
Decentralized Control of Quadrotor Swarms with
End-to-end Deep Reinforcement Learning

Sumeet Batra∗ Zhehui Huang∗ Aleksei Petrenko∗
Tushar Kumar Artem Molchanov Gaurav S. Sukhatme†

Department of Computer Science
University of Southern California

{ssbatra,zhehuihu,petrenko,kumart,molchano,gaurav}@usc.edu

Abstract: We demonstrate the possibility of learning drone swarm controllers that
are zero-shot transferable to real quadrotors via large-scale multi-agent end-to-end
reinforcement learning. We train policies parameterized by neural networks that
are capable of controlling individual drones in a swarm in a fully decentralized
manner. Our policies, trained in simulated environments with realistic quadrotor
physics, demonstrate advanced flocking behaviors, perform aggressive maneuvers
in tight formations while avoiding collisions with each other, break and re-establish
formations to avoid collisions with moving obstacles, and efficiently coordinate in
pursuit-evasion tasks. We analyze, in simulation, how different model architectures
and parameters of the training regime influence the final performance of neural
swarms. We demonstrate the successful deployment of the model learned in
simulation to highly resource-constrained physical quadrotors performing station
keeping and goal swapping behaviors. Video demonstrations and source code are
available at the project website https://sites.google.com/view/swarm-rl.

Keywords: Swarms, Multi-robot systems, Multi-robot learning

1 Introduction

Teams of unmanned aerial vehicles are widely applicable to e.g. area coverage, reconnaissance etc.
State of the art approaches for planning and control of drone teams require full state information and
extensive computational resources to plan in advance [1]. This greatly limits their applicability since
existing planning algorithms are often brittle in partially-observable environments and challenging to
execute in real time on embedded hardware. Many classical methods also suffer from the curse of
dimensionality as the number of possible configurations grows combinatorially with team size. In
addition, kinodynamic planners typically require a precise model of drone dynamics.

Here, we present a fully learned approach that uses a small amount of computation during execution
and relies exclusively on local observations, yet results in effective controllers for large-scale, swarm-
like, teams that are zero-shot transferable to real quadrotors. We take advantage of multi-agent deep
reinforcement learning (DRL) to train quadrotor drones on hundreds of millions of environment
transitions in realistic simulated environments. We find neural network architectures and observation
spaces that allow our neural controllers to achieve high performance on a diverse set of tasks. Our
experiments demonstrate that drone swarms controlled by our neural network policies generate highly
effective, smooth, and virtually collision-free trajectories. We show simulated dynamic obstacle
avoidance and demonstrate that our learned controllers successfully execute tasks on physical drones
in team sizes upto 8 quadrotors. To the best of our knowledge, this is the first approach that a)
demonstrates scalable coordinated flight of drone swarms in a realistic physical simulation achieved
through end-to-end reinforcement learning (RL) with direct thrust control, and b) demonstrates that
the learned policies transfer to physical drone teams. We view this as progress towards hardware
agnostic real-world deployment of quadrotor swarms with realtime replanning capabilities.
∗Equal contribution
†Gaurav Sukhatme holds concurrent appointments as a Professor at USC and as an Amazon Scholar. This

paper describes work performed at USC and is not associated with Amazon.

5th Conference on Robot Learning (CoRL 2021), London, UK.

 https://sites.google.com/view/swarm-rl

Figure 1: Drones are trained on formations randomly sampled from one of six pre-defined scenarios on the left.
Drones employ a self- and neighbor encoder that learn a mapping from a combination of proprioceptive and
extereoceptive inputs to thrust outputs. The combined intermediate embeddings enable policies to perform high
speed, aggressive maneuvers and learn collision avoidance behaviors e.g. formation creation, formation swaps,
evader pursuit. These are shown on the right both in simulation and physical experiments.

2 Related work

Classical methods such as RRT [2] and PRM [3] can generate collision-free piece-wise linear trajecto-
ries. These do not directly account for robot dynamics and scale poorly with team size, limiting their
applicability for online re-planning. To account for the dynamics, a smooth trajectory refinement [1]
or optimization [4] is performed. Kinodynamic planning methods take advantage of the known dy-
namics of individual robots and are more suitable for agile and aggressive flight [5]. It is also possible
to convert a geometric route to a dynamically feasible trajectory [6] resulting in an agile system
or to directly find dynamically feasible paths and refine them with gradient based optimization [7].
Prior learning-based approaches include [8] which estimates reachable states given the quadrotor
dynamics. However, these methods require knowledge of the entire state space a priori and do not
generalize well to other high dimensional environments. Additionally, kinodynamic planning is
typically intractable in the multi-robot setting. Collision avoidance is particularly difficult where
drones perform aggressive maneuvers. Traditional techniques use observations from neighboring
drones to constrain the geometric free space or the action space of each drone. Prior work includes an
n-body collision avoidance approach [9] that constrains the velocity space of a robot using velocity
information from neighboring robots. Another approach utilizes pose information from neighbors
to construct a Voronoi Cell, and each robot plans a collision free trajectory through its respective
cell [10]. The approach in [11] minimally constrains the control space of an agent by constructing
chance-constrained safety sets that account for measurement noise and disturbances present in real
world environments. While these approaches guarantee collision free trajectories and are capable of
running in realtime, with the exception of [11] (PrSBC), they significantly constrain the configuration
space of the robot, preventing aggressive maneuvers and resulting in occasional deadlock. While
PrSBC minimally constrains the control space of any given policy, it requires a model of neighboring
agents in order to construct chance-constrained safety sets. Our controllers rely on a reward formula-
tion with a high emphasis on collision avoidance and our policies are not constrained, allowing for
aggressive maneuvers in a variety of rich, dynamic environments.

Simulation trained neural networks have been used for single-agent and multi-agent quadrotor control
to address shortcomings of kinodynamic planners. [12] and [13] both utilize Imitation Learning (IL)
from a global centralized planner, [13] further utilizes RL to balance the tradeoff between actions
optimal to the team and individuals. [14, 15] learn controllers robust to aerodynamic interactions.
Graph Neural Networks (GNNs) are promising architectures for swarm control and they have been
proposed as a parameterization for imitation learning [16, 17] and RL [18, 19] algorithms.

Reinforcement learning has shown promise in learning policies for UAV flight [20]. Deep RL [21]
has been used to learn minimum-time trajectory generation for quadrotors. Similar to [20] (but in
a multi-agent setting) we train from scratch using DRL via an end-to-end approach: the policies
directly control the motor thrust. This is similar to [22] which uses Soft Actor Critic to teach a
single quadrotor how to fly. Multi-Agent Reinforcement Learning (MARL) has recently been applied
to autonomous driving, path finding, and cooperative multi-agent control [23, 13, 24] and UAV
team control (e.g. [25] – a new gym environment that models drone dynamics, taking into account
aerodynamic effects, and trains policies for basic hovering and leader-following tasks). Khan et al.
[26] train a centralized Q-network to solve multi-agent motion planning problems. This approach
has limited scalability as the input space of the Q-network increases with the number of drones. We
address scaling by relying only on local neighborhood information both during training and inference.

2

3 Method

3.1 Problem formulation

We consider a team of N quadrotor drones in a simulated 3D environment. Our task is to learn
a control policy that directly maps proprioceptive observations of an individual drone to motor
thrusts with the goal of minimizing the distances to positions in the desired formation while avoiding
collisions. We analyze the case of online decentralized control, i.e. instead of a centralized system
solving the joint trajectory optimization problem offline, we consider policies which simultaneously
(and implicitly) plan trajectories and control individual quadrotors in real-time. The decentralized
approach assumes no access to the global state during evaluation and scales better with the size of
the swarm. In the real world, this is analogous to individual quadrotors in the swarm generating
their own action sequences using only on-board computations. We demonstrate the efficacy of this
approach by showing that our learned policies do indeed transfer to a physical setting. Formally, the
state of the environment at time t is described by the tuple S(t) = (g

(t)
1 , ..., g

(t)
N , s

(t)
1 , ..., s

(t)
N). Here

g
(t)
i ∈ R3 are the goal locations for the quadrotors that together define the desired swarm formation

at time t, and s(t)i are the states of individual quadrotors. We describe the state of a single quadrotor
by the tuple (p, v,R, ω), where p ∈ R3 is the position of the quadrotor relative to the goal location,
v ∈ R3 is the linear velocity in the world frame, ω ∈ R3 is the angular velocity in the body frame,
and R ∈ SO(3) is the rotation matrix from the quadrotor’s body coordinate frame to the world
frame. Each quadrotor is controlled by a learned policy πθ(a(t)|o(t)) which maps observations o(t) to
Gaussian distributions over continuous actions a(t). To effectively maneuver and avoid collisions, the
quadrotors need to be able to measure their own position and orientation in space s(t)i , and relative
positions p̃(t)ij and relative velocities ṽ(t)ij of their neighbors. We therefore represent each quadrotor’s

observations as o(t)i = (s
(t)
i , η

(t)
i), where η(t)i = (p̃

(t)
i1 , ..., p̃

(t)
iK , ṽ

(t)
i1 , ..., ṽ

(t)
iK) is a tuple containing

the neighborhood information. Here K ≤ N − 1 is the number of neighbors that each individual
quadrotor can observe. We use K � N for larger swarms to improve scalability during both training
and evaluation. Simulated quadrotors, similar to their real-world counterparts, are powered by motors
that spin in one direction and generate only non-negative thrust. We thus transform actions a(t) ∈ R4

sampled by the policy to control inputs f (t) ∈ [0, 1]4 via f (t) = 1
2 (clip(a(t),−1, 1) + 1), where

f
(t)
1...4 = 0 corresponds to no thrust, and f (t)1...4 = 1 corresponds to maximum thrust on motors 1...4.

3.2 Simulation and sim-to-real considerations

We train and evaluate our control policies in simulated environments with realistic quadrotor dynamics.
We adopt a simulation engine with drone dynamics [20], and augment it to support quadrotor swarms.
Virtual quadrotors are modeled on the Crazyflie 2.0 [27] – our physical demonstration platform. A
key feature of this engine is the model of hardware imperfections previously shown to facilitate
zero-shot sim-to-real transfer of stabilizing policies for single quadrotors [20]. Non-ideal motors are
modeled using motor-lag and thrust noise and the simulator provides imperfect observations, with
noise injected into position, orientation, and velocity estimations. Noise parameters are estimated
from data collected on real quadrotors. While motor and sensor noise create a challenging learning
environment, they are instrumental to prevent overfitting to otherwise unrealistic idealized conditions
of the simulator. To facilitate the emergence of collision-avoidance behaviors, in addition to modeling
dynamics, we simulate collisions between individual quadrotors. In reality, collision outcomes
depend on many factors, e.g. rigidity and materials of the quadrotor frames, whether the blades of
two colliding quadrotors touch, etc. Instead of modeling these complex processes, we adopt a simple
randomized collision model. When collision between quadrotors is detected, we briefly apply random
force and torque to both quadrotors with opposite signs, preserving linear and angular momenta.

3.3 Training setup

For training we use a policy gradient RL algorithm. In our setup, the learning algorithm updates
the parameters θ of the policy πθ(a(t)|o(t)) to maximize the expected discounted sum of rewards
Eπθ

[∑T
t′=1 γ

t′−tR(S(t′), a(t
′))
]
. For our experiments we choose Proximal Policy Optimization

(PPO) [28]. In particular, we use the implementation from the high-throughput asynchronous

3

RL framework "SampleFactory" [29] which supports multi-agent learning and enables large scale
experiments. In each training episode, the goal of every quadrotor in the swarm is to reach its
designated position in the formation while avoiding collisions with the ground and with other
quadrotors. In order to provide rich and diverse training experience, we train our policies in a mixture
of scenarios featuring a variety of geometric 2D and 3D formations. Further training details are
in Section 4. The reward function optimized by the RL algorithm for quadrotor i consists of three
major components: r(t) = r

(t)
pos + r

(t)
col + r

(t)
aux. Here, r(t)pos = −αpos

∥∥∥p(t)i ∥∥∥
2

rewards the quadrotors for

minimizing the distance to their target locations. r(t)col is responsible for penalizing collisions between

quadrotors and is defined as: r(t)col = −αcol1
(t)
col − αprox

∑K
j=1 max

(
1−

∥∥∥p̃(t)ij ∥∥∥
2
/dprox, 0

)
. The

indicator function 1(t)
col is equal to 1 for timesteps where a new collision involving the i-th quadrotor

is detected. The second term represents the smooth proximity penalty with linear falloff distance
dprox. Here

∥∥∥p̃(t)j ∥∥∥
2

is the distance between centers of mass of i-th and j-th quadrotors, and dprox in
our experiments is double the size of the quadrotor frame, which encourages them to keep minimal
distance in tight formations. In addition to the first two terms r(t)pos and r(t)col that convey our main
objective we also adopt an auxiliary reward function similar to [20] to facilitate the initial learning
of stabilizing controllers: r(t)aux = −αω

∥∥∥ω(t)
i

∥∥∥
2
− αf

∥∥∥f (t)i ∥∥∥
2
+ αrotR

(t)
33 penalizing high angular

velocity, high motor thrusts, and large rotations about horizontal (x- and y-) axes respectively.

3.4 Model architectures

Figure 2: Detailed neural network architectures. Left: Deepsets architecture used in simulation. Middle:
Attention architecture used in simulation. Right: Smaller deepsets architecture deployed on Crazyflie2.0.

During training and evaluation, the quadrotors’ actions a are sampled from a parametric stochastic
policy πθ(a|o). We omit time indices and quadrotor identity for simplicity where possible. We
represent πθ with a Gaussian distribution, a ∼ πθ(a|o)

d
= N (µa, σ

2) , where the mean µa ∈ R4 is a
function of the quadrotor’s observation at time t parameterized by a feed-forward neural network,
and the variance σ2 ∈ R is a single learned parameter independent of the state. To compute the
distribution means we embed the state of the quadrotor and its neighborhood before regressing:
µa : es = φs(s), eη = fη(s, η), µa = φa(es, eη). Here es and eη are the embedding vectors
that encode each quadrotor’s own state and the state of its neighborhood respectively, φs and φa
are fully-connected neural networks, and fη is the neighborhood encoder. We analyze two types of
neighborhood encoders: deep sets and attention-based (Section 3.5). The value function Vπ uses the
same architecture as the policy, except that it regresses a single deterministic value estimate instead
of the parameters of the action distribution. Weights are not shared between π and Vπ models.

3.5 Neighborhood encoder

Deep sets. The task of the encoder fη is to generate a compact and expressive representation eη of
each quadrotor’s local neighborhood. Since the individual quadrotors are agnostic to the identity of
their neighbors, this representation must be permutation invariant. In addition, scale invariance is a
desirable property since the size K of the observable neighborhood fluctuates over time, i.e. when
a sufficient number of quadrotors in the formation move beyond the sensor range. The deep sets
architecture proposed by Zaheer et al. [30] has these required properties. We apply the same learned
transformation ψη to the observed features of each quadrotor in the neighborhood, after which a
permutation-invariant aggregation function is applied to neighbor embeddings ej . We calculate the

4

Figure 3: (Left) Evader pursuit, (Middle) N = 16 quadrotors in a dense formation after fine-tuning (see
Section 4.3), and (Right) A swarm breaking formation to avoid a collision with an obstacle. Videos of the learned
swarm behaviors in different scenarios are at: https://sites.google.com/view/swarm-rl.

mean of neighbor embeddings to achieve scale invariance: ej = ψη(p̃ij , ṽij), eη = 1
K

∑K
j=1 ej . Not

all neighbors are equally important for trajectory planning and decision making. For example, distant
and stationary drones are less likely to influence a drone’s behavior compared to closely located and
fast-moving neighbors. The mean operation in the deep sets encoder does not allow it to convey the
relative importance of different neighbors – this motivates a more sophisticated encoder architecture.

Attention-based. The attention mechanism [31] provides a natural way to express the relative
importance of individual neighbors. The attention-based neighborhood encoder is based on [32],
adapted for quadrotors in 3D. The current quadrotor’s state si and the neighbor observations (p̃ij , ṽij)
for the j-th neighbor are used to compute the attention weights: ej = ψe(si, p̃ij , ṽij), em =
1
K

∑K
j=1 ej , αj = ψα(ej , em). Here ej are the embedding vectors of individual neighbors, em is the

summary of the whole neighborhood, and ψe and ψα are fully-connected neural networks. We use
the softmax operation over αj to compute the attention scores which sum up to 1. The neighborhood
embedding is thus produced as eη =

∑K
j=1 Softmax(αj)ψh(ej), where ψh represents an additional

hidden layer. Both in deep sets and attention encoders, we used multi-layer perceptrons (MLPs) with
256 neurons and tanh activations. For additional details see [33].

4 Experiments and results

We train our control policies in episodes, in diverse randomized scenarios with static and dynamic
formations. Our virtual experimental arena is a 10 × 10 × 10 m room. At the beginning of each
episode, we randomly spawn the quadrotors in a 3 m radius around the central axis of the room,
at a height between 0.25 and 2 m. We randomly initialize their orientation, linear and angular
velocities to facilitate learning robust recovery behaviors. To provide a diverse and challenging
training environment, we procedurally generate scenarios of different types, listed below.

Static formations. The target formation is fixed throughout the episode. The formation takes various
geometric shapes e.g. 2D grid, circle, cylinder, and cube (Fig. 1). The separation r between goals in
the formation is chosen randomly. A special case r = 0 where the goal locations for all quadrotors
coincide demands very dense configurations with high probabilities of collisions. We refer to this
task as the same goal scenario.

Dynamic formations. We modify the separation between the quadrotors, and the position of the
formation origin. We explore gradually shrinking the inter-quadrotor separation over time, and
randomly teleporting the formation around the room. To train policies to avoid head-on collisions
at high speed, we include scenarios where the swarm is split into two groups. We swap the target
formations of quadrotors in these two groups several times per episode, which requires two teams of
quadrotors to fly ’through’ each other. We refer to this as the swarm-vs-swarm scenario.

Evader pursuit. For the evader pursuit task, the team is given a shared goal that moves according
to some policy (simulating an evader that the team must pursue). We use two evader trajectory
parameterizations: a 3D Lissajous curve and a randomly sampled Bezier curve.

4.1 Model architecture study

We compare training performance with different neighborhood encoders with N = 8 quadrotors
(Fig. 4) and a fixed number K = 6 of visible neighbors. In addition to the architectures described

5

 https://sites.google.com/view/swarm-rl

0 200M 400M 600M 800M 1B
−1.0

−0.8

−0.6

−0.4

−0.2

0.0

Av
g.

 e
pi

so
de

 re
wa

rd

1e2 Total reward

0 200M 400M 600M 800M 1B
0

1

2

3

Av
g.

 d
ist

an
ce

, m
et

er
s

Avg. distance to the target

0 200M 400M 600M 800M 1B
Simulation steps

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 th

e
ep

iso
de

 in
 th

e
ai

r Flight performance

0 200M 400M 600M 800M 1B
Simulation steps

0.12

0.50

2.00

8.00

Nu
m

be
r o

f c
ol

lis
io

ns

Avg. collisions between drones
Blind agent MLP DEEPSETS ATTENTION

Figure 4: Comparison of different model architectures for N = 8 quadrotors with K = 6 neighbors visible to
each. For each architecture we show mean and standard deviation of four independent training runs.

in Section 3.5 we train two baselines. The first is a blind quadrotor, for which we remove the
neighborhood encoder fη entirely. While blind quadrotors get close to their targets, they are not
able to avoid collisions with each other. The second uses a plain multi layer perceptron, which
concatenates neighbor observations as input. This policy, which is not permutation invariant, fails
to avoid collisions in most scenarios, suggesting that a permutation-invariant architecture is needed.
The difference between the attention and deep sets encoders is most prominent in tasks that require
dense swarm configurations, such as the same goal scenario. In addition, quadrotors with the deep
sets encoder do not get as close to their target locations, sacrificing formation density to minimize
collisions. Since the attention-based architecture demonstrated the best performance in both goal
reaching and collision avoidance, we use it in all further simulated experiments.

4.2 Attention weights study

We investigate the results of training an attention-based architecture for encoding relative scores
of neighboring drones. We ask whether the attention mechanism learns to assign higher attention
scores to neighbors that are closer and whose velocity vector points towards the current agent. In
addition, we investigate to what degree distance and velocity individually affect the scores. We
modify the swarm-vs-swarm scenario to contain two teams of two drones whose goals are 1 m apart
and situated in the same horizontal plane. The drones are allowed to settle at their respective goals
following which the goals are swapped. We take a snapshot of the experiment and record the softmax
attention weights for each drone. We manually set the relative velocities of all neighbors to (0, 0, 0)
for each drone and pass the modified observations to the attention encoder. The results (Fig. 5)
show that the red quadrotor assigns the highest attention weight of 0.61 to the blue quadrotor, which
is on a collision course with it. Similarly, the blue quadrotor assigns the highest weight of 0.57
to its red neighbor. For the gray and green quadrotors, all neighbors are assigned a roughly equal
weighting, with neighbors closer in distance having slightly higher weights. When the relative velocity
observations are manually set to 0 and fed to the attention encoder, we observe a drastically different,
much more uniform distribution of attention weights. We conclude that neighboring quadrotors with
small relative distance and high relative velocity vectors in the direction of the viewer are prioritized
over drones further away with velocities in other directions. Drones with relative velocities pointing
towards the viewer seem to be prioritized higher than drones that are closer but with velocity vectors
away from the viewer, implying that velocity is considered more important than distance.

4.3 Scaling

We investigate the ability of our policies to scale to larger swarm sizes without re-training from
scratch. We introduce a second, fixed-cost training step in which policies trained with N = 8,K = 6

red grey green blue

re
d

gr
ey

gr
ee

n
bl

ue

Attention weights

red grey green blue

re
d

gr
ey

gr
ee

n
bl

ue

Attention weights, velocity = 0

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

Figure 5: Attention weights between drones.
Left: original velocities, right: velocities set
to 0.

agents
Collisions

per minute
per drone

Distance to
target, m

Collisions
per minute
per drone

+200M training

Distance to
target, m

+200M training

8 0.02 0.42 0.00 0.41

16 0.09 0.57 0.08 0.63
32 0.90 0.86 0.16 0.81
48 2.43 1.11 0.23 0.92
64 5.36 1.70 0.29 1.12
128 8.63 4.32 1.37 3.05

Table 1: Scaling up the attention policy with and without additional
training. The size of the visible local neighborhood is fixed at
K = 6 drones. The metrics are averaged over 20 episodes.

6

are trained for an additional 2× 108 steps with the new target number of quadrotors N and the same
K = 6, i.e. the baseline policies are copied and tuned separately in the environment with larger
swarm size. The results (Table 1) show that without additional training, the number of collisions
increases with the number of quadrotors because the state distribution changes significantly compared
to 8-drone case. Additional tuning has a significant positive effect. Even with 128 drones, the
quadrotors can avoid collisions in dynamic environments, and the higher number of collisions is
largely explained by cascade effects: when a collision happens, it affects multiple drones. The
additional tuning amounts to only 20% of the original training session (∼ 4 hours).

4.4 Obstacle avoidance

We experiment with a harder version of the environment by introducing a spherical obstacle moving
through the formations at random angles multiple times throughout the episode. At the beginning of
each episode, we randomly sample the obstacle size, as well as its velocity and the parameters of its
trajectory. To incorporate obstacles into our training protocol, we augment the quadrotor observations
o
(t)
i to contain the information about obstacle state ζ(t)i . This information includes the radius r̂ of the

obstacle, and its position p̂(t)i and velocity v̂(t)i relative to the i-th quadrotor. We process the obstacle
observations with an additional MLP φo to produce the obstacle embedding eo, which is used in
conjunction with the neighborhood encoder to generate the action distributions (see Section 3.4 for
details): eo = φo(ζ) , µa = φa(es, eη, eo) . The collision physics and the penalties are modeled
in the same way as for quadrotor-vs-quadrotor collisions (Sections 3.2 and 3.3). Fig. 7 shows the
training performance in obstacle avoidance scenarios. Despite increased complexity, we achieve
performance comparable to the baseline, keeping dense formations close to the target locations.

Figure 6: Time lapse of eight drones swapping goals
(left) and performing a formation change (right).

0 200M 400M 600M 800M 1B
Simulation steps

0.25

0.50

1.00

2.00

Av
g.

 d
ist

an
ce

, m
et

er
s

Avg. distance to the target

0 200M 400M 600M 800M 1B
Simulation steps

0.06

0.12

0.25

0.50

Nu
m

be
r o

f c
ol

lis
io

ns

Avg. collisions between the obstacle & drones per minute

Figure 7: Learning to maintain dense formations while
avoiding collisions with moving external obstacles.

4.5 Additional baselines

Classical trajectory optimization and control methods have been proposed for tasks similar to ours.
[34] uses graph search in discretized space followed by trajectory smoothing to switch formations
with large teams of quadrotors. It relies on full prior information about the (static) environment and
an offline optimization process taking up to tens of seconds. We test our controller in randomized
dynamic environments without access to global information, which makes it hard to make a direct
comparison between our method and [34]. Graph Neural Networks [16, 17] and RL [18, 19] are
a prime candidate for an alternative model architecture. GNNs can capture global information
about the swarm while relying only on local communication by performing multiple consecutive
graph convolution operations and communicating intermediate representations between adjacent
robots. While this enables decentralized operation, the reliance on multiple message exchanges
between UAVs on each step is prohibitively expensive for nano-quadrotor platforms such as Crazyflie.
Our controllers run at 500Hz on the real drones, which makes the communication protocol latency
requirements exceptionally tight for multi-layer GNNs. Nonetheless, GNNs remain an attractive
option for more powerful platforms or tasks that do not require high-frequency reactive control. [10]
uses Buffered Voronoi Cells to compute safe regions around quadrotors (with margins between cells
to account for kinodynamic constraints) and a PID controller to achieve positions within safe regions
that are the closest to the target. This method relies only on local neighborhood information. We
implement it on our hardware platform and compare its performance to our method (Section 5).

5 Physical deployment

We deployed our policies on the Crazyflie2.0, a small, lightweight, open-source quadrotor platform.
We tested the neural controller in several scenarios: hovering in a close proximity to a shared goal

7

(same goal), following a moving target, maintaining dynamic geometric formations, and flying
through a team of moving drones (swarm-vs-swarm), with up to 8 quadrotors in the latter experiments
(Fig. 6). Video demonstrations are available at https://sites.google.com/view/swarm-rl. Crazyflie2.0
is a low-power nano-quadrotor platform where on board computation is provided by a microcontroller
with 168MHz and 192Kb of RAM. To run a team-aware neural policy on such limited hardware we
trained a much smaller version of our deep sets model with only 16 and 8 neurons in the hidden
layers of self- and neighbor encoders respectively. Surprisingly, even such tiny policies with ∼ 103

parameters performed well on real quadrotors. We use a Vicon system to provide position and
velocity updates at 100 Hz with an added low-pass exponential filter for neighbor positions to reduce
noise. Each drone’s controller runs at 500 Hz incorporating the IMU measurements atop the latest
available Vicon data. Despite the fact that downwash was not explicitly modeled in the simulator, our
policies recover from the aerodynamic disturbances caused by the proximity of other drones. We
observed recovery from non-destructive collisions with each other or with the ground wherein drones
re-stabilize after collisions with teammates, and "bounce back" from the ground and resume flight.

x (m)
32101

y (m)

2.52.01.51.00.50.00.51.0

z (m
)

0.25
0.50
0.75
1.00
1.25
1.50
1.75

Swap Goals (NN)

x (m)

3
2

1
0

1

y (
m)

2.0
1.5

1.0
0.5
0.0

0.5
1.0

z (
m

)

0.2
0.4
0.6
0.8
1.0

Swap Goals (Voronoi Cells + PID)

Figure 8: (Left) Two teams of four quadrotors swap goals twice and then land at their original starting positions.
(Middle) Four quadrotors follow a moving goal, starting from the bottom right going counter-clockwise. The
goal positions are marked with red X’s. Both plots show 3D positions over time of the four quadrotors. (Right)
two teams of four quadrotors swap goals using PID controllers and buffered Voronoi cells for collision avoidance.

For comparison, we implemented an online planning and collision avoidance algorithm [10], based
on buffered Voronoi cells and PID control, to understand how our controllers behave compared to
a traditional approach. We tested with 8 drones on the swarm-vs-swarm scenario. The trajectories
generated by the classical algorithm are longer than the ones produced by our neural network
controller. Although there were no restrictions on the configuration space, we observed that the
classical method generates trajectories predominately in a single 2D xy−plane, whereas the neural
controllers utilize all 3 spatial dimensions (Fig. 8). Finally, we observe that our controllers execute
more aggressive maneuvers, reaching goals faster with max velocity (acceleration) of up to 4 m/s (7
m/s2) respectively, compared to a max of 1 m/s (3 m/s2) for the classical method. For additional
details see [33].

6 Conclusion

Our results demonstrate that drones trained with deep reinforcement learning can achieve strong
goal-reaching and collision avoidance performance across a diverse range of training scenarios with
realistic quadrotor dynamics. We present evidence of successful swarm control in simulation and
demonstrate the zero-shot transfer of policies learned in simulation to the Crazyflie platform, on
which we are able to perform successful trials on multiple tasks. Our policies learn to fly from scratch,
without the use of tuned PID controllers. Our method is thus model-agnostic, i.e. we can learn
policies for quadrotors with different physical parameters (e.g. mass, size, inertia matrix, thrust) by
simply re-running the training in the updated simulator. In contrast with classical planning methods,
we do not introduce any constraints on the velocity or acceleration and allows the controller to take
advantage of full capabilities of the quadrotor. This enables agile flight with aggressive maneuvers.
Our pursuit-evasion experiments are the most representative of this. In order to stay close to the fast
evader, simulated quadrotors exceed speeds of 7 m/s and reach accelerations up to 1.7 g. Permutation
and scale-agnostic model architectures used in our method allow us to switch between different team
sizes. We found that after additional training to adjust to the larger team size, our policies can control
swarms of up to 128 members without a significant increase in computation burden per quadrotor.

8

https://sites.google.com/view/swarm-rl

Acknowledgments

This research is supported in part by a USC Graduate Fellowship. We thank our colleagues from
the Robotic Embedded Systems Laboratory (RESL) for discussions and insights. We are grateful to
Baskın Şenbaşlar, Tao Chen, and Wolfgang Hönig for their assistance and support. We particularly
thank James Preiss for his help with the experimental setup.

References
[1] W. Hönig, J. A. Preiss, T. K. S. Kumar, G. S. Sukhatme, and N. Ayanian. Trajectory planning

for quadrotor swarms. IEEE Trans. Robotics, 34(4):856–869, 2018.

[2] K. Solovey, O. Salzman, and D. Halperin. Finding a needle in an exponential haystack: Discrete
RRT for exploration of implicit roadmaps in multi-robot motion planning. Int. J. Robotics Res.,
35(5):501–513, 2016.

[3] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion planning. Int. J.
Robotics Res., 30(7):846–894, 2011. doi:10.1177/0278364911406761. URL https://doi.
org/10.1177/0278364911406761.

[4] J. Tordesillas and J. P. How. MADER: trajectory planner in multi-agent and dynamic environ-
ments. CoRR, abs/2010.11061, 2020. URL https://arxiv.org/abs/2010.11061.

[5] D. Mellinger and V. Kumar. Minimum snap trajectory generation and control for quadrotors.
In IEEE International Conference on Robotics and Automation, ICRA 2011, Shanghai, China,
9-13 May 2011, pages 2520–2525. IEEE, 2011. doi:10.1109/ICRA.2011.5980409. URL
https://doi.org/10.1109/ICRA.2011.5980409.

[6] C. Richter, A. Bry, and N. Roy. Polynomial trajectory planning for aggressive quadrotor flight
in dense indoor environments. In Robotics research, pages 649–666. Springer, 2016.

[7] B. Zhou, F. Gao, L. Wang, C. Liu, and S. Shen. Robust and efficient quadrotor trajectory
generation for fast autonomous flight. IEEE Robotics and Automation Letters, 4(4):3529–3536,
2019.

[8] R. Allen and M. Pavone. A real-time framework for kinodynamic planning with application to
quadrotor obstacle avoidance. In AIAA Guidance, Navigation, and Control Conference, page
1374, 2016.

[9] J. van den Berg, S. J. Guy, M. C. Lin, and D. Manocha. Reciprocal n-body collision avoid-
ance. In C. Pradalier, R. Siegwart, and G. Hirzinger, editors, Robotics Research - The 14th
International Symposium, ISRR 2009, August 31 - September 3, 2009, Lucerne, Switzerland,
volume 70 of Springer Tracts in Advanced Robotics, pages 3–19. Springer, 2009. doi:10.1007/
978-3-642-19457-3_1. URL https://doi.org/10.1007/978-3-642-19457-3_1.

[10] D. Zhou, Z. Wang, S. Bandyopadhyay, and M. Schwager. Fast, on-line collision avoidance
for dynamic vehicles using buffered voronoi cells. IEEE Robotics Autom. Lett., 2(2):1047–
1054, 2017. doi:10.1109/LRA.2017.2656241. URL https://doi.org/10.1109/LRA.2017.
2656241.

[11] W. Luo, W. Sun, and A. Kapoor. Multi-robot collision avoidance under uncertainty with
probabilistic safety barrier certificates. In H. Larochelle, M. Ranzato, R. Hadsell, M. Bal-
can, and H. Lin, editors, Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
03793ef7d06ffd63d34ade9d091f1ced-Abstract.html.

[12] B. Rivière, W. Hönig, Y. Yue, and S. Chung. GLAS: global-to-local safe autonomy synthesis
for multi-robot motion planning with end-to-end learning. IEEE Robotics Autom. Lett., 5(3):
4249–4256, 2020. doi:10.1109/LRA.2020.2994035. URL https://doi.org/10.1109/LRA.
2020.2994035.

9

http://dx.doi.org/10.1177/0278364911406761
https://doi.org/10.1177/0278364911406761
https://doi.org/10.1177/0278364911406761
https://arxiv.org/abs/2010.11061
http://dx.doi.org/10.1109/ICRA.2011.5980409
https://doi.org/10.1109/ICRA.2011.5980409
http://dx.doi.org/10.1007/978-3-642-19457-3_1
http://dx.doi.org/10.1007/978-3-642-19457-3_1
https://doi.org/10.1007/978-3-642-19457-3_1
http://dx.doi.org/10.1109/LRA.2017.2656241
https://doi.org/10.1109/LRA.2017.2656241
https://doi.org/10.1109/LRA.2017.2656241
https://proceedings.neurips.cc/paper/2020/hash/03793ef7d06ffd63d34ade9d091f1ced-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/03793ef7d06ffd63d34ade9d091f1ced-Abstract.html
http://dx.doi.org/10.1109/LRA.2020.2994035
https://doi.org/10.1109/LRA.2020.2994035
https://doi.org/10.1109/LRA.2020.2994035

[13] G. Sartoretti, J. Kerr, Y. Shi, G. Wagner, T. K. S. Kumar, S. Koenig, and H. Choset. PRIMAL:
pathfinding via reinforcement and imitation multi-agent learning. IEEE Robotics Autom. Lett.,
4(3):2378–2385, 2019. doi:10.1109/LRA.2019.2903261. URL https://doi.org/10.1109/
LRA.2019.2903261.

[14] G. Shi, W. Hönig, Y. Yue, and S. Chung. Neural-swarm: Decentralized close-proximity
multirotor control using learned interactions. pages 3241–3247, 2020. doi:10.1109/ICRA40945.
2020.9196800. URL https://doi.org/10.1109/ICRA40945.2020.9196800.

[15] G. Shi, W. Hönig, X. Shi, Y. Yue, and S. Chung. Neural-swarm2: Planning and control of
heterogeneous multirotor swarms using learned interactions. CoRR, abs/2012.05457, 2020.
URL https://arxiv.org/abs/2012.05457.

[16] Q. Li, F. Gama, A. Ribeiro, and A. Prorok. Graph neural networks for decentralized multi-
robot path planning. In IEEE/RSJ International Conference on Intelligent Robots and Systems,
IROS 2020, Las Vegas, NV, USA, October 24, 2020 - January 24, 2021, pages 11785–11792.
IEEE, 2020. doi:10.1109/IROS45743.2020.9341668. URL https://doi.org/10.1109/
IROS45743.2020.9341668.

[17] E. I. Tolstaya, F. Gama, J. Paulos, G. J. Pappas, V. Kumar, and A. Ribeiro. Learning decentralized
controllers for robot swarms with graph neural networks. In L. P. Kaelbling, D. Kragic, and
K. Sugiura, editors, 3rd Annual Conference on Robot Learning, CoRL 2019, Osaka, Japan,
October 30 - November 1, 2019, Proceedings, volume 100 of Proceedings of Machine Learning
Research, pages 671–682. PMLR, 2019. URL http://proceedings.mlr.press/v100/
tolstaya20a.html.

[18] A. Khan, E. I. Tolstaya, A. Ribeiro, and V. Kumar. Graph policy gradients for large scale
robot control. In L. P. Kaelbling, D. Kragic, and K. Sugiura, editors, 3rd Annual Conference
on Robot Learning, CoRL 2019, Osaka, Japan, October 30 - November 1, 2019, Proceedings,
volume 100 of Proceedings of Machine Learning Research, pages 823–834. PMLR, 2019. URL
http://proceedings.mlr.press/v100/khan20a.html.

[19] A. Khan, V. Kumar, and A. Ribeiro. Large scale distributed collaborative unlabeled motion
planning with graph policy gradients. IEEE Robotics Autom. Lett., 6(3):5340–5347, 2021.
doi:10.1109/LRA.2021.3074885. URL https://doi.org/10.1109/LRA.2021.3074885.

[20] A. Molchanov, T. Chen, W. Hönig, J. A. Preiss, N. Ayanian, and G. S. Sukhatme. Sim-to-(multi)-
real: Transfer of low-level robust control policies to multiple quadrotors. In 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS 2019, Macau, SAR, China,
November 3-8, 2019, pages 59–66. IEEE, 2019. doi:10.1109/IROS40897.2019.8967695. URL
https://doi.org/10.1109/IROS40897.2019.8967695.

[21] Y. Song, M. Steinweg, E. Kaufmann, and D. Scaramuzza. Autonomous drone racing with
deep reinforcement learning. CoRR, abs/2103.08624, 2021. URL https://arxiv.org/abs/
2103.08624.

[22] G. Moraes Barros and E. Luna Colombini. Using soft actor-critic for low-level uav control.
arXiv e-prints, pages arXiv–2010, 2020.

[23] S. Shalev-Shwartz, S. Shammah, and A. Shashua. Safe, multi-agent, reinforcement learning
for autonomous driving. CoRR, abs/1610.03295, 2016. URL http://arxiv.org/abs/1610.
03295.

[24] J. K. Gupta, M. Egorov, and M. J. Kochenderfer. Cooperative multi-agent control us-
ing deep reinforcement learning. In G. Sukthankar and J. A. Rodríguez-Aguilar, editors,
Autonomous Agents and Multiagent Systems - AAMAS 2017 Workshops, Best Papers, São
Paulo, Brazil, May 8-12, 2017, Revised Selected Papers, volume 10642 of Lecture Notes in
Computer Science, pages 66–83. Springer, 2017. doi:10.1007/978-3-319-71682-4_5. URL
https://doi.org/10.1007/978-3-319-71682-4_5.

[25] J. Panerati, H. Zheng, S. Zhou, J. Xu, A. Prorok, and A. P. Schoellig. Learning to fly - a gym
environment with pybullet physics for reinforcement learning of multi-agent quadcopter control.
CoRR, abs/2103.02142, 2021. URL https://arxiv.org/abs/2103.02142.

10

http://dx.doi.org/10.1109/LRA.2019.2903261
https://doi.org/10.1109/LRA.2019.2903261
https://doi.org/10.1109/LRA.2019.2903261
http://dx.doi.org/10.1109/ICRA40945.2020.9196800
http://dx.doi.org/10.1109/ICRA40945.2020.9196800
https://doi.org/10.1109/ICRA40945.2020.9196800
https://arxiv.org/abs/2012.05457
http://dx.doi.org/10.1109/IROS45743.2020.9341668
https://doi.org/10.1109/IROS45743.2020.9341668
https://doi.org/10.1109/IROS45743.2020.9341668
http://proceedings.mlr.press/v100/tolstaya20a.html
http://proceedings.mlr.press/v100/tolstaya20a.html
http://proceedings.mlr.press/v100/khan20a.html
http://dx.doi.org/10.1109/LRA.2021.3074885
https://doi.org/10.1109/LRA.2021.3074885
http://dx.doi.org/10.1109/IROS40897.2019.8967695
https://doi.org/10.1109/IROS40897.2019.8967695
https://arxiv.org/abs/2103.08624
https://arxiv.org/abs/2103.08624
http://arxiv.org/abs/1610.03295
http://arxiv.org/abs/1610.03295
http://dx.doi.org/10.1007/978-3-319-71682-4_5
https://doi.org/10.1007/978-3-319-71682-4_5
https://arxiv.org/abs/2103.02142

[26] A. Khan, C. Zhang, S. Li, J. Wu, B. Schlotfeldt, S. Y. Tang, A. Ribeiro, O. Bastani, and V. Kumar.
Learning safe unlabeled multi-robot planning with motion constraints. In 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS 2019, Macau, SAR, China,
November 3-8, 2019, pages 7558–7565. IEEE, 2019. doi:10.1109/IROS40897.2019.8968483.
URL https://doi.org/10.1109/IROS40897.2019.8968483.

[27] J. Förster. System identification of the crazyflie 2.0 nano quadrocopter. BA Thesis, ETH Zurich,
2015.

[28] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. CoRR, abs/1707.06347, 2017.

[29] A. Petrenko, Z. Huang, T. Kumar, G. Sukhatme, and V. Koltun. Sample factory: Egocentric 3d
control from pixels at 100000 fps with asynchronous reinforcement learning. In ICML, 2020.

[30] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Póczos, R. Salakhutdinov, and A. J. Smola. Deep
sets. In I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA, pages 3391–3401, 2017. URL https://proceedings.neurips.
cc/paper/2017/hash/f22e4747da1aa27e363d86d40ff442fe-Abstract.html.

[31] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. In NIPS, pages 5998–6008, 2017.

[32] C. Chen, Y. Liu, S. Kreiss, and A. Alahi. Crowd-robot interaction: Crowd-aware robot
navigation with attention-based deep reinforcement learning. In 2019 International Conference
on Robotics and Automation (ICRA), pages 6015–6022. IEEE, 2019.

[33] S. Batra, Z. Huang, A. Petrenko, T. Kumar, A. Molchanov, and G. S. Sukhatme. Decen-
tralized control of quadrotor swarms with end-to-end deep reinforcement learning. CoRR,
abs/2109.07735, 2021. URL https://arxiv.org/abs/2109.07735.

[34] J. A. Preiss, W. Hönig, N. Ayanian, and G. S. Sukhatme. Downwash-aware trajectory planning
for large quadrotor teams. In 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems, IROS 2017, Vancouver, BC, Canada, September 24-28, 2017, pages 250–257.
IEEE, 2017. doi:10.1109/IROS.2017.8202165. URL https://doi.org/10.1109/IROS.
2017.8202165.

11

http://dx.doi.org/10.1109/IROS40897.2019.8968483
https://doi.org/10.1109/IROS40897.2019.8968483
https://proceedings.neurips.cc/paper/2017/hash/f22e4747da1aa27e363d86d40ff442fe-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/f22e4747da1aa27e363d86d40ff442fe-Abstract.html
https://arxiv.org/abs/2109.07735
http://dx.doi.org/10.1109/IROS.2017.8202165
https://doi.org/10.1109/IROS.2017.8202165
https://doi.org/10.1109/IROS.2017.8202165

	Introduction
	Related work
	Method
	Problem formulation
	Simulation and sim-to-real considerations
	Training setup
	Model architectures
	Neighborhood encoder

	Experiments and results
	Model architecture study
	Attention weights study
	Scaling
	Obstacle avoidance
	Additional baselines

	Physical deployment
	Conclusion

