
su
bm

itte
d

ISSN 2824-7795

A fast algorithm to compute a curve of
confidence upper bounds for the False
Discovery Proportion using a refer-
ence family with a forest structure

Guillermo Durand 1 Laboratoire de Mathématiques d’Orsay, Université Paris-Saclay

Date published: 2025-01-31 Last modified: 2025-01-31

Abstract

This paper presents a new algorithm (and an additional trick) that allows to compute fastly
an entire curve of post hoc bounds for the False Discovery Proportion when the underlying
bound 𝑉 ∗

ℜ construction is based on a reference family ℜ with a forest structure à la Durand
et al. (2020). By an entire curve, we mean the values 𝑉 ∗

ℜ(𝑆1), … , 𝑉 ∗
ℜ(𝑆𝑚) computed on a path of

increasing selection sets 𝑆1 ⊊ ⋯ ⊊ 𝑆𝑚, |𝑆𝑡| = 𝑡. The new algorithm leverages the fact that going
from 𝑆𝑡 to 𝑆𝑡+1 is done by adding only one hypothesis.

Keywords: multiple testing, algorithmic, post hoc inference, false discovery proportion, confidence
bound

Contents1

1 Introduction 22

2 Notation and reference family methodology 33

2.1 Multiple testing notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Post hoc bounds with reference families . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Regions with a forest structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 New algorithms 77

3.1 Pruning the forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.2 Fast algorithm to compute a curve of confidence bounds on a path of selection sets 99

3.3 Illustration on a detailed example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1110

3.4 Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1711

3.4.1 Derivation of (18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1712

3.4.2 Proof of (16) and (17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1713

4 Implementation 2314

5 Numerical experiments 2415

6 Conclusion 2716

7 Acknowledgements 2717

References 2718

Session information 2919

1Corresponding author: guillermo.durand@universite-paris-saclay.fr

1

https://orcid.org/0000-0003-4056-5631
mailto:guillermo.durand@universite-paris-saclay.fr


su
bm

itte
d

1 Introduction20

Multiple testing theory is often used for exploratory analysis, like Genome-Wide Association Studies,21

where multiple features are tested to find promising ones. Classical multiple testing theory like22

Family-Wise Error Rate (FWER) control or False Discovery Rate (FDR) control (Benjamini and23

Hochberg, 1995) can be used, but a more recent trend consists in the computation of post hoc bounds,24

also named post selection bounds or confidence envelopes, for the number of false positives, or,25

equivalently, for the False Discovery Proportion (FDP). This approach is notably advocated for in the26

context of exploratory research by (Goeman and Solari, 2011, Section 1).27

Mathematically speaking, a confidence upper bound (we prefer to say upper bound instead of envelope28

for obvious reasons) is a function 𝑉̂ ∶ 𝒫 (ℕ∗
𝑚) → ℕ𝑚, where ℕ𝑚 = {0, … , 𝑚}, ℕ∗

𝑚 = {1, … , 𝑚} and 𝑚29

is the number of hypotheses, such that30

∀𝛼 ∈]0, 1[, ℙ (∀𝑆 ⊆ ℕ∗
𝑚, |𝑆 ∩ ℋ0| ≤ 𝑉̂ (𝑆)) ≥ 1 − 𝛼. (1)

Here, 𝛼 is a target error rate and ℋ0 is the set of hypotheses indices that are true null hypotheses.31

Note that the construction of 𝑉̂ depends on 𝛼 and on the random data 𝑋 and the dependence is omitted32

to lighten notation and because there is no ambiguity. The meaning of Equation (1) is that 𝑉̂ provides33

an upper bound of the number of null hypotheses in 𝑆 for any selection set 𝑆 ⊆ ℕ∗
𝑚, which allows34

the user to perform post hoc selection on their data without breaching the statistical guarantee. Also35

note that by dividing by |𝑆| ∨ 1 in Equation (1) we also get a confidence bound for the FDP:36

∀𝛼 ∈]0, 1[, ℙ (∀𝑆 ⊆ ℕ∗
𝑚, FDP(𝑆) ≤

𝑉̂ (𝑆)
|𝑆| ∨ 1

) ≥ 1 − 𝛼. (2)

So post hoc bounds provide ways to construct FDP-controlling sets instead of FDR-controlling sets,37

which is much more desirable given the nature of the FDR as an expected value. See for example38

(Bogdan et al., 2015, Figure 4) for a credible example where the FDR is controlled but the FDP has a39

highly undesirable behavior (either 0 because no discoveries at all are made, either higher than the40

target level).41

The first confidence bounds are found in Genovese and Wasserman (2006) and Meinshausen (2006),42

although, in the latter, only for selection sets of the form {𝑖 ∈ ℕ𝑚 ∶ 𝑃𝑖 ≤ 𝑡} where 𝑃𝑖 is the 𝑝-value43

associated to the null hypothesis 𝐻0,𝑖. In Goeman and Solari (2011) the authors re-wrote the generic44

construction of Genovese and Wasserman (2006) in terms of closed testing Marcus et al. (1976),45

proposed several practical constructions and sparked a new interest in multiple testing procedures46

based on confidence envelopes. This work was followed by a prolific series of works like Meijer et al.47

(2015) or Vesely et al. (2023). In Blanchard et al. (2020), the authors introduce the new point of view48

of references families (see Section 2.2) to construct post hoc bounds, and show the links between this49

meta-technique and the closed testing one, along with new bounds.50

Following the reference family trail, in Durand et al. (2020) the authors introduce new reference51

families with a special set-theoretic constraint that allows an efficient computation of the bound52

denoted by 𝑉 ∗
ℜ on a single selection set 𝑆. The problem is that one often wants to compute 𝑉 ∗

ℜ on a53

whole path of selection sets (𝑆𝑡)𝑡∈ℕ∗
𝑚 , for example the hypotheses attached to the 𝑡 smallest 𝑝-values.54

Whereas the algorithm provided in the aforementioned work (Durand et al., 2020, Algorithm 1),55

which is reproduced here, see Algorithm 1 , is fast for a single evaluation, it is slow and inefficient56

to repeatedly call it to compute each 𝑉 ∗
ℜ(𝑆𝑡). If the 𝑆𝑡’s are nested, and growing by one, that is57

𝑆1 ⊊ ⋯ ⊊ 𝑆𝑚 and |𝑆𝑡| = 𝑡, there is a way to efficiently compute (𝑉 ∗
ℜ(𝑆𝑡))𝑡∈ℕ𝑚

by leveraging the nested58

structure.59

This is the main contribution of the present paper: a new and fast algorithm computing the curve60

(𝑉 ∗
ℜ(𝑆𝑡))𝑡∈ℕ𝑚

for a nested path of selection sets, that is presented in Section 3.2. An additional61

2



su
bm

itte
d

algorithm that can speed up computations both for the single-evaluation algorithm and the new62

curve-evaluation algorithm is also presented, in Section 3.1. A detailed example illustrating how63

the new algorithms work is provided in Section 3.3, and the proof that the fast algorithm indeed64

computes correctly the curve is in Section 3.4. In Section 2.1, all necessary notation and vocabulary is65

re-introduced, most of it being the same as in Durand et al. (2020). In Section 4 we discuss the current66

implementations of all the presented algorithms in the R (R Core Team, 2024) package sanssouci67

(Neuvial et al., 2024). Finally, a few numerical experiments are presented in Section Section 5 to68

demonstrate the computation time gain.69

2 Notation and reference family methodology70

2.1 Multiple testing notation71

As is usual in multiple testing theory, we consider a probability space (Ω,𝒜 , ℙ), a model 𝒫 on a72

measurable space (𝒳 , 𝔛), and data that is represented by a random variable 𝑋 ∶ (Ω,𝒜) → (𝒳,𝔛)73

with 𝑋 ∼ 𝑃 ∈ 𝒫, that is, the law of 𝑋 is comprised in the model 𝒫.74

Then we consider 𝑚 ≥ 1 null hypotheses 𝐻0,1, … , 𝐻0,𝑚 which formally are submodels, that is subsets75

of 𝒫. The associated alternative hypotheses 𝐻1,1, … , 𝐻1,𝑚 are submodels such that 𝐻0,𝑖 ∩ 𝐻1,𝑖 = ∅76

for all 𝑖 ∈ ℕ∗
𝑚. We denote by ℋ0 = ℋ0(𝑃) (the dependence in 𝑃 will be dropped when there is no77

ambiguity) the set of all null hypotheses that are true, that is ℋ0(𝑃) = {𝑖 ∈ ℕ∗
𝑚 ∶ 𝑃 ∈ 𝐻0,𝑖}. In78

other words, 𝐻0,𝑖 is true if and only if 𝑖 ∈ ℋ0. For testing each 𝐻0,𝑖, 𝑖 ∈ ℕ∗
𝑚, we have at hand a79

𝑝-value 𝑝𝑖 = 𝑝𝑖(𝑋) (the dependence in 𝑋 will be dropped when there is no ambiguity) which is a80

random variable with the following property : if 𝑖 ∈ ℋ0, then the law of 𝑝𝑖 is super-uniform, which81

is sometimes denoted ℒ(𝑝𝑖) ⪰ 𝒰([0, 1]). This means that in such case, the cumulative distribution82

function (cdf) of 𝑝𝑖 is always smaller than or equal to the cdf of a random variable 𝑈 ∼ 𝒰([0, 1]) :83

∀𝑥 ∈ ℝ, ℙ (𝑝𝑖 ≤ 𝑥) ≤ ℙ (𝑈 ≤ 𝑥) = 0 ∨ (𝑥 ∧ 1). (3)

For every subset of hypotheses 𝑆 ⊆ ℕ∗
𝑚, let 𝑉 (𝑆) = |𝑆 ∩ ℋ0|. If we think of 𝑆 as a selection set of84

hypotheses deemed significant, 𝑉 (𝑆) is then the number of false positives (FP) in 𝑆. 𝑉 (𝑆) is our main85

object of interest and the quantity that we wish to over-estimate with confidence upper bounds (see86

Equation (1) or the more formal Equation (4) below).87

Finally let us consider the following toy example, that will be re-used in the remainder of the paper.88

Example 2.1 (Gaussian one-sided). In this case we assume that 𝑋 = (𝑋1, … , 𝑋𝑚) is a Gaussian89

vector and the null hypotheses refer to the nullity of the means in contrast to their positivity. That90

is, formally, (𝒳 , 𝔛) = (ℝ𝑚,ℬ (ℝ𝑚)), 𝒫 = {𝒩 (𝜇, Σ) ∶ ∀𝑗 ∈ ℕ∗
𝑚, 𝜇𝑗 ≥ 0, Σ positive semidefinite}, for91

each 𝑖 ∈ ℕ∗
𝑚, 𝐻0,𝑖 = {𝒩 (𝜇, Σ) ∈ 𝒫 ∶ 𝜇𝑖 = 0} and 𝐻1,𝑖 = {𝒩 (𝜇, Σ) ∈ 𝒫 ∶ 𝜇𝑖 > 0}. Then we can92

construct 𝑝-values by letting 𝑝𝑖(𝑋) = Φ̄(𝑋𝑖) = 1 − Φ(𝑋𝑖), where Φ denotes the cdf of 𝒩 (0, 1) and Φ̄93

the associated survival function.94

2.2 Post hoc bounds with reference families95

With the formalism introduced in last section, a confidence upper bound is a functional 𝑉̂ ∶ 𝒳×]0, 1[→96

(𝒫 (ℕ∗
𝑚) → ℕ𝑚) such that,97

∀𝑃 ∈ 𝒫 , ∀𝑋 ∼ 𝑃, ∀𝛼 ∈]0, 1[, ℙ (∀𝑆 ⊆ ℕ∗
𝑚, 𝑉 (𝑆) ≤ 𝑉̂ (𝑋 , 𝛼)(𝑆)) ≥ 1 − 𝛼. (4)

In the remainder, the dependence in (𝑋 , 𝛼) will be dropped when there is no ambiguity and 𝑉̂ (𝑋 , 𝛼)98

will simply be written 𝑉̂.99

3



su
bm

itte
d

As said in the Introduction, many constructions, ultimately theoretically equivalent but differing by100

the practical steps involved, exist, and in this paper we focus on the meta-construction of Blanchard101

et al. (2020) based on reference families. A reference family is a family ℜ = ℜ(𝑋 , 𝛼) = (𝑅𝑘, 𝜁𝑘)𝑘∈𝒦102

with |𝒦 | ≤ 2𝑚, 𝑅𝑘 ⊆ ℕ∗
𝑚, 𝜁𝑘 ∈ {0, … , |𝑅𝑘|} where everything (that is, 𝒦 and all the 𝑅𝑘 and 𝜁𝑘) depends103

on (𝑋 , 𝛼) but the dependency is not explicitly written. The 𝑅𝑘 are all distinct. We also define the104

following error criterion for a reference family, named Joint Error Rate (JER):105

JER(ℜ) = ℙ (∃𝑘 ∈ 𝒦, |𝑅𝑘 ∩ℋ0| > 𝜁𝑘) = ℙ (∃𝑘 ∈ 𝒦, 𝑉 (𝑅𝑘) > 𝜁𝑘) . (5)

In the following, we are only interested in reference families that control the JER at level 𝛼:106

∀𝑃 ∈ 𝒫 , ∀𝑋 ∼ 𝑃, ∀𝛼 ∈]0, 1[, 1 − JER(ℜ(𝑋 , 𝛼)) = ℙ (∀𝑘 ∈ 𝒦, 𝑉 (𝑅𝑘) ≤ 𝜁𝑘) ≥ 1 − 𝛼. (6)

Note that Equation (6) is really similar to Equation (4) except that the uniform guarantee, instead of107

being over all 𝑆 ⊆ ℕ∗
𝑚, is only over all the 𝑅𝑘 ⊆ ℕ∗

𝑚, 𝑘 ∈ 𝒦, with 𝒦 having cardinality potentially108

much smaller than 2𝑚. A global confidence bound is then derived from a JER-controlling reference109

family by interpolation. Let110

𝒜(ℜ) = {𝐴 ⊆ ℕ∗
𝑚 ∶ ∀𝑘 ∈ 𝒦, |𝑅𝑘 ∩ 𝐴| ≤ 𝜁𝑘} . (7)

What says the JER control is that ℋ0 ∈ 𝒜(ℜ). We leverage this information with the following111

confidence bound construction:112

𝑉 ∗
ℜ(𝑆) = max

𝐴∈𝒜(ℜ)
|𝑆 ∩ 𝐴| (8)

which optimally uses the information provided by the JER control of the reference family, as proven113

by Proposition 2.1 of Blanchard et al. (2020). Because of the max𝐴∈𝒜(ℜ), the computation of 𝑉 ∗
ℜ(𝑆)114

is generally intractable (see Proposition 2.2 of Blanchard et al. (2020)), but for specific structures of115

reference families, a polynomial computation can be derived. This is the topic of Durand et al. (2020)116

and of next section.117

2.3 Regions with a forest structure118

The core concept of this section is to assume that the regions 𝑅𝑘’s of the reference family are what119

we called in Durand et al. (2020) a forest structure, that is two regions are either disjoint or nested:120

∀𝑘, 𝑘′ ∈ 𝒦, 𝑅𝑘 ∩ 𝑅𝑘′ ∈ {𝑅𝑘, 𝑅𝑘′ , ∅}. (9)

Representing the 𝑅𝑘’s with a directed graph, where there is an oriented edge 𝑅𝑘 ← 𝑅𝑘′ if and only if121

𝑅𝑘 ⊂ 𝑅𝑘′ and there is no 𝑅𝑘″ such that 𝑅𝑘 ⊊ 𝑅𝑘″ ⊊ 𝑅𝑘′ gives a forest, hence the name. See Example 2.2122

and its representation in Figure 1.123

We also need to introduce the notion of depth with the following function:124

𝜙 ∶ { 𝒦 → ℕ∗

𝑘 ↦ 1 + |{𝑘′ ∈ 𝒦 ∶ 𝑅𝑘 ⊊ 𝑅𝑘′}| .
(10)

Example 2.2. Let 𝑚 = 25, 𝑅1 = {1, … , 20}, 𝑅2 = {1, 2}, 𝑅3 = {3, … , 10}, 𝑅4 = {11, … , 20}, 𝑅5 =125

{5, … , 10}, 𝑅6 = {11, … , 16}, 𝑅7 = {17, … , 20}, 𝑅8 = {21, 22}, 𝑅9 = {22}. This is the same example as126

Example 2 of Durand et al. (2020) and it is graphically depicted in Figure 1. The sets 𝑅1, 𝑅8 are of127

depth 1; the sets 𝑅2, 𝑅3, 𝑅4, 𝑅9 are of depth 2; the sets 𝑅5, 𝑅6, 𝑅7 are of depth 3.128

Another tool of Durand et al. (2020) that will be used is its Lemma 2, that is the identification129

of ℜ with a set 𝒞 ⊂ {(𝑖, 𝑗) ∈ (ℕ𝑁
∗)2 ∶ 𝑖 ≤ 𝑗} such that for (𝑖, 𝑗), (𝑖′, 𝑗′) ∈ 𝒞, {𝑖, … , 𝑗} ∩ {𝑖′, … , 𝑗′} ∈130

4



su
bm

itte
d

R1

R2 R3 R4

R5 R6 R7

R8

R9

Figure 1: The regions of Example 2.2.

{∅, {𝑖, … , 𝑗}, {𝑖′, … 𝑗′}}. With this identification, each 𝑅𝑘 = 𝑅(𝑖,𝑗) can be written as 𝑃𝑖∶𝑗 = ⋃𝑖≤𝑛≤𝑗 𝑃𝑛131

where (𝑃𝑛)1≤𝑛≤𝑁 is a partition of ℕ∗
𝑚. The 𝑃𝑛’s were called atoms in Durand et al. (2020) because132

they have the thinnest granularity in the structure, but to continue the analogy with graphs, forests133

and trees, they can also be called leafs. See Example 2.3 for a concrete example.134

Example 2.3 (Continuation of Example 2.2). For the reference family given in Example 2.2, a partition135

of atoms is given by 𝑃1 = 𝑅2, 𝑃2 = 𝑅3 ∖ 𝑅5, 𝑃3 = 𝑅5, 𝑃4 = 𝑅6, 𝑃5 = 𝑅7, 𝑃6 = 𝑅8 ∖ 𝑅9, 𝑃7 = 𝑅9,136

𝑃8 = ℕ∗
𝑚 ∖ {𝑅1 ∪ 𝑅8}. Then 𝑅1 = 𝑃1∶5, 𝑅3 = 𝑃2∶3, 𝑅4 = 𝑃4∶5 and 𝑅8 = 𝑃6∶7. Note that not all atoms137

are regions of the family. Those new labels are graphically depicted in Figure 2. The nodes that138

correspond to atoms that are not in the family are depicted with a dashed circle, and all atoms are139

depicted in gray. This is the same example as Example 3 of Durand et al. (2020).140

P1:5

P1 P2:3 P4:5

P2 P3 P4 P5

P6:7

P6 P7

P8

Figure 2: The regions of Example 2.2 but with the labels of Example 2.3.

When all leaves are regions of the family, it is said that the family is complete. If this is not the141

case, the family can easily be completed by adding the missing leaves (and using their cardinality as142

associated 𝜁) without changing the value 𝑉 ∗
ℜ. See Definition 2, Lemma 6 and Algorithm 2 of Durand143

et al. (2020) for the details.144

Durand et al. (2020) also proved in their Theorem 1 that:145

𝑉 ∗
ℜ(𝑆) = min

𝑄⊆𝒦
(∑
𝑘′∈𝑄

𝜁𝑘′ ∧ |𝑆 ∩ 𝑅𝑘′ | + |𝑆 ∖ ⋃
𝑘′∈𝑄

𝑅𝑘′ |) (11)

and, even better, in their Corollary 1 (iii) that:146

𝑉 ∗
ℜ(𝑆) = min

𝑄∈𝔓
∑
𝑘′∈𝑄

𝜁𝑘′ ∧ |𝑆 ∩ 𝑅𝑘′ |, (12)

5



su
bm

itte
d

provided that the family is complete. Here, 𝔓 ⊆ 𝒫 (𝒦) is the set of subsets of 𝒦 that realize a147

partition, that is, the set of 𝑄 ⊆ 𝒦 such that the 𝑅𝑘, 𝑘 ∈ 𝑄, form a partition of ℕ∗
𝑚. So the minimum148

in Equation (12) is over way less elements than in Equation (11).149

Finally, that paper provides a polynomial algorithm to 𝑉 ∗
ℜ(𝑆) for a single 𝑆 ⊆ ℕ∗

𝑚, which we reproduce150

here in Algorithm 1 . The family is assumed complete, otherwise the first step would be to complete151

it. In the original paper, 𝒦 ℎ used to designate the elements of 𝒦 at depth ℎ plus the atoms at depth152

≤ ℎ. Actually one can realize that the last assumption is not needed for this algorithm to perform153

exactly the same, with the added benefit of not repeating computations at the atoms that don’t have154

the maximal depth. The only change is that sometimes 𝑆𝑢𝑐𝑐𝑘 can be empty, in which case we simply155

let 𝑛𝑒𝑤𝑉 𝑒𝑐𝑘 = 𝜁𝑘 ∧ |𝑆 ∩ 𝑅𝑘|. Thus, here in this paper, we define 𝒦 ℎ as only the elements of 𝒦 at156

depth ℎ (the previous intricate definition may still be necessary for the proof of Theorem 1 of Durand157

et al. (2020)): 𝒦 ℎ = {(𝑖, 𝑗) ∈ 𝒦 ∶ 𝜙(𝑖, 𝑗) = ℎ}, ℎ ≥ 1. This is the only deviation from the notation of158

Durand et al. (2020). Finally note that in the ongoing analogy with graph theory, the elements of 𝒦 1
159

are the roots of the different trees making up the forest.160

Algorithm 1 Computation of a given 𝑉 ∗
ℜ(𝑆)

1: procedure Vstar(S, ℜ = (𝑅𝑘, 𝜁𝑘)𝑘∈𝒦 with ℜ complete)
2: 𝐻 ← max𝑘∈𝒦 𝜙(𝑘) ▷ maximum depth
3: for ℎ = 𝐻 − 1,… , 1 do
4: 𝒦 ℎ ← {𝑘 ∈ 𝒦 ∶ 𝜙(𝑘) = ℎ}
5: 𝑛𝑒𝑤𝑉 𝑒𝑐 ← (0)𝑘∈𝒦 ℎ

6: for 𝑘 ∈ 𝒦 ℎ do
7: 𝑆𝑢𝑐𝑐𝑘 ← {𝑘′ ∈ 𝒦 ℎ+1 ∶ 𝑅𝑘′ ⊆ 𝑅𝑘}
8: if 𝑆𝑢𝑐𝑐𝑘 = ∅ then
9: 𝑛𝑒𝑤𝑉 𝑒𝑐𝑘 ← 𝜁𝑘 ∧ |𝑆 ∩ 𝑅𝑘|

10: else
11: 𝑛𝑒𝑤𝑉 𝑒𝑐𝑘 ← min (𝜁𝑘 ∧ |𝑆 ∩ 𝑅𝑘|, ∑𝑘′∈𝑆𝑢𝑐𝑐𝑘 𝑉 𝑒𝑐𝑘′)
12: end if
13: end for
14: 𝑉 𝑒𝑐 ← 𝑛𝑒𝑤𝑉 𝑒𝑐
15: end for
16: return ∑𝑘∈𝒦 1 𝑉 𝑒𝑐𝑘
17: end procedure

LIGHTBULB Tip

In the practical implementation of this algorithm (and of the following Algorithm 2 ), 𝑉 𝑒𝑐 and
𝑛𝑒𝑤𝑉 𝑒𝑐 are always of size𝑁 (the number of leaves) instead of the cardinality of𝒦 ℎ. And the sum
∑𝑘′∈𝑆𝑢𝑐𝑐𝑘 𝑉 𝑒𝑐𝑘′ is really easy to compute: if 𝑅𝑘 = 𝑅(𝑖0,𝑖𝑝−1) = ⋃𝑝

𝑗=1 𝑅(𝑖𝑗−1,𝑖𝑗−1) = ⋃𝑖0≤𝑛≤𝑖𝑝−1 𝑃𝑛 ∈
𝒦 ℎ for some 𝑝 ≥ 2, a strictly increasing sequence (𝑖0, … , 𝑖𝑝) and 𝑅(𝑖𝑗−1,𝑖𝑗−1) ∈ 𝒦 ℎ+1 for all
1 ≤ 𝑗 ≤ 𝑝, then we simply sum 𝑉 𝑒𝑐 over the indices from 𝑖0 to 𝑖𝑝 − 1. After that, the computed
quantity is set in 𝑛𝑒𝑤𝑉 𝑒𝑐 at index 𝑖0. So actually computing 𝑆𝑢𝑐𝑐𝑘 is not needed and not done.

161

The computation time of the algorithm is in 𝑂(𝑚|𝒦|), which is fast for a single evaluation, but calling162

it repeatedly on a path of selection sets (𝑆𝑡)𝑡∈ℕ∗
𝑚 has complexity 𝑂(𝑚2|𝒦 |) which is not desirable and163

makes computations difficult in practice, hence the need for a new, faster algorithm.164

Remark 2.1. The specific computation of the 𝑅𝑘’s and the 𝜁𝑘’s such that Equation (6) holds is outside165

the scope of the present paper, but different constructions can be found in Blanchard et al. (2020),166

6



su
bm

itte
d

Durand et al. (2020) or Blain et al. (2022) for example.167

3 New algorithms168

3.1 Pruning the forest169

We remark the simple fact that if, for example, (1, 1), (2, 2), (1, 2) ∈ 𝒦, and 𝜁(1,2) ≥ 𝜁(1,1) + 𝜁(2,2), then170

𝑅(1,2) never contributes to the computation of any 𝑉 ∗
ℜ(𝑆) and it could just be removed from ℜ. We171

now formalize and prove this pruning scheme.172

Definition 3.1 (Pruning). We define by 𝒦𝔭𝔯 (𝒦 pruned) the set of elements of 𝒦 such that we173

removed all (𝑖, 𝑖′) such that there exists 𝑝 ≥ 2 and integers 𝑖1, … , 𝑖𝑝−1 such that, when setting 𝑖0 = 𝑖174

and 𝑖𝑝 = 𝑖′ + 1, the sequence (𝑖0, … , 𝑖𝑝) is strictly increasing, (𝑖𝑗−1, 𝑖𝑗 − 1) ∈ 𝒦 for all 1 ≤ 𝑗 ≤ 𝑝 and175

finally 𝜁(𝑖,𝑖′) = 𝜁(𝑖0,𝑖𝑝−1) ≥ ∑𝑝
𝑗=1 𝜁(𝑖𝑗−1,𝑖𝑗−1).176

An important note is that for a removed (𝑖, 𝑖′) ∈ 𝒦∖𝒦𝔭𝔯, we can always choose the indices 𝑖1, … , 𝑖𝑝−1177

such that actually (𝑖𝑗, 𝑖𝑗+1 − 1) ∈ 𝒦𝔭𝔯 and not only 𝒦, because if (𝑖𝑗, 𝑖𝑗+1 − 1) ∈ 𝒦 ∖𝒦𝔭𝔯 it can itself178

be fragmented, and this decreasing recursion eventually ends (the later possible being at the atoms179

of the forest structure). Also note that removing elements from 𝒦 does not alter the fact that we180

have at hand a forest structure, that is, the reference family defined by ℜ𝔭𝔯 = (𝑅𝑘, 𝜁𝑘)𝑘∈𝒦 𝔭𝔯 has a181

forest structure. Because pruning a forest structure does not touch the atoms, note finally that if 𝒦182

is complete then so is 𝒦𝔭𝔯.183

The following proposition states that pruning the forest does not alter the bound.184

Proposition 3.1. For any 𝑆 ⊆ ℕ∗
𝑚, 𝑉 ∗

ℜ(𝑆) = 𝑉 ∗
ℜ𝔭𝔯(𝑆).185

Proof. Recall Equation (11) and, because ℜ𝔭𝔯 also has a forest structure,186

𝑉 ∗
ℜ𝔭𝔯(𝑆) = min

𝑄⊆𝒦 𝔭𝔯
(∑
𝑘′∈𝑄

𝜁𝑘′ ∧ |𝑆 ∩ 𝑅𝑘′ | + |𝑆 ∖ ⋃
𝑘′∈𝑄

𝑅𝑘′ |) , (13)

so we immediately get that 𝑉 ∗
ℜ(𝑆) ≤ 𝑉 ∗

ℜ𝔭𝔯(𝑆).187

Let any𝑄 ⊆ 𝒦. We split𝑄 in𝐴 elements of𝒦∖𝒦𝔭𝔯, denoted (𝑖0,𝑎, 𝑖𝑝𝑎,𝑎−1), 1 ≤ 𝑎 ≤ 𝐴 for some 𝑝𝑎 ≥ 2,188

and 𝐵 elements of 𝒦𝔭𝔯, simply denoted 𝑘𝑏, 1 ≤ 𝑏 ≤ 𝐵. By the definition of 𝒦𝔭𝔯 and the previous189

remarks, for any 1 ≤ 𝑎 ≤ 𝐴, there exist integers 𝑖1,𝑎, … , 𝑖𝑝𝑎−1,𝑎 such that 𝑖0,𝑎 < 𝑖1,𝑎 < ⋯ < 𝑖𝑝𝑎−1,𝑎 < 𝑖𝑝𝑎,𝑎,190

(𝑖𝑗−1,𝑎, 𝑖𝑗,𝑎 − 1) ∈ 𝒦𝔭𝔯 for all 1 ≤ 𝑗 ≤ 𝑝𝑎, and 𝜁(𝑖0,𝑎,𝑖𝑝𝑎,𝑎−1) ≥ ∑𝑝𝑎
𝑗=1 𝜁(𝑖𝑗−1,𝑎,𝑖𝑗,𝑎−1). Now let191

𝑄𝔭𝔯 = {𝑘𝑏 ∶ 1 ≤ 𝑏 ≤ 𝐵} ∪ {(𝑖𝑗−1,𝑎, 𝑖𝑗,𝑎 − 1) ∶ 1 ≤ 𝑎 ≤ 𝐴, 1 ≤ 𝑗 ≤ 𝑝𝑎}. (14)

We have that 𝑄𝔭𝔯 ⊆ 𝒦𝔭𝔯 and ⋃𝑘∈𝑄 𝑅𝑘 = ⋃𝑘∈𝑄𝔭𝔯 𝑅𝑘. Then,192

∑
𝑘∈𝑄

𝜁𝑘 ∧ |𝑆 ∩ 𝑅𝑘| + |𝑆 ∖ ⋃
𝑘∈𝑄

𝑅𝑘| =
𝐵
∑
𝑏=1

𝜁𝑘𝑏 ∧ |𝑆 ∩ 𝑅𝑘𝑏 |

+
𝐴
∑
𝑎=1

𝜁(𝑖0,𝑎,𝑖𝑝𝑎,𝑎−1) ∧ |𝑆 ∩ 𝑅(𝑖0,𝑎,𝑖𝑝𝑎,𝑎−1)|

+ |𝑆 ∖ ⋃
𝑘∈𝑄

𝑅𝑘| ,

7



su
bm

itte
d

but for all 1 ≤ 𝑎 ≤ 𝐴,193

𝜁(𝑖0,𝑎,𝑖𝑝𝑎,𝑎−1) ≥
𝑝𝑎
∑
𝑗=1

𝜁(𝑖𝑗−1,𝑎,𝑖𝑗,𝑎−1)

≥
𝑝𝑎
∑
𝑗=1

𝜁(𝑖𝑗−1,𝑎,𝑖𝑗,𝑎−1) ∧ |𝑆 ∩ 𝑅(𝑖𝑗−1,𝑎,𝑖𝑗,𝑎−1)|,

so the term ∑𝐴
𝑎=1 𝜁(𝑖0,𝑎,𝑖𝑝𝑎,𝑎−1) ∧ |𝑆 ∩ 𝑅(𝑖0,𝑎,𝑖𝑝𝑎,𝑎−1)| is greater than or equal to194

𝐴
∑
𝑎=1

(
𝑝𝑎
∑
𝑗=1

𝜁(𝑖𝑗−1,𝑎,𝑖𝑗,𝑎−1) ∧ |𝑆 ∩ 𝑅(𝑖𝑗−1,𝑎,𝑖𝑗,𝑎−1)|) ∧ |𝑆 ∩ 𝑅(𝑖0,𝑎,𝑖𝑝𝑎,𝑎−1)|,

which is simply equal to195

𝐴
∑
𝑎=1

𝑝𝑎
∑
𝑗=1

𝜁(𝑖𝑗−1,𝑎,𝑖𝑗,𝑎−1) ∧ |𝑆 ∩ 𝑅(𝑖𝑗−1,𝑎,𝑖𝑗,𝑎−1)|.

Furthermore |𝑆 ∖ ⋃𝑘∈𝑄 𝑅𝑘| = |𝑆 ∖ ⋃𝑘∈𝑄𝔭𝔯 𝑅𝑘| so finally:196

∑
𝑘∈𝑄

𝜁𝑘 ∧ |𝑆 ∩ 𝑅𝑘| + |𝑆 ∖ ⋃
𝑘∈𝑄

𝑅𝑘| ≥ ∑
𝑘∈𝑄𝔭𝔯

𝜁𝑘 ∧ |𝑆 ∩ 𝑅𝑘| + |𝑆 ∖ ⋃
𝑘∈𝑄𝔭𝔯

𝑅𝑘| (15)

≥ 𝑉 ∗
ℜ𝔭𝔯(𝑆).

Note that Equation (15) is true even if there are some 𝑏 ∈ {1, … , 𝐵}, 𝑎 ∈ {1, … , 𝐴}, 𝑗 ∈ {1, … , 𝑝𝑎} such197

that 𝑘𝑏 = (𝑖𝑗−1,𝑎, 𝑖𝑗,𝑎 − 1). We minimize over all 𝑄 to get that 𝑉 ∗
ℜ(𝑆) ≥ 𝑉 ∗

ℜ𝔭𝔯(𝑆). �198

This gives a practical way to speed up computations by first pruning the family before computing199

any 𝑉 ∗
ℜ(𝑆), because 𝒦

𝔭𝔯 is smaller than 𝒦, and by the above Proposition there is no theoretical loss200

in doing so.201

Furthermore, pruning can be done really simply by following Algorithm 1 for 𝑆 = ℕ∗
𝑚, and pruning202

when appropriate. This gives the following Algorithm 2 , assuming, for simplicity, that the family is203

complete. The computation time of the algorithm is the same as Algorithm 1 , that is 𝑂(𝑚|𝒦|). Note204

that the only differences between Algorithm 2 and Algorithm 1 are the pruning step and 𝜁𝑘 replacing205

𝜁𝑘 ∧ |𝑆 ∩ 𝑅𝑘|, because 𝜁𝑘 ≤ |𝑅𝑘| and here 𝑆 = ℕ∗
𝑚, so 𝜁𝑘 ∧ |ℕ∗

𝑚 ∩ 𝑅𝑘| = 𝜁𝑘. Also note that the algorithm206

returns 𝑉 ∗
ℜ(ℕ

∗
𝑚) as a by-product. The following proposition states that Algorithm 2 indeed produces207

the pruned region as in Definition 3.1.208

Proposition 3.2. The final ℒ returned by Algorithm 2 is equal to 𝒦𝔭𝔯: ℒ = 𝒦𝔭𝔯.209

Proof. First, 𝒦 ∖ℒ ⊆ 𝒦 ∖𝒦𝔭𝔯 is trivial: a 𝑘 such that 𝜁𝑘 ≥ ∑𝑘′∈𝑆𝑢𝑐𝑐𝑘 𝑉 𝑒𝑐𝑘′ obviously satisfies the210

condition of Definition 3.1 to be pruned.211

Now let (𝑖, 𝑖′) ∈ 𝒦 ∖ 𝒦𝔭𝔯 an element that is pruned by Definition 3.1, so there exists 𝑝 ≥ 2212

and integers 𝑖1, … , 𝑖𝑝−1 such that, when setting 𝑖0 = 𝑖 and 𝑖𝑝 = 𝑖′ + 1, the sequence (𝑖0, … , 𝑖𝑝) is213

strictly increasing, (𝑖𝑗−1, 𝑖𝑗 − 1) ∈ 𝒦 for all 1 ≤ 𝑗 ≤ 𝑝 and finally 𝜁(𝑖,𝑖′) = 𝜁(𝑖0,𝑖𝑝−1) ≥ ∑𝑝
𝑗=1 𝜁(𝑖𝑗−1,𝑖𝑗−1).214

Then by the proof of Theorem 1 of Durand et al. (2020) but applied to 𝑆 = 𝑅(𝑖,𝑖′) we have that215

∑𝑝
𝑗=1 𝜁(𝑖𝑗−1,𝑖𝑗−1) ≥ ∑𝑘′∈𝑆𝑢𝑐𝑐(𝑖,𝑖′) 𝑉 𝑒𝑐𝑘′ (see the unnumbered line just above Equation (A4) in that paper)216

and so 𝜁(𝑖,𝑖′) ≥ ∑𝑘′∈𝑆𝑢𝑐𝑐(𝑖,𝑖′) 𝑉 𝑒𝑐𝑘′ hence (𝑖, 𝑖
′) is pruned by Algorithm 2 and 𝒦 ∖𝒦𝔭𝔯 ⊆ 𝒦 ∖ℒ.217

In the end, 𝒦 ∖𝒦𝔭𝔯 = 𝒦 ∖ℒ so 𝒦𝔭𝔯 = ℒ. �218

8



su
bm

itte
d

Algorithm 2 Pruning of ℜ
1: procedure Pruning(ℜ = (𝑅𝑘, 𝜁𝑘)𝑘∈𝒦 with ℜ complete)
2: ℒ ← 𝒦
3: 𝐻 ← max𝑘∈𝒦 𝜙(𝑘) ▷ maximum depth
4: for ℎ = 𝐻 − 1,… , 1 do
5: 𝒦 ℎ ← {𝑘 ∈ 𝒦 ∶ 𝜙(𝑘) = ℎ}
6: 𝑛𝑒𝑤𝑉 𝑒𝑐 ← (0)𝑘∈𝒦 ℎ

7: for 𝑘 ∈ 𝒦 ℎ do
8: 𝑆𝑢𝑐𝑐𝑘 ← {𝑘′ ∈ 𝒦 ℎ+1 ∶ 𝑅𝑘′ ⊆ 𝑅𝑘}
9: if 𝑆𝑢𝑐𝑐𝑘 = ∅ then

10: 𝑛𝑒𝑤𝑉 𝑒𝑐𝑘 ← 𝜁𝑘
11: else
12: if 𝜁𝑘 ≥ ∑𝑘′∈𝑆𝑢𝑐𝑐𝑘 𝑉 𝑒𝑐𝑘′ then
13: ℒ ← ℒ ∖ {𝑘} ▷ pruning of the region indexed by 𝑘
14: end if
15: 𝑛𝑒𝑤𝑉 𝑒𝑐𝑘 ← min (𝜁𝑘, ∑𝑘′∈𝑆𝑢𝑐𝑐𝑘 𝑉 𝑒𝑐𝑘′)
16: end if
17: end for
18: 𝑉 𝑒𝑐 ← 𝑛𝑒𝑤𝑉 𝑒𝑐
19: end for
20: return (ℒ ,∑𝑘∈𝒦 1 𝑉 𝑒𝑐𝑘)
21: end procedure

3.2 Fast algorithm to compute a curve of confidence bounds on a path of selection219

sets220

Let (𝑖1, … , 𝑖𝑚) a permutation of ℕ∗
𝑚, eventually random, and, for all 𝑡 ∈ ℕ∗

𝑚, let 𝑆𝑡 = {𝑖1, … , 𝑖𝑡} and221

𝑆0 = ∅. For example, (𝑖1, … , 𝑖𝑚) can be the permutation ordering the 𝑝-values in increasing order222

and in that case 𝑆𝑡 becomes the set of indices of the 𝑡 smallest 𝑝-values. Assume that we want to223

compute all 𝑉 ∗
ℜ(𝑆𝑡) for all 𝑡 ∈ {0, … , 𝑚}, this is what we call the curve of confidence bounds indexed224

by (𝑖1, … , 𝑖𝑚). Applying Algorithm 1 to compute 𝑉 ∗
ℜ(𝑆𝑡) for a given 𝑡 has complexity 𝑂(𝑡|𝒦 |), so using225

it to sequentially compute the full curve has complexity 𝑂 (∑𝑚
𝑡=0 𝑡 |𝒦 |) = 𝑂 (𝑚2|𝒦 |). In this section,226

we present a new algorithm that computes the curve with a 𝑂 (𝑚|𝒦|) complexity. The algorithm227

will need that ℜ is complete, so if that is not the case we first need to complete ℜ following the228

Algorithm 2 of Durand et al. (2020), which has a 𝑂(𝑚|𝒦|) complexity. In the remainder of this section229

we assume that ℜ is complete.230

We first recall and introduce some notation. Recall that 𝜙 is the depth function inside of ℜ, that231

𝔓 ⊆ 𝒫 (𝒦) is the set of subsets of 𝒦 that realize a partition, recall the important result stated by232

Equation (12), and that 𝒦 ℎ = {𝑘 ∈ 𝒦 ∶ 𝜙(𝑘) = ℎ} for all 1 ≤ ℎ ≤ 𝐻 where 𝐻 = max𝑘∈𝒦 𝜙(𝑘). For233

any 𝑡 ∈ ℕ∗
𝑚 and 1 ≤ ℎ ≤ 𝐻, we denote by 𝑘(𝑡,ℎ) the element of 𝒦 ℎ such that 𝑖𝑡 ∈ 𝑅𝑘(𝑡,ℎ) if it exists, and234

we denote by ℎmax(𝑡) the highest ℎ such that 𝑘(𝑡,ℎ) exists.235

Example 3.1 (Continuation of Example 2.2 and Example 2.3). Assume that the reference family of236

Example 2.2 has been labeled as in Example 2.3 and completed. Let (𝑖1, … , 𝑖25) such that 𝑖1 = 7, 𝑖2 = 1237

and 𝑖3 = 24. Then for 𝑡 = 1, 𝑘(𝑡,1) = (1, 5), 𝑘(𝑡,2) = (2, 3), 𝑘(𝑡,3) = (3, 3) and ℎmax(𝑡) = 𝐻 = 3. For 𝑡 = 2,238

𝑘(𝑡,1) = (1, 5), 𝑘(𝑡,2) = (1, 1), 𝑘(𝑡,3) does not exist and ℎmax(𝑡) = 2. For 𝑡 = 3, 𝑘(𝑡,1) = (8, 8), 𝑘(𝑡,2) does239

not exist and ℎmax(𝑡) = 1.240

Now we can finally present the new algorithm and the proof that it computes the curve (𝑉 ∗
ℜ(𝑆𝑡))𝑡∈ℕ𝑚 .241

We present two versions of the algorithm (strictly equivalent): one very formal ( Algorithm 3 ), to242

9



su
bm

itte
d

introduce additional notation used in the proof of Theorem 3.1, and, later, a simpler version that is243

the one actually implemented ( Algorithm 4 ). Recall that a detailed illustration of the steps of the244

algorithms will be provided in Section 3.3.245

Algorithm 3 Formal computation of (𝑉 ∗
ℜ(𝑆𝑡))0≤𝑡≤𝑚

1: procedure Curve(ℜ = (𝑅𝑘, 𝜁𝑘)𝑘∈𝒦 with ℜ complete, path (𝑆𝑡)1≤𝑡≤𝑚 with 𝑆𝑡 = {𝑖1, … , 𝑖𝑡})
2: 𝒫 0 ← {(𝑖, 𝑖) ∶ 1 ≤ 𝑖 ≤ 𝑛} ▷ the set of all atoms indices
3: 𝒦−

0 ← {𝑘 ∈ 𝒦 ∶ 𝜁𝑘 = 0}
4: 𝜂0𝑘 ← 0 for all 𝑘 ∈ 𝒦
5: for 𝑡 = 1, … , 𝑚 do
6: if 𝑖𝑡 ∈ ⋃𝑘∈𝒦−

𝑡−1
𝑅𝑘 then

7: 𝒫 𝑡 ← 𝒫 𝑡−1

8: 𝒦−
𝑡 ← 𝒦−

𝑡−1
9: 𝜂𝑡𝑘 ← 𝜂𝑡−1𝑘 for all 𝑘 ∈ 𝒦

10: else
11: for ℎ = 1,… , ℎmax(𝑡) do
12: 𝜂𝑡𝑘(𝑡,ℎ) ← 𝜂𝑡−1𝑘(𝑡,ℎ) + 1
13: if 𝜂𝑡𝑘(𝑡,ℎ) < 𝜁𝑘 then
14: Pass
15: else
16: ℎ𝑓𝑡 ← ℎ ▷ final depth
17: 𝒫 𝑡 ← (𝒫 𝑡−1 ∖ {𝑘 ∈ 𝒫 𝑡−1 ∶ 𝑅𝑘 ⊆ 𝑅

𝑘(𝑡,ℎ
𝑓
𝑡 )
}) ∪ {𝑘(𝑡,ℎ

𝑓
𝑡 )}

18: 𝒦−
𝑡 ← 𝒦−

𝑡−1 ∪ {𝑘(𝑡,ℎ
𝑓
𝑡 )}

19: Break the loop
20: end if
21: end for
22: if the loop has been broken then
23: 𝜂𝑡𝑘 ← 𝜂𝑡−1𝑘 for all 𝑘 ∈ 𝒦 not visited during the loop, that is all 𝑘 ∉ {𝑘(𝑡,ℎ), 1 ≤ ℎ ≤

ℎ𝑓𝑡 }
24: else
25: 𝒫 𝑡 ← 𝒫 𝑡−1

26: 𝒦−
𝑡 ← 𝒦−

𝑡−1
27: 𝜂𝑡𝑘 ← 𝜂𝑡−1𝑘 for all 𝑘 ∈ 𝒦 not visited during the loop, that is all 𝑘 ∉ {𝑘(𝑡,ℎ), 1 ≤ ℎ ≤

ℎmax(𝑡)}
28: end if
29: end if
30: end for
31: return 𝒫 𝑡, 𝜂𝑡𝑘 for all 𝑡 = 1, … , 𝑚 and 𝑘 ∈ 𝒦
32: end procedure

The core idea of the algorithm is that, as we increase 𝑡 and add new hypotheses in 𝑆𝑡, we inflate a246

counter 𝜂𝑡𝑘 for each region 𝑅𝑘, by 1 if 𝑖𝑡 ∈ 𝑅𝑘 (line 12), by 0 if not (lines 23 and 27), but only until the247

counter reaches 𝜁𝑘 (line 13). After this point, the hypotheses in 𝑅𝑘 don’t contribute to 𝑉 ∗
ℜ(𝑆𝑡), we248

keep track of those hypotheses with 𝒦−
𝑡 (line 6), so as soon as 𝜂𝑡𝑘(𝑡,ℎ) = 𝜁𝑘 we update 𝒦−

𝑡 by adding249

𝑘(𝑡,ℎ) (line 18) to it and we update 𝒫 𝑡 accordingly (line 17).250

We will see in the following Theorem 3.1 how this algorithm allows to compute 𝑉 ∗
ℜ(𝑆𝑡). We first need251

a final notation. Let252

𝒦𝑡 = {𝑘 ∈ 𝒦 ∶ ∃𝑘′ ∈ 𝒫 𝑡 ∶ 𝑅𝑘′ ⊆ 𝑅𝑘}.

10



su
bm

itte
d

The elements of 𝒦𝑡 index the regions of the forest that “are above’ ’ the regions of the current253

partition-realizing 𝒫 𝑡. In particular, we always have, for any 𝑡 ∈ ℕ𝑚, 𝒦 1 ⊆ 𝒦𝑡 and 𝒫 𝑡 ⊆ 𝒦𝑡. We254

can also remark that the sequence (𝒦𝑡)0≤𝑡≤𝑚 is non-increasing for the inclusion relation, and that255

𝒦0 = 𝒦.256

Theorem 3.1 (Fast curve computation). Let any 𝑡 ∈ ℕ𝑚. Then, 𝒫 𝑡 ∈ 𝔓, and for all 𝑘 ∈ 𝒦𝑡, we have257

𝑉 ∗
ℜ(𝑆𝑡 ∩ 𝑅𝑘) = 𝜂𝑡𝑘 (16)

and258

𝑉 ∗
ℜ(𝑆𝑡 ∩ 𝑅𝑘) = ∑

𝑘′∈𝒫 𝑡

𝑅𝑘′⊆𝑅𝑘

𝜁𝑘′ ∧ |𝑆𝑡 ∩ 𝑅𝑘′ |. (17)

Furthermore,259

𝑉 ∗
ℜ(𝑆𝑡) = ∑

𝑘∈𝒫 𝑡
𝜁𝑘 ∧ |𝑆𝑡 ∩ 𝑅𝑘| = ∑

𝑘∈𝒦 1
𝜂𝑡𝑘. (18)

The proof of this Theorem is postponed to Section 3.4. The first equality of Equation (18) states that260

the minimum in (12) is realized on the partition 𝒫 𝑡, and the last equality of the same Equation is the261

basis of the following light corollary.262

Corollary 3.1 (Easy computation). For 𝑡 ∈ {0, … , 𝑚 − 1}, 𝑉 ∗
ℜ(𝑆𝑡+1) = 𝑉 ∗

ℜ(𝑆𝑡) if 𝑖𝑡+1 ∈ ⋃𝑘∈𝒦−
𝑡
𝑅𝑘, and263

𝑉 ∗
ℜ(𝑆𝑡+1) = 𝑉 ∗

ℜ(𝑆𝑡) + 1 if not.264

Proof. From (18), 𝑉 ∗
ℜ(𝑆𝑡+1) = ∑𝑘∈𝒦 1 𝜂𝑡+1𝑘 and 𝑉 ∗

ℜ(𝑆𝑡) = ∑𝑘∈𝒦 1 𝜂𝑡𝑘. If 𝑖𝑡+1 ∈ ⋃𝑘∈𝒦−
𝑡
𝑅𝑘, 𝜂𝑡+1𝑘 = 𝜂𝑡𝑘 for265

all 𝑘 ∈ 𝒦 1. If not, 𝜂𝑡+1𝑘 = 𝜂𝑡𝑘 for all 𝑘 ∈ 𝒦 1, 𝑘 ≠ 𝑘(𝑡+1,1), whereas for 𝑘 = 𝑘(𝑡+1,1), 𝜂𝑡+1𝑘 = 𝜂𝑡𝑘+1. �266

We note that, from Theorem 3.1 and Corollary 3.1, if one is only interested in the computation of267

the curve (𝑉 ∗
ℜ(𝑆𝑡))1≤𝑡≤𝑚, tracking 𝒫 𝑡 is actually useless, what is important is to track and update268

𝒦−
𝑡 correctly. Hence the simpler, alternative Algorithm 4 . Note that Algorithm 4 is less formal than269

Algorithm 3 : as in Algorithm 1 and Algorithm 2 , it recycles notation (mimicking the actual code270

implementation) so the 𝑡 subscript or superscript is dropped from the 𝒦−
𝑡 and the 𝜂𝑡𝑘. In Algorithm 4271

, the notation 𝑉𝑡 is actually equal to 𝑉 ∗
ℜ(𝑆𝑡) by Corollary 3.1.272

It is easy to see that each step 𝑡 has a complexity in 𝑂(|𝒦|) hence the total complexity is in 𝑂(𝑚|𝒦|).273

This is because, if the regions are carefully stocked in memory, especially if their bounds (in terms274

of hypothesis index) are stocked, then finding 𝑘(𝑡,ℎ) has a complexity in 𝑂(|𝒦 ℎ|) and checking if275

𝑖𝑡 ∈ ⋃𝑘∈𝒦−
𝑡−1

𝑅𝑘 has a complexity in 𝑂(|𝒦|).276

3.3 Illustration on a detailed example277

We still continue Example 2.2 and Example 2.3. Recall that 𝑚 = 25, 𝑃1∶5 = 𝑅1 = {1, … , 20}, 𝑃1 =278

𝑅2 = {1, 2}, 𝑃2∶3 = 𝑅3 = {3, … , 10}, 𝑃4∶5 = 𝑅4 = {11, … , 20}, 𝑃2 = {3, 4}, 𝑃3 = 𝑅5 = {5, … , 10},279

𝑃4 = 𝑅6 = {11, … , 16}, 𝑃5 = 𝑅7 = {17, … , 20}, 𝑃6∶7 = 𝑅8 = {21, 22}, 𝑃6 = {21}, 𝑃7 = 𝑅9 = {22} and280

𝑃8 = {23, 24, 25}.281

Now assume that we have the following values for the 𝜁𝑘’s: 𝜁(1,5) = 6, 𝜁(1,1) = 2, 𝜁(2,3) = 1, 𝜁(3,3) = 4,282

𝜁(4,5) = 4, 𝜁(4,4) = 2, 𝜁(5,5) = 3, 𝜁(6,7) = 2, 𝜁(7,7) = 0. Because 𝑃2, 𝑃6 and 𝑃8 come from the completion283

operation (see Section 2.3), we also have 𝜁(2,2) = |𝑃2| = 2, 𝜁(6,6) = |𝑃6| = 1 and 𝜁(8,8) = |𝑃8| = 3. Theses284

values are summarized in Figure 3.285

We want to compute the curve (𝑉 ∗
ℜ (𝑆𝑡))1≤𝑡≤9 with 𝑆𝑡 = {𝑖1, … , 𝑖𝑡} and 𝑖1 = 11, 𝑖2 = 17, 𝑖3 = 12, 𝑖4 = 13,286

𝑖5 = 18, 𝑖6 = 3, 𝑖7 = 19, 𝑖8 = 22 and 𝑖9 = 5.287

11



su
bm

itte
d

P1:5

ζ(1,5) = 6
P6:7

ζ(6,7) = 2
P8

ζ(8,8) = 3

P1

ζ(1,1) = 2
P2:3

ζ(2,3) = 1
P4:5

ζ(4,5) = 4
P6

ζ(6,6) = 1
P7

ζ(7,7) = 0

P2

ζ(2,2) = 2
P3

ζ(3,3) = 4
P4

ζ(4,4) = 2
P5

ζ(5,5) = 3

Figure 3: The regions of Example 2.2 with the 𝜁𝑘 values.

P1:5

ζ(1,5) = 6
P8

ζ(8,8) = 3

P1

ζ(1,1) = 2
P2:3

ζ(2,3) = 1
P4:5

ζ(4,5) = 4

P6

ζ(6,6) = 1
P7

ζ(7,7) = 0

P2

ζ(2,2) = 2
P3

ζ(3,3) = 4
P4

ζ(4,4) = 2
P5

ζ(5,5) = 3

Figure 4: The regions of Example 2.2 after pruning.

12



su
bm

itte
d

Algorithm 4 Practical computation of (𝑉 ∗
ℜ(𝑆𝑡))0≤𝑡≤𝑚

1: procedure Curve(ℜ = (𝑅𝑘, 𝜁𝑘)𝑘∈𝒦 with ℜ complete, path (𝑆𝑡)1≤𝑡≤𝑚 with 𝑆𝑡 = {𝑖1, … , 𝑖𝑡})
2: 𝑉0 ← 0
3: 𝒦− ← {𝑘 ∈ 𝒦 ∶ 𝜁𝑘 = 0}
4: 𝜂𝑘 ← 0 for all 𝑘 ∈ 𝒦
5: for 𝑡 = 1, … , 𝑚 do
6: if 𝑖𝑡 ∈ ⋃𝑘∈𝒦− 𝑅𝑘 then
7: 𝑉𝑡 ← 𝑉𝑡−1
8: else
9: for ℎ = 1,… , ℎmax(𝑡) do

10: find 𝑘(𝑡,ℎ) ∈ 𝒦 ℎ such that 𝑖𝑡 ∈ 𝑅𝑘(𝑡,ℎ)
11: 𝜂𝑘(𝑡,ℎ) ← 𝜂𝑘(𝑡,ℎ) + 1
12: if 𝜂𝑘(𝑡,ℎ) < 𝜁𝑘 then
13: pass
14: else
15: 𝒦− ← 𝒦− ∪ {𝑘(𝑡,ℎ)}
16: break the loop
17: end if
18: end for
19: 𝑉𝑡 ← 𝑉𝑡−1 + 1
20: end if
21: end for
22: return (𝑉𝑡)1≤𝑡≤𝑚
23: end procedure

First, we apply Algorithm 2 to the family. This results in pruning 𝑃6∶7 (and only this region), because288

2 = 𝜁(6,7) ≥ 𝜁(6,6) + 𝜁(7,7) = 1 + 0. This gives Figure 4.289

Now we initialize Algorithm 3 , that is we let 𝑡 = 0. Because 𝜁(7,7) = 0, (7, 7) is added to 𝒦−
𝑡 :290

𝒦−
0 = {(7, 7)}. Furthermore, all 𝜂𝑡𝑘 are set to 0. The initial state of Algorithm 3 is shown in Figure 5,291

with (7, 7) being in red to show that it will not contribute to the computations.292

We move on to 𝑡 = 1, with 𝑖1 = 11. 𝑖1 ∈ 𝑃4 ⊆ 𝑃4∶5 ⊆ 𝑃1∶5. The appropriate 𝜂𝑡𝑘 are increased by one,293

and by (18) we have 𝑉 ∗
ℜ(𝑆1) = 𝜂1(1,5) + 𝜂1(6,6) + 𝜂1(7,7) + 𝜂1(8,8) = 1 + 0 + 0 + 0 = 1. The state of the step294

is summarized in Figure 6.295

We move on to 𝑡 = 2, with 𝑖2 = 17. 𝑖1 ∈ 𝑃5 ⊆ 𝑃4∶5 ⊆ 𝑃1∶5. The appropriate 𝜂𝑡𝑘 are increased by one,296

and by (18) we have 𝑉 ∗
ℜ(𝑆2) = 2. The state of the step is summarized in Figure 7.297

Wemove on to 𝑡 = 3, with 𝑖3 = 12. 𝑖3 ∈ 𝑃4 ⊆ 𝑃4∶5 ⊆ 𝑃1∶5. The appropriate 𝜂𝑡𝑘 are increased by one, and298

we notice that 𝜂3(4,4) = 2 = 𝜁(4,4). So 𝑃4 will stop contributing, we add it to 𝒦−
𝑡 : 𝒦−

3 = {(4, 4), (7, 7)}.299

By (18), we have 𝑉 ∗
ℜ(𝑆3) = 3. The state of the step is summarized in Figure 8, with 𝑃4 now also in red.300

We move on to 𝑡 = 4, with 𝑖4 = 13. 𝑖4 ∈ 𝑃4 ∈ ⋃𝑘∈𝒦−
3
𝑅𝑘. No 𝜂𝑡𝑘 is increased (see line 9 of Algorithm 3301

), and by (18), we have 𝑉 ∗
ℜ(𝑆4) = 3.302

We move on to 𝑡 = 5, with 𝑖5 = 18. 𝑖5 ∈ 𝑃5 ⊆ 𝑃4∶5 ⊆ 𝑃1∶5. We first increase 𝜂𝑡(1,5): 𝜂
5
(1,5) = 4 < 𝜁(1,5),303

then 𝜂𝑡(4,5): 𝜂
5
(4,5) = 4, and we stop there because 𝜂5(4,5) = 4 = 𝜁(4,5). 𝑃4∶5 will stop contributing, we304

add it to 𝒦−
𝑡 : 𝒦−

5 = {(4, 5), (4, 4), (7, 7)}. Note that 𝜂𝑡(5,5) is not updated because we stopped the loop305

before, see line 23 of Algorithm 3 . By (18), we have 𝑉 ∗
ℜ(𝑆5) = 4. The state of the step is summarized306

in Figure 9, with 𝑃4∶5 now also in red.307

13



su
bm

itte
d

P1:5

ζ(1,5) = 6
η0(1,5) = 0

P8

ζ(8,8) = 3
η0(8,8) = 0

P1

ζ(1,1) = 2
η0(1,1) = 0

P2:3

ζ(2,3) = 1
η0(2,3) = 0

P4:5

ζ(4,5) = 4
η0(4,5) = 0

P6

ζ(6,6) = 1
η0(6,6) = 0

P7

ζ(7,7) = 0
η0(7,7) = 0

P2

ζ(2,2) = 2
η0(2,2) = 0

P3

ζ(3,3) = 4
η0(3,3) = 0

P4

ζ(4,4) = 2
η0(4,4) = 0

P5

ζ(5,5) = 3
η0(5,5) = 0

Figure 5: The regions of Example 2.2 at 𝑡 = 0 in Algorithm 3 .

P1:5

ζ(1,5) = 6
η1(1,5) = 1

P8

ζ(8,8) = 3
η1(8,8) = 0

P1

ζ(1,1) = 2
η1(1,1) = 0

P2:3

ζ(2,3) = 1
η1(2,3) = 0

P4:5

ζ(4,5) = 4
η1(4,5) = 1

P6

ζ(6,6) = 1
η1(6,6) = 0

P7

ζ(7,7) = 0
η1(7,7) = 0

P2

ζ(2,2) = 2
η1(2,2) = 0

P3

ζ(3,3) = 4
η1(3,3) = 0

P4

ζ(4,4) = 2
η1(4,4) = 1

P5

ζ(5,5) = 3
η1(5,5) = 0

Figure 6: The regions of Example 2.2 at 𝑡 = 1 in Algorithm 3 .

14



su
bm

itte
d

P1:5

ζ(1,5) = 6
η2(1,5) = 2

P8

ζ(8,8) = 3
η2(8,8) = 0

P1

ζ(1,1) = 2
η2(1,1) = 0

P2:3

ζ(2,3) = 1
η2(2,3) = 0

P4:5

ζ(4,5) = 4
η2(4,5) = 2

P6

ζ(6,6) = 1
η2(6,6) = 0

P7

ζ(7,7) = 0
η2(7,7) = 0

P2

ζ(2,2) = 2
η2(2,2) = 0

P3

ζ(3,3) = 4
η2(3,3) = 0

P4

ζ(4,4) = 2
η2(4,4) = 1

P5

ζ(5,5) = 3
η2(5,5) = 1

Figure 7: The regions of Example 2.2 at 𝑡 = 2 in Algorithm 3 .

P1:5

ζ(1,5) = 6
η3(1,5) = 3

P8

ζ(8,8) = 3
η3(8,8) = 0

P1

ζ(1,1) = 2
η3(1,1) = 0

P2:3

ζ(2,3) = 1
η3(2,3) = 0

P4:5

ζ(4,5) = 4
η3(4,5) = 3

P6

ζ(6,6) = 1
η3(6,6) = 0

P7

ζ(7,7) = 0
η3(7,7) = 0

P2

ζ(2,2) = 2
η3(2,2) = 0

P3

ζ(3,3) = 4
η3(3,3) = 0

P4

ζ(4,4) = 2
η3(4,4) = 2

P5

ζ(5,5) = 3
η3(5,5) = 1

Figure 8: The regions of Example 2.2 at 𝑡 = 3 in Algorithm 3 .

15



su
bm

itte
d

P1:5

ζ(1,5) = 6
η5(1,5) = 4

P8

ζ(8,8) = 3
η5(8,8) = 0

P1

ζ(1,1) = 2
η5(1,1) = 0

P2:3

ζ(2,3) = 1
η5(2,3) = 0

P4:5

ζ(4,5) = 4
η5(4,5) = 4

P6

ζ(6,6) = 1
η5(6,6) = 0

P7

ζ(7,7) = 0
η5(7,7) = 0

P2

ζ(2,2) = 2
η5(2,2) = 0

P3

ζ(3,3) = 4
η5(3,3) = 0

P4

ζ(4,4) = 2
η5(4,4) = 2

P5

ζ(5,5) = 3
η5(5,5) = 1

Figure 9: The regions of Example 2.2 at 𝑡 = 5 in Algorithm 3 .

We move on to 𝑡 = 6, with 𝑖6 = 3. 𝑖6 ∈ 𝑃3 ⊆ 𝑃2∶3 ⊆ 𝑃1∶5. We first increase 𝜂𝑡(1,5): 𝜂
6
(1,5) = 5 < 𝜁(1,5),308

then 𝜂𝑡(2,3): 𝜂
6
(2,3) = 1, and we stop there because 𝜂6(2,3) = 1 = 𝜁(2,3). 𝑃2∶3 will stop contributing, we309

add it to 𝒦−
𝑡 : 𝒦−

6 = {(2, 3), (4, 5), (4, 4), (7, 7)}. Note that 𝜂𝑡(3,3) is not updated because we stopped310

the loop before, see line 23 of Algorithm 3 . By (18), we have 𝑉 ∗
ℜ(𝑆6) = 5. The state of the step is311

summarized in Figure 10, with 𝑃2∶3 now also in red.312

P1:5

ζ(1,5) = 6
η6(1,5) = 5

P8

ζ(8,8) = 3
η6(8,8) = 0

P1

ζ(1,1) = 2
η6(1,1) = 0

P2:3

ζ(2,3) = 1
η6(2,3) = 1

P4:5

ζ(4,5) = 4
η6(4,5) = 4

P6

ζ(6,6) = 1
η6(6,6) = 0

P7

ζ(7,7) = 0
η6(7,7) = 0

P2

ζ(2,2) = 2
η6(2,2) = 0

P3

ζ(3,3) = 4
η6(3,3) = 0

P4

ζ(4,4) = 2
η6(4,4) = 2

P5

ζ(5,5) = 3
η6(5,5) = 1

Figure 10: The regions of Example 2.2 at 𝑡 = 6 in Algorithm 3 .

We move on to the remaining steps. 𝑖7 = 19 ∈ 𝑃4∶5, 𝑖8 = 22 ∈ 𝑃7 and 𝑖9 = 5 ∈ 𝑃2∶3 are all313

in ⋃𝑘∈𝒦−
6
𝑅𝑘 so no 𝜂𝑡𝑘 is increased at their step (see line 9 of Algorithm 3 ), and by (18), we have314

𝑉 ∗
ℜ(𝑆7) = 𝑉 ∗

ℜ(𝑆8) = 𝑉 ∗
ℜ(𝑆9) = 5.315

16



su
bm

itte
d

3.4 Proof of Theorem 3.1316

3.4.1 Derivation of (18)317

We first derive (18) from (16) and (17). First note that for all 𝑄 ∈ 𝔓,318

𝑄 = ⋃
𝑘∈𝒦 1

{𝑘′ ∈ 𝑄 ∶ 𝑅𝑘′ ⊆ 𝑅𝑘} (19)

and the union is disjoint. From (12), let 𝑄∗ ∈ 𝔓 such that 𝑉 ∗
ℜ(𝑆𝑡) = ∑𝑘′∈𝑄∗ 𝜁𝑘′ ∧ |𝑆𝑡 ∩ 𝑅𝑘′ |. Then by319

(19),320

𝑉 ∗
ℜ(𝑆𝑡) = ∑

𝑘′∈𝑄∗
𝜁𝑘′ ∧ |𝑆𝑡 ∩ 𝑅𝑘′ |

= ∑
𝑘∈𝒦 1

∑
𝑘′∈𝑄∗

𝑅𝑘′⊆𝑅𝑘

𝜁𝑘′ ∧ |𝑆𝑡 ∩ 𝑅𝑘′ |

= ∑
𝑘∈𝒦 1

∑
𝑘′∈𝑄∗

𝑅𝑘′⊆𝑅𝑘

𝜁𝑘′ ∧ |𝑆𝑡 ∩ (𝑅𝑘 ∩ 𝑅𝑘′)|

= ∑
𝑘∈𝒦 1

∑
𝑘′∈𝑄∗

𝜁𝑘′ ∧ |(𝑆𝑡 ∩ 𝑅𝑘) ∩ 𝑅𝑘′ | (20)

≥ ∑
𝑘∈𝒦 1

𝑉 ∗
ℜ(𝑆𝑡 ∩ 𝑅𝑘), (21)

where the equality in (20) comes from the fact that if 𝑅𝑘′ ⊈ 𝑅𝑘, then 𝑅𝑘′ ∩ 𝑅𝑘 = ∅, that is, 𝑅𝑘 ⊆ 𝑅𝑘′ is321

impossible because 𝑘 ∈ 𝒦 1. Furthermore, (21) holds again by (12).322

Because 𝒦 1 ⊆ 𝒦𝑡, by (17), 𝑉 ∗
ℜ(𝑆𝑡 ∩ 𝑅𝑘) = ∑ 𝑘′∈𝒫 𝑡

𝑅𝑘′⊆𝑅𝑘
𝜁𝑘′ ∧ |𝑆𝑡 ∩ 𝑅𝑘′ | for all 𝑘 ∈ 𝒦 1. Then,323

∑
𝑘∈𝒦 1

𝑉 ∗
ℜ(𝑆𝑡 ∩ 𝑅𝑘) = ∑

𝑘∈𝒦 1
∑

𝑘′∈𝒫 𝑡

𝑅𝑘′⊆𝑅𝑘

𝜁𝑘′ ∧ |𝑆𝑡 ∩ 𝑅𝑘′ |

= ∑
𝑘∈𝒫 𝑡

𝜁𝑘 ∧ |𝑆𝑡 ∩ 𝑅𝑘| by (19)

≥ 𝑉 ∗
ℜ(𝑆𝑡) by (12).

So we proved that 𝑉 ∗
ℜ(𝑆𝑡) = ∑𝑘∈𝒫 𝑡 𝜁𝑘 ∧ |𝑆𝑡 ∩ 𝑅𝑘| = ∑𝑘∈𝒦 1 𝑉 ∗

ℜ(𝑆𝑡 ∩ 𝑅𝑘) and finally 𝑉 ∗
ℜ(𝑆𝑡) =324

∑𝑘∈𝒦 1 𝑉 ∗
ℜ(𝑆𝑡 ∩ 𝑅𝑘) = ∑𝑘∈𝒦 1 𝜂𝑡𝑘 by (16), again because 𝒦 1 ⊆ 𝒦𝑡. Every equality in (18) is proven.325

3.4.2 Proof of (16) and (17)326

We show the remainder of the statements by a strong recursion over 𝑡. We have𝒫 0 ∈ 𝔓 by definition,327

and given that 𝑆0 = ∅ and 𝜂0𝑘 = 0 for all 𝑘 ∈ 𝒦 (recall that 𝒦0 = 𝒦), everything is equal to 0 in (16)328

and (17).329

So we let 𝑡 ∈ {0, … , 𝑚 − 1}, and assume that 𝒫 𝑡′ ∈ 𝔓 and that (16) and (17) hold for all 𝑡′ ≤ 𝑡.330

In all the following, 𝑘̄ is the element of 𝒫 𝑡 such that 𝑖𝑡+1 ∈ 𝑅𝑘̄. We will distinguish two cases: if331

𝑖𝑡+1 ∈ ⋃𝑘∈𝒦−
𝑡
𝑅𝑘 or not. First we show an inequality that will be used in both cases. We have, for all332

𝑘 ∈ 𝒦𝑡,333

𝑉 ∗
ℜ(𝑆𝑡+1 ∩ 𝑅𝑘) ≤ ∑

𝑘′∈𝒫 𝑡

𝑅𝑘′⊆𝑅𝑘

𝜁𝑘′ ∧ |𝑆𝑡+1 ∩ 𝑅𝑘′ |. (22)

17



su
bm

itte
d

Indeed, by (12),334

𝑉 ∗
ℜ(𝑆𝑡+1 ∩ 𝑅𝑘) ≤ ∑

𝑘′∈𝒫 𝑡
𝜁𝑘′ ∧ |𝑆𝑡+1 ∩ 𝑅𝑘 ∩ 𝑅𝑘′ |.

For any 𝑘′ ∈ 𝒫 𝑡, we have either 𝑅𝑘′ ∩ 𝑅𝑘 = ∅, in which case |𝑆𝑡+1 ∩ 𝑅𝑘 ∩ 𝑅𝑘′ | = 0, either 𝑅𝑘′ ⊆ 𝑅𝑘,335

in which case |𝑆𝑡+1 ∩ 𝑅𝑘 ∩ 𝑅𝑘′ | = |𝑆𝑡+1 ∩ 𝑅𝑘′ |, but 𝑅𝑘 ⊊ 𝑅𝑘′ is impossible. Indeed, by definition of 𝒦𝑡,336

there exists 𝑘̃ ∈ 𝒫 𝑡 such that 𝑅𝑘̃ ⊆ 𝑅𝑘, so 𝑅𝑘 ⊊ 𝑅𝑘′ would entail 𝑅𝑘̃ ⊊ 𝑅𝑘′ which is impossible since337

𝑘′, 𝑘̃ ∈ 𝒫 𝑡 ∈ 𝔓 and so 𝑅𝑘̃ and 𝑅𝑘′ are part of a partition of ℕ∗
𝑚. This gives (22).338

3.4.2.1 First case: 𝑖𝑡+1 ∈ ⋃𝑘∈𝒦−
𝑡
𝑅𝑘339

In this case, 𝒫 𝑡+1 = 𝒫 𝑡 ∈ 𝔓 and 𝒦𝑡+1 = 𝒦𝑡. For any 𝑘 ∈ 𝒦𝑡+1 such that 𝑖𝑡+1 ∉ 𝑅𝑘 (or, equivalently,340

such that 𝑆𝑡+1 ∩ 𝑅𝑘 = 𝑆𝑡 ∩ 𝑅𝑘),341

∑
𝑘′∈𝒫 𝑡+1

𝑅𝑘′⊆𝑅𝑘

𝜁𝑘′ ∧ |𝑆𝑡+1 ∩ 𝑅𝑘′ | = ∑
𝑘′∈𝒫 𝑡

𝑅𝑘′⊆𝑅𝑘

𝜁𝑘′ ∧ |𝑆𝑡 ∩ 𝑅𝑘′ |

= 𝑉 ∗
ℜ(𝑆𝑡 ∩ 𝑅𝑘) by (17)

= 𝜂𝑡𝑘 by (16)

= 𝜂𝑡+1𝑘

because 𝜂𝑡𝑘 = 𝜂𝑡+1𝑘 for all 𝑘 ∈ 𝒦. Furthermore 𝑆𝑡+1 ∩ 𝑅𝑘 = 𝑆𝑡 ∩ 𝑅𝑘 so 𝑉 ∗
ℜ(𝑆𝑡+1 ∩ 𝑅𝑘) = 𝑉 ∗

ℜ(𝑆𝑡 ∩ 𝑅𝑘). So342

everything is proved for such a 𝑘.343

Now we let 𝑘 ∈ 𝒦𝑡+1 such that 𝑖𝑡+1 ∈ 𝑅𝑘 or, equivalently, such that 𝑅𝑘̄ ⊆ 𝑅𝑘. We first need to show344

that 𝜁𝑘̄ ≤ |𝑆𝑡 ∩ 𝑅𝑘̄|, and for that we need to distinguish two subcases: if 𝑘̄ has been added to 𝒫 𝑡 during345

a previous step of the algorithm, of if not.346

3.4.2.1.1 First subcase: 𝑘̄ has never been added during the process of line 17347

Then 𝑘̄ ∈ 𝒫 0 and 𝑅𝑘̄ is an atom, so 𝑖𝑡+1 ∈ ⋃𝑘′∈𝒦−
𝑡
𝑅𝑘′ implies that 𝑅𝑘̄ ⊆ ⋃𝑘′∈𝒦−

𝑡
𝑅𝑘′ (because of the348

forest structure). Let 𝑘′max such that349

𝑅𝑘′max = max{𝑅𝑘′ ∶ 𝑘′ ∈ 𝒦−
𝑡 , 𝑅𝑘̄ ⊆ 𝑅𝑘′}

(this a maximum for the inclusion relation, and it is well defined thanks to the forest structure). By350

reductio ad absurdum we show that 𝑘′max = 𝑘̄. If that wasn’t the case, by the joint construction of351

𝒫 𝑡 and 𝒦−
𝑡 during the algorithm we would have 𝑘′max ∈ 𝒫 𝑡 and a contradiction with the fact that352

𝒫 𝑡 ∈ 𝔓: we can’t have both 𝑘̄ ∈ 𝒫 𝑡 and 𝑘′max ∈ 𝒫 𝑡 if they are distinct. So 𝑘′max = 𝑘̄, so 𝑘̄ ∈ 𝒦−
𝑡 , but353

it cannot have been added to 𝒦−
𝑡 during a previous step of the algorithm, otherwise it would have354

been added to 𝒫 𝑡, too. Hence 𝑘̄ ∈ 𝒦−
0 which means that 𝜁𝑘̄ = 0 and 𝜁𝑘̄ = 0 ≤ |𝑆𝑡 ∩ 𝑅𝑘̄|.355

3.4.2.1.2 Second subcase: 𝑘̄ has been added to 𝒫 𝑡 at a previous step356

Let 𝑡′ ≤ 𝑡 be this step. This means that 𝑘̄ = 𝑘(𝑡
′,ℎ𝑓𝑡′) and that at that step 𝜂𝑡

′

𝑘̄ = 𝜁𝑘̄. Indeed, the if357

condition in line 13 failed so 𝜂𝑡
′

𝑘̄ ≥ 𝜁𝑘̄, but for all 𝑡
″ < 𝑡′ we had 𝜂𝑡

″

𝑘̄ ≤ 𝜁𝑘̄ which implies equality. Also358

𝑘̄ ∈ 𝒫 𝑡′ so 𝑘̄ ∈ 𝒦𝑡′ so we can write359

𝜁𝑘̄ = 𝜂𝑡
′

𝑘̄
= 𝑉 ∗

ℜ(𝑆𝑡′ ∩ 𝑅𝑘̄) by (16)
≤ |𝑆𝑡′ ∩ 𝑅𝑘̄|
≤ |𝑆𝑡 ∩ 𝑅𝑘̄|.

18



su
bm

itte
d

This concludes the two subcases dichotomy: 𝜁𝑘̄ ≤ |𝑆𝑡 ∩ 𝑅𝑘̄| and we can go back to our 𝑘 ∈ 𝒦𝑡+1 such360

that 𝑖𝑡+1 ∈ 𝑅𝑘 and 𝑅𝑘̄ ⊆ 𝑅𝑘.361

We write the following chain:362

𝑉 ∗
ℜ(𝑆𝑡+1 ∩ 𝑅𝑘) ≤ ∑

𝑘′∈𝒫 𝑡

𝑅𝑘′⊆𝑅𝑘

𝜁𝑘′ ∧ |𝑆𝑡+1 ∩ 𝑅𝑘′ | by (22) and 𝒦𝑡+1 ⊆ 𝒦𝑡

= ∑
𝑘′∈𝒫 𝑡

𝑅𝑘′⊆𝑅𝑘
𝑘′≠𝑘̄

𝜁𝑘′ ∧ |𝑆𝑡+1 ∩ 𝑅𝑘′ | + 𝜁𝑘̄ ∧ |𝑆𝑡+1 ∩ 𝑅𝑘̄|

= ∑
𝑘′∈𝒫 𝑡

𝑅𝑘′⊆𝑅𝑘
𝑘′≠𝑘̄

𝜁𝑘′ ∧ |𝑆𝑡 ∩ 𝑅𝑘′ | + 𝜁𝑘̄ ∧ (|𝑆𝑡 ∩ 𝑅𝑘̄| + 1)

= ∑
𝑘′∈𝒫 𝑡

𝑅𝑘′⊆𝑅𝑘
𝑘′≠𝑘̄

𝜁𝑘′ ∧ |𝑆𝑡 ∩ 𝑅𝑘′ | + 𝜁𝑘̄ ∧ |𝑆𝑡 ∩ 𝑅𝑘̄| because 𝜁𝑘̄ ≤ |𝑆𝑡 ∩ 𝑅𝑘̄|

= ∑
𝑘′∈𝒫 𝑡

𝑅𝑘′⊆𝑅𝑘

𝜁𝑘′ ∧ |𝑆𝑡 ∩ 𝑅𝑘′ |

= 𝑉 ∗
ℜ(𝑆𝑡 ∩ 𝑅𝑘) by (17)

= 𝜂𝑡𝑘 by (16)

= 𝜂𝑡+1𝑘 .

But on the other hand, 𝑆𝑡 ⊆ 𝑆𝑡+1 and so (12) also gives 𝑉 ∗
ℜ(𝑆𝑡 ∩ 𝑅𝑘) ≤ 𝑉 ∗

ℜ(𝑆𝑡+1 ∩ 𝑅𝑘) and so in the end363

we have the desired outcome:364

𝑉 ∗
ℜ(𝑆𝑡+1 ∩ 𝑅𝑘) = 𝜂𝑡+1𝑘 = ∑

𝑘′∈𝒫 𝑡+1

𝑅𝑘′⊆𝑅𝑘

𝜁𝑘′ ∧ |𝑆𝑡+1 ∩ 𝑅𝑘′ |,

which concludes this first case.365

3.4.2.2 Second case: 𝑖𝑡+1 ∉ ⋃𝑘∈𝒦−
𝑡
𝑅𝑘366

We first prove that 𝒫 𝑡+1 ∈ 𝔓 whether it came form the adjustment in line 17 or not. If it didn’t, it367

stayed equal to 𝒫 𝑡 ∈ 𝔓. If it did, we have368

𝒫 𝑡+1 = (𝒫 𝑡 ∖ {𝑘 ∈ 𝒫 𝑡, 𝑅𝑘 ⊆ 𝑅
𝑘(𝑡+1,ℎ

𝑓
𝑡+1)

}) ∪ {𝑘(𝑡+1,ℎ
𝑓
𝑡+1)}. (23)

To prove that𝒫 𝑡+1 ∈ 𝔓 in that case, it suffices to prove there are no 𝑘′ ∈ 𝒫 𝑡 such that 𝑅
𝑘(𝑡+1,ℎ

𝑓
𝑡+1)

⊊ 𝑅𝑘′ .369

If it was the case, because of the strict inclusion, we would have 𝑘′ ∉ 𝒫 0, so 𝑘′ would have been370

added to 𝒫 𝑡′ at a previous step 𝑡′ ≤ 𝑡 of the algorithm, but in that case it would also have been added371

to 𝒦−
𝑡′ ⊆ 𝒦−

𝑡 . So in the end we would have372

𝑖𝑡+1 ∈ 𝑅
𝑘(𝑡+1,ℎ

𝑓
𝑡+1)

⊊ 𝑅𝑘′ ⊆ ⋃
𝑘∈𝒦−

𝑡

𝑅𝑘

which is a contradiction and so 𝒫 𝑡+1 ∈ 𝔓.373

19



su
bm

itte
d

Like in the first case, considering a 𝑘 ∈ 𝒦𝑡+1 ⊆ 𝒦𝑡 such that 𝑖𝑡+1 ∉ 𝑅𝑘 is not problematic, because in374

that case 𝑘 is not visited at all by the algorithm at step 𝑡 + 1 : 𝜂𝑡+1𝑘 = 𝜂𝑡𝑘, {𝑘
′ ∈ 𝒫 𝑡+1 ∶ 𝑅𝑘′ ⊆ 𝑅𝑘} =375

{𝑘′ ∈ 𝒫 𝑡 ∶ 𝑅𝑘′ ⊆ 𝑅𝑘}, and for all 𝑘′ ∈ 𝒦 such that 𝑅𝑘′ ⊆ 𝑅𝑘, 𝑆𝑡+1 ∩ 𝑅𝑘′ = 𝑆𝑡 ∩ 𝑅𝑘′ . Hence, from376

𝑉 ∗
ℜ(𝑆𝑡 ∩ 𝑅𝑘) = 𝜂𝑡𝑘 = ∑

𝑘′∈𝒫 𝑡

𝑅𝑘′⊆𝑅𝑘

𝜁𝑘′ ∧ |𝑆𝑡+1 ∩ 𝑅𝑘′ |,

we directly have377

𝑉 ∗
ℜ(𝑆𝑡+1 ∩ 𝑅𝑘) = 𝜂𝑡+1𝑘 = ∑

𝑘′∈𝒫 𝑡+1

𝑅𝑘′⊆𝑅𝑘

𝜁𝑘′ ∧ |𝑆𝑡+1 ∩ 𝑅𝑘′ |.

So we now focus on the 𝑘 ∈ 𝒦𝑡+1 such that 𝑖𝑡+1 ∈ 𝑅𝑘. Note that for such 𝑘,378

𝜂𝑡+1𝑘 = 𝜂𝑡𝑘 + 1 = 𝑉 ∗
ℜ(𝑆𝑡 ∩ 𝑅𝑘) + 1 = ∑

𝑘′∈𝒫 𝑡

𝑅𝑘′⊆𝑅𝑘

𝜁𝑘′ ∧ |𝑆𝑡 ∩ 𝑅𝑘′ | + 1

by construction, by (16) and by (17). Indeed, such a 𝑘 is equal to a 𝑘(𝑡+1,ℎ) with ℎ ≤ ℎ𝑚𝑎𝑥(𝑡 + 1), and379

even ℎ ≤ ℎ𝑓𝑡+1 if the latter exists.380

Also, similarly to the first case, for all 𝑘 ∈ 𝒦𝑡+1 such that 𝑖𝑡+1 ∈ 𝑅𝑘 (recall that this is equivalent to381

𝑅𝑘̄ ⊆ 𝑅𝑘), we can write:382

𝑉 ∗
ℜ(𝑆𝑡+1 ∩ 𝑅𝑘) ≤ ∑

𝑘′∈𝒫 𝑡

𝑅𝑘′⊆𝑅𝑘

𝜁𝑘′ ∧ |𝑆𝑡+1 ∩ 𝑅𝑘′ | by (22) and 𝒦𝑡+1 ⊆ 𝒦𝑡

= ∑
𝑘′∈𝒫 𝑡

𝑅𝑘′⊆𝑅𝑘
𝑘′≠𝑘̄

𝜁𝑘′ ∧ |𝑆𝑡+1 ∩ 𝑅𝑘′ | + 𝜁𝑘̄ ∧ |𝑆𝑡+1 ∩ 𝑅𝑘̄|

= ∑
𝑘′∈𝒫 𝑡

𝑅𝑘′⊆𝑅𝑘
𝑘′≠𝑘̄

𝜁𝑘′ ∧ |𝑆𝑡 ∩ 𝑅𝑘′ | + 𝜁𝑘̄ ∧ (|𝑆𝑡 ∩ 𝑅𝑘̄| + 1)

≤ ∑
𝑘′∈𝒫 𝑡

𝑅𝑘′⊆𝑅𝑘
𝑘′≠𝑘̄

𝜁𝑘′ ∧ |𝑆𝑡 ∩ 𝑅𝑘′ | + 𝜁𝑘̄ ∧ |𝑆𝑡 ∩ 𝑅𝑘̄| + 1

= ∑
𝑘′∈𝒫 𝑡

𝑅𝑘′⊆𝑅𝑘

𝜁𝑘′ ∧ |𝑆𝑡 ∩ 𝑅𝑘′ | + 1

= 𝑉 ∗
ℜ(𝑆𝑡 ∩ 𝑅𝑘) + 1 by (17). (24)

Note that by the joint construction of 𝒦−
𝑡 and 𝒫 𝑡 on lines 17 and 18, the fact that 𝑖𝑡+1 ∉ ⋃𝑘∈𝒦−

𝑡
𝑅𝑘383

implies that 𝑘̄ is the index of an atom, so actually ℎmax(𝑡 + 1) = 𝜙(𝑘̄), 𝑘̄ = 𝑘(𝑡+1,𝜙(𝑘̄)) and the 𝑅𝑘,384

𝑘 ∈ 𝒦𝑡, such that 𝑅𝑘̄ ⊆ 𝑅𝑘 are nested and are exactly indexed by the 𝑘(𝑡+1,ℎ), 1 ≤ ℎ ≤ 𝜙(𝑘̄). We now385

prove that for all of them, 𝑉 ∗
ℜ(𝑆𝑡+1 ∩ 𝑅𝑘) ≥ 𝑉 ∗

ℜ(𝑆𝑡 ∩ 𝑅𝑘) + 1, which will be true in particular for the386

ones that are in 𝒦𝑡+1, given that 𝒦𝑡+1 ⊆ 𝒦𝑡. We do that by constructing some sets 𝐴ℎ with good387

properties with a descending recursion on ℎ, starting from 𝜙(𝑘̄). We only give the first two steps of388

the construction, because every other step is exactly the same as the second one, which contains the389

recursive arguments. We go back to the real definition of 𝑉 ∗
ℜ to do so, for any 𝑆 ⊆ ℕ𝑚:390

𝑉 ∗
ℜ(𝑆) = max

𝐴⊆ℕ𝑚
∀𝑘′∈𝒦,|𝐴∩𝑅𝑘′ |≤𝜁𝑘′

|𝐴 ∩ 𝑆| = max
𝐴⊆𝑆

∀𝑘′∈𝒦,|𝐴∩𝑅𝑘′ |≤𝜁𝑘′

|𝐴|. (25)

20



su
bm

itte
d

By (25), we have that 𝑉 ∗
ℜ(𝑆𝑡 ∩ 𝑅𝑘(𝑡+1,𝜙(𝑘̄))) = |𝐴𝜙(𝑘̄)| for a given 𝐴𝜙(𝑘̄) ⊆ 𝑆𝑡 ∩ 𝑅𝑘(𝑡+1,𝜙(𝑘̄)) and such that391

|𝐴𝜙(𝑘̄) ∩ 𝑅𝑘′ | ≤ 𝜁𝑘′ for all 𝑘′ ∈ 𝒦. Now for the second set, we construct 𝐴𝜙(𝑘̄)−1. Note that 𝑉 ∗
ℜ(𝑆𝑡 ∩392

𝑅𝑘(𝑡+1,𝜙(𝑘̄)−1)) = |𝐵| for some 𝐵 ⊆ 𝑆𝑡 ∩𝑅𝑘(𝑡+1,𝜙(𝑘̄)−1) and such that |𝐵 ∩𝑅𝑘′ | ≤ 𝜁𝑘′ for all 𝑘′ ∈ 𝒦. By reductio393

ad absurdum, if there are strictly less than 𝑉 ∗
ℜ(𝑆𝑡 ∩ 𝑅𝑘(𝑡+1,𝜙(𝑘̄)−1)) − 𝑉 ∗

ℜ(𝑆𝑡 ∩ 𝑅𝑘(𝑡+1,𝜙(𝑘̄))) = |𝐵| − |𝐴𝜙(𝑘̄)|394

elements in 𝑆𝑡 ∩ 𝑅𝑘(𝑡+1,𝜙(𝑘̄)−1) ∖ 𝑆𝑡 ∩ 𝑅𝑘(𝑡+1,𝜙(𝑘̄)) , then |𝐵| + |𝑆𝑡 ∩ 𝑅𝑘(𝑡+1,𝜙(𝑘̄)) | − |𝑆𝑡 ∩ 𝑅𝑘(𝑡+1,𝜙(𝑘̄)−1) | > |𝐴𝜙(𝑘̄)| =395

𝑉 ∗
ℜ(𝑆𝑡 ∩ 𝑅𝑘(𝑡+1,𝜙(𝑘̄))). Given that 𝐵 ∪ (𝑆𝑡 ∩ 𝑅𝑘(𝑡+1,𝜙(𝑘̄))) ⊆ 𝑆𝑡 ∩ 𝑅𝑘(𝑡+1,𝜙(𝑘̄)−1) , this entails |𝐵 ∩ 𝑆𝑡 ∩ 𝑅𝑘(𝑡+1,𝜙(𝑘̄)) | =396

|𝐵| + |𝑆𝑡 ∩ 𝑅𝑘(𝑡+1,𝜙(𝑘̄)) | − |𝐵 ∪ (𝑆𝑡 ∩ 𝑅𝑘(𝑡+1,𝜙(𝑘̄)))| > 𝑉 ∗
ℜ(𝑆𝑡 ∩ 𝑅𝑘(𝑡+1,𝜙(𝑘̄))) which contradicts the maximality of397

𝐴𝜙(𝑘̄) in (25).398

Sowe construct𝐴𝜙(𝑘̄)−1 by taking the disjoint union of𝐴𝜙(𝑘̄) and 𝑉
∗
ℜ(𝑆𝑡∩𝑅𝑘(𝑡+1,𝜙(𝑘̄)−1))−𝑉

∗
ℜ(𝑆𝑡∩𝑅𝑘(𝑡+1,𝜙(𝑘̄)))399

elements of 𝑆𝑡∩𝑅𝑘(𝑡+1,𝜙(𝑘̄)−1)∖𝑆𝑡∩𝑅𝑘(𝑡+1,𝜙(𝑘̄)) . We now establish the properties of𝐴𝜙(𝑘̄)−1. First, 𝐴𝜙(𝑘̄)−1 ⊆400

𝑆𝑡 ∩ 𝑅𝑘(𝑡+1,𝜙(𝑘̄)−1) , and |𝐴𝜙(𝑘̄)−1| = 𝑉 ∗
ℜ(𝑆𝑡 ∩ 𝑅𝑘(𝑡+1,𝜙(𝑘̄)−1)). For all 𝑘

′ ∈ 𝒦 such that 𝑅𝑘(𝑡+1,𝜙(𝑘̄)−1) ∩ 𝑅𝑘′ = ∅,401

we have |𝐴𝜙(𝑘̄)−1 ∩ 𝑅𝑘′ | = 0 ≤ 𝜁 ′𝑘 . Furthermore,402

|𝐴𝜙(𝑘̄)−1 ∩ 𝑅𝑘(𝑡+1,𝜙(𝑘̄)) | = |𝐴𝜙(𝑘̄) ∩ 𝑅𝑘(𝑡+1,𝜙(𝑘̄)) |

≤ 𝜁𝑘(𝑡+1,𝜙(𝑘̄))

by construction of 𝐴𝜙(𝑘̄). Finally, for all 𝑘
′ such that 𝑅𝑘(𝑡+1,𝜙(𝑘̄)−1) ⊆ 𝑅𝑘′ , |𝐴𝜙(𝑘̄)−1 ∩ 𝑅𝑘′ | = |𝐴𝜙(𝑘̄)−1| =403

𝑉 ∗
ℜ(𝑆𝑡 ∩ 𝑅𝑘(𝑡+1,𝜙(𝑘̄)−1)) = |𝐵| with the previously defined 𝐵, in particular |𝐵 ∩ 𝑅𝑘′ | ≤ 𝜁𝑘′ , but given that404

𝐵 ⊆ 𝑆𝑡∩𝑅𝑘(𝑡+1,𝜙(𝑘̄)−1) , |𝐵∩𝑅𝑘′ | = |𝐵|. Wrapping all those equalities, it comes that |𝐴𝜙(𝑘̄)−1∩𝑅𝑘′ | ≤ 𝜁𝑘′ . In405

the end, |𝐴𝜙(𝑘̄)−1∩𝑅𝑘′ | ≤ 𝜁𝑘′ for all 𝑘′ ∈ 𝒦, so𝐴𝜙(𝑘̄)−1 realizes the maximum in (25) for 𝑆𝑡∩𝑅𝑘(𝑡+1,𝜙(𝑘̄)−1) .406

By applying exactly the same method, we recursively construct a non-increasing sequence 𝐴𝜙(𝑘̄) ⊆407

⋯ ⊆ 𝐴1 such that for all ℓ ∈ {1, … , 𝜙(𝑘̄)} and 𝑘′ ∈ 𝒦, 𝐴ℓ ⊆ 𝑆𝑡 ∩ 𝑅𝑘(𝑡+1,ℓ) , 𝑉
∗
ℜ(𝑆𝑡 ∩ 𝑅𝑘(𝑡+1,ℓ)) = |𝐴ℓ|, and408

|𝐴ℓ ∩ 𝑅𝑘′ | ≤ 𝜁𝑘′ . Furthermore for ℓ′ > ℓ, 𝐴ℓ ∖ 𝐴ℓ′ ⊆ 𝑆𝑡 ∩ 𝑅𝑘(𝑡+1,ℓ) ∖ 𝑆𝑡 ∩ 𝑅𝑘(𝑡+1,ℓ′) . Also note that the fact409

that 𝑖𝑡+1 ∉ ⋃𝑘∈𝒦−
𝑡
𝑅𝑘 implies that 𝜂𝑡𝑘(𝑡+1,ℓ) < 𝜁𝑘(𝑡+1,ℓ) for all ℓ ∈ {1, … , 𝜙(𝑘̄)}. So by (16), |𝐴ℓ| < 𝜁𝑘(𝑡+1,ℓ) .410

Let, for any ℓ ∈ {1, … , 𝜙(𝑘̄)}, 𝐴ℓ = 𝐴ℓ ∪ {𝑖𝑡+1}. Given that 𝐴ℓ ⊆ 𝑆𝑡 ∩ 𝑅𝑘(𝑡+1,ℓ) and that 𝑖𝑡+1 ∈ 𝑆𝑡+1 ∖ 𝑆𝑡,411

𝐴ℓ ⊆ 𝑆𝑡+1 ∩ 𝑅𝑘(𝑡+1,ℓ) , |𝐴ℓ| = |𝐴ℓ| + 1, and for all ℓ′ ∈ {1, … , 𝜙(𝑘̄)}, |𝐴ℓ ∩ 𝑅𝑘(𝑡+1,ℓ′) | = |𝐴ℓ ∩ 𝑅𝑘(𝑡+1,ℓ′) | + 1.412

Note that if, furthermore, ℓ ≥ ℓ′, then 𝐴ℓ ⊆ 𝐴ℓ′ , so413

|𝐴ℓ ∩ 𝑅𝑘(𝑡+1,ℓ′) | = |𝐴ℓ ∩ 𝑅𝑘(𝑡+1,ℓ′) | + 1
≤ |𝐴ℓ′ ∩ 𝑅𝑘(𝑡+1,ℓ′) | + 1
= |𝐴ℓ′ | + 1
< 𝜁𝑘(𝑡+1,ℓ′) + 1.

On the contrary, if ℓ < ℓ′, we write that414

|𝐴ℓ ∩ 𝑅𝑘(𝑡+1,ℓ′) | = |𝐴ℓ ∩ 𝑅𝑘(𝑡+1,ℓ′) | + 1
= |(𝐴ℓ ∖ 𝐴ℓ′) ∩ 𝑅𝑘(𝑡+1,ℓ′) | + |𝐴ℓ′ ∩ 𝑅𝑘(𝑡+1,ℓ′) | + 1
< 0 + 𝜁𝑘(𝑡+1,ℓ′) + 1,

because 𝐴ℓ ∖ 𝐴ℓ′ ⊆ 𝑅𝑘(𝑡+1,ℓ) ∖ 𝑅𝑘(𝑡+1,ℓ′) hence (𝐴ℓ ∖ 𝐴ℓ′) ∩ 𝑅𝑘(𝑡+1,ℓ′) = ∅. In both cases, |𝐴ℓ ∩ 𝑅𝑘(𝑡+1,ℓ′) | <415

𝜁𝑘(𝑡+1,ℓ′) + 1 so |𝐴ℓ ∩ 𝑅𝑘(𝑡+1,ℓ′) | ≤ 𝜁𝑘(𝑡+1,ℓ′) . Additionally, for all 𝑘′ ∈ 𝒦 such that 𝑖𝑡+1 ∉ 𝑅𝑘′ , |𝐴ℓ ∩ 𝑅𝑘′ | =416

|𝐴ℓ ∩ 𝑅𝑘′ | ≤ 𝜁𝑘′ .417

In the end, |𝐴ℓ ∩ 𝑅𝑘′ | ≤ 𝜁𝑘′ for all 𝑘′ ∈ 𝒦, so418

𝑉 ∗
ℜ(𝑆𝑡+1 ∩ 𝑅𝑘(𝑡+1,ℓ)) ≥ |𝐴ℓ| by (25)

= |𝐴ℓ| + 1
= 𝑉 ∗

ℜ(𝑆𝑡 ∩ 𝑅𝑘(𝑡+1,ℓ)) + 1.

21



su
bm

itte
d

So, as we wanted, 𝑉 ∗
ℜ(𝑆𝑡+1 ∩ 𝑅𝑘) ≥ 𝑉 ∗

ℜ(𝑆𝑡 ∩ 𝑅𝑘) + 1 for all 𝑘 ∈ 𝒦𝑡 such that 𝑖𝑡+1 ∈ 𝑅𝑘 and so for all419

such 𝑘 that are in 𝒦𝑡+1. So every inequality in (24) becomes an equality and we have proven that420

𝑉 ∗
ℜ(𝑆𝑡+1 ∩ 𝑅𝑘) = 𝑉 ∗

ℜ(𝑆𝑡 ∩ 𝑅𝑘) + 1 = 𝜂𝑡𝑘 + 1 = 𝜂𝑡+1𝑘 ,

that is, (16) is true at 𝑡 + 1. Looking at the first line of (24) , we also proved that421

𝑉 ∗
ℜ(𝑆𝑡+1 ∩ 𝑅𝑘) = ∑

𝑘′∈𝒫 𝑡

𝑅𝑘′⊆𝑅𝑘

𝜁𝑘′ ∧ |𝑆𝑡+1 ∩ 𝑅𝑘′ |. (26)

The only thing left to prove is that (26) is also true with 𝒫 𝑡+1 instead of 𝒫 𝑡, that is that (17) also422

holds at 𝑡 + 1, or, put differently, that423

∑
𝑘′∈𝒫 𝑡

𝑅𝑘′⊆𝑅𝑘

𝜁𝑘′ ∧ |𝑆𝑡+1 ∩ 𝑅𝑘′ | = ∑
𝑘′∈𝒫 𝑡+1

𝑅𝑘′⊆𝑅𝑘

𝜁𝑘′ ∧ |𝑆𝑡+1 ∩ 𝑅𝑘′ |. (27)

If ℎ𝑓𝑡+1 does not exist, meaning that we didn’t break the loop, 𝒫 𝑡+1 = 𝒫 𝑡 so there is nothing to prove.424

Now assume that ℎ𝑓𝑡+1 exists. So (23) holds. We will split each term in (27) in a sum of two terms.425

First, note that by (23), for any 𝑘′ ∈ 𝒦 such that 𝑅𝑘′ ∩ 𝑅
𝑘(𝑡+1,ℎ

𝑓
𝑡+1)

= ∅, we have that 𝑘′ ∈ 𝒫 𝑡+1 if and426

only if 𝑘′ ∈ 𝒫 𝑡. And so,427

∑
𝑘′∈𝒫 𝑡+1

𝑅𝑘′⊆𝑅𝑘

𝜁𝑘′ ∧ |𝑆𝑡+1 ∩ 𝑅𝑘′ | = ∑
𝑘′∈𝒫 𝑡+1

𝑅𝑘′∩𝑅
𝑘(𝑡+1,ℎ

𝑓
𝑡+1)

=∅

𝑅𝑘′⊆𝑅𝑘

𝜁𝑘′ ∧ |𝑆𝑡+1 ∩ 𝑅𝑘′ | + 𝜁
𝑘(𝑡+1,ℎ

𝑓
𝑡+1)

∧ |𝑆𝑡+1 ∩ 𝑅
𝑘(𝑡+1,ℎ

𝑓
𝑡+1)

|

= ∑
𝑘′∈𝒫 𝑡

𝑅𝑘′∩𝑅
𝑘(𝑡+1,ℎ

𝑓
𝑡+1)

=∅

𝑅𝑘′⊆𝑅𝑘

𝜁𝑘′ ∧ |𝑆𝑡+1 ∩ 𝑅𝑘′ | + 𝜁
𝑘(𝑡+1,ℎ

𝑓
𝑡+1)

∧ |𝑆𝑡+1 ∩ 𝑅
𝑘(𝑡+1,ℎ

𝑓
𝑡+1)

|.

Recall that we already proved that there is no 𝑘′ ∈ 𝒫 𝑡 such that 𝑅
𝑘(𝑡+1,ℎ

𝑓
𝑡+1)

⊊ 𝑅𝑘′ , so for any 𝑘′ ∈ 𝒫 𝑡,428

either 𝑅𝑘′ ∩ 𝑅
𝑘(𝑡+1,ℎ

𝑓
𝑡+1)

= ∅ or 𝑅𝑘′ ⊆ 𝑅
𝑘(𝑡+1,ℎ

𝑓
𝑡+1)

. Hence the split429

∑
𝑘′∈𝒫 𝑡

𝑅𝑘′⊆𝑅𝑘

𝜁𝑘′ ∧ |𝑆𝑡+1 ∩ 𝑅𝑘′ | = ∑
𝑘′∈𝒫 𝑡

𝑅𝑘′∩𝑅
𝑘(𝑡+1,ℎ

𝑓
𝑡+1)

=∅

𝑅𝑘′⊆𝑅𝑘

𝜁𝑘′ ∧ |𝑆𝑡+1 ∩ 𝑅𝑘′ | + ∑
𝑘′∈𝒫 𝑡

𝑅𝑘′⊆𝑅
𝑘(𝑡+1,ℎ

𝑓
𝑡+1)

𝑅𝑘′⊆𝑅𝑘

𝜁𝑘′ ∧ |𝑆𝑡+1 ∩ 𝑅𝑘′ |

= ∑
𝑘′∈𝒫 𝑡

𝑅𝑘′∩𝑅
𝑘(𝑡+1,ℎ

𝑓
𝑡+1)

=∅

𝑅𝑘′⊆𝑅𝑘

𝜁𝑘′ ∧ |𝑆𝑡+1 ∩ 𝑅𝑘′ | + ∑
𝑘′∈𝒫 𝑡

𝑅𝑘′⊆𝑅
𝑘(𝑡+1,ℎ

𝑓
𝑡+1)

𝜁𝑘′ ∧ |𝑆𝑡+1 ∩ 𝑅𝑘′ |,

where the last equality comes from the fact that 𝑅
𝑘(𝑡+1,ℎ

𝑓
𝑡+1)

⊆ 𝑅𝑘, because 𝑘 ∈ 𝒦𝑡+1, 𝑖𝑡+1 ∈ 𝑅𝑘, and430

𝑘(𝑡+1,ℎ
𝑓
𝑡+1) ∈ 𝒫 𝑡+1.431

Given the two previously made splits, it remains to prove that432

∑
𝑘′∈𝒫 𝑡

𝑅𝑘′⊆𝑅
𝑘(𝑡+1,ℎ

𝑓
𝑡+1)

𝜁𝑘′ ∧ |𝑆𝑡+1 ∩ 𝑅𝑘′ | = 𝜁
𝑘(𝑡+1,ℎ

𝑓
𝑡+1)

∧ |𝑆𝑡+1 ∩ 𝑅
𝑘(𝑡+1,ℎ

𝑓
𝑡+1)

|.

22



su
bm

itte
d

Interestingly, this does not depend on 𝑘 anymore. By (26), the left-hand side is equal to 𝑉 ∗
ℜ(𝑆𝑡+1 ∩433

𝑅
𝑘(𝑡+1,ℎ

𝑓
𝑡+1)

). Because we are breaking the loop at step ℎ𝑓𝑡+1, 𝜂
𝑡+1
𝑘(𝑡+1,ℎ

𝑓
𝑡+1)

= 𝜁
𝑘(𝑡+1,ℎ

𝑓
𝑡+1)

. Finally, because (16)434

holds at 𝑡 + 1, 𝜂𝑡+1
𝑘(𝑡+1,ℎ

𝑓
𝑡+1)

= 𝑉 ∗
ℜ(𝑆𝑡+1 ∩ 𝑅

𝑘(𝑡+1,ℎ
𝑓
𝑡+1)

). Wrapping all these assertions:435

∑
𝑘′∈𝒫 𝑡

𝑅𝑘′⊆𝑅
𝑘(𝑡+1,ℎ

𝑓
𝑡+1)

𝜁𝑘′ ∧ |𝑆𝑡+1 ∩ 𝑅𝑘′ | = 𝑉 ∗
ℜ(𝑆𝑡+1 ∩ 𝑅

𝑘(𝑡+1,ℎ
𝑓
𝑡+1)

)

= 𝑉 ∗
ℜ(𝑆𝑡+1 ∩ 𝑅

𝑘(𝑡+1,ℎ
𝑓
𝑡+1)

) ∧ |𝑆𝑡+1 ∩ 𝑅
𝑘(𝑡+1,ℎ

𝑓
𝑡+1)

|

= 𝜂𝑡+1
𝑘(𝑡+1,ℎ

𝑓
𝑡+1)

∧ |𝑆𝑡+1 ∩ 𝑅
𝑘(𝑡+1,ℎ

𝑓
𝑡+1)

|

= 𝜁
𝑘(𝑡+1,ℎ

𝑓
𝑡+1)

∧ |𝑆𝑡+1 ∩ 𝑅
𝑘(𝑡+1,ℎ

𝑓
𝑡+1)

|,

which achieves the second case and so the proof. �436

4 Implementation437

All algorithms discussed in this manuscript are already implemented in the R (R Core Team, 2024)438

package sanssouci (Neuvial et al., 2024) which is available on GitHub (see the References for the link)439

and is dedicated to the computation of confidence bounds for the number of false positives. It also440

hosts the implementation of the methods described in Blanchard et al. (2020) and Enjalbert-Courrech441

and Neuvial (2022). Algorithm 1 is implemented as the V.star function, Algorithm 2 is implemented442

as the pruning function, and Algorithm 4 is implemented as the curve.V.star.forest.fast function443

(whereas the curve.V.star.forest.naive function just repeatedly calls V.star). Note that the444

pruning function has a delete.gaps option that speeds up the computation even more by removing445

unnecessary gaps introduced in the data structure by the pruning operation, those gaps being due to446

the specific structure that is used to store the information of 𝒦.447

Speaking of the data structure, we briefly describe it, with an example. We represent (𝑅𝑘)𝑘∈𝒦 by two448

lists, C and leaf_list. leaf_list is a list of vectors, where leaf_list[[i]] is the vector listing449

the hypotheses in the atom 𝑃𝑖. C is a list of lists. For 1 ≤ ℎ ≤ 𝐻, C[[h]] lists the regions at depth ℎ,450

using the index bounds of the atoms they are composed of. That is, the elements of the list C[[h]]451

are vectors of size two, and if there is k, i and j such that C[[h]][[k]] = c(i, j), it means that452

(𝑖, 𝑗) ∈ 𝒦, or in other words that 𝑃𝑖∶𝑗 is one of the regions, and that 𝜙((𝑖, 𝑗)) = ℎ. We emphasize that453

the 1D structure of the hypotheses has to be respected by the user as the current implementation454

implicitly uses it: that is, 𝑃1 has to contain the hypotheses labeled 1, 2, … , 𝑝, 𝑃2 has to contain the455

hypotheses labeled 𝑝 + 1,…, and so on. Also, the hypotheses have to be in non-decreasing order:456

leaf_list[[1]] has to be equal to c(1, 2, 3, ..., p) and not, say, c(2, 1, 3, ..., p).457

Example 4.1 (Implementation of Example 2.3). For the reference family given in Example 2.2 and458

completed in Example 2.3,𝐻 = 3. For ℎ = 1, we have C[[1]][[1]] = c(1, 5), C[[1]][[2]] = c(6,459

7), C[[1]][[3]] = c(8, 8). For ℎ = 2, we have C[[2]][[1]] = c(1, 1), C[[2]][[2]] = c(2,460

3), C[[2]][[3]] = c(4, 5), C[[2]][[4]] = c(6, 6), C[[2]][[5]] = c(7, 7). For ℎ = 3, we461

have C[[3]][[1]] = c(2, 2), C[[3]][[2]] = c(3, 3), C[[3]][[3]] = c(4, 4), C[[3]][[4]] =462

c(5, 5).463

And then for the atoms, we have leaf_list[[1]] = c(1, 2), leaf_list[[2]] = c(3, 4),464

leaf_list[[3]] = c(5, 6, 7, 8, 9, 10), leaf_list[[4]] = c(11, 12, 13, 14, 15, 16),465

leaf_list[[5]] = c(17, 18, 19, 20), leaf_list[[6]] = 21, leaf_list[[7]] = 22 and finally466

leaf_list[[8]] = c(23, 24, 25).467

23



su
bm

itte
d

The functions dyadic.from.leaf_list, dyadic.from.window.size, and dyadic.from.height re-468

turn the appropriate data structure to represent a 𝒦 that can be described as a dyadic tree, based on469

some entry parameters that can be inferred from the names of the functions. The completion of a470

forest structure, mentioned in Section 2.3, is done by the forest.completion function. Finally, the471

𝜁𝑘’s are computed as in Durand et al. (2020) by the zetas.tree function with method=zeta.DKWM.472

5 Numerical experiments473

In this Section, we present some numerical experiments aiming to demonstrate the impact of the474

pruning of Algorithm 2 (using the delete.gaps option mentioned in Section 4) and of the fast475

Algorithm 4 , in terms of computation time, compared to the only previously available method to476

compute a curve of confidence bounds. As mentioned in Section 2.3 and Section 4, this naive method477

simply consisted in a for loop repeatedly applying Algorithm 1 .478

To compare the computation time, we use the R package microbenchmark version 1.5.0 (Mersmann,479

2024) with R version 4.4.0 (2024-04-24) and sanssouci version 0.13.0, on a MacBook Air M1 (2020)480

running macOS 15.1.1. The package microbenchmark allows to run code snippets a given number481

n_repl of times, and to compute summary statistics on the computation time. The script executing482

the computation can be found in the same repository as this manuscript.483

Four scenarios are studied, all based on a common setting which we first describe. A number 𝑚 of484

hypotheses is tested. We use a reference family (𝑅𝑘, 𝜁𝑘) such that the 𝑅𝑘’s have a forest structure of485

maximal depth 𝐻 = 10. The graph of the inclusion relations between the 𝑅𝑘’s is a binary tree, hence486

there are 2𝐻−1 = 1023 𝑅𝑘’s and in particular 2𝐻−1 = 512 atoms. 𝑃-values are generated in a gaussian487

one-sided fashion where 𝐻0,𝑖 = {𝒩 (𝜇, Id) ∶ 𝜇𝑖 = 0}, 𝐻1,𝑖 = {𝒩 (𝜇, Id) ∶ 𝜇𝑖 = 4}, and 𝑝𝑖(𝑋) = 1 − Φ(𝑋𝑖).488

ℋ1 is comprised of the leafs 1, 5, 9 and 10, that is ℋ1 = 𝑃1 ∪ 𝑃5 ∪ 𝑃9 ∪ 𝑃10. For each scenario, the489

curve (𝑉 ∗
ℜ({1, … , 𝑡}))𝑡∈ℕ∗

𝑚
is computed. For the experiments including pruning, the pruning is done490

once before the n_repl replications, to mimick the practice where pruning only needs to be done491

once and for all, while the user may be interested in computing multiple bounds and curves after492

that.493

In scenarios 1 and 2, 𝑚 = 1024 (so the atoms are of size 2), in scenarios 3 and 4, 𝑚 = 10240 (so the494

atoms are of size 10). In scenarios 1 and 3, the 𝜁𝑘’s are estimated trivially by 𝜁𝑘 = |𝑅𝑘|, and in scenarios495

2 and 4, they are computed as in Durand et al. (2020) with the DKWM inequality (Dvoretzky et al.,496

1956, ; Massart, 1990). Because of the size of 𝑚 and the poor performances of the naive approach,497

we set n_repl=100 in scenarios 1 and 2 and n_repl=10 only in scenario s 3 and 4. The differences498

between the scenarios are summarized in Table 1.499

Table 1: Differences between the scenarios

parameter Scenario 1 Scenario 2 Scenario 3 Scenario 4

𝑚 1024 1024 10240 10240
zeta computation trivial DKWM trivial DKWM
n_repl 100 100 10 10

For the trivial 𝜁𝑘 computation of scenarios 1 and 3, the pruning obviously deletes all non-atom regions500

so |𝒦𝔭𝔯| = 512. Whereas, for the particular instance 𝜔 ∈ Ω in the experiments, |𝒦𝔭𝔯| = 541 for501

scenario 2, and |𝒦𝔭𝔯| = 573 for scenario 4. Those results alone illustrate the benefits of pruning with502

respect to the reduction of the cardinality of the reference family: the regions above atoms with no503

signal (or no detectable signal in the trivial scenarios) are pruned. The fact that the regions above504

24



su
bm

itte
d

atoms with detectable signal are not pruned means that they are relevant for the confidences bounds505

(which had already been demonstrated in the simulation study of Durand et al. (2020)).506

The summary statistics of the computation time in each scenario are presented in Table 2, Table 3,507

Table 4, and Table 5, and they are also presented as boxplots in Figure 11. The time unit is the second508

(in logarithmic scale in the boxplots).509

Table 2: Scenario 1

expr min lq mean median uq max neval

naive.not.pruned 3.6924007 3.7943906 3.8521256 3.8386487 3.8780412 4.5247099 100
naive.pruned 3.2822354 3.4126177 3.4758338 3.4614076 3.5061541 3.8822089 100
fast.not.pruned 0.1332744 0.1367000 0.1383806 0.1385039 0.1392707 0.1768691 100
fast.pruned 0.0921422 0.0945472 0.0974025 0.0954231 0.0978687 0.1908498 100

Table 3: Scenario 2

expr min lq mean median uq max neval

naive.not.pruned 3.7280744 3.8025695 3.8514710 3.8451367 3.8831009 4.1891831 100
naive.pruned 3.3556131 3.4533210 3.4926114 3.4906796 3.5182172 3.8501820 100
fast.not.pruned 0.1214844 0.1246071 0.1265674 0.1260760 0.1279640 0.1407320 100
fast.pruned 0.0815349 0.0827995 0.0841622 0.0835618 0.0851062 0.0896013 100

Table 4: Scenario 3

expr min lq mean median uq max neval

naive.not.pruned 332.1856576 335.5148922 337.9856658 338.2432916 340.3329972 344.6255264 10
naive.pruned 328.3186707 329.3081834 332.1861199 331.4335773 333.3563651 338.7111614 10
fast.not.pruned 1.4881838 1.4966417 1.5066370 1.5078498 1.5151194 1.5217546 10
fast.pruned 0.9354581 0.9418174 0.9498806 0.9512573 0.9550453 0.9675895 10

Table 5: Scenario 4

expr min lq mean median uq max neval

naive.not.pruned 331.0124665 335.6357519 349.7740812 337.6459728 342.1652204 401.4881647 10
naive.pruned 331.2567637 332.2215437 363.5822362 333.0651271 335.8347696 493.5124771 10
fast.not.pruned 1.3575818 1.3588461 1.3733567 1.3641336 1.3762178 1.4460291 10
fast.pruned 0.9287399 0.9441687 0.9551275 0.9520622 0.9624959 0.9972532 10

On each scenario, using the fast algorithm is much faster than the naive approach, while pruning510

always gives a slight improvement over not pruning.511

Comparing scenarios 1 and 2 first, we see that, as expected, there is no significant change in512

computation time for naive.not.pruned, while naive.pruned is faster in scenario 1, given that we513

prune more. But, on the other hand, fast.not.pruned and fast.pruned are both faster in scenario514

2, even if we prune less. This is because, for the regions with signal, said signal is detected and so515

25



su
bm

itte
d

0.
1

0.
2

0.
5

1.
0

2.
0

5.
0

Comp. time, scenario 1

lo
g 

se
co

nd
s

na
iv

e.
no

t.p
ru

ne
d

na
iv

e.
pr

un
ed

fa
st

.n
ot

.p
ru

ne
d

fa
st

.p
ru

ne
d

0.
1

0.
2

0.
5

1.
0

2.
0

Comp. time, scenario 2

lo
g 

se
co

nd
s

na
iv

e.
no

t.p
ru

ne
d

na
iv

e.
pr

un
ed

fa
st

.n
ot

.p
ru

ne
d

fa
st

.p
ru

ne
d

1
2

5
10

20
50

20
0

Comp. time, scenario 3

lo
g 

se
co

nd
s

na
iv

e.
no

t.p
ru

ne
d

na
iv

e.
pr

un
ed

fa
st

.n
ot

.p
ru

ne
d

fa
st

.p
ru

ne
d

1
2

5
10

20
50

20
0

50
0

Comp. time, scenario 4

lo
g 

se
co

nd
s

na
iv

e.
no

t.p
ru

ne
d

na
iv

e.
pr

un
ed

fa
st

.n
ot

.p
ru

ne
d

fa
st

.p
ru

ne
d

Figure 11: Computation times in scenario, in log seconds

26



su
bm

itte
d

those regions are quickly saturated, in the sense that we quickly have 𝜂𝑡𝑘 = 𝜁𝑘 and 𝑘 added to 𝒦−
𝑘 ,516

which saves a lot of time.517

The comparison between scenarios 3 and 4 is similar, except that this time we prune even less in518

scenario 4 and so the effect of the saturation is not enough to compensate. Although, with only519

n_repl=10, the statistics seem less accurate, this can be confirmed with additional experiments520

(n_repl can also be set to 100 without problem is we don’t include naive methods).521

Finally, comparing scenarios 3 & 4 with scenarios 1 & 2, we see that multiplying the number of522

hypotheses by 10 effectively multiplies the computation time by ∼ 10 when using Algorithm 4 and523

by ∼ 100 when using Algorithm 1 naively, which illustrates the stated complexities of 𝑂(𝑚|𝒦|) and524

𝑂(𝑚2|𝒦 |), respectively.525

6 Conclusion526

In conclusion, we effectively introduced a new algorithm to compute a curve of confidence upper527

bounds, much faster the previous alternative, with one power of 𝑚 less in the complexity.528

To develop new confidence upper boundsmethodology and test them on simulations, it was previously529

not conceivable to replicate experiments a sufficient number of times while computing whole curves.530

For instance, in the simulation study of Durand et al. (2020), the number of replications chosen was531

10 and the whole curve was not computed, only ten values along the curve were computed, for an532

m set to 12800, that is 0.078% of the curve had been computed. Now, simulation studies with an533

adequate number of replications and 100% of the curve become feasible.534

A lot of work remains to be done on the sanssouci package. For example, to make the data format of535

a forest structure (𝑅𝑘)𝑘∈𝒦 less convoluted and more user-friendly is an interesting project. Another536

one would be to implement inside the package the methods of the paper Blain et al. (2022), which537

are currently only available in the Python language (Van Rossum and Drake, 2009), and the methods538

of the paper Meah et al. (2024).539

Other current works include the development of new reference families with theoretical JER control540

that could better account for realistic models, such as models with dependence between the 𝑝-values,541

see for example Perrot-Dockès et al. (2023), or models with discreteness.542

7 Acknowledgements543

This work has been supported by ANR-20-IDEES-0002 (PIA), ANR-19-CHIA-0021 (BISCOTTE), ANR-544

23-CE40-0018 (BACKUP) and ANR-21-CE23-0035 (ASCAI). Thanks to Romain Périer for being the545

first to extensively use the new implemented algorithms.546

References547

Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: a practical and powerful548

approach to multiple testing. J. Roy. Statist. Soc. Ser. B, 57(1):289–300, 1995. ISSN 0035-9246. URL549

https://www.jstor.org/stable/2346101.550

Alexandre Blain, Bertrand Thirion, and Pierre Neuvial. Notip: Non-parametric True Discovery551

Proportion control for brain imaging. Neuroimage, 260, October 2022. URL https://doi.org/10.1016/552

j.neuroimage.2022.119492.553

27

https://www.jstor.org/stable/2346101
https://doi.org/10.1016/j.neuroimage.2022.119492
https://doi.org/10.1016/j.neuroimage.2022.119492
https://doi.org/10.1016/j.neuroimage.2022.119492


su
bm

itte
d

Gilles Blanchard, Pierre Neuvial, and Etienne Roquain. Post hoc confidence bounds on false positives554

using reference families. Ann. Statist., 48(3):1281–1303, 2020. ISSN 0090-5364. doi: 10.1214/19-555

AOS1847. URL https://doi.org/10.1214/19-AOS1847.556

Małgorzata Bogdan, Ewout van den Berg, Chiara Sabatti, Weijie Su, and Emmanuel J. Candès. SLOPE—557

adaptive variable selection via convex optimization. Ann. Appl. Stat., 9(3):1103–1140, 2015. ISSN558

1932-6157,1941-7330. doi: 10.1214/15-AOAS842. URL https://doi.org/10.1214/15-AOAS842.559

Guillermo Durand, Gilles Blanchard, Pierre Neuvial, and Etienne Roquain. Post hoc false positive560

control for structured hypotheses. Scand. J. Stat., 47(4):1114–1148, 2020. ISSN 0303-6898. doi:561

10.1111/sjos.12453. URL https://doi.org/10.1111/sjos.12453.562

A. Dvoretzky, J. Kiefer, and J. Wolfowitz. Asymptotic minimax character of the sample distribution563

function and of the classical multinomial estimator. Ann. Math. Statist., 27:642–669, 1956. ISSN564

0003-4851. doi: 10.1214/aoms/1177728174. URL https://doi.org/10.1214/aoms/1177728174.565

Nicolas Enjalbert-Courrech and Pierre Neuvial. Powerful and interpretable control of false discoveries566

in two-group differential expression studies. Bioinformatics, 38(23):5214–5221, 10 2022. ISSN 1367-567

4803. doi: 10.1093/bioinformatics/btac693. URL https://doi.org/10.1093/bioinformatics/btac693.568

Christopher R. Genovese and Larry Wasserman. Exceedance control of the false discovery proportion.569

J. Amer. Statist. Assoc., 101(476):1408–1417, 2006. ISSN 0162-1459. doi: 10.1198/016214506000000339.570

URL https://doi.org/10.1198/016214506000000339.571

Jelle J. Goeman and Aldo Solari. Multiple testing for exploratory research. Statist. Sci., 26(4):584–597,572

2011. ISSN 0883-4237. doi: 10.1214/11-STS356. URL https://doi.org/10.1214/11-STS356.573

Ruth Marcus, Eric Peritz, and K. R. Gabriel. On closed testing procedures with special reference574

to ordered analysis of variance. Biometrika, 63(3):655–660, 1976. ISSN 0006-3444. doi: 10.1093/575

biomet/63.3.655. URL https://doi.org/10.1093/biomet/63.3.655.576

P. Massart. The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Ann. Probab., 18(3):577

1269–1283, 1990. ISSN 0091-1798,2168-894X. URL http://links.jstor.org/sici?sici=0091-1798(199007)578

18:3<1269:TTCITD>2.0.CO;2-Q&origin=MSN.579

Iqraa Meah, Gilles Blanchard, and Etienne Roquain. False discovery proportion envelopes with580

m-consistency. Journal of Machine Learning Research, 25(270):1–52, 2024. URL http://jmlr.org/581

papers/v25/23-1025.html.582

Rosa J. Meijer, Thijmen J. P. Krebs, and Jelle J. Goeman. A region-based multiple testing method for583

hypotheses ordered in space or time. Stat. Appl. Genet. Mol. Biol., 14(1):1–19, 2015. ISSN 2194-6302.584

doi: 10.1515/sagmb-2013-0075. URL https://doi.org/10.1515/sagmb-2013-0075.585

Nicolai Meinshausen. False discovery control for multiple tests of association under general depen-586

dence. Scand. J. Statist., 33(2):227–237, 2006. ISSN 0303-6898. doi: 10.1111/j.1467-9469.2005.00488.x.587

URL https://doi.org/10.1111/j.1467-9469.2005.00488.x.588

Olaf Mersmann. microbenchmark: Accurate Timing Functions, 2024. URL https://CRAN.R-project.org/589

package=microbenchmark. R package version 1.5.0.590

Pierre Neuvial, Gilles Blanchard, GuillermoDurand, Nicolas Enjalbert-Courrech, and Etienne Roquain.591

sanssouci: Post Hoc Multiple Testing Inference, 2024. URL https://sanssouci-org.github.io/sanssouci.592

R package version 0.13.0.593

Marie Perrot-Dockès, Gilles Blanchard, Pierre Neuvial, and Etienne Roquain. Selective inference for594

false discovery proportion in a hidden markov model. TEST, pages 1–27, 2023.595

28

https://doi.org/10.1214/19-AOS1847
https://doi.org/10.1214/15-AOAS842
https://doi.org/10.1111/sjos.12453
https://doi.org/10.1214/aoms/1177728174
https://doi.org/10.1093/bioinformatics/btac693
https://doi.org/10.1198/016214506000000339
https://doi.org/10.1214/11-STS356
https://doi.org/10.1093/biomet/63.3.655
http://links.jstor.org/sici?sici=0091-1798(199007)18:3<1269:TTCITD>2.0.CO;2-Q&origin=MSN
http://links.jstor.org/sici?sici=0091-1798(199007)18:3<1269:TTCITD>2.0.CO;2-Q&origin=MSN
http://links.jstor.org/sici?sici=0091-1798(199007)18:3<1269:TTCITD>2.0.CO;2-Q&origin=MSN
http://jmlr.org/papers/v25/23-1025.html
http://jmlr.org/papers/v25/23-1025.html
http://jmlr.org/papers/v25/23-1025.html
https://doi.org/10.1515/sagmb-2013-0075
https://doi.org/10.1111/j.1467-9469.2005.00488.x
https://CRAN.R-project.org/package=microbenchmark
https://CRAN.R-project.org/package=microbenchmark
https://CRAN.R-project.org/package=microbenchmark
https://sanssouci-org.github.io/sanssouci


su
bm

itte
d

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical596

Computing, Vienna, Austria, 2024. URL https://www.R-project.org/.597

Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA,598

2009. ISBN 1441412697.599

Anna Vesely, Livio Finos, and Jelle J. Goeman. Permutation-based true discovery guarantee by sum600

tests. J. R. Stat. Soc. Ser. B. Stat. Methodol., 85(3):664–683, 2023. ISSN 1369-7412,1467-9868. doi:601

10.1093/jrsssb/qkad019. URL https://doi.org/10.1093/jrsssb/qkad019.602

Session information603

R version 4.4.0 (2024-04-24)604

Platform: aarch64-apple-darwin21.6.0605

Running under: macOS 15.1.1606

607

Matrix products: default608

BLAS: /opt/homebrew/Cellar/openblas/0.3.29/lib/libopenblasp-r0.3.29.dylib609

LAPACK: /opt/homebrew/Cellar/r/4.4.0_1/lib/R/lib/libRlapack.dylib; LAPACK version 3.12.0610

611

locale:612

[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8613

614

time zone: Europe/Paris615

tzcode source: internal616

617

attached base packages:618

[1] stats graphics grDevices datasets utils methods base619

620

other attached packages:621

[1] microbenchmark_1.5.0622

623

loaded via a namespace (and not attached):624

[1] compiler_4.4.0 fastmap_1.1.1 cli_3.6.2 htmltools_0.5.8.1625

[5] tools_4.4.0 yaml_2.3.8 tinytex_0.51 rmarkdown_2.26626

[9] knitr_1.46 jsonlite_1.8.8 xfun_0.43 digest_0.6.35627

[13] rlang_1.1.3 renv_1.0.7 evaluate_0.23628

29

https://www.R-project.org/
https://doi.org/10.1093/jrsssb/qkad019

	Introduction
	Notation and reference family methodology
	Multiple testing notation
	Post hoc bounds with reference families
	Regions with a forest structure

	New algorithms
	Pruning the forest
	Fast algorithm to compute a curve of confidence bounds on a path of selection sets
	Illustration on a detailed example
	Proof of Theorem 
	Derivation of 
	Proof of and 


	Implementation
	Numerical experiments
	Conclusion
	Acknowledgements
	References
	Session information

