
Bayesian AutoML for Databases via the InferenceQL
Probabilistic Programming System

Ulrich Schaechtle1 Cameron Freer2 Zane Shelby1 Feras Saad2 Vikash Mansinghka2

1Digital Garage
2Massachusetts Institute of Technology

Abstract InferenceQL is a probabilistic programming system for scalable Bayesian AutoML from
database tables. InferenceQL is designed to help make Bayesian approaches to data analysis
more accessible to broad audiences and to assist experts in auditing and improving the
quality of data, models, and inferences. Unlike traditional probabilistic programming sys-
tems, InferenceQL provides automation for learning models using nonparametric Bayesian
structure learning of probabilistic programs. Experts can override these models with custom
probabilistic programs for specic subsets of variables and conditional distributions. For
a broad class of models, InferenceQL can generate realistic synthetic data subject to con-
straints and can automatically compute exact probabilities and mutual information values.
Finally, InferenceQL aims to enable scalable Bayesian model criticism via posterior predictive
checks, data quality screening via conditional probability calculation, fairness auditing via
conditional probability ratios, and synthetic data generation to enhance privacy. These
capabilities are accomplished using constructs that interleave standard database queries
with Bayesian inference.

Automated Bayesian inference from databases is important and useful in several ways. For example,
many real-world databases have high rates of missing values, more elds than observed records,
heterogeneous data types, high rates of data entry error, and other factors that complicate the
application of traditional ML-based AutoML techniques [9, App. E]. Furthermore, many real-world
applications benet from uncertainty quantication, interactivemodel checking andmodel criticism,
and conditional probability estimation for ad-hoc fairness auditing. These problems are naturally
formulated in terms of Bayesian inference [11, 28].

InferenceQL is a probabilistic programming system for automated Bayesian inference from
database tables. InferenceQL provides a domain-general mechanism for Bayesian structure learn-
ing [18] of probabilistic program source code [27], as well as domain-general mechanisms for
scalable exact and approximate inference in these probabilistic programs. Users thus do not have to
know how to write probabilistic programs in order to use InferenceQL to solve problems. Instead,
users rely on automated data modeling techniques to navigate the design choices that might other-
wise be handled by experienced modelers. InferenceQL also enables Bayesian inference operations
to be interleaved with ordinary SQL operations, yielding complex database-native workows
for Bayesian AutoML. InferenceQL has been used successfully in eld tests for a broad range of
applications, including AutoML for clinical trial oversight in three real-world clinical trials.

This workshop paper introduces InferenceQL via an exploratory data analysis application. It
also briey reviews the system architecture of InferenceQL and the class of probabilistic programs
that deliver its AutoML capabilities. It presents preliminary quantitative results from experiments
comparing InferenceQL’s modeling accuracy to GLM, VAE, and CTGAN baselines. Finally, it
reviews related work, including both modeling formalisms and ML and database integrations, and
discusses some limitations and broader impacts.

AutoML Conference 2022 Workshop Track © 2022 the authors, released under CC BY 4.0

mailto:u.schaechtle@gmail.com
mailto:freer@mit.edu
mailto:zshelby@mit.edu
mailto:fsaad@mit.edu
mailto:vkm@mit.edu
https://creativecommons.org/licenses/by/4.0/

InferenceQL
Query Planner

Query

Data Table

Query Plan InferenceQL
Query Engine Query Results

Probabilities Synthetic Data

Probabilistic Row Generator
(in SPPL [28], Gen [5], etc.)

Probabilistic
Program
Synthesis

Program
Analysis

Query
API

Figure 1: System architecture of InferenceQL.

Name Country_of_Operator Operator_Owner Users Purpose Class_of_Orbit Type_of_Orbit

Prometheus 1A USA Los Alamos Nati Military Technology Develo LEO Sun-Synchronous
Eutelsat 28A Multinational European Teleco Commercial Communications GEO NaN
SMDC-ONE 1.2 USA U.S. Army Space Military Technology Develo LEO NaN
Lacrosse/Onyx USA National Reconn Military Surveillance LEO Intermediate
SMOS (Soil Mo ESA Centre National Government Earth Observation LEO Sun-Synchronous
Compass G-11 China (PR) Chinese Defense Military Navigation/Global GEO NaN
Echostar 6 USA Echostar Techno Commercial Communications GEO NaN
INMARSAT 4 F2 United Kingdom INMARSAT, Ltd. Commercial Communications GEO NaN
Eutelsat 25C Multinational European Teleco Commercial Communications GEO NaN
Vinasat 2 Vietnam Vietnamese Post Government Communications GEO NaN

Perigee_km Apogee_km Eccentricity Period_minutes Launch_Mass_kg Dry_Mass_kg Power_watts

500 506 0.00044 94.68 NaN NaN NaN
35788 35794 0.00007 1436.10 2950 1375 5900
483 789 0.02184 97.40 3 NaN NaN
574 676 0.00729 97.21 14500 NaN NaN
759 760 0.00007 100.00 658 630 1065
35776 35799 0.00027 1436.15 2300 NaN NaN
35775 35798 0.00027 1436.12 3700 1493 11000
35773 35800 0.00032 1436.11 5458 NaN 13000
35780 35790 0.00012 1436.04 3170 1900 5900
35742 35776 0.00040 1434.69 2970 NaN NaN

Date_of_Launch Anticipated_Lifetime Contractor Launch_Site Launch_Vehicle longitude_radians Inclination_radians

41597 NaN Los Alamos Nation Wallops Island Fl Minotaur 1 NaN 0.707033
36958 12 Alcatel Space Ind Guiana Space Cent Ariane 5 0.498466 0.001222
41165 NaN Miltec Vandenberg AFB Atlas 5 NaN 1.127483
36755 9 Lockheed Martin A Vandenberg AFB Titan IV NaN 1.186824
40119 3 Thales Alenia Spa Plesetsk Cosmodro Breeze KM NaN 1.717404
40963 8 Space Technology Xichang Satellite Long March 3A 1.029744 0.032638
36721 12 Lockheed Martin M Cape Canaveral Atlas 2 AS -1.269029 0.001222
38664 15 EADS Astrium Sea Launch (Odyss Zenit 3SL -0.920836 0.040666
37580 12 Alcatel Space Ind Cape Canaveral Atlas 2 AS 0.445059 0.000349
41044 15 Lockheed Martin C Guiana Space Cent Ariane 5 ECA 2.300344 0.001396

(a) Subset of satellites data table showing 21 variables and 10 records

FIRST GROUP OF DEPENDENT VARIABLES
cluster_view_1 ~ categorical(
{0: 0.945, 1: 0.02, 2: 0.01, ...})

if (cluster_view_1 == 0)
Eccentricity ~ norm(0.002, 0.01)

elif (cluster_view_1 == 2)
Eccentricity ~ norm(0.075, 0.015)

elif (cluster_view_1 == 3)
Eccentricity ~ norm(0.028, 0.017)

...

SECOND GROUP OF DEPENDENT VARIABLES
cluster_view_2 ~ categorical(
{0: 0.45, 1: 0.365, 2: 0.01, ...})

if (cluster_view_2 == 0)
Power_watts ~ norm(870.32, 877.80)
Launch_mass_kg ~ norm(442.08, 528.63)
Dry_mass_kg ~ norm(362.45, 321.64)
Period_miniutes ~ norm(101.67, 56.02)
Perigee ~ norm(683.49, 56.02)
Apogee ~ norm(742.68, 2411.91)

elif (cluster_view_2 == 1)
Power_watts ~ norm(7157.58, 4629.09)
Launch_mass_kg ~ norm(3870.96, 1417.09)
Dry_mass_kg ~ norm(1921.21, 762.07)
Period_miniutes ~ norm(1435.63, 57.13)
Perigee ~ norm(35820.37, 1434.57)
Apogee ~ norm(35701.83, 2548.60)

...

(b) Synthesized row generator

Figure 2: Synthesizing probabilistic programs that model heterogeneously typed cross-sectional data.

1 Example

The InferenceQL system automates data analysis and machine learning tasks by allowing users to
input data tables and queries and to automatically generate answers for them (Figure 1). It consists
of a probabilistic program synthesis component [27] that creates generative model programs that
are called row generators. The InferenceQL query planner and query engine use row generators to
answer questions about the data and the domain by querying an underlying probabilistic model.

Figure 2 shows an example of probabilistic program synthesis, which takes a heterogeneously-
typed data table of satellites (maintained by the Union of Concerned Scientists [32]) and returns a
probabilistic program that models the data. Figure 3(a) shows the high-level interface to creating
synthesizing programs. Users can then compare synthetic data (generated from the probabilistic
programs) with observed data in order to develop intuition about what the model learned from
the data, shown in Figure 3(b). InferenceQL can generate synthetic data from both marginal
distributions and conditional distributions given a user-specied predicate (code box in Figure 3(b)).
The two plots in Figure 3(b) illustrate a qualitative goodness-of-t in the sense that distribution of
synthetic (orange dots) samples appears to approximately match the observed data (black dots).

Data analysts can use the query language to search for probable anomalies and data-entry errors,
shown in Figure 3(c). To nd values for the column Period_minutes that the model considers

2

Synthesize probabilistic
programs given user-specified
parameters in parameters.yaml
WITH LOAD 'parameters.yaml'

AS params:
BUILD default_model
FOR satellite_data
USING params;

#---- (parameters.yaml) ----#
PARAMETERS FOR MODEL BUILDING
strategy: Gibbs # or SMC
number_models_in_ensemble: 100
inference_minutes: 10
override_schema:
Perigee_km: numerical
Purpose: nominal

0 2 4 6 8 10
Time (Minutes)

−100000

−80000

−60000

−40000

Lo
g

sc
or

e

Model 1
Model 2
…

(a) Step 1: Synthesize probabilistic programs using the observed data table.

SELECT Perigee_km, Apogee_km FROM satellite_data INNER JOIN
SELECT Perigee_km AS Perigee_km_generated, Apogee_km AS Apogee_km_generated
FROM GENERATE Perigee_km, Apogee_km UNDER default_model;

SELECT Perigee_km, Apogee_km FROM satellite_data INNER JOIN
SELECT Perigee_km AS Perigee_km_generated, Apogee_km AS Apogee_km_generated
FROM GENERATE Perigee_km, Apogee_km GIVEN Period_minutes < 1000
UNDER default_model

WHERE Period_minutes < 1000; 0 40000 80000 120000
Apogee km

0

20000

40000

Pe
rig

ee
km

SELECT
GENERATE

0 40000 80000 120000
Apogee km

0

20000

40000

Pe
rig

ee
km

SELECT
GENERATE

(b) Step 2: Compare synthetic data generated from the probabilistic programs to observed data.

WITH SELECT STDEV(Period_minutes) FROM satellite_data AS std_period:
SELECT Period_minutes, Class_of_Orbit, Perigee_km, Apogee_km
FROM satellite_data
WHERE

(PROBABILITY OF
Period_minutes > (satellite_data.Period_minutes - std_period) AND
Period_minutes < (satellite_data.Period_minutes + std_period)
UNDER default_model)

<
(PROBABILITY OF
Period_minutes > (satellite_data.Period_minutes - std_period) AND
Period_minutes < (satellite_data.Period_minutes + std_period)
GIVEN (* EXCEPT Period_minutes)
UNDER default_model);

Period_minutes Class_of_Orbit Perigee_km Apogee_km
23.9 GEO 35771.0 35805.0
142.0 GEO 35897.0 35909.0
14.3 GEO 35770.0 35803.0
23.9 GEO 35771.0 35805.0

100 102 104

Period minutes

0.0

0.5

1.0
Pr

ob
ab

ili
ty

(M
ar

gi
na

l)

100 102 104

Period minutes

0.0

0.5

1.0

Pr
ob

ab
ili

ty
(C

on
di

tit
io

na
l)

(c) Step 3: Search for probable anomalies, which include data entry errors.

WITH SELECT * FROM satellite_data
WHERE rowid <= 1000 AS training_data:
BUILD default_model FOR training_data AND
BUILD linear_model FOR training_data AND

WITH SELECT * FROM satellite_data
WHERE rowid > 1000 AS test_data:
SELECT

period,
(PREDICT period GIVEN Perigee_km, Apogee_km
UNDER default_model)

(PREDICT period GIVEN Perigee_km, Apogee_km
UNDER linear_model)

(PREDICT period GIVEN Perigee_km, Apogee_km
UNDER custom_model)

FROM test_data;

function keplers_law(apogee , perigee)
GM = 398600.4418; earth_radius = 6378;
a = (abs(apogee) + abs(perigee)) * 0.5 + earth_radius;
return 2 * 𝜋 * sqrt(a^3 / GM) / 60 end;

@gen function custom_model(Perigee_km , Apogee_km)
out = {: Period} ∼ normal(keplers_law(Perigee_km , Apogee_km), 0.01)
return out end;

0 500 1000 1500
Predicted

0

500

1000

1500

H
el

d-
ou

t

RMSE: 25.9
Default model

0 500 1000 1500
Predicted

0

500

1000

1500

H
el

d-
ou

t

RMSE: 97.73
Linear model

0 500 1000 1500
Predicted

0

500

1000

1500

H
el

d-
ou

t

RMSE: 0.08
Custom model

(d) Step 4: Customize probabilistic programs using an orbital model from physics.

Figure 3: A representative data analysis workow in InferenceQL on the satellites data.
improbable in light of the data, the query (left code box) produces the result by comparing the
probability of the value for Period_minutes marginally and conditionally in the WHERE clause.
The only rows returned are those whose conditional probability is lower than the marginal; the
corresponding Period_minutes values are highlighted in red in the table and plots of Figure 3(c).

Finally, users with domain expertise can customize probabilistic programs. Figure 3(d) shows
an example custom orbital model from physics. To quantitatively assess the goodness-of-t, we
rst split the data into training and test data and build three models: the automatically synthesized
default model, a generalized linear model (GLM), and a custom probabilistic program for noisy
orbital physics. We then predict a column in the held-out data set. The default model predicts more
accurately than the GLM (4x more accurate via root mean square error (RMSE)) and the custom
probabilistic program beats the default (a further 300x improvement in RMSE).

3

Table 1: Generative modeling benchmark.
Jensen-Shannon Divergence

Dataset InferenceQL CTGAN Copulas TVAE

Nursery 0.04 0.14 0.29 0.05
Tumor 0.06 0.40 0.20 0.45
Flare 0.05 0.22 0.23 0.28
Car 0.05 0.16 0.12 0.08
Mushroom 0.08 0.15 0.33 0.11
Soybean 0.10 0.18 0.22 0.36
Breast-cancer 0.15 0.38 0.43 0.38
Heart-disease 0.08 0.16 0.30 0.44
Connect-4 0.04 0.10 0.22 0.08
Chess 0.03 0.10 0.17 0.05

Table 2: Anomaly detection benchmark.
Anomaly Detection Accuracy

Dataset Target InferenceQL GLM

Abalone Rings 86% 82%
Breast-cancer class 100% 60%
Heart-disease num 97% 47%

Table 3: Runtime optimization benchmark.
InferenceQL (SPPL backend) Python API (SPPL)

Dataset Target Independence Analysis Default Optimization Default Optimization

Nursery Evaluation 11.14 ± 7.31 501.35 ± 571.08 302.29 ± 366.1
Tumor Type 1.99 ± 0.34 3.21 ± 0.51 3.24 ± 0.8
Flare Num_common_ares 6.96 ± 2.56 14.32 ± 14.27 8.84 ± 7.78
Car Evaluation 13.03 ± 4.69 153.91 ± 275.4 92.3 ± 158.98
Mushroom Edible? 31.34 ± 6.17 34.07 ± 6.87 24.74 ± 5.78
Soybean Disease 9.44 ± 3.05 11.7 ± 2.26 9.05 ± 2.19
Breast-cancer Diagnosis 5.07 ± 0.71 6.78 ± 0.73 3.93 ± 0.82
Heart-disease Present? 3.49 ± 1.49 11.61 ± 8.11 8.99 ± 6.02
Connect-4 White_can_win 34.24 ± 24.61 65.26 ± 59.99 44.61 ± 36.0
Chess Outcome 61.83 ± 45.34 86.27 ± 51.3 62.79 ± 34.56

2 Experiments

We now report experiments evaluating InferenceQL against statistical and neural baselines.

Generative modeling benchmark. Table 1 shows the average Jensen-Shannon divergence between
(discretizations of) the observed data and learned generative models, for all pairwise marginals in 10
datasets from the UCI machine learning repository [8], according to simulations from InferenceQL,
Gaussian copulas [23], CTGAN [34], and TVAE [34]. The bold entries indicate statistically signicant
lowest error under a Bonferroni correctedMann-Whitney𝑈 test, which are achieved by InferenceQL
in 8 of 10 benchmark problems and zero times by other techniques.

Anomaly detection benchmark. Table 2 shows that InferenceQL detects a higher percentage of
anomalies than does a GLM baseline on three datasets from the UCI repository. Anomalies were
inserted into a target column by ipping the class label in each row with probability 0.05 and
detected using a query similar to the one in Figure 3(d).

Query optimization. The InferenceQL query planner contains a built-in optimization for querying
row generators specied in the SPPL language [28]. Table 3 shows the runtime of InferenceQL
queries for computing the conditional probability of all cell values in one target column given all
the other values in the same row, for 10 datasets from the UCI repository. The third column shows
the runtime using InferenceQL’s independence analysis optimization, which statically eliminates
from the query all conditioning variables that are structurally independent of the target variable.
The fourth column shows the runtime using InferenceQL without independence analysis and the
nal column shows the runtime using the Python API to SPPL, which both do not automatically
leverage independence analysis and are slower in cases where independencies can be exploited.

4

3 Related Work

ManyAutoML systems have been developed for tabular data; prominent examples include Amazon’s
AutoGluon-Tabular [9] and SageMaker Autopilot [7], Google Cloud Platform AutoML Tables [17],
Uber’s Ludwig [21], H2O AutoML [16], and a number of earlier systems such as Auto-WEKA [31],
auto-sklearn [10], hyperopt-sklearn [2], TPOT [22], autoxgboost [30], ML-Plan [20], OBOE [35],
GAMA [12], and Auto-Keras [15]. A survey and comparison of many of these systems can be found
in Erickson et al. [9, §3]. In contrast to these systems, which typically emphasize discriminative
ML, InferenceQL provides users with generative models that can be queried repeatedly to answer a
wide range of questions about the data.

The BayesDB probabilistic programming system [19] is closely related to InferenceQL, but
more limited. BayesDB and InferenceQL both provide automatic Bayesian model discovery, suit-
able for exploratory data analysis, predictive modeling, and inferential statistics from sparse,
heterogeneously-typed data tables. But InferenceQL is often more scalable than BayesDB, due
in part to its use of sum-product expressions [28] (a class of probabilistic circuits [6]) to imple-
ment query plans and enable automated query optimizations. InferenceQL can be used to query
custom models in the Gen probabilistic programming language [5], leveraging Gen’s support for
pseudo-marginal approximations to the composable generative population model interface [24].
InferenceQL also provides a more compositional and expressive query language than BayesDB,
including support for SQL-like inlining of column transformations and predicates. Together, these
improvements allow InferenceQL users to interleave SQL and inference operations in complex
end-to-end Bayesian AutoML workows.

Probabilistic databases have been developed for querying noisy or uncertain data [29, 33]; for a
survey of several probabilistic database systems, see [33, §6.2]. Other classes of database systems
that integrate probability in some form include databases that use probabilistic circuits to improve
query performance [13] and database systems extended by functions for imputation [4], time
series prediction [1], random data generation [14] and simulation [3]. Unlike InferenceQL, these
systems do not provide automated Bayesian model discovery, custom probabilistic programming,
or compositional SQL-like queries that interleave SQL with Bayesian inference.

4 Conclusion

Limitations. It is unclear how to tune InferenceQL to compete with traditional non-Bayesian
AutoML systems on discriminative ML problems. In principle, InferenceQL can use SPPL encodings
of decision-tree classiers [28] to match the accuracy of typical ML deployments. Currently,
users can only achieve this awkwardly, via manual customization of the underlying models. It
is unclear when and how InferenceQL should switch from Bayesian to non-Bayesian AutoML
methods. Also, the current InferenceQL prototype only supports cross-sectional data tables. It
would be conceptually straightforward and worthwhile in practice to integrate domain-general
Bayesian structure learning methods for multivariate time series [25] or relational systems [26].

Broader Impact. If maximally successful, InferenceQL could enable typical SQL database users to
apply Bayesian inference and probabilistic programming. InferenceQL could signicantly reduce
the cost and improve the quality of Bayesian data analysis, for both experts and novices, and
help to make Bayesian approaches more routinely applicable, potentially improving the quality of
data analysis. InferenceQL could also help reduce the risk associated with data breaches and data
sharing, by enabling broader use of synthetic data.

Potential harms include reduced cost for invasive, abusive, or manipulative applications of
modeling, by governments, corporations, and other actors — which may, in turn, cause people to
steal sensitive data or surveil more.

5

Acknowledgements. This work was funded in part by DARPA under the SD2 and SAIL-ON
programs; research contracts with Takeda Pharmaceuticals, Liberty Mutual, and Intel Corporation;
and philanthropic gifts from the Aphorism Foundation and the Siegel Family Foundation.

References

[1] Anish Agarwal, Abdullah Alomar, and Devavrat Shah. tspDB: Time series predict DB. In
Proceedings of the NeurIPS 2020 Competition and Demonstration Track, volume 133 of Proceedings
of Machine Learning Research, pages 27–56. PMLR, 2021.

[2] James Bergstra, Brent Komer, Chris Eliasmith, Dan Yamins, and David D Cox. Hyperopt: A
python library for model selection and hyperparameter optimization. Computational Science
& Discovery, 8(1):014008, 2015. doi:10.1088/1749-4699/8/1/014008/meta.

[3] Zhuhua Cai, Zografoula Vagena, Luis Perez, Subramanian Arumugam, Peter J. Haas, and
Christopher Jermaine. Simulation of database-valued Markov chains using SimSQL. In
Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, pages
637–648. ACM, 2013. doi:10.1145/2463676.2465283.

[4] José Cambronero, John K. Feser, Micah J. Smith, and Samuel Madden. Query optimiza-
tion for dynamic imputation. Proceedings of the VLDB Endowment, 10(11):1310–1321, 2017.
doi:10.14778/3137628.3137641.

[5] Marco F. Cusumano-Towner, Feras A. Saad, Alexander K. Lew, and Vikash K. Mansinghka.
Gen: A general-purpose probabilistic programming system with programmable inference.
In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 221–236. ACM, 2019. doi:10.1145/3314221.3314642.

[6] Adnan Darwiche. Tractable Boolean and arithmetic circuits. In Pascal Hitzler and Md Kam-
ruzzaman Sarker, editors, Neuro-Symbolic Articial Intelligence: The State of the Art, volume
342 of Frontiers in Articial Intelligence and Applications, chapter 6, pages 146–172. IOS Press
Ebooks, 2021. doi:10.3233/FAIA210353.

[7] Piali Das, Nikita Ivkin, Tanya Bansal, Laurence Rouesnel, Philip Gautier, Zohar Karnin, Leo
Dirac, Lakshmi Ramakrishnan, Andre Perunicic, Iaroslav Shcherbatyi, Wilton Wu, Aida Zolic,
Huibin Shen, Amr Ahmed, FelaWinkelmolen, Miroslav Miladinovic, Cedric Archembeau, Alex
Tang, Bhaskar Dutt, Patricia Grao, and Kumar Venkateswar. Amazon SageMaker Autopilot: a
white box AutoML solution at scale. In Proceedings of the 4th International Workshop on Data
Management for End-to-End Machine Learning. ACM, 2020. doi:10.1145/3399579.3399870.

[8] Dheeru Dua and Casey Gra. UCI machine learning repository, 2017. URL http://archive.
ics.uci.edu/ml.

[9] Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, and
Alexander Smola. AutoGluon-Tabular: robust and accurate AutoML for structured data. arXiv,
2003.06505, 2020. doi:10.48550/arXiv.2003.06505.

[10] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum,
and Frank Hutter. Ecient and robust automated machine learning. In Advances in Neural
Information Processing Systems, volume 28. Curran Associates, Inc., 2015.

[11] Andrew Gelman, Aki Vehtari, Daniel Simpson, Charles C. Margossian, Bob Carpenter, Yuling
Yao, Lauren Kennedy, Jonah Gabry, Paul-Christian Bürkner, and Martin Modrák. Bayesian
workow. arXiv, 2011.01808, 2020. doi:10.48550/arXiv.2011.01808.

6

https://doi.org/10.1088/1749-4699/8/1/014008/meta
https://doi.org/10.1145/2463676.2465283
https://doi.org/10.14778/3137628.3137641
https://doi.org/10.1145/3314221.3314642
https://doi.org/10.3233/FAIA210353
https://doi.org/10.1145/3399579.3399870
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.48550/arXiv.2003.06505
https://doi.org/10.48550/arXiv.2011.01808

[12] Pieter Gijsbers and Joaquin Vanschoren. GAMA:Genetic automatedmachine learning assistant.
Journal of Open Source Software, 4(33):1132, 2019. doi:10.21105/joss.01132.

[13] Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kristian Kersting,
and Carsten Binnig. DeepDB: Learn from data, not from queries! Proceedings of the VLDB
Endowment, 13(7):992–1005, 2020. doi:10.14778/3384345.3384349.

[14] Ravi Jampani, Fei Xu, Mingxi Wu, Luis Perez, Chris Jermaine, and Peter J. Haas. The Monte
Carlo database system: Stochastic analysis close to the data. ACM Transactions on Database
Systems, 36(3), 2011. doi:10.1145/2000824.2000828.

[15] Haifeng Jin, Qingquan Song, and Xia Hu. Auto-Keras: An ecient neural architecture search
system. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 1946–1956. ACM, 2019. doi:10.1145/3292500.3330648.

[16] Erin LeDell and Sebastien Poirier. H2O AutoML: Scalable automatic machine learning. In
Proceedings of the 7th ICML Workshop on AutoML, 2020.

[17] Yifeng Lu. An end-to-end AutoML solution for tabular data at KaggleDays, 2019. URL
https://ai.googleblog.com/2019/05/an-end-to-end-automl-solution-for.html.

[18] Vikash Mansinghka, Patrick Shafto, Eric Jonas, Cap Petschulat, Max Gasner, and Joshua B.
Tenenbaum. CrossCat: A fully Bayesian nonparametric method for analyzing heterogeneous,
high dimensional data. Journal of Machine Learning Research, 17(138):1–49, 2016.

[19] Vikash K. Mansinghka, Richard Tibbetts, Jay Baxter, Pat Shafto, and Baxter Eaves. BayesDB:
a probabilistic programming system for querying the probable implications of data. arXiv,
1512.05006, 2015. doi:10.48550/arXiv.1512.05006.

[20] Felix Mohr, Marcel Wever, and Eyke Hüllermeier. ML-Plan: Automated machine learning
via hierarchical planning. Machine Learning, 107(8):1495–1515, 2018. doi:10.1007/s10994-018-
5735-z.

[21] Piero Molino, Yaroslav Dudin, and Sai Sumanth Miryala. Ludwig: A type-based declarative
deep learning toolbox. arXiv, 1909.07930, 2019. doi:10.48550/arXiv.1909.07930.

[22] Randal S. Olson, Ryan J. Urbanowicz, Peter C. Andrews, Nicole A. Lavender, La Creis Kidd, and
Jason H. Moore. Automating biomedical data science through tree-based pipeline optimization.
InApplications of Evolutionary Computation, volume 9597 of Lectures Notes in Computer Science,
pages 123–137. Springer, 2016. doi:10.1007/978-3-319-31204-0_9.

[23] Neha Patki, Roy Wedge, and Kalyan Veeramachaneni. The synthetic data vault. In Proceedings
of the 3rd IEEE International Conference on Data Science and Advanced Analytics, pages 399–410.
IEEE, 2016. doi:10.1109/DSAA.2016.49.

[24] Feras Saad and Vikash K. Mansinghka. A probabilistic programming approach to probabilistic
data analysis. In Advances in Neural Information Processing Systems, volume 29, pages 2011–
2019. Curran Associates, Inc., 2016.

[25] Feras A. Saad and Vikash K. Mansinghka. Temporally-reweighted Chinese restaurant process
mixtures for clustering, imputing, and forecasting multivariate time series. In Proceedings of
the 21st International Conference on Articial Intelligence and Statistics, volume 84 of Proceedings
of Machine Learning Research, pages 755–764. PMLR, 2018.

7

https://doi.org/10.21105/joss.01132
https://doi.org/10.14778/3384345.3384349
https://doi.org/10.1145/2000824.2000828
https://doi.org/10.1145/3292500.3330648
https://ai.googleblog.com/2019/05/an-end-to-end-automl-solution-for.html
https://doi.org/10.48550/arXiv.1512.05006
https://doi.org/10.1007/s10994-018-5735-z
https://doi.org/10.1007/s10994-018-5735-z
https://doi.org/10.48550/arXiv.1909.07930
https://doi.org/10.1007/978-3-319-31204-0_9
https://doi.org/10.1109/DSAA.2016.49

[26] Feras A. Saad and Vikash K. Mansinghka. Hierarchical innite relational model. In Proceedings
of the 37th Conference on Uncertainty in Articial Intelligence, volume 161 of Proceedings of
Machine Learning Research, pages 1067–1077. PMLR, 2021.

[27] Feras A. Saad, Marco F. Cusumano-Towner, Ulrich Schaechtle, Martin C. Rinard, and Vikash K.
Mansinghka. Bayesian synthesis of probabilistic programs for automatic data modeling.
Proceedings of the ACM on Programming Languages, 3(POPL), 2019. doi:10.1145/3290350.

[28] Feras A. Saad, Martin C. Rinard, and Vikash K. Mansinghka. SPPL: Probabilistic programming
with fast exact symbolic inference. In PLDI 2021: Proceedings of the 42nd ACM SIGPLAN
International Conference on Programming Language Design and Implementation, pages 804–819.
ACM, 2021. doi:10.1145/3453483.3454078.

[29] Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. Probabilistic Databases. Num-
ber 16 in Synthesis Lectures on Data Management. Morgan & Claypool Publishers, 2011.
doi:10.2200/S00362ED1V01Y201105DTM016.

[30] Janek Thomas, Stefan Coors, and Bernd Bischl. Automatic gradient boosting. In Proceedings
of the International Workshop on Automatic Machine Learning, 2018.

[31] Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Auto-WEKA: Com-
bined selection and hyperparameter optimization of classication algorithms. In Proceedings
of the 19th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pages 847–855. ACM, 2013. doi:10.1145/2487575.2487629.

[32] Union of Concerned Scientists. UCS satellite database, 2016. URL https://www.ucsusa.org/
resources/satellite-database.

[33] Guy Van den Broeck and Dan Suciu. Query processing on probabilistic data: A survey.
Foundations and Trends in Databases, 7(3-4):197–341, 2017. doi:10.1561/1900000052.

[34] Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling
tabular data using conditional GAN. In Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019.

[35] Chengrun Yang, Yuji Akimoto, Dae Won Kim, and Madeleine Udell. OBOE: Collabora-
tive ltering for AutoML model selection. In Proceedings of the 25th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data Mining, pages 1173–1183. ACM, 2019.
doi:10.1145/3292500.3330909.

8

https://doi.org/10.1145/3290350
https://doi.org/10.1145/3453483.3454078
https://doi.org/10.2200/S00362ED1V01Y201105DTM016
https://doi.org/10.1145/2487575.2487629
https://www.ucsusa.org/resources/satellite-database
https://www.ucsusa.org/resources/satellite-database
https://doi.org/10.1561/1900000052
https://doi.org/10.1145/3292500.3330909

	Example
	Experiments
	Related Work
	Conclusion

