A fast algorithm to compute a curve of
confidence upper bounds for the False

I'x Discovery Proportion using a refer-
comevro €nce family with a forest structure

ISSN 2824-7795

1

Guillermo Durand Laboratoire de Mathématiques d’Orsay, Université Paris-Saclay

Date published: 2025-01-31 Last modified: 2025-01-31

Abstract

This paper presents a new algorithm (and an additional trick) that allows to compute fastly
an entire curve of post hoc bounds for the False Discovery Proportion when the underlying
bound Vi construction is based on a reference family R with a forest structure a la Durand
et al. (2020). By an entire curve, we mean the values Vg(S,), ..., Vi(S,,) computed on a path of
increasing selection sets S; C - C S, |S| = t. The new algorithm leverages the fact that going
from S, to S;,; is done by adding only one hypothesis.

Keywords: multiple testing, algorithmic, post hoc inference, false discovery proportion, confidence

bound

Contents
1 Introduction 2
2 Notation and reference family methodology 3
2.1 Multiple testing notation L oL Lo 3
2.2 Post hoc bounds with reference families 3
2.3 Regions witha forest structure L L Lo 4
3 New algorithms 7
3.1 Pruningtheforest 7
3.2 Fast algorithm to compute a curve of confidence bounds on a path of selection sets 9
3.3 [Illustration on a detailed example 11
3.4 Proofof Theorem 3.1 17
3.4.1 Derivationof (18) 17
342 Proof of (16) and (17) . .« o v v v oo e e 17
4 Implementation 23
5 Numerical experiments 24
6 Conclusion 27
7 Acknowledgements 27
References 27
Session information 29

!Corresponding author: guillermo.durand@universite-paris-saclay.fr

https://orcid.org/0000-0003-4056-5631
mailto:guillermo.durand@universite-paris-saclay.fr

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

1 Introduction

Multiple testing theory is often used for exploratory analysis, like Genome-Wide Association Studies,
where multiple features are tested to find promising ones. Classical multiple testing theory like
Family-Wise Error Rate (FWER) control or False Discovery Rate (FDR) control (Benjamini and
Hochberg, 1995) can be used, but a more recent trend consists in the computation of post hoc bounds,
also named post selection bounds or confidence envelopes, for the number of false positives, or,
equivalently, for the False Discovery Proportion (FDP). This approach is notably advocated for in the
context of exploratory research by (Goeman and Solari, 2011, Section 1).

Mathematically speaking, a confidence upper bound (we prefer to say upper bound instead of envelope
for obvious reasons) is a function V : P(IN;,) - IN,,, where N,, = {0, ...,m}, N;;, = {1,...,m} and m
is the number of hypotheses, such that

Va €]0,1[,P (VS C N, IS N 7| < V(S)) > 1 - a. (1)

Here, o is a target error rate and %, is the set of hypotheses indices that are true null hypotheses.
Note that the construction of V depends on @ and on the random data X and the dependence is omitted
to lighten notation and because there is no ambiguity. The meaning of Equation (1) is that V provides
an upper bound of the number of null hypotheses in S for any selection set S C IN;,,, which allows
the user to perform post hoc selection on their data without breaching the statistical guarantee. Also
note that by dividing by |S| v 1 in Equation (1) we also get a confidence bound for the FDP:

Vo €]0,1[, P (vs C N}, FDP(S) < VeS))

SV >1—a. (2)
So post hoc bounds provide ways to construct FDP-controlling sets instead of FDR-controlling sets,
which is much more desirable given the nature of the FDR as an expected value. See for example
(Bogdan et al., 2015, Figure 4) for a credible example where the FDR is controlled but the FDP has a
highly undesirable behavior (either 0 because no discoveries at all are made, either higher than the
target level).

The first confidence bounds are found in Genovese and Wasserman (2006) and Meinshausen (2006),
although, in the latter, only for selection sets of the form {i € N,,, : P; <t} where P, is the p-value
associated to the null hypothesis Hy;. In Goeman and Solari (2011) the authors re-wrote the generic
construction of Genovese and Wasserman (2006) in terms of closed testing Marcus et al. (1976),
proposed several practical constructions and sparked a new interest in multiple testing procedures
based on confidence envelopes. This work was followed by a prolific series of works like Meijer et al.
(2015) or Vesely et al. (2023). In Blanchard et al. (2020), the authors introduce the new point of view
of references families (see Section 2.2) to construct post hoc bounds, and show the links between this
meta-technique and the closed testing one, along with new bounds.

Following the reference family trail, in Durand et al. (2020) the authors introduce new reference
families with a special set-theoretic constraint that allows an efficient computation of the bound
denoted by Vi on a single selection set S. The problem is that one often wants to compute Vi on a
whole path of selection sets (S;);e: , for example the hypotheses attached to the ¢ smallest p-values.
Whereas the algorithm provided in the aforementioned work (Durand et al., 2020, Algorithm 1),
which is reproduced here, see Algorithm 1, is fast for a single evaluation, it is slow and inefficient
to repeatedly call it to compute each Vi(S;). If the S;'s are nested, and growing by one, that is
S1 G G Sy and |S] = ¢, there is a way to efficiently compute (Vi(S)) N, by leveraging the nested
structure.

This is the main contribution of the present paper: a new and fast algorithm computing the curve
(V%(St))teN for a nested path of selection sets, that is presented in Section 3.2. An additional

2

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

algorithm that can speed up computations both for the single-evaluation algorithm and the new
curve-evaluation algorithm is also presented, in Section 3.1. A detailed example illustrating how
the new algorithms work is provided in Section 3.3, and the proof that the fast algorithm indeed
computes correctly the curve is in Section 3.4. In Section 2.1, all necessary notation and vocabulary is
re-introduced, most of it being the same as in Durand et al. (2020). In Section 4 we discuss the current
implementations of all the presented algorithms in the R (R Core Team, 2024) package sanssouci
(Neuvial et al., 2024). Finally, a few numerical experiments are presented in Section Section 5 to
demonstrate the computation time gain.

2 Notation and reference family methodology

2.1 Multiple testing notation

As is usual in multiple testing theory, we consider a probability space (Q, &/, P), a model Pon a
measurable space (2, X), and data that is represented by a random variable X : (Q, o/) - (X, %)
with X ~ P € & that is, the law of X is comprised in the model %

Then we consider m > 1 null hypotheses Hj 1, ..., Hy ,, which formally are submodels, that is subsets
of # The associated alternative hypotheses Hj 1, ..., Hj ,, are submodels such that Hy; N Hy; = @
for all i € IN;,,. We denote by #, = #,(P) (the dependence in P will be dropped when there is no
ambiguity) the set of all null hypotheses that are true, that is #((P) = {i € N}, : P € Hy;}. In
other words, Hy; is true if and only if i € %#). For testing each H,;,i € N, we have at hand a
p-value p; = p;(X) (the dependence in X will be dropped when there is no ambiguity) which is a
random variable with the following property : ifi € #, then the law of p; is super-uniform, which
is sometimes denoted Z(p;) > % ([0, 1]). This means that in such case, the cumulative distribution
function (cdf) of p; is always smaller than or equal to the cdf of a random variable U ~ %([0,1]) :

VxeRP(p<x)SPU<Lx)=0V(xA1l). (3)

For every subset of hypotheses S C Ny, let V(S) = |S N %,|. If we think of S as a selection set of
hypotheses deemed significant, V(S) is then the number of false positives (FP) in S. V(S) is our main
object of interest and the quantity that we wish to over-estimate with confidence upper bounds (see
Equation (1) or the more formal Equation (4) below).

Finally let us consider the following toy example, that will be re-used in the remainder of the paper.

Example 2.1 (Gaussian one-sided). In this case we assume that X = (Xj,..., X};) is a Gaussian
vector and the null hypotheses refer to the nullity of the means in contrast to their positivity. That
is, formally, (2, %) = (R™, B (R™)), P = {#(1,3) : Vj € Ny, yj > 0,3 positive semidefinite}, for
eachi € Ny, Hy; = {/ (X)) € P : p = 0}and Hy; = {#/ (%) € P : y; > 0}. Then we can
construct p-values by letting p;(X) = ®(X;) = 1 — ®(X;), where ® denotes the cdf of #(0,1) and ®
the associated survival function.

2.2 Post hoc bounds with reference families

With the formalism introduced in last section, a confidence upper bound is a functional V : 2'x]0, 1[—
(2(N;;,) - IN,,) such that,

VP € P, VX ~ P,¥a €]0,1[,P (VS C N;,,V(S) < V(X,a)(S)) > 1 - a. (4)

In the remainder, the dependence in (X, a) will be dropped when there is no ambiguity and V(X, a)
will simply be written V.

100

101

102

103

104

105

106

107

108

109

110

m

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

As said in the Introduction, many constructions, ultimately theoretically equivalent but differing by
the practical steps involved, exist, and in this paper we focus on the meta-construction of Blanchard
et al. (2020) based on reference families. A reference family is a family R = R(X, @) = (Rg, {rewr
with |#| < 2™, R, C Ny, & € {0, ..., |Ri|} where everything (that is, % and all the Ry and) depends
on (X, @) but the dependency is not explicitly written. The Ry, are all distinct. We also define the
following error criterion for a reference family, named Joint Error Rate (JER):

JERR)=P@Ek e H,|IRpxnZy >) =PEFk e K, V(R >). (5)
In the following, we are only interested in reference families that control the JER at level a:
VPe P NVX ~ P, Va €]0,1[,1 —-JERRR(X,a)) =P (Vke X, V(R < &) =>1—a. (6)

Note that Equation (6) is really similar to Equation (4) except that the uniform guarantee, instead of
being over all S C IN},,, is only over all the R, C N}, k € #, with % having cardinality potentially
much smaller than 2™. A global confidence bound is then derived from a JER-controlling reference
family by interpolation. Let

dR)={ACN;, : Vke Z,|R.N A < §}. (7)

What says the JER control is that #; € &/(R). We leverage this information with the following
confidence bound construction:

Vi(S) = max [SNA 8

% (S) 8 | | (8)

which optimally uses the information provided by the JER control of the reference family, as proven
by Proposition 2.1 of Blanchard et al. (2020). Because of the max ¢ ;7(x), the computation of Vi (S)
is generally intractable (see Proposition 2.2 of Blanchard et al. (2020)), but for specific structures of
reference families, a polynomial computation can be derived. This is the topic of Durand et al. (2020)
and of next section.

2.3 Regions with a forest structure

The core concept of this section is to assume that the regions R;’s of the reference family are what
we called in Durand et al. (2020) a forest structure, that is two regions are either disjoint or nested:

Vk, k' € Z,R. N Ry € {Ry, Ry, 0} (9)

Representing the Ry’s with a directed graph, where there is an oriented edge Ry < Ry if and only if
Ry C Ry and there is no Ry~ such that R C Ry~ C Ry gives a forest, hence the name. See Example 2.2
and its representation in Figure 1.

We also need to introduce the notion of depth with the following function:

¢_{.%—>]N* (10)

k o 14K eX : RRCRLY.

Example 2.2. Let m = 25, R, = {1,...,20}, R, = {1,2}, Ry = {3,...,10}, Ry = {11,...,20}, Ry =
{5,...,10}, Rg = {11,...,16}, R; = {17,...,20}, Rg = {21,22}, Ry = {22}. This is the same example as
Example 2 of Durand et al. (2020) and it is graphically depicted in Figure 1. The sets Ry, Rg are of
depth 1; the sets Ry, R3, Ry, Ry are of depth 2; the sets Rs, R¢, Ry are of depth 3.

Another tool of Durand et al. (2020) that will be used is its Lemma 2, that is the identification
of R with a set € C {(i,j) € (]NN*)2 i< j} such that for (i,j),(i’,j’)) € €. {i,...,j} n{i’,...,j’} €

131

132

133

134

135

136

137

138

139

140

4

142

143

144

145

146

Figure 1: The regions of Example 2.2.

{@,{i,...,j},{i’, ... j’}}. With this identification, each R, = R(;j) can be written as P;.; = Uigngj P,
where (P,)1<n<n is a partition of Ny,,. The P,’s were called atoms in Durand et al. (2020) because
they have the thinnest granularity in the structure, but to continue the analogy with graphs, forests
and trees, they can also be called leafs. See Example 2.3 for a concrete example.

Example 2.3 (Continuation of Example 2.2). For the reference family given in Example 2.2, a partition
of atoms is given by P; = Ry, P, = R3 \ Rs, P; = Rs, P, = R¢, Ps = Ry, Ps = Rg \ Ry, P; = Ry,
Py = N;,, \ {R; U Rg}. Then R; = P;.5, R3 = P,.3, Ry = P;.5 and Rg = P,.. Note that not all atoms
are regions of the family. Those new labels are graphically depicted in Figure 2. The nodes that
correspond to atoms that are not in the family are depicted with a dashed circle, and all atoms are
depicted in gray. This is the same example as Example 3 of Durand et al. (2020).

.
)
Figure 2: The regions of Example 2.2 but with the labels of Example 2.3.

When all leaves are regions of the family, it is said that the family is complete. If this is not the
case, the family can easily be completed by adding the missing leaves (and using their cardinality as
associated {) without changing the value Vi. See Definition 2, Lemma 6 and Algorithm 2 of Durand
et al. (2020) for the details.

) (11)

V*(S):min //\SﬂR/, 12
W Qemnggk SN Ry (12)

Durand et al. (2020) also proved in their Theorem 1 that:

s\ | Re

k'eQ

Ver (S) = min ' A SN Ry |+
g{() Qg%(](ZE:QéVk | k|

and, even better, in their Corollary 1 (iii) that:

5

147

148

149

150

151

152

153

154

155

157

158

159

160

161

163

164

165

166

provided that the family is complete. Here, 8 C P(K) is the set of subsets of # that realize a
partition, that is, the set of Q C # such that the Ry, k € Q, form a partition of IN};,. So the minimum
in Equation (12) is over way less elements than in Equation (11).

Finally, that paper provides a polynomial algorithm to Vi (S) for a single S C INy;,, which we reproduce
here in Algorithm 1. The family is assumed complete, otherwise the first step would be to complete
it. In the original paper, & h used to designate the elements of % at depth & plus the atoms at depth
< h. Actually one can realize that the last assumption is not needed for this algorithm to perform
exactly the same, with the added benefit of not repeating computations at the atoms that don’t have
the maximal depth. The only change is that sometimes Succy can be empty, in which case we simply
let newVec, = { A |S N Ry|. Thus, here in this paper, we define % h as only the elements of # at
depth h (the previous intricate definition may still be necessary for the proof of Theorem 1 of Durand
et al. (2020)): F" ={Gi,)) e H : ¢(i,j) = h}, h > 1. This is the only deviation from the notation of
Durand et al. (2020). Finally note that in the ongoing analogy with graph theory, the elements of ¥
are the roots of the different trees making up the forest.

Algorithm 1 Computation of a given Vg (S)

1: procedure VSTAR(S, R = (R, { ke With R complete)
2: H « maxyc o §(k) > maximum depth
3 forh=H-1,...,1do
4 Fh—f{kex : $k)=h}
5: newVec < (0);.coh
6 for k € Z" do
7 Suce, « (k' € M1 2 R C Ry}
8 if Succ;. = @ then
9 newVecy < (. A |S N Ry
10: else
11: newVecy < min ((k A 1S 0 Ryl Yoeresuce, Veck/)
12: end if
13: end for
14: Vec < newVec
15: end for
16: return) ;- o1 Vecy

17: end procedure

@ Tip

In the practical implementation of this algorithm (and of the following Algorithm 2), Vec and
newVec are always of size N (the number of leaves) instead of the cardinality of % h. And the sum
2k cSuce, Veck 1s really easy to compute: if Ry = Riiyi-1) = Ule Ri_i-1) = UiOSnSip—l P, e
F for some P 2 2, a strictly increasing sequence (iy, ..., i) and R(ij,l,i/-—l) e I for all
1 <j < p, then we simply sum Vec over the indices from i; to i, — 1. After that, the computed
quantity is set in newVec at index iy. So actually computing Succy is not needed and not done.

The computation time of the algorithm is in O(m|.%|), which is fast for a single evaluation, but calling
it repeatedly on a path of selection sets (S;);en; has complexity O(m?|) which is not desirable and
makes computations difficult in practice, hence the need for a new, faster algorithm.

Remark 2.1. The specific computation of the R;’s and the {}’s such that Equation (6) holds is outside
the scope of the present paper, but different constructions can be found in Blanchard et al. (2020),

167

168

169

170

17

172

173

174

175

176

177

178

179

180

181

183

184

185

186

187

188

189

190

191

192

Durand et al. (2020) or Blain et al. (2022) for example.

3 New algorithms

3.1 Pruning the forest

We remark the simple fact that if, for example, (1,1),(2,2),(1,2) € &, and {(1 2) = {(1,1) *+ {(2,2), then
R(1,2) never contributes to the computation of any Vg (S) and it could just be removed from R. We
now formalize and prove this pruning scheme.

Definition 3.1 (Pruning). We define by #P* (¥ pruned) the set of elements of ¥ such that we
removed all (i,i") such that there exists p > 2 and integers iy, ..., i, ; such that, when setting iy = i
and ip= i’ + 1, the sequence (i, ...,ip) is strictly increasing, (ij_l,ij —1)e Hforall1<j< pand

ﬁnally év(i’ir) = év(io,l'p—l) > Zf:l g(ij_l,ij—l)'

An important note is that for a removed (i,i") € '\ * Pt e can always choose the indices iy, ..., ip1
such that actually (i;,ij4; — 1) € #P* and not only %, because if (i, ij; — 1) € F \ FP* it can itself
be fragmented, and this decreasing recursion eventually ends (the later possible being at the atoms
of the forest structure). Also note that removing elements from % does not alter the fact that we
have at hand a forest structure, that is, the reference family defined by RPT = (Ri, {)kegrv: has a
forest structure. Because pruning a forest structure does not touch the atoms, note finally that if %
is complete then so is #¥".

The following proposition states that pruning the forest does not alter the bound.

Proposition 3.1. For any S C Ny, Vg(S) = Vi (S).

Proof. Recall Equation (11) and, because R¥* also has a forest structure,

s\ | Re

k'eQ

Veape(S) = min G NS N Ry +
" ocZ ¥ <kZe:Q

>, (13)

Letany Q C %. We split Qin A elements of % \ % ¥, denoted (ig 4, ip.a—1),1<a< Aforsome p, > 2,

and B elements of % P¥, simply denoted kj, 1 < b < B. By the definition of #¥* and the previous

remarks, for any 1 < a < A, there exist integers iy g, ..., i, 14 such thatip, <ij, < <i, 14 <iy 4
. . . Pa

(PR IPESVIS HP* forall 1 < j < p,, and g(io,aaipa,a_l) > Yty iy ijo—1)- Now let

so we immediately get that Vig(S) < Vg (S).

O ={ky : 1<b<BYU{(ij_100jo— 1) : 1<a< A 1<)< pl (14)

We have that QP* € % P* and Ukeo Rk = Ukegrr Re- Then,

S\ Re

keQ

ng/\|SﬂRk|+

B
=), G NSN Ry
keQ =1

b=

A
+ Z $linwipga—1) 1SN R(ioya,ipa,a—l)l
a=1

S\ Re

keQ

+

5

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

21

212

213

214

215

216

217

218

butforall1<a <A,

Pa
g(ioyu,ipa’a—l) 2 Z; iy iia—1)
]:

Pa
2 Z; g(ij—l,a’ij,a_l) A |S n R(ij—l,a’ij,a_l)l’
]:

so the term Z?Zl L oi, ~DAISN Riiy i, 1)l is greater than or equal to

Lpaa

A [Pa
Z (Z g(ij—l,a:ij,a_l) A |S n R(ii—l,a’ij,a_1)|) A |S n R(iO,a’ipa,a_l)L

a=1 \j=1

which is simply equal to
A Pa

Z Z g(ij—l,asij,a_l) A |S N R(ij—l,a:ij,a_l)|'

a=1 j=1

Furthermore ‘S \ Ukeo Rk| = ‘S \ Ukegr Rk‘ so finally:

D GAISORI+HISN R > D GenlsnRd+|S\ | Re (15)
keQ keQ keQpr keQpr
> Ve (S).

Note that Equation (15) is true even if there are some b € {1,...,B},a € {1,..., A},j € {1, ..., p,} such
that k, = (ij_1,4,ij4 — 1). We minimize over all Q to get that Vi(S) > Vg (S). O O

This gives a practical way to speed up computations by first pruning the family before computing
any Vg (S), because F# P* is smaller than %, and by the above Proposition there is no theoretical loss
in doing so.

Furthermore, pruning can be done really simply by following Algorithm 1 for S = N}, and pruning
when appropriate. This gives the following Algorithm 2 , assuming, for simplicity, that the family is
complete. The computation time of the algorithm is the same as Algorithm 1, that is O(m| %). Note
that the only differences between Algorithm 2 and Algorithm 1 are the pruning step and {; replacing
G N |S N Ry, because ¢ < |Ry| and here S = IN},,, so i A [N}, N Ry = k. Also note that the algorithm
returns Vi (N7,)) as a by-product. The following proposition states that Algorithm 2 indeed produces
the pruned region as in Definition 3.1.

Proposition 3.2. The final & returned by Algorithm 2 is equal to Z¥*: & = HP".

Proof. First, # \ & C K \ HP" is trivial: a k such that § > Y,

condition of Definition 3.1 to be pruned.

ESuce, V €k obviously satisfies the

Now let (i,i") € F \ P an element that is pruned by Definition 3.1, so there exists p > 2
and integers iy, N P such that, when setting i, = i and i, = i’ + 1, the sequence (i, ...,ip) is
strictly increasing, (ij_1,ij— 1) € H forall 1 < j < p and finally ;) = év(io,ip—l) > Z}I'):l g(i}-_l,ij—l)-
Then by the proof of Theorem 1 of Durand et al. (2020) but applied to S = R(;;) we have that
Zle Q,-H,,‘j,l) 2> zk’ESucc(i’,-/) Vecy: (see the unnumbered line just above Equation (A4) in that paper)
and so () > zk’ESucc(,-,ir) Vecys hence (i,i’) is pruned by Algorithm 2 and % \ #¥* C ¥ \ Z.

Intheend, # \ ZP* = # \ Lso ZP =& []

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

Algorithm 2 Pruning of R

1: procedure PRUNING(R = (Ry, {i)ke With R complete)
2 L K
3 H « maxyc o $(k) > maximum depth
4 forh=H-1,..,1do
5: Fh—fkeH : §(k)=h}
6 newVec < (0);.coh
7 fork € %" do
8 Succ, + {k’ € Fh1 Ry C R}
9 if Succ. = @ then
10: newVecy < (.
11 else
12: if & > zk’ESucck Vecy, then
13: &L — L\ {k} > pruning of the region indexed by k
14: end if
15: newVec, < min ({k, 2k Suce, Veck/)
16: end if
17: end for
18: Vec < newVec
19: end for

20: return (£, Y ;.co1 Vecy)
21: end procedure

3.2 Fast algorithm to compute a curve of confidence bounds on a path of selection
sets

Let (i, ..., ip,) a permutation of Ny, eventually random, and, for all t € N, let S; = {iy, ..., i;} and
So = @. For example, (iy, ..., i) can be the permutation ordering the p-values in increasing order
and in that case S; becomes the set of indices of the ¢ smallest p-values. Assume that we want to
compute all Vg (S, for all t € {0, ..., m}, this is what we call the curve of confidence bounds indexed
by (iy, ..., ip,). Applying Algorithm 1 to compute Vig(S,) for a given t has complexity O(t|.%), so using
it to sequentially compute the full curve has complexity O (Y~ t|%|) = O(m?%]). In this section,
we present a new algorithm that computes the curve with a O (m|%|) complexity. The algorithm
will need that R is complete, so if that is not the case we first need to complete R following the
Algorithm 2 of Durand et al. (2020), which has a O(m|%#|) complexity. In the remainder of this section
we assume that R is complete.

We first recall and introduce some notation. Recall that ¢ is the depth function inside of R, that
P C P(K) is the set of subsets of F that realize a partition, recall the important result stated by
Equation (12), and that FHh={kex : ¢(k) = h} for all 1 < h < Hwhere H = maxyc .y ¢(k). For
any t € N, and 1 < h < H, we denote by kN the element of #" such that i, € Ry if it exists, and
we denote by hy,,.(f) the highest h such that k) exists.

Example 3.1 (Continuation of Example 2.2 and Example 2.3). Assume that the reference family of
Example 2.2 has been labeled as in Example 2.3 and completed. Let (i, ..., ig5) such that i; = 7,i, = 1
and i3 = 24. Then for t = 1, KD = (1,5), K2 = (2,3), k) = (3,3) and Ay, (t) = H = 3. For t = 2,
kD = (1,5), k&2 = (1,1), K& does not exist and hmax(®) = 2. Fort = 3, kD = (8,8), k&2 does
not exist and hp,,, () = 1.

Now we can finally present the new algorithm and the proof that it computes the curve (Vg (S))ren,,-
We present two versions of the algorithm (strictly equivalent): one very formal (Algorithm 3), to

243

244

245

246

247

248

249

250

251

252

introduce additional notation used in the proof of Theorem 3.1, and, later, a simpler version that is
the one actually implemented (Algorithm 4). Recall that a detailed illustration of the steps of the
algorithms will be provided in Section 3.3.

Algorithm 3 Formal computation of (Vg (S))o<t<m

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:

17:

18:
19:
20:
21:
22:
23:

24:
25:
26:
27:

28:
29:
30:
31:

procedure CURVE(R = (Ry, {i)kesr With R complete, path (S) <<, with Sy = {iy, ..., it})
PO —{G,i) : 1<i<n} > the set of all atoms indices

Ky «

{ke%:gk:()}

ngeoforallket%’
fort=1,....,mdo
if it S Uke‘%t_—l Rk then

g)t - gt—l
rﬁC « rﬁc_l forallk e &

else

hmax (t)}

for h = 1,..., hy,(t) do
t t—1
Mewn < Meaw 1
if Utk(z,h) < {} then
Pass

else
W< n > final depth

Pt (9”‘1 \{ke P 1 :R.C Rk(thf)}> U {k(t,htf)}
Nt

Hy — Hry KDy
Break the loop
end if
end for
if the loop has been broken then
’ﬁc « rﬁc_l for all k € F not visited during the loop, that is all k & KM 1 <h<

else
gt - ‘ggt—l
Hy — Fi
;ﬁ(« rﬁ:l for all k € H not visited during the loop, that is all k ¢ {k(t’h), 1<h<

end if

end if
end for
return !, Iﬁc forallt=1,...,mandk e X
32: end procedure

The core idea of the algorithm is that, as we increase t and add new hypotheses in S;, we inflate a
counter 77;(for each region Ry, by 1 ifi; € Ry (line 12), by 0 if not (lines 23 and 27), but only until the
counter reaches { (line 13). After this point, the hypotheses in Ry don’t contribute to Vig(S,), we
keep track of those hypotheses with % (line 6), so as soon as 172(,,,,) = {; we update FZ; by adding

k&) (line 18) to it and we update ' accordingly (line 17).

We will see in the following Theorem 3.1 how this algorithm allows to compute Vg (S;). We first need
a final notation. Let

Hy=tke X : I € P : R C R}

10

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

278

279

280

281

282

283

284

285

286

287

The elements of J%; index the regions of the forest that “are above’’ the regions of the current
partition-realizing 9!, In particular, we always have, for any t € N,,, #! C %, and %' C ¥,. We
can also remark that the sequence (#})y<;<n, is non-increasing for the inclusion relation, and that

%0:%.

Theorem 3.1 (Fast curve computation). Let anyt € N,,. Then, %' € ‘B, and for allk € K, we have

V(SN Ry) = ng (16)
and
Va(SNR) = > G AlS N Rel. (17)
k'ePpt
Rk’ng
Furthermore,
Va(S) = D GAISORd=) (18)
ket kex!

The proof of this Theorem is postponed to Section 3.4. The first equality of Equation (18) states that
the minimum in (12) is realized on the partition %', and the last equality of the same Equation is the
basis of the following light corollary.

Corollary 3.1 (Easy computation). Fort €{0,...,m — 1}, Vg(S;11) = Vg(Sp) ifirr1 € Ures Ri. and
V;i(st_'_l) = V;{(St) + 1 if‘not.

Proof. From (18), Vi (Sp41) = Dkesrt 772“ and Vg (S) = Yreat rﬁc. Ifi; ;€ Ukezfr— Ry, rﬁ(ﬂ = I];c for
allk € #!. If not, I];:rl = rﬁc forallk € #1, k # k1D, whereas for k = kK11, rﬁ:l = ryfc—i- 1.0 O

We note that, from Theorem 3.1 and Corollary 3.1, if one is only interested in the computation of
the curve (Vg;(St))1 << tracking P! is actually useless, what is important is to track and update
H; correctly. Hence the simpler, alternative Algorithm 4 . Note that Algorithm 4 is less formal than
Algorithm 3 : as in Algorithm 1 and Algorithm 2 , it recycles notation (mimicking the actual code
implementation) so the ¢ subscript or superscript is dropped from the #;~ and the 17;{. In Algorithm 4
, the notation V; is actually equal to Vi (S;) by Corollary 3.1.

It is easy to see that each step t has a complexity in O(|.%|) hence the total complexity is in O(m|%|).
This is because, if the regions are carefully stocked in memory, especially if their bounds (in terms
of hypothesis index) are stocked, then finding k) has a complexity in O(#"|) and checking if
it € Ukes-, Ri has a complexity in O(|%1).

3.3 Illustration on a detailed example

We still continue Example 2.2 and Example 2.3. Recall that m = 25, P;.5 = Ry = {1,...,20}, P; =
R2 = {1,2}, P2;3 = R3 — {3,,10}, P4;5 == R4 == {11,,20}, P2 = {3,4}, P3 - R5 - {5,,10},
P4 = R6 = {11,,16}, P5 = R7 = {17,,20}, P6I7 = Rg = {21,22}, P6 = {21}, P7 = Rg = {22} and
Py = {23, 24, 25}.

Now assume that we have the following values for the §i’s: {15y = 6, {(1,1) = 2, {(23) = 1, {(33) = 4,
{a5) =4 {4a4) = 2, {55 = 3, §(67) = 2, {(7,7) = 0. Because P,, P; and Py come from the completion
operation (see Section 2.3), we also have {(3 2) = [Py| = 2, {(56) = |Ps| = 1 and {(55) = |Pg| = 3. Theses
values are summarized in Figure 3.

We want to compute the curve (V;;t (St))1<t<9 with S; = {i,..., i} and i} = 11,iy = 17,i3 = 12, iy = 13,
i5 = 18,i6 = 3,i7 = 19,i8 =22 andi9 = 5.

11

Figure 3: The regions of Example 2.2 with the (. values.

‘A @) @
&

Figure 4: The regions of Example 2.2 after pruning.

12

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

Algorithm 4 Practical computation of (Vi (S))o<t<m

1: procedure CURVE(R = (R, ke With R complete, path (Sp)1<;<;n With S; = {iy, ..., i;})
2: Vo< 0
3 K- —tkeH : =0}
4 N« Oforallk e &
5: fort=1,...,mdo
6 if i € Uge9- Rk then
7 Vi< Vi1
8 else
9: for h =1,..., hy(t) do
10: find K" € %" such that iy € Ryen
11: M) < Mew + 1
12: if P < gk then
13: pass
14: else
15: H™ o« KUy
16: break the loop
17: end if
18: end for
19: Vt <“«— Vt—l +1
20: end if
21: end for
22 return (V) 1<;<m

23: end procedure

First, we apply Algorithm 2 to the family. This results in pruning Ps.; (and only this region), because
2="{6,7) = {66) T {z,7) = 1+0. This gives Figure 4.

Now we initialize Algorithm 3, that is we let t = 0. Because {;77) = 0, (7,7) is added to %} :
Ky =1(7,7)}. Furthermore, all rﬁc are set to 0. The initial state of Algorithm 3 is shown in Figure 5,
with (7, 7) being in red to show that it will not contribute to the computations.

We move on to t = 1, with iy = 11. i; € P, C P4.5 C P;.5. The appropriate rﬁ(are increased by one,
and by (18) we have Vg (S;) = ’7%1 5+ 17%6 o+ nb nt n%s g) = 1+0+0+0 = 1. The state of the step
is summarized in Figure 6.

We move on to t = 2, with i, = 17. i € Ps C P4.5 C P;.5. The appropriate rﬁc are increased by one,
and by (18) we have Vi (S,) = 2. The state of the step is summarized in Figure 7.

We move ontot = 3, withiz = 12. i3 € Py C P4.5 C P;.5. The appropriate I];C are increased by one, and

we notice that ’7?4 H=2= {(4,4)- So P4 will stop contributing, we add it to #; : #3 = {(4,4),(7, 1)}
By (18), we have Vi (S3) = 3. The state of the step is summarized in Figure 8, with Py now also in red.
We move ontot =4, withiy =13. iy € P, € Ukel%f; Ry. No rﬁ(is increased (see line 9 of Algorithm 3
), and by (18), we have Vg (S,) = 3.

We move on to t = 5, with is = 18. i5s € P; C P;.5 C P;.5. We first increase UELS): 17?1’5) =4 <{(15)s
then 17€4,5): 7754)5) = 4, and we stop there because 77(54,5) =4 = {(45). P4.5 will stop contributing, we
add it to #; : F5 =1{(4,5),(4,4),(7,7)}. Note that 1725 5) is not updated because we stopped the loop

before, see line 23 of Algorithm 3 . By (18), we have Vi (Ss) = 4. The state of the step is summarized
in Figure 9, with P,.5 now also in red.

13

Figure 5: The regions of Example 2.2 at t = 0 in Algorithm 3 .

Figure 6: The regions of Example 2.2 at t = 1 in Algorithm 3.

14

Figure 7: The regions of Example 2.2 at t = 2 in Algorithm 3 .

Figure 8: The regions of Example 2.2 at t = 3 in Algorithm 3.

15

308

309

310

31

312

313

Figure 9: The regions of Example 2.2 at t = 5 in Algorithm 3 .

We move on to t = 6, with ig = 3. ig € P; C Py.3 C P;.5. We first increase 021’5): 1]?1’5) =5 < {15
then ’7€2,3): 77?2’3) = 1, and we stop there because 77?2’3) =1 = {(3)- P»:3 will stop contributing, we
add it to #; : Fg =1{(2,3),(4,5),(4,4),(7,7)}. Note that 7723’3) is not updated because we stopped
the loop before, see line 23 of Algorithm 3 . By (18), we have Vi (Ss) = 5. The state of the step is
summarized in Figure 10, with P,.3 now also in red.

Figure 10: The regions of Example 2.2 at t = 6 in Algorithm 3.

We move on to the remaining steps. iy = 19 € Py.5,ig = 22 € P;andig = 5 € P,.5 are all

34 in Ukezfé‘ Ry so no rﬁc is increased at their step (see line 9 of Algorithm 3), and by (18), we have

315

Vg (S7) = Vig(Ss) = Vg (Sy) = 5.

16

ss 3.4 Proof of Theorem 3.1
37 3.4.1 Derivation of (18)

s We first derive (18) from (16) and (17). First note that for all Q € B,

0= | J{Ke€Q: RvCRY (19)
kex!
= and the union is disjoint. From (12), let O* € P such that Vg (S;) = Zk'eQ* G A ISy N Rys|. Then by
320 (19),

Va(S) = Y. G AlS;N Ryl
k’eQ*

= D, D, G AN Ryl

kex! k'eQ*
Ry CRy.

= > > G nISn(Ren R
kex! k'eQ*
Rk'ng

= 2, >, G IS NRYN R (20)
kex! k’eQ*
> Y VH(S N Ry, (21)
kex!
21 where the equality in (20) comes from the fact that if R, € Ry, then Ryr N R, = @, that is, R C Ry is
22 impossible because k € H#!. Furthermore, (21) holds again by (12).

23 Because X! C %, by (17), Va(S N Ry) = Y et G NSy N Ry| for all k € H 1. Then,
Ry CRy,

Y VRS nRI= Y. > G AlS N Ryl
kex! kex! ket
Rk’ng

= > G AlS; N Rl by (19)
ket
> V»’;(St) by (12).

24 So we proved that Vg(S) = Yeqpt G A IS N Rl = Ypegrt Va(S: N Ry) and finally Vig(S) =
2w Yrest Vot (S0 Re) = Yrespr i, by (16), again because #! C F;. Every equality in (18) is proven.

326 3.4.2 Proof of (16) and (17)

27 We show the remainder of the statements by a strong recursion over t. We have %° € % by definition,
»s and given that Sy = @ and 172 = 0 for all k € F (recall that &, = K), everything is equal to 0 in (16)
390 and (17).

w0 So we lett € {0,...,m — 1}, and assume that P! € P and that (16) and (17) hold for all ¢’ < t.
@ In all the following, k is the element of &' such that i;;; € R;. We will distinguish two cases: if

m i € Uke 5 Rk or not. First we show an inequality that will be used in both cases. We have, for all
33 k€ e%t,

Vi(Se1 NRO < Y G AlSpr N Rl (22)
ket
Rk'ng

17

334

335

336

337

338

339

340

34

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

Indeed, by (12),
Vir(See1 NRO < Y G AMSiq N RN R
ket
For any k' € P!, we have either Ry N Ry = @, in which case |S;;; N R N Ry/| = 0, either Ry, C Ry,
in which case [S;11 N R N R = [S;11 N Rp|, but R C Ry is impossible. Indeed, by definition of %},
there exists k € P! such that Ry C Ry, so Ry € Ry would entail Ry € Ryr which is impossible since
k. k € P e Pandso Ry and Ry are part of a partition of INy;,. This gives (22).

3.4.2.1 First case: ity € Urey Re

In this case, '™ = P! € P and H,,; = K. For any k € H,,; such thati,,; & Ry (or, equivalently,
such that S, 1 N R = S; N Ry),

Y, G MSinRel=), G AlS N Ryl
ket K e
Rk’ng Rk’ ng

= Vg (SN Re) by (17)

= 11;. by (16)

= i1
because 7}, = ! for all k € . Furthermore S;4; N Ry = S N Re 0 Vi (Sie1 N Ry) = V(S N Ry). So
everything is proved for such a k.

Now we let k € #;,1 such that i;,; € R or, equivalently, such that R C Ry. We first need to show
that ¢ <|S; N Ry/, and for that we need to distinguish two subcases: if k has been added to % during
a previous step of the algorithm, of if not.

3.4.2.1.1 First subcase: k has never been added during the process of line 17

Then k € 9° and Ry is an atom, s0 i, € Upe o~ Ry implies that Ry € g~ R (because of the
forest structure). Let k},,, such that
N . ’ - _
er/nax =max{Ry : k' € F; R C R/}

(this a maximum for the inclusion relation, and it is well defined thanks to the forest structure). By
reductio ad absurdum we show that kf,,, = k. If that wasn’t the case, by the joint construction of
P and H;~ during the algorithm we would have k/,,, € &' and a contradiction with the fact that
P! € P: we can’t have both k € P! and ki, € P! if they are distinct. So k},.x = k, so k € #;, but
it cannot have been added to J#; during a previous step of the algorithm, otherwise it would have
been added to %, too. Hence k € #; which means that G=0and L =0<I[SNRy

3.4.2.1.2 Second subcase: k has been added to ' at a previous step

Let t’ < tbe this step. This means that k = k(t,’h{’) and that at that step ryg = {;. Indeed, the if
condition in line 13 failed so ryg > {t, but for all t” <t we had rﬁ—: < & which implies equality. Also
ke P soke Hy s0 we can write
&=
= Vx(Sy N Ry) by (16)
< ISy N Ry
< IS N Ryl

18

360

361

362

363

364

365

366

367

368

369

370

371

372

373

This concludes the two subcases dichotomy: ;. < |S; N Ry| and we can go back to our k € #;,, such
thati;,,; € Ry and Ry C Ry.

We write the following chain:

Vg (St41 N Ry) < Z S AMSt1 N Rpe| by (22) and F3yy € F,
ket
R CRy,
= D, G AlS N Rl + G A IS N Ry
K'ePp!
Rk'ng
k'#k
= > G ASN Rl +GA(S N Ry + 1)
ket
Ry CRy,
K=k
= Z G NS N Ry | + G A 1S N Ry because g, < [S; N Ry
ke
Ry’ CRy,
K=k

kK'est
Rk'ng

= V(5,1 R by (17)
= n, by (16)

|
_”k .

But on the other hand, S; C S and so (12) also gives Vg (S; N Ry) < Vg (Sp41 N Ry) and so in the end
we have the desired outcome:

1
Vi(Se1 RO =1 = > G AlSe N Ry,
k/e@ﬁ-l
Ry CRy,

which concludes this first case.

3.4.2.2 Second case: i1 & Urez Rk

We first prove that '*! € P whether it came form the adjustment in line 17 or not. If it didn’t, it
stayed equal to ' € . If it did, we have

f
i+l — (g)t \ {k c gt, Ry C Rk(t+1hf)}) U {k(t+1’h”1)}- (23)
My

To prove that 2'*! € P in that case, it suffices to prove there are no k’ € ! such that R /5 C Ry

k(l’+l,ht+l
If it was the case, because of the strict inclusion, we would have k’ ¢ 2, so k’ would have been
added to ! at a previous step t’ < t of the algorithm, but in that case it would also have been added
to #,, € H; . So in the end we would have

i1 € Rk(t“’hfﬂ) SR C U Ry
keZx;

which is a contradiction and so '*! € .

19

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

Like in the first case, considering a k € #;,; C #; such that i,,; & Ry is not problematic, because in
that case k is not visited at all by the algorithm at stept + 1 : rﬁjl = qi, (k" e P R C R} =
{k' € ' : R, C Ry}, and for all k¥’ € such that Ry, C Ry, Sy4q N Ry = S; N Ry Hence, from

V(SR == Y. G AlS1 0 Rel,
kK'ept
Ry CRy,

we directly have

V(S RO =1 = > G AlSe N Rel.

Kk’ E@H—l
Rk' ng

So we now focus on the k € #;,; such that i;,; € R;. Note that for such k,

=gt 1= V(SN R + 1= Z Je A1S; N R | + 1
K eP
RuCR;

by construction, by (16) and by (17). Indeed, such a k is equal to a K1) with h < hy,,(t + 1), and

even h < h{ 41 if the latter exists.

Also, similarly to the first case, for all k € %, such thati;,; € Ry (recall that this is equivalent to
R;. € Ry), we can write:

Vr(S41 N Ry) < Z e A Sp41 N R by (22) and Fy g © X,
Kept
Rk’ng
= > G MS1 N Rl + G A IS N Ry
ket
Ry CRy.
k' £k
= D G AISN R+ GAS AR+ 1)
Kept
Rk’ng
k' =k
< Y G AISORel+GAISN R+ 1
Kept
R CR,
k' £k
= Y GeAISNRel+1
K et
Ry CRy.
= V(SN Ry) + 1 by (17). (24)

Note that by the joint construction of #;” and %' on lines 17 and 18, the fact that i, | € | e % Rk

implies that k is the index of an atom, so actually hy,(t + 1) = ¢(k), k = kt+160) and the Ry,
k € #;, such that R C Ry are nested and are exactly indexed by the KL 1 < h < $(k). We now
prove that for all of them, Vig(S;+1 N Ry) > Vg (S; N Ry) + 1, which will be true in particular for the
ones that are in %}, {, given that %#;,; C #;. We do that by constructing some sets Ay with good
properties with a descending recursion on h, starting from $(k). We only give the first two steps of
the construction, because every other step is exactly the same as the second one, which contains the
recursive arguments. We go back to the real definition of Vi to do so, for any S C IN,,;:

Vi (S) = max ANnS| = max Al 25
GO= ma lAns= ma A @)
Vk’E%,|AmRk; |£§k’ vk,E%,|AﬂRk/|§§k/

20

391

392

393

394

395

396

397

398

399

400

401

402

404

405

406

407

408

409

410

411

412

413

414

415

416

47

418

By (25), we have that Vig(S; N R ¢140)) = |A¢(7€)| for a given Ay € S N Rye4o) and such that
|A, 7y N Ris| < G for all kK’ € H. Now for the second set, we construct A, 7y_,. Note that Vg (S; N
gk) ' Tk k (k)-1 Rt
R t+140-1) = |B| for some B C S;N R, +140-1) and such that [BN Ry/| < g for allk” € . By reductio
ad absurdum, if there are strictly less than Vi (S, N Rk(m,qs(,;),l)) - Vx(Sn Rk(f+1>¢<’?)>) = |B| — |A¢(,-C)|
elements in S N Ry irgir-1 \ St N Rypairgay, then [Bl + 1S 0 R gan| — 1S N R gi-n| > |A¢(1‘<)| =
V%(St N Rk(”l"/’(k»)' Given that B @) (St N Rk(t+1’¢(i<))) Q St N Rk(t+l,¢(7€)—1)’ thlS entaﬂs |B N St N Rk(t+1,¢(l_c))| =
1Bl + 1S N Rerrgin] — [BU (S, N Rygvrgan) > Vg(Sn R t+14()) Which contradicts the maximality of
So we construct A) ; by taking the disjoint union of Az, and Vag (SiOR, (141,600~ Vg (SOR, (111,60
elements of ;N R, ¢1140)-1) \SiN R, 4140 We now establish the properties of A7y _,. First, A, 7y ; C

K+Lg(k)-1) JAGRT) prop $(k)—1 P(k)-1
St N Ryeingio-n, and [Ay gy 4| = Vi (S N Rirgon)- For all k" € F such that Ry 1401 N Ry = @,
we have |A¢(l‘<)—1 N Rys| = 0 < /. Furthermore,

[Agir-1 N Resngin] = [Agiy N Recsrgmn|
< Gter14()
by construction of A¢(,-C). Finally, for all k¥’ such that Ry199-1 € Rers |A¢(]-C)_1 NR|=|A ¢(]-C)_1| =
V(S N R i11400-1)) = |B| with the previously defined B, in particular |[BN Ri-| < -, but given that

B C SN Ry 41401 [BN R | = [B|. Wrapping all those equalities, it comes that |A¢(,-<)_1 NRy| < . In
the end, |A¢(7<)—1 NRy| < g forallk” € #, so A¢(I‘<)—1 realizes the maximum in (25) for Stan(M,gb(,;)_l).

By applying exactly the same method, we recursively construct a non-increasing sequence Ay S

~+ C Ay such that for all ¢ € {1,...,¢(k)} and k' € F, Ay C S; N Ryasnn, V(S N Rasin) = |A¢l, and
|Ag N Rir| < . Furthermore for ¢ > ¢, Ag \ Ay C S N Rye1n \ S N Ryrey. Also note that the fact
that il’+l ¢ Uke%f Rk 1rnphes that U;((Hl,f) < gk(t+1,£) for all e {1, vees ¢(k)} So by (16), |Ag| < é‘,/k(t-#l,i).

Let, for any ¢ € {1,...,p(k)}, A; = Ag U {ir41}. Given that Ay C SN Rygerp and that i g € S11 \ S,
Ap C Sii1 N Ry, [Agl = [Agl + 1, and for all ¢” € {1,...,¢(k)}, |Ag N Rpien] = [Ag 0 Rygenen] + 1.
Note that if, furthermore, £ > ¢/, then A; C Ay, so
|Ap N Rysren] = |Ap N Ry + 1
<|Ap N Rygsren| + 1
=|Ap|+1
< oy + 1

On the contrary, if £ < ¢/, we write that
|Ap N Reoren] = |Ap N Ry + 1
= [(A¢ \ Ap) N Rierrn| + [Ap N Ryein| + 1
< O + gk(m-u') +].,
because Ay \ Ay C Rie+10 \ Ry hence (Ag \ Ap) N Ry = @. In both cases, |Ze N Ry <

Gy + 150 | A, N Rien1n| < Gesryy. Additionally, for all k” € K such that i,y & Ry, |A, N Ry | =
|Ag N Rer| < G-

In the end, |A; N Ry/| < { for all K’ € F, so

Vi (St+1 N Reasrn) > 14 by (25)
- |A€| + 1
= V%(St N Rk(Hl,E)) + 1.

21

419

421

422

424

425

426

427

428

429

430

431

432

So, as we wanted, Vi (S;11 N Ry) > V(SN Ry) + 1 for all k € H#; such that i,y € Ry and so for all
such k that are in %;, ;. So every inequality in (24) becomes an equality and we have proven that

Va(S41 NR) = V(SN R + 1 =nf + 1 =n{!
that is, (16) is true at ¢t + 1. Looking at the first line of (24) , we also proved that

Vai(Si NRY = Y. G AlSpr N Rel. (26)
ke
Rk' ng
The only thing left to prove is that (26) is also true with %'*1 instead of %!, that is that (17) also
holds at ¢ + 1, or, put differently, that

> G AMSa N Rl =Y G AlSa N Rl (27)
kfe@t klegjl“rl
Rk’ng Rk’ng

If h{ 1 does not exist, meaning that we didn’t break the loop, P!*1 = 9! so there is nothing to prove.

Now assume that h{ +1 exists. So (23) holds. We will split each term in (27) in a sum of two terms.
First, note that by (23), for any k” € % such that R, N R = @, we have that k¥’ € 2! if and

(t+1 ht+1)
only ifk’ € Pt And so,

> G ASmnRel= D G Al ORI+ AS R

(t+Lhy 1)
k’E@Hl k’E@Hl
R /QR R N
ke ="k k k(t+1h{+1)

Rir SRy

= k;@t G AMSp1 N R + évk(m)hgﬂ) AlSe1 N R e L
Ry/NR
w0 k(t+lh{+1)
R CRy.

Recall that we already proved that there is no kK’ P such that R i . S Ry, soforany k' € P

k(t+1’ht+l)
1 ’ / C
either R N R o oy = @or R CR e Hence the split
Y, & ASmnRel= Y G AlSanRel + Y G AlSsanRel
]15/6% - k'eg’t R l}e’ez@t
/C /N /C
kr ="k k k(m hfﬂ) FER e,
= Z G NS N Rl + Z G A Sr1 0 Ry,
R k’egﬂ R /%'69“
/ /C
k k(t+1hf+1) k= k(t+1,htf+1)

Ry SRy

where the last equality comes from the fact that R C Ry, because k € #;,1, ;41 € Ry, and

WLkl =
k(H—l’h{“) e i+l

Given the two previously made splits, it remains to prove that

ng» Go MSst VRN =€ A DR
R./CR
=T ekl)

22

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

Interestingly, this does not depend on k anymore. By (26), the left-hand side is equal to Vi (S;41 N
foo

Rk(t+l’htf+l)). Because we are breaking the loop at step h; 4, qk(Hl’hg:-l) = gk(m)h{ﬂ)_ Finally, because (16)
holds at ¢ + 1, U;-(iilhf = Ve (Se1 N Rk(m hfﬂ))' Wrapping all these assertions:
T+ ’

— *
kzgﬁ G N IS N Rl = V(S 0R ()
‘e

R/CR
W= el

_ *
= V(SN Rk(HLh{H)) AlSp1 N Rk(t+1’htf+l)|

t+1
= A|Sie1 N R
te1al) [Se+1 k(t+1,hf+1)|
= N
évk(m,htfﬂ) A ISt Rk(t+1,hf+l)|’

which achieves the second case and so the proof. [J

4 Implementation

All algorithms discussed in this manuscript are already implemented in the R (R Core Team, 2024)
package sanssouci (Neuvial et al., 2024) which is available on GitHub (see the References for the link)
and is dedicated to the computation of confidence bounds for the number of false positives. It also
hosts the implementation of the methods described in Blanchard et al. (2020) and Enjalbert-Courrech
and Neuvial (2022). Algorithm 1 is implemented as the V. star function, Algorithm 2 is implemented
as the pruning function, and Algorithm 4 is implemented as the curve.V.star.forest.fast function
(whereas the curve.V.star.forest.naive function just repeatedly calls V.star). Note that the
pruning function has a delete.gaps option that speeds up the computation even more by removing
unnecessary gaps introduced in the data structure by the pruning operation, those gaps being due to
the specific structure that is used to store the information of %.

Speaking of the data structure, we briefly describe it, with an example. We represent (Ry)xe 5 by two
lists, C and leaf_list. leaf_list is a list of vectors, where leaf_list[[i]] is the vector listing
the hypotheses in the atom P;. C is a list of lists. For 1 < h < H, C[[h]] lists the regions at depth h,
using the index bounds of the atoms they are composed of. That is, the elements of the list C[[h]]
are vectors of size two, and if there is k, i and j such that C[[h]1]1[[k]] = c(i, j), it means that
(i,j) € Z, or in other words that P;. ; is one of the regions, and that ¢((i, j)) = h. We emphasize that
the 1D structure of the hypotheses has to be respected by the user as the current implementation
implicitly uses it: that is, P; has to contain the hypotheses labeled 1,2, ..., p, P, has to contain the
hypotheses labeled p + 1, ..., and so on. Also, the hypotheses have to be in non-decreasing order:
leaf_list[[1]1] hasto beequaltoc(1, 2, 3, ..., p) andnot, say,c(2, 1, 3, ..., p).

Example 4.1 (Implementation of Example 2.3). For the reference family given in Example 2.2 and
completed in Example 2.3, H = 3. Forh = 1, wehave C[[1]1]1[[1]] = c(1, 5),C[[1]1]1[[2]] = c(s6,
7), CLI111[[3]] = c(8, 8). For h = 2, we have C[[2]]1[[1]] = c(1, 1), C[[2]11[[2]] = c(2,
3), CL[2]11[[3]1]1 = c(4, 5), C[[2]11[[4]] = c(6, 6), C[[2]1[[6]] = c(7, 7). For h = 3, we
have C[[311[[11] = c(2, 2),C[[3]1]1[[2]1]1 = c(3, 3),CL[311[[3]1]1 = c(4, 4),CL[[311[[4]] =
c(5, 5).

And then for the atoms, we have leaf list[[1]] = c(1, 2), leaf_list[[2]] = c(3, 4),
leaf 1ist[[3]] = c(5, 6, 7, 8, 9, 10), leaf list[[4]] = c(11, 12, 13, 14, 15, 16),
leaf_list[[5]] = c(17, 18, 19, 20), leaf_list[[6]] = 21, leaf_list[[7]] = 22 and finally
leaf _1ist[[8]] = c(23, 24, 25).

23

468

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

The functions dyadic.from.leaf_list, dyadic.from.window.size, and dyadic.from.height re-
turn the appropriate data structure to represent a % that can be described as a dyadic tree, based on
some entry parameters that can be inferred from the names of the functions. The completion of a
forest structure, mentioned in Section 2.3, is done by the forest.completion function. Finally, the
{’s are computed as in Durand et al. (2020) by the zetas.tree function with method=zeta.DKWM.

5 Numerical experiments

In this Section, we present some numerical experiments aiming to demonstrate the impact of the
pruning of Algorithm 2 (using the delete.gaps option mentioned in Section 4) and of the fast
Algorithm 4, in terms of computation time, compared to the only previously available method to
compute a curve of confidence bounds. As mentioned in Section 2.3 and Section 4, this naive method
simply consisted in a for loop repeatedly applying Algorithm 1 .

To compare the computation time, we use the R package microbenchmark version 1.5.0 (Mersmann,
2024) with R version 4.4.0 (2024-04-24) and sanssouci version 0.13.0, on a MacBook Air M1 (2020)
running macOS 15.1.1. The package microbenchmark allows to run code snippets a given number
n_repl of times, and to compute summary statistics on the computation time. The script executing
the computation can be found in the same repository as this manuscript.

Four scenarios are studied, all based on a common setting which we first describe. A number m of
hypotheses is tested. We use a reference family (Ry, {;) such that the Ry.’s have a forest structure of
maximal depth H = 10. The graph of the inclusion relations between the Ry’s is a binary tree, hence
there are 2 — 1 = 1023 R’s and in particular 2=1 = 512 atoms. P-values are generated in a gaussian
one-sided fashion where Hy; = {#/ (g, 1d) : p; = 0}, Hy; = {A (pr,1d) : g = 4}, and p(X) = 1 — &(X)).
1 is comprised of the leafs 1, 5, 9 and 10, that is #; = P; U Ps U Py U Pyg. For each scenario, the
curve (V%({l, s t}))te]N* is computed. For the experiments including pruning, the pruning is done
once before the n_repl r;eplications, to mimick the practice where pruning only needs to be done
once and for all, while the user may be interested in computing multiple bounds and curves after
that.

In scenarios 1 and 2, m = 1024 (so the atoms are of size 2), in scenarios 3 and 4, m = 10240 (so the
atoms are of size 10). In scenarios 1 and 3, the (s are estimated trivially by ¢ = |Ry|, and in scenarios
2 and 4, they are computed as in Durand et al. (2020) with the DKWM inequality (Dvoretzky et al.,
1956, ; Massart, 1990). Because of the size of m and the poor performances of the naive approach,
we set n_repl=100 in scenarios 1 and 2 and n_repl=10 only in scenario s 3 and 4. The differences
between the scenarios are summarized in Table 1.

Table 1: Differences between the scenarios

parameter Scenario 1 Scenario 2 Scenario 3 Scenario 4
m 1024 1024 10240 10240
zeta computation trivial DKWM trivial DKWM
n_repl 100 100 10 10

For the trivial {; computation of scenarios 1 and 3, the pruning obviously deletes all non-atom regions
so | ZP*| = 512. Whereas, for the particular instance w € Q in the experiments, |#P¥| = 541 for
scenario 2, and | % P*| = 573 for scenario 4. Those results alone illustrate the benefits of pruning with
respect to the reduction of the cardinality of the reference family: the regions above atoms with no
signal (or no detectable signal in the trivial scenarios) are pruned. The fact that the regions above

24

505

506

507

508

509

510

511

512

513

514

515

atoms with detectable signal are not pruned means that they are relevant for the confidences bounds
(which had already been demonstrated in the simulation study of Durand et al. (2020)).

The summary statistics of the computation time in each scenario are presented in Table 2, Table 3,
Table 4, and Table 5, and they are also presented as boxplots in Figure 11. The time unit is the second
(in logarithmic scale in the boxplots).

Table 2: Scenario 1

expr min lq mean median uq max neval

naive.not.pruned 3.6924007 3.7943906 3.8521256 3.8386487 3.8780412 4.5247099 100
naive.pruned 3.2822354 3.4126177 3.4758338 3.4614076 3.5061541 3.8822089 100
fastnot.pruned 0.1332744 0.1367000 0.1383806 0.1385039 0.1392707 0.1768691 100
fast.pruned 0.0921422 0.0945472 0.0974025 0.0954231 0.0978687 0.1908498 100

Table 3: Scenario 2

expr min lq mean median uq max neval

naive.not.pruned 3.7280744 3.8025695 3.8514710 3.8451367 3.8831009 4.1891831 100

naive.pruned 3.3556131 3.4533210 3.4926114 3.4906796 3.5182172 3.8501820 100
fastnot.pruned 0.1214844 0.1246071 0.1265674 0.1260760 0.1279640 0.1407320 100
fast.pruned 0.0815349 0.0827995 0.0841622 0.0835618 0.0851062 0.0896013 100

Table 4: Scenario 3

expr min Iq mean median uq max neval

naive.not.pruned 332.1856576 335.5148922 337.9856658 338.2432916 340.3329972 344.6255264 10
naive.pruned 328.3186707 329.3081834 332.1861199 331.4335773 333.3563651 338.7111614 10
fastnot.pruned 1.4881838 1.4966417 1.5066370 1.5078498 1.5151194 1.5217546 10
fast.pruned 0.9354581 0.9418174 0.9498806 0.9512573 0.9550453 0.9675895 10

Table 5: Scenario 4

expr min lq mean median uq max neval

naive.not.pruned 331.0124665 335.6357519 349.7740812 337.6459728 342.1652204 401.4881647 10
naive.pruned 331.2567637 332.2215437 363.5822362 333.0651271 335.8347696 493.5124771 10
fast.not.pruned 1.3575818 1.3588461 1.3733567 1.3641336 1.3762178 1.4460291 10
fast.pruned 0.9287399 0.9441687 0.9551275 0.9520622 0.9624959 0.9972532 10

On each scenario, using the fast algorithm is much faster than the naive approach, while pruning
always gives a slight improvement over not pruning.

Comparing scenarios 1 and 2 first, we see that, as expected, there is no significant change in
computation time for naive.not.pruned, while naive.pruned is faster in scenario 1, given that we
prune more. But, on the other hand, fast.not.pruned and fast.pruned are both faster in scenario
2, even if we prune less. This is because, for the regions with signal, said signal is detected and so

25

Comp. time, scenario 2

Comp. time, scenario 1

T
0¢

T T
0T S0

spuo2as Ho|

20

TO

00|

0's

T
0¢

T T
0T S0

spuo2as Ho|

20

T0

Comp. time, scenario 4

Comp. time, scenario 3

Py,
L QSQ.N@
&
Py,
,
- kQVOQx
S,
Y
Pg,
o - «S&Q@A
e,
U
Pg,
U,
o - xovoc.
S
e,
&y
T T T LI T
00S 002 0s 0Z 0T S Z
Spuo2as Ho|
Py,
L QSQ.N@
&
Py,
,
L4 kQVOQx
S,
Y
Pg,
%,
L @Q.@A
e,
U
Pg,
)
L \3@.@
_\mu
&y
T T T T 1 T
002 0s 0¢Z OoT § 4
spuo2as Ho|

Figure 11: Computation times in scenario, in log seconds

26

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

those regions are quickly saturated, in the sense that we quickly have . = { and k added to %,
which saves a lot of time.

The comparison between scenarios 3 and 4 is similar, except that this time we prune even less in
scenario 4 and so the effect of the saturation is not enough to compensate. Although, with only
n_repl=10, the statistics seem less accurate, this can be confirmed with additional experiments
(n_repl can also be set to 100 without problem is we don’t include naive methods).

Finally, comparing scenarios 3 & 4 with scenarios 1 & 2, we see that multiplying the number of
hypotheses by 10 effectively multiplies the computation time by ~ 10 when using Algorithm 4 and
by ~ 100 when using Algorithm 1 naively, which illustrates the stated complexities of O(m|%|) and
O(m?|K|), respectively.

6 Conclusion

In conclusion, we effectively introduced a new algorithm to compute a curve of confidence upper
bounds, much faster the previous alternative, with one power of m less in the complexity.

To develop new confidence upper bounds methodology and test them on simulations, it was previously
not conceivable to replicate experiments a sufficient number of times while computing whole curves.
For instance, in the simulation study of Durand et al. (2020), the number of replications chosen was
10 and the whole curve was not computed, only ten values along the curve were computed, for an
m set to 12800, that is 0.078% of the curve had been computed. Now, simulation studies with an
adequate number of replications and 100% of the curve become feasible.

A lot of work remains to be done on the sanssouci package. For example, to make the data format of
a forest structure (Ry)re % less convoluted and more user-friendly is an interesting project. Another
one would be to implement inside the package the methods of the paper Blain et al. (2022), which
are currently only available in the Python language (Van Rossum and Drake, 2009), and the methods
of the paper Meah et al. (2024).

Other current works include the development of new reference families with theoretical JER control
that could better account for realistic models, such as models with dependence between the p-values,
see for example Perrot-Dockes et al. (2023), or models with discreteness.

7 Acknowledgements

This work has been supported by ANR-20-IDEES-0002 (PIA), ANR-19-CHIA-0021 (BISCOTTE), ANR-
23-CE40-0018 (BACKUP) and ANR-21-CE23-0035 (ASCAI). Thanks to Romain Périer for being the
first to extensively use the new implemented algorithms.

References

Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: a practical and powerful
approach to multiple testing. J. Roy. Statist. Soc. Ser. B, 57(1):289-300, 1995. ISSN 0035-9246. URL
https://www.jstor.org/stable/2346101.

Alexandre Blain, Bertrand Thirion, and Pierre Neuvial. Notip: Non-parametric True Discovery
Proportion control for brain imaging. Neuroimage, 260, October 2022. URL https://doi.org/10.1016/
j-neuroimage.2022.119492.

27

https://www.jstor.org/stable/2346101
https://doi.org/10.1016/j.neuroimage.2022.119492
https://doi.org/10.1016/j.neuroimage.2022.119492
https://doi.org/10.1016/j.neuroimage.2022.119492

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

Gilles Blanchard, Pierre Neuvial, and Etienne Roquain. Post hoc confidence bounds on false positives
using reference families. Ann. Statist., 48(3):1281-1303, 2020. ISSN 0090-5364. doi: 10.1214/19-
A0S1847. URL https://doi.org/10.1214/19-A0S1847.

Malgorzata Bogdan, Ewout van den Berg, Chiara Sabatti, Weijie Su, and Emmanuel J. Candés. SLOPE—
adaptive variable selection via convex optimization. Ann. Appl. Stat., 9(3):1103-1140, 2015. ISSN
1932-6157,1941-7330. doi: 10.1214/15-A0AS842. URL https://doi.org/10.1214/15-A0AS842.

Guillermo Durand, Gilles Blanchard, Pierre Neuvial, and Etienne Roquain. Post hoc false positive
control for structured hypotheses. Scand. J. Stat., 47(4):1114-1148, 2020. ISSN 0303-6898. doi:
10.1111/sjos.12453. URL https://doi.org/lO.lll1/SjOS.12453.

A. Dvoretzky, J. Kiefer, and J. Wolfowitz. Asymptotic minimax character of the sample distribution
function and of the classical multinomial estimator. Ann. Math. Statist., 27:642-669, 1956. ISSN
0003-4851. doi: 10.1214/aoms/1177728174. URL https://doi.org/10.1214/aoms/1177728174.

Nicolas Enjalbert-Courrech and Pierre Neuvial. Powerful and interpretable control of false discoveries
in two-group differential expression studies. Bioinformatics, 38(23):5214-5221, 10 2022. ISSN 1367-
4803. doi: 10.1093/bioinformatics/btac693. URL https://doi.org/10.1093/bioinformatics/btac693.

Christopher R. Genovese and Larry Wasserman. Exceedance control of the false discovery proportion.
J Amer. Statist. Assoc., 101(476):1408-1417, 2006. ISSN 0162-1459. doi: 10.1198/016214506000000339.
URL https://doi.org/10.1198/016214506000000339.

Jelle J. Goeman and Aldo Solari. Multiple testing for exploratory research. Statist. Sci., 26(4):584-597,
2011. ISSN 0883-4237. doi: 10.1214/11-STS356. URL https://doi.org/10.1214/11-STS356.

Ruth Marcus, Eric Peritz, and K. R. Gabriel. On closed testing procedures with special reference
to ordered analysis of variance. Biometrika, 63(3):655-660, 1976. ISSN 0006-3444. doi: 10.1093/
biomet/63.3.655. URL https://doi.org/10.1093/biomet/63.3.655.

P. Massart. The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Ann. Probab., 18(3):
1269-1283, 1990. ISSN 0091-1798,2168-894X. URL http://links.jstor.org/sici?sici=0091-1798(199007)
18:3<1269: TTCITD>2.0.CO;2-Q&origin=MSN.

Iqraa Meah, Gilles Blanchard, and Etienne Roquain. False discovery proportion envelopes with
m-consistency. Journal of Machine Learning Research, 25(270):1-52, 2024. URL http://jmlr.org/
papers/v25/23-1025.html.

Rosa J. Meijer, Thijmen J. P. Krebs, and Jelle J. Goeman. A region-based multiple testing method for
hypotheses ordered in space or time. Stat. Appl. Genet. Mol. Biol., 14(1):1-19, 2015. ISSN 2194-6302.
doi: 10.1515/sagmb-2013-0075. URL https://doi.org/10.1515/sagmb-2013-0075.

Nicolai Meinshausen. False discovery control for multiple tests of association under general depen-
dence. Scand. §. Statist., 33(2):227-237, 2006. ISSN 0303-6898. doi: 10.1111/j.1467-9469.2005.00488.x.
URL https://doi.org/10.1111/j.1467-9469.2005.00488.x.

Olaf Mersmann. microbenchmark: Accurate Timing Functions, 2024. URL https://CRAN.R-project.org/
package=microbenchmark. R package version 1.5.0.

Pierre Neuvial, Gilles Blanchard, Guillermo Durand, Nicolas Enjalbert-Courrech, and Etienne Roquain.
sanssouci: Post Hoc Multiple Testing Inference, 2024. URL https://sanssouci-org.github.io/sanssouci.
R package version 0.13.0.

Marie Perrot-Dockeés, Gilles Blanchard, Pierre Neuvial, and Etienne Roquain. Selective inference for
false discovery proportion in a hidden markov model. TEST, pages 1-27, 2023.

28

https://doi.org/10.1214/19-AOS1847
https://doi.org/10.1214/15-AOAS842
https://doi.org/10.1111/sjos.12453
https://doi.org/10.1214/aoms/1177728174
https://doi.org/10.1093/bioinformatics/btac693
https://doi.org/10.1198/016214506000000339
https://doi.org/10.1214/11-STS356
https://doi.org/10.1093/biomet/63.3.655
http://links.jstor.org/sici?sici=0091-1798(199007)18:3<1269:TTCITD>2.0.CO;2-Q&origin=MSN
http://links.jstor.org/sici?sici=0091-1798(199007)18:3<1269:TTCITD>2.0.CO;2-Q&origin=MSN
http://links.jstor.org/sici?sici=0091-1798(199007)18:3<1269:TTCITD>2.0.CO;2-Q&origin=MSN
http://jmlr.org/papers/v25/23-1025.html
http://jmlr.org/papers/v25/23-1025.html
http://jmlr.org/papers/v25/23-1025.html
https://doi.org/10.1515/sagmb-2013-0075
https://doi.org/10.1111/j.1467-9469.2005.00488.x
https://CRAN.R-project.org/package=microbenchmark
https://CRAN.R-project.org/package=microbenchmark
https://CRAN.R-project.org/package=microbenchmark
https://sanssouci-org.github.io/sanssouci

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2024. URL https://www.R-project.org/.

Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA,
2009. ISBN 1441412697

Anna Vesely, Livio Finos, and Jelle J. Goeman. Permutation-based true discovery guarantee by sum
tests. J. R. Stat. Soc. Ser. B. Stat. Methodol., 85(3):664—683, 2023. ISSN 1369-7412,1467-9868. doi:
10.1093/jrsssb/qkad019. URL https://doi.org/10.1093/jrsssb/qkad019.

Session information

R version 4.4.0 (2024-04-24)
Platform: aarch64-apple-darwin21.6.0
Running under: mac0S 15.1.1

Matrix products: default
BLAS: /opt/homebrew/Cellar/openblas/0.3.29/1ib/1libopenblasp-r0.3.29.dylib
LAPACK: /opt/homebrew/Cellar/r/4.4.0_1/1ib/R/1ib/libRlapack.dylib; LAPACK version 3.12.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Europe/Paris
tzcode source: internal

attached base packages:
[1] stats graphics grDevices datasets wutils methods base

other attached packages:
[1] microbenchmark_1.5.0

loaded via a namespace (and not attached):

[1] compiler_4.4.0 fastmap_1.1.1 cli_3.6.2 htmltools_0.5.8.1
[6] tools_4.4.0 yaml_2.3.8 tinytex_0.51 rmarkdown_2.26
[9] knitr 1.46 jsonlite_1.8.8 xfun_0.43 digest_0.6.35
[13] rlang 1.1.3 renv_1.0.7 evaluate_0.23

29

https://www.R-project.org/
https://doi.org/10.1093/jrsssb/qkad019

	Introduction
	Notation and reference family methodology
	Multiple testing notation
	Post hoc bounds with reference families
	Regions with a forest structure

	New algorithms
	Pruning the forest
	Fast algorithm to compute a curve of confidence bounds on a path of selection sets
	Illustration on a detailed example
	Proof of Theorem
	Derivation of
	Proof of and

	Implementation
	Numerical experiments
	Conclusion
	Acknowledgements
	References
	Session information

