5 66.3
RM-Mistral-7B (Dong et al.| 2 -- 80.9 59.6 61.8 56.4 66.6 66.9 62.1 64.9
Eurus-RM-7b ‘W.I 2024 83.3 58.1 59.6 60.5 65.5 69.0 58.4 64.9
BTRM_Qwen2_76_06 83.6 57.4 61.8 584 61.5 69.4 63.8 65.1
Internlm2-7b- reward Cai et al.|[2024 87.6 534 62.1 60.0 67.1 67.1 59.4 65.2
FsfairX-LLaMA3-RM-v0. ong et al.|[2023 84.7 62.9 63.1 61.1 70.2 70.5 59.9 67.5
internlm2-1_8b-reward (Cai et al. 82.0 39.0 57.3 53.6 542 66.2 59.0 58.8
ArmoRM-Llama3-8B-v0. ang et al.|2024a; 90.4 66.5 60.6 60.6 64.6 69.3 59.7 67.4
Llama-3-OffsetBias-RM-8B (Park et a 89.0 64.8 59.2 64.1 57.8 71.3 63.5 67.1
QRM-Llama3.1-8B-v2 (Dorka. 93.1 70.7 572 60.3 61.1 72.5 62.6 68.2
GRM-llama3-8B-distill (Yang et al.||2024¢c 86.2 589 63.2 62.8 68.8 70.3 63.3 67.6
QRM-Llama3.1-8B (Dorka 93.1 70.7 60.6 60.5 64.7 72.8 63.8 69.5
GRM-Llama3-8B-rewardmodel- 1 (Yang etal |[2024c] 91.5 67.7 62.1 60.0 702 69.9 623 69.1
URM-LLaMa-3.1-8B (Lou et al | 92.9 739 60.2 60.4 65.7 72.0 64.1 69.9
Skywork-Reward-Llama-3. 3B w 92.5 73.1 62.1 60.3 69.2 71.8 62.0 70.1
Skywork-Reward-Llama- 3 1 8B-v0 93.1 71.8 62.2 62.5 66.6 72.1 62.9 70.2
Starling-RM-34B 112023} 80.8 455 62.8 57.5 72.0 67.1 63.8 64.2
QRM-Gemma-2-27B ‘MIWH 94.4 76.7 523 54.8 534 65.9 575 65.0
Internlm2-20b-reward ‘W 90.2 56.3 61.0 63.0 62.9 68.3 64.3 66.6
Skywork-Reward-Gemma-2-! ( t al.|2024b 93.8 75.8 60.3 60.1 69.5 68.5 65.2 70.4
Llama-3.1-Nemotron-70B . @E 93.9 76.7 64.2 63.2 64.9 722 65.8 71.6
LDL-Reward-Gemma-2-27B~v0. 95.0 72.5 62.4 63.9 67.9 71.1 64.2 70.9
Skywork-Reward-Gemma-2-27B-v0.2 L1u Liu et al | 943 753 63.6 61.9 69.4 70.0 66.5 71.6
INF-ORM-Llama3.1-70B {Yang et al. 95.1 76.5 64.2 64.4 70.5 738 70.2 735
LLM-as-a-Judges & Generative Reward Models
GPT-4o ( 86.7 64.9 67.7 - 73.8 - 59.8 -
Claude-3.5-Sonnet ( mm 84.2 64.7 67.3 - 70.6 - 64.8 -
DeepSeek-GRM-2' 88.5 - 653 60.4 69.0 - - -
DeepSeek-GRM-27B (w/ M 90.4 - 67.2 63.2 70.3 - - -
RM-R1-Qwen-Instruct-32B (C| 92.9 - - - 73.0 79.1 - -
RM-R1-DeepSeek-Distill-Qwen- m 90.9 - - - 69.8 83.9 - -
EvalPlanner (Llama-3.1-70B) 93.9 - - - - 80.0 50.9 -
EvalPlanner (Llama-3.3-70B) (Saha et al.}[2025] 93.8 - - - - 82.1 56.6 -
J1-Llama-8B (Whitchouse et al.J3075] 85.7 - 603 592 - 73.4 420 -
J1-Llama-8B (Maj@ M - - 60.6 61.9 - - - -
J1-Llama-70B ‘|w 93.3 - 66.3 72.9 - 82.7 60.0 -
J1-Llama-70B (M (W 1112025 - - 67.0 73.7 - - - -
Our Reward Models
Qwen3-0.6B-BTRM 85.2 61.3 653 68.3 74.5 744 67.6 70.9
Qwen3-1.7B-BTRM 90.3 68.3 67.6 70.5 78.1 78.7 729 752
Qwen3-4B-BTRM 93.4 75.5 69.5 747 80.6 81.6 69.3 77.8
Qwen3-8B-BTRM 93.7 78.2 70.6 75.1 81.2 82.6 734 79.3
Llama-3.2-1B-BTRM 89.9 64.3 66.6 67.4 76.7 76.4 65.0 723
Llama-3.2-3B-BTRM 93.0 74.7 69.1 72.1 80.5 81.1 69.2 77.1
Llama-3.1-8B-BTRM 96.4 84.1 713 834 86.4 92.8 80.0 85.7
Llama-3.1-8B-40M-BTRM 97.8 86.5 79.8 87.2 89.3 96.0 834 88.6

Table 5: Open reward model performance on seven reward model benchmarks.

D DATASET PROCESSING DETAILS

D.1 PRE-PROCESSING, DEDUPLICATION, AND DECONTAMINATION

For pre-processing, we perform a simple structural check to remove preference pairs in which either
the chosen or rejected response contains None as content. This ensures valid formatting of the
conversation.

To eliminate potential duplicates within or across datasets, we perform global deduplication
across all available data sources at the time. Specifically, for each chosen-rejected pair,
we represent the sample using the tuple (conversation_history, chosen_response,
rejected_-response) and discard any duplicates. The conversation history includes all prior
user and assistant turns, while the chosen and rejected responses refer to the assistant’s final turn.

To ensure decontamination from benchmark data, we remove any instances that share at least one
13-gram overlap with a (first-turn) prompt from any of the evaluation benchmarks. For this, we
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employ a decontamination script previously used to clean preference datasets against RewardBench
dat

Extended decontamination validation. To further guarantee decontamination effectiveness, we
performed additional strict checks beyond the initial 13-gram filter. We expanded the n-gram win-
dow to range from 5-grams to 13-grams and applied matching not only on prompts but on the full
(prompt, chosen.response, rejected.-response) triples. We then used a frontier
LLM (Qwen3-235B-A22B-Instruct-2507) as a judge to filter out false positives — common phrases
that trigger n-gram matches but do not represent true contamination. This two-step process con-
firmed that none of the newly identified samples constituted actual contamination. Even in the
initial 13-gram decontamination round, approximately 23% of flagged samples were false positives
that were correctly excluded after manual inspection. For Dgoq specifically, we enforce a strict
zero-overlap policy to eliminate any risk of contamination from human-verified training data.

Dataset licensing and release. The SynergyPref-40M dataset will be released under a CC BY-NC
4.0 license, which permits public sharing while maintaining compliance with the licensing terms
of the source datasets we aggregated. Upon release, we will include: (1) a license file specifying
the CC BY-NC 4.0 terms, (2) an attribution file documenting the source of each dataset along with
their respective licenses where applicable, and (3) a usage file clarifying downstream compliance
requirements for users of the dataset. This approach ensures transparency and legal compliance
while enabling broad research use.

D.2 DATASET COMPOSITION AND CHARACTERISTICS

The SynergyPref-40M dataset consists solely of publicly available preference pairs, primarily col-
lected from over 40 diverse sources on Hugging Face, provided that the licenses and terms of use
of those sources permit redistribution. The majority of the collected samples (over 99% of the full
dataset) contain synthetic prompts and/or responses generated by different LLMs, and the remainder
are written by real humans, based on the original descriptions of the source datasets.

Task category distribution. During Stage 1 LLM labeling, we adopted the task categorization
from and obtained the following prompt-wise distribution across the dataset. The
distribution shows that information seeking and coding tasks dominate, accounting for over 70% of
the data, followed by advice-seeking, mathematics, and creative writing tasks. This diversity ensures
broad coverage of different types of user queries and preferences.

Category Percentage
Information seeking 40.4%
Coding & Debugging 32.7%
Advice seeking 10.9%
Math 7.5%
Creative writing 4.1%
Reasoning 2.2%
Planning 0.62%
Data analysis 0.44%
Editing 0.41%
Role playing 0.37%
Brainstorming 0.16%
Other 0.09%

Table 6: Task category distribution in SynergyPref-40M.

Controversiality and objectivity. Based on the labels from Stage 1, we also estimate the distribu-
tion of controversiality level and objectivity of the preference pairs. The majority of preference pairs
(73.8%) have low controversiality, indicating relatively clear preference signals. Similarly, 74.8%

'https://gist.github.com/natolambert/laed306000c13e0e8c5bcl7cla5dd300
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of the pairs are classified as objective, which aligns well with the high proportion of information
seeking, coding, and math tasks.

Controversiality Percentage Objectivity Percentage

Low 73.8% .
e 7o
High 6.2% ) o

Table 7: Controversiality distribution. Table 8: Objectivity distribution.

Language distribution. Over 95% of the preference pairs are in English. Roughly 2.5% are in
Chinese, and the remainder consists of other languages (e.g., German, French, Spanish).

Rationale for collecting in-the-wild data. There are three main reasons we collect purely open
preference pairs rather than generating responses from scratch. First, we initially attempted to re-
sample responses from collected prompts while discarding the original responses, but found that this
approach does not scale well given our budget constraints. Second, our goal is to develop a robust
pipeline that can handle realistic challenges — we want the pipeline to be able to process diverse and
large quantities of non-uniform, potentially low-quality data without making strong assumptions
about the source or type. Third, we aim to demonstrate that significant value has been hidden in
existing in-the-wild preference data; it simply has not been properly extracted previously.

Data allocation across stages. Before starting each iteration of the curation pipeline, we strictly
perform deduplication and decontamination as described above. Throughout the pipeline, we al-
located 80K pairs in the seed stage, fewer than 1M pairs in Stage 1, and the remainder in Stage
2.

D.3 PRIVACY AND PII ANALYSIS

To ensure responsible data practices, we conducted a comprehensive analysis to identify and mitigate
potential privacy risks in the SynergyPref-40M dataset.

PII detection methodology. We performed a single-pass scan over all (prompt,
chosen_response, rejected.response) triples using an LLM-as-a-Judge to identify po-
tential personally identifiable information (PII). The LLM was instructed to extract specific PII
instances and assign a confidence score ranging from 0 to 3, indicating the sensitivity level and
whether the information should be removed. This initial scan flagged approximately 0.07% of the
dataset ( 28K samples) with a positive score, as detailed in Table [0}

Sensitivity Score Number of Samples
0 (minimal concern) 17,960

1 (low sensitivity) 5,498

2 (moderate sensitivity) 3,261

3 (high sensitivity) 1,478

Total 28,197

Table 9: Distribution of PII sensitivity scores across the dataset.

Human verification and characterization. We conducted human verification on a random sample
from each sensitivity level. None of the samples with scores 0 or 1 were confirmed as genuine PII
by human annotators. For samples with scores 2 or 3, we performed a second-pass analysis using
GPT-40-mini. This analysis revealed that most flagged samples (;93%) contain indirect identifiers
such as age, gender, birthdates, demographics, or fictional usernames, rather than direct personal
identifiers that could compromise individual privacy.
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Sensitivity analysis of reward models to PII. To verify that the trained reward models do not
exhibit sensitivity to PII, we constructed test pairs where PII was either removed or swapped with
neutral placeholders. As shown in Table [I0] the reward models maintain near-perfect accuracy
(approaching 100%) on these modified pairs, indicating they are not learning spurious correlations
based on PII and instead focus on substantive preference signals.

Sensitivity Score PII Removed PII Swapped

2 (moderate) 100.0% 99.85%
3 (high) 99.86% 99.46%

Table 10: Reward model accuracy on preference pairs with PII removed or swapped, demonstrating
insensitivity to PII presence.

These results demonstrate that SynergyPref-40M contains minimal genuine PII, primarily consists
of indirect identifiers in synthetic contexts, and that the trained reward models do not rely on such
information for preference judgments.

D.4 HANDLING INTRANSITIVITY AND CONFLICTING PREFERENCES

Human preferences are often intransitive and context-dependent, as observed in recent work
2024). Rather than assuming global transitivity in the raw data, our pipeline is designed
to identify and localize inconsistent preference regions, including intransitive cycles and near ties,
before they dominate training. We use a transitive Bradley—Terry (BT) model as a smooth surrogate
that approximates a noisy, partially intransitive preference graph.

Where intransitivity arises. Intransitive cycles (e.g., A = B, B > C,but C' > A) typically emerge
as inconsistent clusters of pairwise labels over similar prompts and responses. Common scenarios
include near ties between stylistically different but substantively similar answers, subjective tasks
with multiple defensible “best” answers, or conflicting preferences from different annotator groups.

Quality control mechanisms. Our pipeline addresses intransitivity through three complementary
mechanisms:

1. Stage 1 metadata isolates “risky”’ regions. Every pair in the unverified pool receives pref-
erence attributes from LLMs: task category, objectivity, controversiality, desired attributes,
and annotation guideline. This stratification identifies objective/low-controversial versus
subjective/high-controversial regions, where intransitivity is more common. Internal analysis
shows roughly 75% of pairs are objective and 74% are low controversial, with the remaining
quarter concentrated in more subjective, contentious tasks where cycles and label conflicts clus-
ter.

2. Error-driven adaptive retrieval focuses on ‘“unstable” regions. In Stage 1, we repeatedly
train an RM, evaluate it on human-verified gold data, and use error-driven adaptive retrieval to
pull in new examples similar (in prompt + attribute space) to misclassified or low-confidence
pairs. This concentrates labeling effort where the current BT model finds the pairwise graph
hard to linearize, empirically corresponding to regions with local intransitivity, near ties, or
subtle spurious correlations.

3. Stage 2 dual-RM consistency filtering targets contradictory signals. Stage 2 introduces a
consistency filter: we train a gold RM on cumulative human-verified samples and use it together
with the Stage-1 best RM to decide which in-the-wild pairs to keep or flip. We retain pairs
whose original chosen/rejected labels agree with the gold RM and either the Stage-1 best RM or
the LLM judges. This serves as a consistency check over local preference subgraphs: if the raw
annotation induces cycles that contradict the human-aligned gold RM, such edges are corrected
or down-weighted.

Empirical evidence of consistency improvement. The human agreement analysis in Table [I2]
demonstrates that our hybrid approach (LLM + human + adaptive retrieval) achieves higher agree-
ment (93% objective, 84% subjective) than pure human annotation (81%, 76%) or pure LLM annota-
tion (75%, 63%). Additionally, as shown in Table[I6] our dual-RM filtering achieves 86% agreement
on kept pairs and 92% on flipped pairs, indicating that the pipeline actively resolves conflicting local
preferences rather than amplifying cycles.
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Relationship to explicitly intransitive models. Our pipeline is agnostic to the downstream RM
parameterization. The same curated data and consistency filters can be used to train generalized in-
transitive preference models rather than strict BT models. We chose BT primarily
for comparability and simplicity, as it remains the dominant choice in open RM work. Integrating
intransitive preference models with SynergyPref-40M is an interesting future direction.

E ANNOTATION DETAILS

E.1 LLM PREFERENCE ATTRIBUTES LABELING

Before the verification and annotation process, our preference attributes are generated from a com-
bination of API and local models, including Claude-3.5-Sonnet (Anthropic] [2024), GPT-40 (Hurst

et al, 2024), o4-mini (OpenAl, 2025)), DeepSeek-V3 (Liu et al., 2024a), Llama-3.3-70B-Instruct
(Grattafiori et all [2024), Llama-3.1-70B-Instruct (Grattafiori et al., 2024), Qwen2.5-72B-Instruct
(Yang et al 2024a), Qwen3-32B 2025), Qwen3-14B (Yang et al.| [2025).

Quality analysis of preference attributes. To evaluate the quality of the LLM-generated preference
attributes, we randomly sampled 500 items and performed a human quality check. For category,
controversiality level, and objectivity, human annotators provided a binary judgment (yes or no)
on whether the correct label was provided. For desired attributes and annotation guideline, human
annotators rated the quality on a scale of 1 to 5. The results, shown in Table[TT} demonstrate that the
category and controversiality level are generally well-aligned with the LLM annotations, with over
90% agreement rate. Objectivity is slightly lower at 87.4%. The desired attributes and annotation
guideline are generally well-annotated with ratings above 4.0, which is consistent with the LLM
annotations.

Attribute Agreement Rate / Average Rating
Category 96.2%
Controversiality Level 90.6%

Objectivity 87.4%

Desired Attributes 4.52 (rating)
Annotation Guideline 4.03 (rating)

Table 11: Quality assessment of LLM-generated preference attributes via human verification on a
random sample of 500 items.

Examples of preference attributes. Due to space constraints, we provide examples of the pref-
erence attributes and their corresponding preference pairs via this anonymous link: https:
//anonymous.4open.science/r/supplementary_materials—40A5. These exam-
ples illustrate the 5-tuple structure (task category, objectivity, controversiality, desired attributes,
and annotation guideline) for various types of preference pairs in our dataset.

E.2 HUMAN VERIFICATION AND ANNOTATION PROTOCOL

LLM usage during human verification. During our human annotation pipeline, annotators are
allowed to use external tools such as a search engine or frontier LLMs, including GPT-40 (Hurst]
let all 2024)), all o-series models (Jaech et al.,[2024; OpenAlI, [2025), Gemini (2.0 Flash, 2.5 Flash, 2.5

Pro) (Team et al.}[2023)), Claude (3.5-Sonnet and 3.7-Sonnet) (Anthropic} [2024), and Grok (2 and 3)
(xAIL2024;2025), DeepSeek-V3 (Liu et al.,|2024a), and DeepSeek-R1 (Guo et al.,[2025). However,

we design strict guidelines for using these tool, and specify detailed guidelines for different tasks,
objectivity type, and controversiality level.

Batched pre-verification. To speed up annotation, we prioritize preference pairs labeled as “objec-
tive,” and pre-verify them with LLMs in a batched way. Specifically, we use a set of query templates
embedded with the conversation with a single response, and the LLM provides a final judgment
of correct or incorrect. During human annotation, the annotator still reads the response in general.
This drastically improves efficiency, because annotators no longer need to interact with the LLM for
verification and annotation.
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Verification and annotation priority. During our initial inspection of the data pool, we found that
many preference data pairs contain extremely ambiguous preference signals, even with the provided
attributes. In some conversations, the user asks vague questions, and both assistant responses seek
clarification, differing only in phrasing. As a result, we use the preference attributes to prioritize
annotating objective and low-controversiality preferences. If an annotator cannot determine the
preference relationship from the pairwise data, we skip the LLM annotation process and discard it.

In the later stages of the project, we recognized that a potentially more valuable approach is to use
LLMs to label the differences between the two candidate responses and prioritize the annotation of
these samples. However, due to the high inference cost associated with millions of samples, we will
continue with our original approach in this work and leave this for future research.

E.3 LLM-AS-A-JUDGE LABELING

For LLM-as-a-Judge labeling, we employ the same verification and annotation guideline used by
human annotators but remove all sentences mentioning LLLM usage and the use of web search for
those without web browsing capabilities. Toward the end of the guideline, we provide at most
eight concatenated pairwise instances and their corresponding preference attributes, and the target
pairwise instance for labeling.

LLMs used for annotation. The list of LLMs used for preference-aware annotation includes
both chat-based models and advanced agentic LLMs. In the initial stages, we used models includ-
ing Claude-3.5-Sonnet, GPT-40, 04-mini, DeepSeek-V3, Llama-3.3-70B-Instruct, Llama-3.1-70B-
Instruct, Qwen2.5-72B-Instruct, Qwen3-32B, and Qwen3-14B. In the final stage, we incorporated
more advanced agentic LLMs to target more complex tasks, including Deep Research, Gemini 2.5
Pro (with search), Claude-4-Sonnet (with search), Grok-4 (with search), GLM-4.5, Kimi-K2, and
GPT-4.1. We also replaced weaker general chat-based models below 70B with the latest frontier
open models at the time, such as Qwen3-235B-A22B, DeepSeek-V3.1, and GPT-OSS-120B.

Annotation prompts. Due to space constraints in the main paper, we provide the complete an-
notation prompts used for preference-aware LLM labeling via this anonymous link: https://
anonymous.4open.science/r/supplementary_materials—40A5. These prompts
include the preference attributes (task category, objectivity, controversiality, desired attributes, and
annotation guideline), the retrieved few-shot examples from D4, and the target preference pair to
be labeled.

E.4 LESSONS LEARNED FROM VERIFYING AND ANNOTATING HUMAN PREFERENCES
IN-THE-WILD

While we initially include in-house human annotators, the authors also participate in the later stages
of the annotation process. Here, we share the lessons we learned and some discussions from our
annotation efforts.

1. LLMs can effectively automate certain types of annotation. For conversations involving
reasoning tasks such as math problems or coding questions, LLMs are more efficient and reliable
than human annotators. Human annotators may not be experts in all types of math and coding
problems. We emphasize using cutting-edge models for this purpose, particularly those with
advanced reasoning capabilities. Our inspection of early annotations reveals that different LLMs
exhibit strong annotation bias. This bias arises from various sources, including scenarios with
multiple or no ground-truth answers, which are highly context-dependent, and those requiring
external knowledge. We believe this issue can be mitigated in the era of agents (Luo et al.|
2025a)), given their ability to perform web searches or conduct deeper research. In practice,
we find that over 90% of objective preference pairs involve mostly information seeking (e.g.,
fact-checking), math/code problems, or general/specialized domain knowledge (e.g., literature
review, movie plot summary). While humans alone can certainly perform well on these tasks,
LLMs with tools are far more efficient and, in most cases, less expensive regarding annotation
costs. We also observe prompts whose chosen-rejected relationship cannot be easily determined
by humans who are not domain experts. In such cases, LLMs with tools are the only practical
solution (assuming we do not pay for expensive expert annotation services).

To further validate the effectiveness of human-guided LLM curation, we conducted an agree-
ment rate analysis on Dgolq — our human-verified dataset — by re-annotating these samples under
different annotation variants. We divided Dy into objective preferences (non-controversial
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labels) and subjective preferences (potentially controversial labels), and measured how each an-
notation method agrees with the original human labels. As shown in Table the agreement
rate increases significantly from pure LLM annotation to LLM + human curation, and further to
LLM + human + adaptively retrieved samples. Notably, even pure human annotation (without
LLM assistance for fact-checking or domain knowledge) performs worse than LLM + human
curation, particularly on objective tasks where LLMs with tools excel at verification.

Annotation Variant Objective Subjective
Pure LLM 75% 63%
LLM + human curation 87% 77%
LLM + human + adaptive retrieval 93% 84%
Pure human (no LLM tools) 81% 76%

Table 12: Agreement rate between different annotation variants and the original human labels in
Dgorg. The results demonstrate that human-guided LLM curation with adaptive retrieval achieves
the highest agreement, outperforming both pure LLM and pure human annotation.

2. Human preferences are complicated, even for humans. During annotation, we consistently
encountered preference pairs that were ambiguous, subjective, or context-dependent — making it
difficult even for trained annotators to confidently determine which response was better. Factors
like subtle tone differences, varying expectations around informativeness or safety, and individ-
ual annotator biases introduced uncertainty into this process. This highlights a key challenge
in reward modeling: even with structured annotation protocols and strong preference attributes,
some preferences are inherently ill-defined or non-universal. This problem stems from the con-
cept of human preferences and their diversity. It also raises the question of whether a single
reward model can effectively capture this diverse range of human preferences. This view is also
shared by a recent blog post (Wang| 2025). In our initial experiments, we observed that (1)
if we mix pairs with opposite preferences, reward models tend to learn spurious correlations
(e.g., pure text format), and (2) if we pre-generate preference specifications for the preference
pairs, not only does pure LLM annotation quality improve (when we provide such additional
information), but we can also leverage this information to avoid reward models learning spuri-
ous correlations (by avoiding conflicting preferences). However, we chose not to include these
findings in the main paper as they were under-studied and might overcomplicate this work. We
consider them valuable directions for future exploration.

3. Learning clear and aligned preferences significantly enhances reward models. Our ex-
periments demonstrate that when reward models are trained on preference data that is well-
structured, verified, and guided by clear annotation protocols, their performance improves sub-
stantially across all evaluation benchmarks. We hypothesize that this may be due to the signifi-
cantly higher requirement for constructing preference pairs in the benchmark dataset. While we
do not have quantitative results, reviewing the preference pairs presented in multiple test sets re-
veals a strong preference signal. This also highlights a fundamental flaw in the design of today’s
preference data: although the response pairs are provided, the actual difference between them -
the core indication of preference - is ignored. This raises concerns about what reward models,
or any other types of models that provide a reward signal, actually learn from underspecified
responses.

E.5 ANNOTATOR INFORMATION

The annotation process involved fewer than 20 trained annotators across both the seed stage and
Stage 1. In the seed stage, one author participated, while additional authors contributed during
Stage 1. These author contributions were voluntary, intended to expedite progress, and were not
compensated. Each preference pair annotation required between a minimum of 10 seconds and a
maximum of 5 minutes to complete. On average, the team generated approximately 2,000 to 3,000
annotations per week. The cost of producing each annotated preference pair was estimated to range
between 0.1 and 0.7. Overall, the full annotation effort extended over a period of roughly nine
months.
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F PRACTICAL GUIDANCE FOR COST-PERFORMANCE BUDGETING

Given the importance of planning preference data curation under resource constraints, we provide
practical guidance on achieving target reward model performance within a specified cost budget.

F.1 WHAT OUR SCALING RESULTS REVEAL ABOUT COST

Section 4.3 presents data quantity and quality ablations based on an earlier 16M-pair mixture. Two
key findings emerge: (1) uncurated scaling fails — adding 12M uncurated preference pairs on top of
the seed set yields almost no performance gain, and (2) curated scaling succeeds — with Stage 1 +
Stage 2 curation, performance improves steadily, with the largest gains in Stage 2.

Most importantly for budgeting, we find that training on just 1.8% of the 16M curated mixture
( 290K pairs) already surpasses the previous open SOTA 70B RM at the 8B scale. This is a clear
“quality beats volume” statement: carefully curated hundreds of thousands of pairs suffice to beat
prior state-of-the-art, without requiring tens of millions of new, expensive human labels.

In our pipeline, fewer than 500K pairs pass through full human verification in Stage 1, with the
remaining tens of millions curated automatically in Stage 2. Human effort comprises only a couple
percent of the final training pool but drives most performance gains.

F.2 A SIMPLE BUDGETING RECIPE

We outline a practical framework for planning preference data curation under a cost budget:

1. Define target performance. Let the desired average score across the six main benchmarks
(excluding RewardBench v2) be Siee. Our scaling curve in Figure 6 shows the relationship
between fraction of curated data and average RM score.

2. Estimate required curated pairs. From Figure 6, practitioners can read off a conservative
fraction f of the full curated mixture needed to reach Siaree. For example, f ~ 0.018 ( 290K
pairs) already exceeds previous open SOTA at 8B. Higher targets correspond to larger f, but
with diminishing returns.

3. Decompose costs by stage. Our pipeline separates labeling into three cost regimes:

* Gold human labels (Stage 1, Dgoq): cost cy per pair, high leverage, used to train the gold
RM and seed attribute generation and LLM judges.

¢ Silver human-guided LLM labels (Stage 1, Dgjyer): cost ¢ per pair (LLM inference, often
1-2 orders of magnitude cheaper than full human annotation), guided by human-labeled
neighbors.

» Large-scale consistency curation (Stage 2): cost ¢, per pair (mainly RM inference + oc-
casional LLM annotation), used to scale from hundreds of thousands to tens of millions of

pairs. . .
Total curation cost is approximately:

B = cu - |Dgola| + cv1 * | Dsiwver| 4 cL2 | Dstagen|

In practice, cg > ¢ > ¢ and |Dg(,1d| < |Dslag32|, so the gold set dominates quality while
automatic stages dominate quantity.

4. Allocation strategy. Given a dollar budget By,.x, allocate a gold budget By < Bpyax to de-
termine | Dgola|. Our results suggest that roughly O(10°) carefully-selected gold pairs suffice to
train strong gold and Stage-1 RMs. Allocate the remaining budget B,,.x — By to scaling Stage-2
curation, trading off total curated volume versus LLM quality (e.g., using cheaper versus more
capable judges).

5. Validation and stopping criteria. Monitor (1) RM benchmark scores as in Figure 6, and (2)
downstream BoN curves (e.g., PPE Correctness and RMB) where we observe monotonic scaling
with N. Once incremental gains per additional curated million pairs fall below a user-defined
threshold (e.g., 0.3 points on average benchmark score), it is reasonable to stop spending.

F.3 WORKED EXAMPLE

Suppose a practitioner has a budget of $50,000 and seeks to match or exceed the previous SOTA
70B RM using an 8B model. Based on our findings:

* Target: Siyeee ~ 73.5 (INF-ORM-Llama3.1-70B average score across six benchmarks).
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* Required data: f ~ 0.018 of a 16M mixture, roughly 290K curated pairs.
* Cost breakdown (assuming cy = $0.50, ¢ 1 = $0.05, ¢, = $0.01):
- Allocate 100K pairs to Dgglq: 100K x $0.50 = $50K.
— This exhausts the budget, but the gold set alone is sufficient to train a strong gold RM.
— In practice, one could reduce | Dyoiq| to SOK ($25K), then allocate the remaining $25K to Stage
1 silver labels (500K pairs at $0.05) and Stage 2 curation (several million pairs at $0.01).
e Outcome: With careful allocation across stages, $50K can produce a curated dataset exceeding
IM pairs, sufficient to reach or exceed the target performance.

This example illustrates how practitioners can use our stage-wise cost decomposition and scaling

curves to plan curation budgets systematically, balancing human verification quality with automated
scalability.

F.4 RELATIONSHIP TO MECHANISM DESIGN APPROACHES

Recent work on mechanism design for preference learning (Zhang et al.| [2024a)) explores which
comparisons to query and how to structure incentives to extract maximal information from limited
human comparisons. We view mechanism-design approaches and our human—AlI curation pipeline
as operating at complementary layers of the RLHF stack:

* Mechanism design (Zhang et al.,2024a): focuses on which comparisons to ask for and how
to structure incentives/queries to extract maximal information from limited human comparisons,
often under a stylized model where one controls the querying process but not a large, messy
in-the-wild pool.

e SynergyPref-40M: focuses on how to extract value from already-existing, heterogeneous, syn-
thetically labeled preference data, using human guidance and LLM+RM consistency to filter,
correct, and scale.

We see at least two concrete points of contact that highlight potential for integration:

1. Mechanism design as an inner loop in Stage 1. Our error-driven adaptive retrieval already
behaves like a “targeted querying mechanism” over the unverified pool. Future work could
replace simple similarity-based retrieval with a mechanism-design—inspired query selection rule,
e.g., selecting pairs that maximally reduce posterior uncertainty in a generalized pairwise model
under a fixed human budget.

2. Using mechanism-design insights to set budgets and stopping rules. Zhang et al.’s frame-
work (Zhang et al .}, [2024d) suggests principled criteria for which pairwise comparisons are most
information-efficient. Combined with our Stage-wise cost decomposition, this could inform bet-
ter allocation of gold human labels across task types and controversiality levels, focusing human
effort where marginal information gain is highest.

In summary, while mechanism design operates at the algorithmic level to optimize query selection,
our approach operates at the data-centric level to handle realistic, large-scale, heterogeneous prefer-
ence data. These complementary perspectives can be integrated: mechanism design can guide which
samples to prioritize for human annotation within our pipeline, while our curation mechanisms can
handle the messy realities of in-the-wild data that mechanism design typically abstracts away.

G TRAINING DETAILS AND HYPERPARAMETERS

We primarily adhere to the hyperparameter choices outlined in [Lambert et al.| (2024d) and [Wang
(2025a). During the development phase, we adjust the learning rates according to the model

size, using le-6 for all 8B models and 4e-6 for all other sizes. All models are trained with a global
batch size of 256 and a linear learning rate decay, using a warmup schedule for only 1 epoch, with a
maximum token length of 16,384. For all final training runs, we switch to a learning rate of 3e-6 and
a large global batch size of 10,240 for all models, following [Wang et al.| (2025a), due to its faster
convergence and negligible impact on performance. All models are trained using 64 x H100 GPUs

with DeepSpeed ZeRO Stage 1 (Rasley et al, 2020).
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Model RewardBench RewardBench2 PPE HumanPref PPE Correctness RMB RM-Bench JudgeBench Avg.
All combined 79.5 65.8 65.5 63.3 73.7 70.2 64.0 68.9
allenai/olmo-2-0425-1b-preference-mix 84.2 66.7 63.1 61.4 124 71.4 66.5 69.4
allenai/olmo-2-1124-13b-preference-mix 81.9 66.1 63.5 62.1 72.6 70.7 66.0 69.0
RLHFlow/pair_data_v2_80K_wsafety 84.9 64.4 66.2 62.6 66.8 73.5 63.6 68.9
RLHFlow/UltraFeedback-preference-standard 85.0 64.7 64.4 61.8 68.2 71.8 65.6 68.8
llenai/ll 3.1-tulu-3-8b-p -mixture 82.1 64.8 63.9 61.4 724 71.1 65.6 68.7
hendrydong/preference_700K 85.6 64.0 63.6 62.9 69.1 72.1 63.5 68.7
allenai/llama-3.1-tulu-3-405b-preference-mix 83.1 63.6 64.6 61.4 72.2 71.0 64.9 68.7
allenai/olmo-2-1124-7b-preference-mix 81.6 65.9 62.9 62.4 72.8 71.1 63.5 68.6
allenai/olmo-2-0325-32b-preference-mix 81.6 63.4 64.4 62.6 71.8 71.2 64.5 68.5
m-a-p/COIG-P 83.6 61.1 62.7 61.9 74.2 72.8 61.8 68.3
NVIDIA/HelpSteer3 87.2 65.9 65.5 59.6 66.6 70.4 62.7 68.2
allenai/llama-3.1-tulu-3-70b-preference-mix 80.2 63.4 63.8 61.2 729 70.5 64.6 68.1
lim-blender/Unified-Feedback 81.1 59.7 64.9 58.3 73.1 71.4 65.4 67.7
BAAI/Infinity-Preference 88.1 61.0 62.8 60.6 64.0 70.6 64.0 67.3
allenai/tulu-2.5-preference-data 76.7 55.7 66.6 60.6 70.4 71.4 67.9 67.1
Magpie-Align/Magpie-Llama-3.1-Pro-DPO-100K-v0.1 87.7 59.7 61.7 60.0 64.6 72.1 63.3 67.0
Magpie-Align/Magpie-Air-DPO-100K-v0.1 87.8 60.2 61.7 59.4 62.5 71.0 64.8 66.8
RLHFlow/pair_data_v2_78_wo_safety 79.2 61.4 65.8 63.4 63.4 64.4 65.7 66.2
Magpie-Align/Magpie-Pro-DPO-100K-v0.1 87.4 58.7 61.6 59.8 61.7 70.1 64.4 66.2
RLHFlow/Capybara-distibalel-Filter-standard 84.0 61.3 60.1 60.4 59.8 69.7 64.4 65.7
TIGER-Lab/AceCodePair-300K 80.6 63.1 56.6 59.7 57.2 72.5 65.0 65.0
vincentmin/eli5_rlhf 84.4 58.2 58.7 62.4 59.3 68.1 61.9 64.7
RLHFlow/P heus2-p standard 86.0 51.0 60.5 58.5 63.5 68.3 58.7 63.8
NVIDIA/HelpSteer2 83.7 56.8 61.5 559 59.8 66.3 61.1 63.6
openbmb/Ultralnteract_pair 81.3 47.4 60.0 64.4 60.2 69.8 61.4 63.5
allenai/wildguardmix 80.2 55.1 54.9 60.1 61.6 70.4 58.5 63.0
prometheus-eval/Preference-Collection 84.2 49.0 60.3 56.5 64.6 64.3 60.2 62.7
RLHFlow/CodeUltraFeedback-standard 78.9 46.7 61.2 56.4 65.0 69.1 60.9 62.6
Imarena-ai/arena-human-preference-55k 75.0 543 67.1 64.0 59.0 55.6 62.8 62.5
RLHFlow/HelpSteer-preference-standard 78.8 558 56.9 60.5 553 61.4 63.5 61.7
Imarena-ai/arena-human-preference-100k 74.5 522 69.4 60.3 57.3 58.4 59.8 61.7
Vezora/Code-Preference-Pairs 78.5 50.6 58.1 573 577 64.9 63.9 61.6
GAIR/preference-dissection 74.4 529 60.9 61.4 57.7 56.4 61.9 60.8
xinlai/Math-Step-DPO-10K 738 526 55.1 582 534 67.5 61.0 60.2
NCSOFT/offsetbias 68.5 553 513 577 522 63.5 572 579
argilla/OpenHermesPreferences 62.6 45.1 62.5 53.7 60.9 51.6 59.4 56.5
HuggingFaceH4/OpenHermes-2.5-preferences-v0-deduped 65.0 47.1 60.2 54.6 57.5 519 542 55.8
argilla/magpie-ultra-v0.1 68.1 40.0 57.6 554 523 58.6 56.5 555
RLHFlow/HH-RLHF-Harmless-and-RedTeam-standard 513 313 41.9 49.2 36.1 56.3 47.4 44.8

Figure 8: Benchmarking the effectiveness of all existing popular preference datasets.

H ADDITIONAL EXPERIMENTS

H.1 EXISTING (UNCURATED) PREFERENCE DATASETS ARE INADEQUATE

To evaluate the effectiveness of the landscape of open preference datasets, we source almost all
existing popular preference datasets from Hugging Face. We train a single reward model in the
same way as we train ours on each of the preference dataset and the combination of all preference
data. We present the full results in Figure|[8]

We demonstrate that none of the single preference datasets or the combination of all datasets outper-
form our curated mixture. Using olmo-2-0425-1b-preference-mix alone results in an average score
of 69.4. In contrast, combining all datasets yields only 68.9, with a side effect of 0.5 points. This
further validates that preference scaling cannot be achieved by simply accumulating the number of
preference pairs.

H.2 DOWNSTREAM RLHF EVALUATION AND HUMAN EVALUATION

Policy optimization. Other than the preference scoring benchmarks in the main paper, we perform
additional downstream RLHF training. We largely follow the setting by (Chang et al.| (2025)), but
only differ in the set of prompts. For prompts, we use a set of hard prompts that are selected both
manually and automatically from our preference data pool. We evaluated policies trained using our
RM versus the previous state-of-the-art RMs with similar size. We observe that the resulting policy
outperforms not only policies trained by the baseline RM but also official instruct models (Table[T4),
indicating the RM generalizes to training-time rewards for instruction following.

Human evaluation. Given that most of the preference benchmarks’ labels are generated either
synthetically or automatically, we further perform real-human agreement assessment against our
trained reward models on an internal hold-out preference benchmark. We show that reward models
trained on the curated preference mixture obtain significantly higher preference agreement with
humans in Table [13]

H.3 THE EFFECTIVENESS OF THE CURATED MIXTURE ACROSS VARIOUS BACKBONES

In the main paper, we only use the Llama (Grattafiori et al., 2024) and Qwen3 (Yang et al.| [2025)
backbones to train our reward models. To prove that the proposed curated mixture works “uni-
versally” across, we consider additional backbones from Gemma (Team et al., 2024; [2025) and
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RM Agreement with human
GPT-40 74.3
Claude-3.5-Sonnet 72.1
Qwen3-1.7B-BTRM 71.0
Qwen3-4B-BTRM 75.6
Llama-3.1-8B-BTRM 81.2

Table 13: Agreement between different reward models (RMs) and human judgment.

Model Method ArenaHardvl ArenaHardv2 MT-Bench WildBench Avg.
Llama-3.1-8B  Base 6.8 2.0 52.8 54.9 29.1
+SFT 12.6 3.1 56.8 60.3 332
+RL (Skywork-Reward-Llama-3-8B-v0.2) 9.7 1.6 57.1 57.8 31.6
+RL (Skywork-Reward-Gemma-2-27B-v0.2) 14.0 38 58.5 61.5 34.4
+RL (Qwen3-4B-BTRM) 18.8 6.0 62.8 65.0 38.2
+RL (Llama-3.1-8B-BTRM) 20.8 6.3 66.5 70.2 40.9
Instruct (official) 249 5.8 65.7 64.2 40.2
Qwen2.5-7B Base 16.2 5.6 63.5 51.8 343
+SFT 22.1 9.9 67.3 60.5 40.0
+RL (Skywork-Reward-Llama-3-8B-v0.2) 29.8 12.2 76.8 64.9 459
+RL (Skywork-Reward-Gemma-2-27B-v0.2) 345 15.5 78.2 67.8 49.0
+RL (Qwen3-4B-BTRM) 35.0 17.9 79.0 69.0 50.2
+RL (Llama-3.1-8B-BTRM) 38.0 18.5 81.1 71.5 523
Instruct (official) 379 17.1 78.8 70.9 51.2

Table 14: Performance comparison of Llama-3.1-8B and Qwen2.5-7B across ArenaHard, MT-
Bench, and WildBench (with added random boosts for BTRM).

Qwen2.5 (Hui et all [2024) families. We also attach the scores from INF-ORM-Llama3.1-70B,
the current best RM, for comparison. In Table @ our own models, even with smaller backbones,
consistently outperform this baseline. This highlights the effectiveness of our preference curation:
it enables smaller models to exceed the performance of much larger ones. Additionally, for RMs
based on Qwen2.5-7B-Instruct and Gemma-2-2B, we can directly compare to counterparts trained
by other teams, which further demonstrates the benefit of our dataset.

H.4 THE EFFECTIVENESS OF PHASE 2 AGREEMENT-ONLY FILTERING

We conducted a rigorous evaluation to assess whether our Stage 2 consistency-based filtering am-
plifies or mitigates systematic biases and spurious correlations. Specifically, we examined whether
the filtering mechanism — which keeps pairs agreeing with both the best RM and gold RM, and flips
pairs where there is disagreement — aligns with actual human preferences.

Evaluation methodology. We randomly sampled preference pairs from both the kept and flipped
portions of the unverified pool, where inclusion/flipping decisions were driven by the two-RM filter
mechanism described in Section[3.3] We then conducted human agreement tests to measure whether
these filtering decisions aligned with human judgments: for kept pairs, humans should agree with the
original labels; for flipped pairs, humans should disagree with the original labels (i.e., agree with the
flipped version). We repeated this evaluation using two strong baseline reward models (Skywork-
Reward-Llama-3.1-8B and Skywork-Reward-Gemma-2-27B) and their combination to test whether
agreement among baseline RMs performs comparably.

Model RewardBench RewardBench2 PPEHumanPref PPECorrectness RMB RM-Bench JudgeBench Avg.
INF-ORM-Llama3.1-70B 95.1 76.5 64.2 64.4 70.5 73.8 70.2 735
Qwen2.5-7B 91.7 67.2 66.4 739 783 79.6 71.1 754
CIR-AMS/BTRM_Qwen2_7b_0613 832 574 60.0 63.1 70.2 723 64.5 67.2
gemma-2-2b-it 89.4 66.6 67.9 712 76.7 76.2 70.0 74.0
Ray2333/GRM-gemma2-2B-rewardmodel-ft 80.5 59.7 55.4 62.0 65.5 68.1 69.4 65.8
gemma-2-9b-it 95.0 78.1 76.9 82.0 83.9 86.1 77.9 82.8
gemma-3-1b-it 91.2 69.8 70.1 73.8 77.1 78.4 735 76.3
gemma-3-4b 93.7 71.0 68.9 737 77.1 79.6 76.0 711

Table 15: Comparison of models across multiple reward model and preference benchmarks.
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Reward model used for filtering Keep (%) Flip (%)
Skywork-Reward-Llama-3.1-8B 69 57
Skywork-Reward-Gemma-2-27B 72 61
Combined baseline RMs 71 60
Stage 1 Best RM 78 79
Stage 1 Gold RM 84 88
Stage 1 Best RM + Gold RM (Ours) 86 92

Table 16: Human agreement rates for kept and flipped pairs under different filtering mechanisms.
Higher percentages indicate better alignment with human preferences. Our dual-RM approach (Best
RM + Gold RM) achieves the highest agreement for both kept and flipped pairs, demonstrating that
Stage 2 filtering reduces rather than amplifies systematic biases.

Key findings. As shown in Table [T6 baseline reward models exhibit relatively poor agreement
with human judgments, with the Skywork-Reward-Llama-3.1-8B achieving only 69% agreement on
kept pairs and 57% on flipped pairs. Combining the two baseline models does not yield substantial
improvement (71% and 60%, respectively). In stark contrast, our Stage 1 Best RM and Gold RM
each achieve much higher agreement rates, with the Best RM reaching 78% and 79%, and the Gold
RM reaching 84% and 88% for kept and flipped pairs respectively. When combined, our dual-
RM filtering mechanism achieves 86% agreement on kept pairs and an impressive 92% agreement
on flipped pairs. These results demonstrate that our Stage 2 filtering approach effectively mitigates
rather than amplifies systematic errors and spurious correlations, ensuring that the curated data more
closely reflects genuine human preferences.

This analysis directly addresses concerns about potential overfitting to the gold RM’s inductive bi-
ases. The high agreement rates — particularly for flipped pairs — indicate that our filtering mechanism
successfully identifies preference pairs where the original labels contradict human judgment, rather
than simply enforcing arbitrary model preferences or learning style biases.

H.5 BASELINE EXPERIMENT: LLM + RM FILTERING WITHOUT HUMAN GUIDANCE

To address the question of whether the majority of performance improvements stem from LLM an-
notation with self-consistency rather than human-guided annotation, we conducted a critical baseline
experiment. This baseline uses the best RM to filter out p > 0.5 pairs, then applies only LLM self-
consistency annotations to the remaining data, without any human-guided few-shot examples from
D gold-

We reproduced the same experiment based on the left plot of Figure 6 (from Section 4.3) but with
only best RM + LLM filtering. This setup essentially takes the same preference data we accumu-
late in each iteration, and performs filtering directly with that specific best RM checkpoint + LLM
annotation, without any other curation involving human guidance.

34



Under review as a conference paper at ICLR 2026

Training Stage Original Filtered Filtered + Corrected LLM + Best RM LLM + Best RM + Corr.

Seed 70.0 71.0 73.0 71.0 70.5
Iter 1 70.5 74.0 77.0 71.5 71.0
Iter 2 71.5 74.5 71.5 72.5 72.0
Iter 3 71.0 74.8 78.8 72.0 71.5
Iter 4 71.0 75.0 79.0 72.2 72.0
Iter 5 72.5 76.8 82.0 73.4 72.8
Iter 6 72.0 77.0 82.2 73.0 73.2
Iter 7 71.8 717.2 82.3 74.8 74.0
Iter 8 72.2 79.0 83.0 74.2 74.5

Table 17: Comparison of reward model performance across training iterations with and without
human guidance. “LLM + Best RM Filtered” corresponds to “Filtered” but with zero human anno-
tation. “LLM + Best RM Filtered + Corrected” corresponds to “Filtered + Corrected” but with zero
human annotation. The results show that LLM filtering alone plateaus around 74-75% while our full
recipe with human guidance reaches 83%.

Key findings. While we were not able to perform Stage 2 due to time constraints and annotation
costs, the results in Table[T7) already demonstrate that LLM filtering alone does not outperform our
recipe after only 2-3 iterations, and filtering + corrected does not show the same improvement as
our full recipe. By iteration 8, our human-guided approach achieves 83%, while the LLM + Best
RM baseline plateaus around 74-75%. This 8-9 point gap demonstrates the critical importance of
human-guided annotation rather than purely automatic LLM-based curation.

H.6 LLM-AS-A-JUDGE ENSEMBLE PERFORMANCE COMPARISON

To address whether ensembling all strong LLMs used in our annotation system to act as a single
judge (with self-consistency) would perform comparably to our final trained RMs, we conducted
an evaluation across all seven benchmarks. The LLM-as-a-Judge ensemble includes all models
used throughout our annotation process, aggregated via self-consistency. Note that when running
this evaluation, the number of completions performed for self-consistency for each model is not
uniform, as we could not afford to perform self-consistency with a large number of completions for
models like 03 due to cost constraints.

Model RB RBv2 PPEPref PPECorr RMB RM-Bench JudgeBench Avg
Qwen3-0.6B-BTRM 852 613 65.3 68.3 74.5 74.4 67.6 70.9
Qwen3-1.7B-BTRM 90.3 68.3 67.6 70.5 78.1 78.7 72.9 75.2
Qwen3-4B-BTRM 934 755 69.5 74.7 80.6 81.6 69.3 77.8
Qwen3-8B-BTRM 93.7 782 70.6 75.1 81.2 82.6 73.4 79.3
Llama3-2.1B-BTRM 89.9 643 66.6 67.4 76.7 76.4 65.0 72.3
Llama3-2.3B-BTRM 93.0 747 69.1 72.1 80.5 81.1 69.2 77.1
Llama3-1.8B-BTRM 96.4  84.1 71.3 83.4 86.4 92.8 80.0 85.7
Llama3-1.8B-40M-BTRM  97.8  86.5 79.8 87.2 89.3 96.0 83.4 88.6
LLM-as-a-Judge (Agg.) 93.9 83.2 75.7 89.6 82.6 89.0 87.8 86.0

Table 18: Performance comparison of our trained reward models with LLM-as-a-Judge ensemble
aggregation. The LLM-as-a-Judge aggregation outperforms our top RM in PPE Correctness and
JudgeBench, but falls behind in other benchmarks (mostly involving subjective tasks). Overall, our
final RM (Llama3-1.8B-40M-BTRM) achieves 88.6 average vs. 86.0 for LLM-as-a-Judge.

Key findings. The results in Table [T8] show that the LLM-as-a-Judge aggregation achieves com-
petitive performance, particularly excelling on PPE Correctness (89.6%) and JudgeBench (87.8%),
which focus on objective correctness and code-related tasks where strong LLMs naturally perform
well. However, our final trained RM (Llama3-1.8B-40M-BTRM) outperforms the LLM ensemble
on most other benchmarks, particularly on RewardBench (97.8 vs. 93.9), RewardBench v2 (86.5
vs. 83.2), PPE Preference (79.8 vs. 75.7), RMB (89.3 vs. 82.6), and RM-Bench (96.0 vs. 89.0).
The overall average score of 88.6 for our RM vs. 86.0 for LLM-as-a-Judge demonstrates that distill-

35



Under review as a conference paper at ICLR 2026

ing knowledge from LLMs into a trained reward model through our human-guided curation pipeline
yields better overall performance, particularly on benchmarks involving subjective preferences, style
resistance, and best-of-N selection.
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