
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

Graph Variate Neural Networks

Anonymous authors
Paper under double-blind review

Abstract

Modelling dynamically evolving spatio-temporal signals is a prominent challenge in the Graph
Neural Network (GNN) literature. Notably, GNNs assume an existing underlying graph
structure. While this underlying structure may not always exist or is derived independently
from the signal, a temporally evolving functional network can always be constructed from
multi-channel data. Graph Variate Signal Analysis (GVSA) defines a unified framework
consisting of a network tensor of instantaneous connectivity profiles against a stable support
usually constructed from the signal itself. Building on Graph-Variate Signal Analysis
(GVSA) and tools from graph signal processing, we introduce Graph-Variate Neural
Networks (GVNNs): layers that convolve spatio-temporal signals with a signal-dependent
connectivity tensor combining a stable long-term support with instantaneous, data-driven
interactions. This design captures dynamic statistical interdependencies at each time step
without ad-hoc sliding windows and admits an efficient implementation with linear complexity
in sequence length. Across forecasting benchmarks, GVNNs consistently outperform strong
graph-based baselines and are competitive with widely used sequence models such as LSTMs
and Transformers. On EEG motor-imagery classification, GVNNs achieve strong accuracy
highlighting their potential for brain–computer interface applications.

1 Introduction

The modeling of graph signals has been a pervasive topic in recent years in Graph Signal Processing (GSP)
and Graph Neural Networks (GNN) (Xu et al., 2019; Kenlay et al., 2020) with a lack of a general consensus of
the best underlying graph structure for modeling (Ortega et al., 2018; Scarselli et al., 2008; Ruiz et al., 2021).
Often, this structure is unrelated to the graph signal itself (for example, geometric graphs for traffic signals).
CoVariance Neural Networks (VNN) propose the use of the sample covariance matrix as the underlying graph
shift operator (GSO)(Sihag et al., 2022). This approach encodes pairwise relationships in a robust statistical
object. Yet, while this represents relevant interactions in a static case this does not necessarily hold when
time-evolving graph signals are being modeled (Li and Zhu, 2016).
Graph temporal convolutional neural networks (GTCNN) (Isufi and Mazzola, 2021; Sabbaqi and Isufi, 2023)
are a notable development in the spatio-temporal modeling of dynamically evolving graph signals. This class
of models typically constructs a fully connected Cartesian or Kronecker product graph. While this effectively
captures instantaneous interactions, convolutions in this domain result in a computational complexity that is
quadratic in time, thus infeasible for longer time-series (Leskovec et al., 2010).
Given a time-evolving multi-variate signal the sample covariance represents the long-term correlation between
variables over the entire time period. However, each snap shot in time has varying instantaneous interac-
tions(Roy et al., 2024). This difference is in fact, non-trivial. While approaches like temporal PCA (Scharf
et al., 2022) perform projections over the time averaged sample covariance matrix, this aggregation loses
potentially useful information. This is demonstrated by the development of the time-varying graphical lasso
(Hallac et al., 2017), an optimization framework that estimates a dynamic inverse covariance matrix directly
from time series data. While this approach is intuitive and useful, the large computational cost of solving
such an optimization problem has limited the use of this approach in neural network architectures (Hamilton
et al., 2017).
Graph Variate Signal Analysis (GVSA)(Smith et al., 2019) provides an extended general framework to GSP
for the analysis of spatio-temporal signals, using general instantaneous pairwise node functions (unrestricted
by matrix multiplication) to formulate data constructed dynamic graph structures. This framework motivates
methods such Graph-Variate Dynamic Connectivity and FAST Functional Connectivity, where these instan-
taneous graphs are filtered by a stable support constructed from the long term signal coupling information of

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

the signal itself (GVDC) or a global cohort (FAST), reducing noise in short temporal windows while providing
a very high, sample by sample, temporal resolution which does not rely on a window length compared to
traditional sliding window approaches.
In this work we integrate GVSA with the more traditional "convolution" aggregation found in modern Graph
Neural Networks (GNNs) (Li et al., 2016; Abadal et al., 2021; Pfrommer et al., 2021; Isufi et al., 2024;
Veličković et al., 2018). For each input into the network an instantaneous connectivity tensor against a
stable (and potentially learnt) support is constructed. This tensor is multiplied with its respective signal
vector, this results in the capturing of spatio-temporal functional interactions. With this, we derive two
important theoretical insights. Firstly, we show that while instantaneous connectivity matrices are typically
rank-deficient and non-invertible, Hadamard multiplication with a full-rank stable support remedies this.
Furthermore, we show that by using parallelized batch processing and low-rank matrix construction we
achieve a speed up resulting in a linear time-complexity. This allows, for the first time, the capture of sample
resolution signal dependent connectivity in a efficient, scalable manner.
We evaluate GVNN forecasting performance in 3 chaotic maps,2 weather forecasting tasks and 2 EEG motor
imagery tasks. GVNNs successfully capture the non-trivial instantaneous temporal interactions present in
multi-variable time-series. Particularly, we show that it outperforms the state of the art conventional graph
based methods for time-series. Showing that the inductive bias provided by GVNNs improve performance. In
application, we study EEG motor imagery classification, demonstrating that GVNNs capture the high temporal
resolution of EEG signals while effectively reducing noise outperforming approaches such as EEGNet(Lawhern
et al., 2016) and the Transformer model. Our results indicate that GVNNs could play a pivotal role in
advancing the next generation of Brain–Computer Interfaces (BCIs)(Aristimunha et al., 2023; Keutayeva
et al., 2024; Zhang and Liu, 2018), where minimizing calibration time and maximizing online responsiveness
are crucial engineering challenges(Bessadok et al., 2021).

2 Background and Motivation

2.1 Graph Neural Networks

Graph Signal Processing (GSP) extends classical signal processing to data indexed by the vertices of a
graph. A key component is the Graph Shift Operator (GSO), whose eigen-decomposition underlies operations
analogous to the Discrete Fourier Transform (DFT). These components are the foundation on which Graph
Neural Networks are built (Isufi et al., 2024; Maskey et al., 2023; Levie et al., 2020).
Definition 1 (Graph Convolutional Filter). Let h = [h0, . . . , hK]⊤ be filter coefficients. A graph convolutional
filter of order K is the linear map

H(S) x =
K∑

k=0
hk Skx = H(S) x, (1)

where H(S) =
∑K

k=0 hkSk.

Definition 2 (Graph Fourier Transform (GFT)). For a diagonalizable GSO S = VΛV−1 with eigenvectors
V and eigenvalues Λ, the GFT of a graph signal x is x̃ = V−1x, and the inverse GFT is x = V x̃.

Definition 3 (Graph Convolutional Network (GCN)). A Graph Convolutional Network (Sandryhaila and
Moura, 2013; Zügner and Günnemann, 2019; Keriven and Peyré, 2019; Hamilton et al., 2017) layer updates a
graph signal X ∈ RN×F (with N nodes and F input features) as:

X(ℓ+1) = σ
(

H(S) X(ℓ)W(ℓ)
)

, (2)

where S is the graph shift operator (GSO) of choice, W(ℓ) ∈ RFℓ×Fℓ+1 are learnable weights, and σ(·) is a
nonlinear activation function.

2.2 Graph-Time Convolutional Neural Networks (GTCNNs).

The standard way to model spatiotemporal signals is the use of product graphs to create Graph time
Convolutional filters and thus GTCNN’s.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: Graph Variate Fourier Transform (GVFT). Each panel shows the GVFT coefficients of
a synthetic multivariate time series projected onto the eigenbasis of its own graph-structured connectivity
profile at each time step. The left heatmap uses a squared-difference formulation for Ωt = (xi − xj)2 · C, while
the right uses instantaneous correlation: Ωt = corr(xt) · C, where C is the long-term correlation matrix across
the full signal. The GVFT transforms the input signal X ∈ RN×T into a new matrix X̂ ∈ RN×T , where
each column represents the projection of xt onto the eigenbasis of Ωt. This figure illustrates how different
formulations of signal-derived connectivity affect the spectral content and dynamics of the transformed signal.

Definition 4 (Graph-Time Convolutional Neural Network (GTCNN) (Isufi and Mazzola, 2021; Sabbaqi and
Isufi, 2023)). Let GP = (VP , EP , SP) be a spatio-temporal product graph with shift operator SP ∈ RNT ×NT .
A spatio-temporal signal X ∈ RN×T is vectorized as xP = vec(X) ∈ RNT .
The graph-time convolutional filter of order K is defined as

y =
(

K∑
k=0

hk S k
P

)
xP ≡ H(SP) xP , (3)

which aggregates information from K-hop spatio-temporal neighborhoods.

For multiple features, let X(ℓ−1)
P ∈ RNT ×Fℓ−1 denote the input at layer ℓ − 1. We apply a bank of polynomial

filters with coefficient matrices {H(ℓ)
k }K

k=0. The propagation rule of layer ℓ is

X(ℓ)
P = σ

(
K∑

k=0
Sk

P X(ℓ−1)
P H(ℓ)

k

)
, (4)

where H(ℓ)
k ∈ RFℓ−1×Fℓ are trainable filter coefficient matrices and σ(·) is a pointwise nonlinearity (e.g.,

ReLU).
A L-layer GTCNN is obtained by stacking such modules.

While effective for shorter temporal sequences the clear bottleneck here is the quadratic dependency in both
the number of nodes and sequence length, this makes the modeling of long time-series unfeasible. Furthermore
the product graphs do not capture instantaneous signal specfici dependencies and are usually a binary graph.

2.3 Graph Variate Signal Analysis

A potential issue with GSP based neural network architectures is that the relationship and relevance of the
underlying graph structure to the signal is unclear and typically unchanging. There have been recent progress
in addressing this in the form of CoVariance Neural Networks (VNN). Here the sample covariance matrix is
used a GSO, giving us a natural interpretation of Graph Convolution that is inherently linked to Principal
Component Analysis (PCA) (Maćkiewicz and Ratajczak, 1993).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Input X ∈ RN×T

Node fn. J(t) = FV

(
xi(t), xj(t)

)
Stable support W

Graph-Variate Tensor Ω(t) = W ◦ J(t)

Built from inputs

Batched Graph Convolution
Z(t) = Ω(t) X(t)

Weighted Combine
Y (t) = σ

(
Θ [atX(t) + btZ(t)]

)
skip

Readout (MLP / Task head)

Figure 2: Graph-Variate Neural Network (GVNN) layer. A multivariate sequence X ∈ RN×T induces
instantaneous connectivity J(t), which is combined with a long-term support W to form Ω(t) = W ◦ J(t). In
parallel, X and Ω(t) drive a batched graph convolution Z(t) = Ω(t)X(t). A skip connection carries X to the
combiner, which applies a learned linear map and a nonlinearity, Y (t) = σ

(
Θ[atX(t) + btZ(t)]

)
.

Temporal data however, is dynamic (Manuca and Savit, 1996), i.e a single covariance estimation aggregating
information over time may not be a suitable representation, particularly in the presence of irrelevant noise.
Graph Variate Signal Analysis (GVSA) brings a sample-level, graph-weighted perspective to multivariate
signals: it re-introduces node-to-node relationships in each time instant, but modulates their impact with a
stable (or longer-term) graph. Importantly this does not depend on a window length. This yields time-varying
connectivity estimates and graph metrics that are more robust against momentary noise yet still capture
fine-grained transient dynamics. It has been shown that GVSA outperforms many sliding-window or purely
instantaneous techniques (Smith et al., 2019).
Definition 5 (Graph-Variate Signal Analysis). Let Γ = (V, X, E, W) be a graph-variate signal, where

• V is the set of n nodes,

• X ∈ Rn×p is the multivariate signal (each of the n nodes has p samples),

• E is the set of edges, and

• W ∈ Rn×n is the weighted adjacency matrix with entries wij .

Define a bivariate node-space function FV as
Jij(t) = FV

(
xi(t), xj(t)

)
, for i ̸= j, Jii(t) = 0.

Graph-Variate Signal Analysis (GVSA) produces, at each time sample t, an n × n matrix given by the
Hadamard (element wise) product

Ω(t) = W ◦ J(t),
whose entries are

Ωij(t) =
[
W ◦ J(t)

]
ij

= Wij FV

(
xi(t), xj(t)

)
.

This, overall, gives a N × N × T Tensor representation.

This framework not only allows a sample by sample high temporal resolution but is also computationally
efficient. Note that no eigendecomposition is done at any stage and the entire analysis is in the node-space.
Furthermore, node functions are typically chosen to exploit computational efficiency through low rank, vector
outer product based operations. The stable support acts as an inherent stabilizer emphasizing stable long-term
correlations and minimizing noise while still readily picking up instantaneous dynamics, providing a trade-off
between global and local connectivity information. This is typically chose as the long-term correlation matrix
of the signal itself or averaged over a cohort (Roy et al., 2024; Smith et al., 2019).

3 Graph Variate Neural Networks

By combining GSP and GVSA approaches we conjecture that time-step wise convolution of the graph signal
with its own instantaneous temporal connectivity profile can exploit the rich spatio-temporal information
present in many real-life signals.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

In this vein, we define Graph-Variate Neural Networks as follows.
Definition 6 (Graph-Variate Neural Network (GVNN, layer-wise form)). Let W ∈ RN×N be a stable
(long-term) graph support. For an input sequence X(ℓ) ∈ RN×T at layer ℓ, denote its t-th column by
x(ℓ)(t) ∈ RN .
The input-dependent graph-variate tensor is

Ω(ℓ)(X(ℓ)) ∈ RN×N×T , Ω(ℓ)
ij (t) = Wij FV

(
x

(ℓ)
i (t), x

(ℓ)
j (t)

)
. (5)

for a chosen bivariate function FV (·, ·).

Let a(ℓ), b(ℓ) ∈ RT be learnable scalar filter coefficients (one per time step), and let Da(ℓ) = diag(a(ℓ)),
Db(ℓ) = diag(b(ℓ)). Define the time-aligned multiplication(

Ω(ℓ)(X(ℓ)) ∗ X(ℓ))
:,t = Ω(ℓ)(t) x(ℓ)(t), t = 1, . . . , T. (6)

Then the pre-activation output is

Z(ℓ) = X(ℓ)Da(ℓ) +
(
Ω(ℓ)(X(ℓ)) ∗ X(ℓ))Db(ℓ) , (7)

which is followed by a trainable time-mixing weight block Θ(ℓ) ∈ RT ×T and a pointwise activation σ(·):

X(ℓ+1) = σ
(

Z(ℓ)Θ(ℓ)) ∈ RN×T . (8)

Stacking L such layers yields X(L), which can be further mapped to a task-dependant readout layer.

Here, utilizing the fast batch based parallel processing allows a natural convolution operation where a
spatio-temporal signal at a given timestep is convolved with its own connectivity profile. Also given the low
rank nature of the connectivity profiles, we provide a robust platform to capture signal dependent functional
inter-dependencies while being computationally efficient. Note also that we can optimize the stable support,
and thus the entire dynamic connectivity profile, efficiently through training. This retains a high temporal
resolution while allowing end-to-end optimization.
Equivalently, from a GSP lens, we can define the Graph-Variate Fourier Transform (GVFT) as projections of
the signal vector onto its own temporal connectivity profile, this returns a matrix of size N × T that allows a
simultaneous time-frequency decomposition. That is, each column of the GVFT represents the frequencies in
terms of the eigenbasis of the functional graph at that time step.
Definition 7 (Graph Variate Fourier Transform). Let X = [x1, . . . , xT] ∈ RN×T be a spatio-temporal signal,
where xt ∈ RN is the t-th snapshot. For each t, define

Ωt =
[
f(xt(i), xt(j)) Wij

]N
i,j=1, (9)

with W ∈ RN×N a connectivity matrix and f(·, ·) a symmetric node-pair function (e.g. f(a, b) = (a − b)2).
Since Ωt is symmetric, it admits Ωt = UtΛtU

⊤
t . The GVFT of xt is

x̂t = U⊤
t xt, (10)

and stacking over time yields X̂ = [x̂1, . . . , x̂T].
Definition 8 (Graph-Variate frequency response). For a fixed time index t, let the instantaneous connectivity
slice Ω(t) ∈ RN×N be symmetric with eigendecomposition

Ω(t) = VtΛtV
⊤
t ,

Λt = diag
(
λ1(t), . . . , λN (t)

)
,

Consider the two-tap Graph-Variate filter
y(t) = at x(t) + bt Ω(t) x(t), at, bt ∈ R,

acting on an input vector x(t) ∈ RN . Define the Graph Fourier transforms

x̃(t) := V⊤
t x(t), ỹ(t) := V⊤

t y(t).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Substituting the eigen-decomposition yields

ỹ(t) =
(
at IN + bt Λt

)
x̃(t),

or component-wise,
ỹi(t) =

(
at + bt λi(t)

)︸ ︷︷ ︸
ht(λi(t))

x̃i(t), i = 1, . . . , N.

The scalar function
ht(λ) := at + bt λ (11)

is called the instantaneous frequency response of the Graph-Variate filter at time t. Thus, spectrally, the filter
acts as point-wise multiplication:

ỹi(t) = ht(λi(t)) x̃i(t). (12)

Definition 6 is in direct analogy with the classical convolution theorem ỹi = h̃(λi) x̃i for polynomial graph
filters, but with a spectrum {λi(t)} and a response ht that are re-evaluated at every time step.
While we can clearly extend GVNNs by including higher order polynomials per time-step, we exclude these
for the sake of simplicity. We further note that, computationally (and intuitively), a right multiplication
with a time-wise filter coefficient matrix is more efficient then using polynomial filter coefficients (the typical
choice in the GNN literature).
This dual perspective is a shift from the traditional GSP sense of graph frequencies given that the graph is
constructed from the signal itself. In fact there is a closer link to PCA present here. Projecting signals onto a
data-driven dynamic eigenbasis (i.e the sample Covariance matrix in PCA), supported by a stable support,
allows a high level of precision and interpretability.

3.1 Temporal Signal Dependent Convolution

Temporal information provides rich, discriminative information that could significantly enhance machine
learning models. As an example, EEG signals have a very high temporal resolution. While traditionally
being studied in the frequency or spectral domain, the time domain analysis of EEG signals provide great
potential in enhancing Brain Computer Interfaces (BCI).
We focus here on two common temporal domain node-space functions, given graph signals x we define:

• Instantaneous correlation(IC):

FV (xi(t), xj(t)) =
∣∣(xi(t) − x̄i

) (
xj(t) − x̄j

)∣∣ . (13)

where x̄i = 1
T

∑T
t=1 xi(t) is the temporal mean of node i.

• Local Dirichlet Energy (LDE) (Smith et al., 2017):

FV (xi(t), xj(t)) =
(
xi(t) − xj(t)

)2
. (14)

Instantaneous correlation is rank-1 and LDE rank-3, both expressible as sums of outer products. Such
structures are efficient, as outer products reduce to parallelizable vector operations that GPUs compute rapidly.
This approach combined with the Hadamard support are inspired from recent advances in Parameter–efficient
fine-tuning (PEFT)(Hu et al., 2021; Huang et al., 2025), a method to improve the efficiency of Large Language
Model’s (LLM’s). We direct the interested reader to A.11.
The instantaneous correlation captures co-deviation from mean temporal patterns.The LDE node function
has a direct relationship to the Dirichlet energy and captures local node gradient changes. We can also take
linear combinations of these two node functions in order to exploit both their contrasting views.
There is an important observation to make here with transformers here, given that the attention mechanism
can be argued to use a "graph" constructed from the data itself for convolution (Vaswani et al., 2017), in fact
recent ideas have provided a unifying view on Transformers and GNNs, arguing that transformers are GNN’s
that operate on a data-specific graph (Joshi, 2025). Thus GVNNs can be argued to be a form of attention
with a fundamentally different formulation, i.e the time-step specific tensor weighted against a stable support.
We expand on this in the appendix for the interested reader A.12.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Theorem 1 (Full-rank preservation under Hadamard filtering). Let Jij = FV (xi(t), xj(t)) = xi(t)xj(t) be
the unfiltered instantaneous correlation profile with rank m < N . If every component of x̃

(m)
t is non-zero,

and W is of full rank then
rank

(
Ω(t) = W ◦ J(t)

)
= N, i.e. Ω(t) is invertible.

Moreover Ω(t) is symmetric positive-definite, preserving the signature of C.

Proof. See Appendix A.6

This theorem shows that Hadamard filtration with a stable support induces stability into the instantaneous
correlation profile.
Figure 2 shows empirical evidence of Theorem 1 where the Hadamard filtered matrix by the full-rank long-term
correlation matrix is now invertible and has a much lower condition number. We prove similar results for the
LDE case in the appendix A.8.
The LDE connectivity profile has a distinct relationship with the traditional Dirichlet Energy of a signal
(naturally encoding a measure of smoothness into signal convolutions) as shown in the following theorem.
Theorem 2 (Gershgorin–Dirichlet Bound). Let W ∈ RN×N be symmetric and x ∈ RN any signal. Form

Jij(t) = FV (xi(t), xj(t)) = (xi(t) − xj(t))2, Ω(t) = W ◦ J(t),
and define

Eabs = 1
2

∑
i,j

|Wij (xi(t) − xj(t))2|.

the spectral radius is
ρ(Ω(t)) ≤ 2 Eabs(t)

Proof. See Appendix A.7

Theorem 2 shows that the spectral radius of the Hadamard Filtered LDE is upper bounded by twice the
absolute Dirichlet energy of the signal on the stable support. Intuitively, this ensures that the GVNN
convolution is smoothness-aware (See Appendix for more details). This relates the spectral radius of the LDE
connectivity profile with the traditional Dirichlet Energy of a graph signal on the stable support W .

4 Experimental Results

4.1 Chaotic Maps

Chaotic systems pose unique challenges to statistical learning models and are also interpretable as benchmarks.
They thus provide a baseline to compare GVNN’s with other graph based models for time-series (Gilpin,
2023).
We compare GVNNs with a standard GTCNN, a Gated Graph RNN (GGRNN) and Graph VARMA
(GVARMA) model. For our node function we used a linear combination of the local dirchlet energy and
instantaneous correlation while allowing the stable support to be learnt from data.
We have chosen these models primarily due to their core operation being some sort of Graph Convolution.
Note we are not considering hybrid models such as Graph Wavenet () however do foresee future work
incorporating GVNNs into hybrid architectures. We have chosen these models primarily due to their core
operation being some sort of Graph Convolution. Note we are not considering hybrid models such as Graph
Wavenet (Wu et al., 2019) however we do foresee future work incorporating GVNNs into hybrid architectures.
For all models except GTCNN (Which uses the long-term correlation as the spatial component for fairness) we
initialize the stable support with the long-term stable correlation of the chaotic map and let the model optimize
this end-to-end. The node function was a linear combination of the LDE and instantaneous correlation.
We evaluate three multi-dimensional chaotic maps. The Coupled Lorenz, Hopfield and MacArthur maps
We see that GVNNs perform the best over all horizons on the Hopfield and Macarthur Map with large gains
being visible in the MacArthur dataset in particular. In the coupled Lorenz map, while GVNNs perform the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Chaotic datasets: MSE (↓) across horizons and time per epoch.

Dataset Model H=3 H=6 H=12 Time/epoch (s)

Hopfield
GVNN 0.0237 ± 0.0008 0.1131 ± 0.0024 0.1837 ± 0.0053 0.1
GTCNN 0.1029 ± 0.0052 0.1683 ± 0.0014 0.2229 ± 0.0031 0.1
GVARMA 0.5283 ± 0.0082 0.5846 ± 0.0086 0.6514 ± 0.0060 0.1
GGRNN 0.0628 ± 0.0166 0.1742 ± 0.0083 0.2662 ± 0.0107 0.1

Lorenz
GVNN 0.2143 ± 0.0083 0.5001 ± 0.1623 0.7325 ± 0.0092 0.1
GTCNN 0.8163 ± 0.0456 0.8595 ± 0.0282 0.9039 ± 0.0145 0.1
GVARMA 0.8739 ± 0.0188 0.8764 ± 0.0397 0.9027 ± 0.0027 0.1
GGRNN 0.3528 ± 0.0271 0.5327 ± 0.0159 0.5971 ± 0.0049 0.1

MacArthur
GVNN 0.0910 ± 0.0004 0.2509 ± 0.0046 0.3914 ± 0.0087 0.3
GTCNN 0.8800 ± 0.0148 0.8479 ± 0.0123 0.8856 ± 0.0015 0.2
GVARMA 0.5454 ± 0.0325 0.7608 ± 0.0794 0.8355 ± 0.0212 0.2
GGRNN 0.2232 ± 0.0009 0.4252 ± 0.0099 0.5073 ± 0.0034 0.2

best over horizons of length 1 and 3, they are outperformed by GGRNNs over the horizon of length 5. This
could be due to temporal interactions being less predictive for longer horizon in this chaotic map, further, a
model incorporating a combination of GVNNs and GGRNNs may be promising.

4.2 Traffic Forecasting

We evaluate four graph-based forecasting models on the METR-LA and PEMS-BAY traffic networks. We
also compare performance with the more commonly used transformer and LSTM models. METR-LA contains
four months of speed measurements from 207 sensors in Los Angeles County at 5 minute intervals, and
PEMS-BAY comprises six months of data from 325 sensors in the Bay Area at the same resolution(Sun et al.,
2020; Li et al., 2018).
Following standard practice, we predict future speeds at horizons h ∈ {3, 6, 12} time-steps (i.e. 15, 30, and 60
minutes ahead) given the past T = 6 observations (30 minutes). The graph based models follow the same
layout as in the previous experiment. However, we evaluate the case of the two layer GVNN’s with and
without a trainable support W .
Table 2 shows our results. It can be noted that using a fixed support GVNN’s outperform the graph based
models but remain inferior to the LSTM and Transformer models. Allowing W to be learned however, results
in large gains in performance where GVNN’s significantly outperform all models. As these datasets have a
large number of nodes we do observe GVNN’s have a large increase in training time, however, we believe that
the increase in performance justifies this decrease in speed.

Table 2: Final Test MSE (lower is better) for PEMS-BAY and METR-LA across all models.

Dataset Model Horizon 3 Horizon 6 Horizon 12 Time per epoch(s)

PEMS-BAY

GVNN (Trainable W) 0.1722 ± 0.0093 0.2323 ± 0.0080 0.3250 ± 0.0229 7.2
Transformer 0.3126 ± 0.0099 0.3467 ± 0.0026 0.3858 ± 0.0061 1.1
LSTM 0.3686 ± 0.0231 0.3810 ± 0.0085 0.4058 ± 0.0022 1.1
GVNN(Static W) 0.7017 ± 0.0460 0.7642 ± 0.0611 0.8097 ± 0.0280 3.4
GTCNN 0.9703 ± 0.0032 1.0010 ± 0.0099 1.0474 ± 0.0071 1.06
GVARMA 0.7940 ± 0.0128 0.8271 ± 0.0113 0.8862 ± 0.0052 1.01
GGRNN 0.8766 ± 0.0040 0.9175 ± 0.0061 0.9736 ± 0.0018 1.15

METR-LA

GVNN (Trainable W) 0.2218 ± 0.0017 0.3082 ± 0.0158 0.4434 ± 0.0033 2.4
Transformer 0.2928 ± 0.0104 0.3799 ± 0.0072 0.5384 ± 0.0214 0.6
LSTM 0.3554 ± 0.0054 0.4355 ± 0.0021 0.6644 ± 0.0280 0.6
GVNN (Static W) 0.6012 ± 0.0625 0.6631 ± 0.0790 0.7076 ± 0.0301 1.1
CPGraphST 0.9082 ± 0.0191 0.9234 ± 0.0211 0.9887 ± 0.0138 0.5
GVARMA 0.9713 ± 0.0364 0.9527 ± 0.0447 1.0680 ± 0.0339 0.3
GGRNN 0.8205 ± 0.0167 0.8621 ± 0.0089 0.9281 ± 0.0048 0.4

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.3 EEG Motor Imagery Tasks

The BCI Competition IV 2a dataset (Aristimunha et al., 2023) comprises EEG recordings from nine subjects
performing four motor imagery tasks (left hand, right hand, feet, tongue) with data recorded in a 17 channel
setup. The Physionet dataset comprises a dataset including EEG recordings of 109 healthy subjects. The
participant imagines opening and closing their right or left fist and is a binary classification task. The data is
recorded in a 64 channel setup.
We evaluate with cross fold validation using 5 independent data folds. For the BCI-2A dataset we use a fixed
W set as the global long term correlation matrix computed from the training set and allow the W to be
learned for the PhysioNet task.

Table 3: BCI-2A: Overall summary (K-fold CV)

Model Accuracy (%) Kappa Time (s)
GVNN (LDE + Static W) 60.15 ± 1.21 0.4686 ± 0.0162 0.5
EEGNet 60.51 ± 3.88 0.4735 ± 0.0517 1.0
Transformer 51.99 ± 3.01 0.3598 ± 0.0401 1.5
LSTM 52.76 ± 2.27 0.3701 ± 0.0303 1.5

Table 4: PhysioNet: Overall summary (K-fold CV)

Model Accuracy (%) F1 Kappa Time (s)
GraphVar+MLP (LDE + Learned W) 80.29 ± 0.82 0.8021 ± 0.0104 0.6058 ± 0.0164 2.0
Transformer 80.94 ± 0.87 0.8095 ± 0.0091 0.6189 ± 0.0173 0.9
LSTM 74.19 ± 1.74 0.7279 ± 0.0277 0.4834 ± 0.0351 1.4
EEGNet 79.61 ± 1.55 0.7959 ± 0.0145 0.5922 ± 0.0310 3.2

Table 3 and 4 show our results. As expected, GVNN’s have a faster training speed on the lower channel
BCI-2A dataset and is the fastest model with EEGNet only outperforming it slightly and significantly
surpasses LSTM and Transformer models.
For the PhysioNet dataset we see an increase in training time for the GVNN model given the increase in channel
count to 64 yet we still see competitive performance with the Transformer model while it outperforming
EEGNet and being faster.

5 Conclusion and Limitations

In this work we have introduced Graph Variate Neural Networks- a general framework that constructs
signal dependant dynamic graph structures in a computationally efficient manner by exploiting one-shot
batch processing. We further introduced two interpretable node functions, the Local Dirichlet Energy
and instantaneous correlation. We show theoretically how a stable support can ’stabilize’ these low-rank
instantaneous structures while also being computationally simple.
In the notoriously hard task of EEG motor imagery classification, we show that GVNNs are competitive
with and sometimes outperform (in terms of efficiency) traditionally used models such as the Transformer
Architecture or EEGNet. This improvement in performance was sustained in the forecasting of chaotic
systems, where non-trivial instantaneous interactions are present. GVNNs retained their superiority in traffic
forecasting tasks, strongly outperforming strong traditional and graph based baselines.
We note that while we effectively capture intra-channel connectivity, we are disregarding auto-correlative
behaviour by not connecting nodes in the time dimension. However, the improvement in performance
by including signal dependent graph structures and reduction in computational time justify this decision.
Furthermore, mechanisms such as a temporal attention or convolutional module can be applied right after a
GVNN layer to attend to inter time-dependencies.
We also note that our approach retains the quadratic complexity with the number of nodes such as in
GTCNNs. This can become large when constructing signal specific connectivity profiles, however such an
approach would not be possible using a product graph. Further work should also develop new node functions
and stable supports, potentially incorporating spatial properties or even information theoretic measures.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Reproducibility Statement

All datasets used in this study are publicly available and open source. Detailed experimental settings,
including model architectures, hyperparameters, and training procedures, are described in the main text and
appendix. To facilitate reproducibility, the codebase implementing our methods will be made available upon
reasonable request from the authors.

Ethics Statement

This work relies exclusively on open-source datasets that do not contain personally identifiable or sensitive
information. We anticipate no direct harms, ethical concerns, or foreseeable negative societal impacts arising
from this research. The proposed methods are intended for advancing scientific understanding and improving
model efficiency in a responsible manner.

Large Language Model (LLM) Usage Statement

During the preparation of this manuscript, we made limited use of a large language model for two purposes:
(i) assisting in code ideation and refactoring for clarity and efficiency, and (ii) tidying up the exposition of
the text for grammar and readability. The core research ideas, experimental design,theory, implementation,
methodology and validation are entirely the work of the authors. No parts of the manuscript were generated
verbatim by the LLM, and all content was critically reviewed and edited by the authors prior to submission.

References
Sergi Abadal, Akshay Jain, Robert Guirado, Jorge López-Alonso, and Eduard Alarcón. Computing graph

neural networks: A survey from algorithms to accelerators. ACM Computing Surveys, 54(9):1–38, 2021.

Bernardo Aristimunha, Igor Carrara, Pierre Guetschel, Stefan Sedlar, Pedro Rodrigues, Jakub Sosulski, Dilin
Narayanan, Erik Bjareholt, Bastien Quentin, Robin Tibor Schirrmeister, Emmanuel Kalunga, Laurent
Darmet, Clement Gregoire, Asif Abdul Hussain, Raffaele Gatti, Vladyslav Goncharenko, Jörg Thielen,
Thomas Moreau, Yannick Roy, Vijay Jayaram, Alexandre Barachant, and Sylvain Chevallier. Mother of all
bci benchmarks (moabb), 2023.

Alaa Bessadok, Mohamed Ali Mahjoub, and Islem Rekik. Graph neural networks in network neuroscience,
2021. arXiv preprint arXiv:2106.03535.

Guido Dornhege, José del R. Millán, Thilo Hinterberger, Dennis J. McFarland, and Klaus-Robert Müller.
BCI2000: A General-Purpose Software Platform for BCI, pages 359–368. 2007.

William Gilpin. Chaos as an interpretable benchmark for forecasting and data-driven modelling, 2023. URL
https://arxiv.org/abs/2110.05266.

David Hallac, Youngsuk Park, Stephen Boyd, and Jure Leskovec. Network inference via the time-varying
graphical lasso. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 205–213, 2017.

William L. Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods and
applications, 2017. arXiv:1709.05584.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685,
2021. URL https://arxiv.org/abs/2106.09685.

Qiushi Huang, Tom Ko, Zhan Zhuang, Lilian Tang, and Yu Zhang. HiRA: Parameter-efficient hadamard
high-rank adaptation for large language models. In The Thirteenth International Conference on Learning
Representations (ICLR 2025), 2025. URL https://openreview.net/forum?id=TwJrTz9cRS.

Elvin Isufi and Gabriele Mazzola. Graph-time convolutional neural networks. In IEEE Data Science and
Learning Workshop (DSLW), 2021.

10

https://arxiv.org/abs/2110.05266
https://arxiv.org/abs/2106.09685
https://openreview.net/forum?id=TwJrTz9cRS

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Elvin Isufi, Fernando Gama, David I. Shuman, and Santiago Segarra. Graph filters for signal processing and
machine learning on graphs. IEEE Transactions on Signal Processing, 2024. doi: 10.1109/TSP.2024.3349788.

Chaitanya K. Joshi. Transformers are graph neural networks, 2025. URL https://arxiv.org/abs/2506.
22084.

Henry Kenlay, Dorina Thanou, and Xiaowen Dong. On the stability of polynomial spectral graph filters. In
ICASSP, pages 5350–5354, 2020.

Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural networks. In NeurIPS,
pages 7092–7101, 2019.

Aruzhan Keutayeva, Nikita Fakhrutdinov, and Bekzod Abibullaev. Compact convolutional transformer
for subject-independent motor imagery eeg-based bcis. Scientific Reports, 14:25775, 2024. doi: 10.1038/
s41598-024-73755-4.

Vernon J. Lawhern, Amelia J. Solon, Nicholas R. Waytowich, Stephen M. Gordon, Chou Po Hung, and Brent
Lance. Eegnet: a compact convolutional neural network for eeg-based brain–computer interfaces. Journal
of Neural Engineering, 15, 2016.

Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and Zoubin Ghahramani. Kronecker
graphs: An approach to modeling networks. Journal of Machine Learning Research, 11:985–1042, 2010.

Ron Levie, Wen Huang, Luca Bucci, Michael Bronstein, and Gitta Kutyniok. Transferability of spectral
graph convolutional neural networks, 2020. arXiv:1907.12972.

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural network:
Data-driven traffic forecasting, 2018. URL https://arxiv.org/abs/1707.01926.

Yang Li and Zhengyuan Zhu. Modeling nonstationary covariance function with convolution on sphere.
Computational Statistics & Data Analysis, 104:233–246, 2016. ISSN 0167-9473. doi: 10.1016/j.csda.2016.07.
001.

Yujia Li, Richard Zemel, Marc Brockschmidt, and Daniel Tarlow. Gated graph sequence neural networks. In
International Conference on Learning Representations (ICLR), 2016.

Radu Manuca and Robert Savit. Stationarity and nonstationarity in time series analysis. Physica D: Nonlinear
Phenomena, 99(2):134–161, 1996. ISSN 0167-2789. doi: https://doi.org/10.1016/S0167-2789(96)00139-X.
URL https://www.sciencedirect.com/science/article/pii/S016727899600139X.

Saurabh Maskey, Ron Levie, and Gitta Kutyniok. Transferability of graph neural networks: An extended
graphon approach. Applied and Computational Harmonic Analysis, 63:48–83, 2023.

Andrzej Maćkiewicz and Waldemar Ratajczak. Principal components analysis (pca). Computers & Geosciences,
19(3):303–342, 1993. ISSN 0098-3004. doi: https://doi.org/10.1016/0098-3004(93)90090-R. URL https:
//www.sciencedirect.com/science/article/pii/009830049390090R.

Antonio Ortega, Pascal Frossard, Jelena Kovačević, José M. F. Moura, and Pierre Vandergheynst. Graph
signal processing: Overview, challenges, and applications. Proceedings of the IEEE, 106(5):808–828, May
2018. doi: 10.1109/JPROC.2018.2820126.

Samuel Pfrommer, Alejandro Ribeiro, and Fernando Gama. Discriminability of single-layer graph neural
networks. In ICASSP, pages 8508–8512, 2021. doi: 10.1109/ICASSP39728.2021.9414583.

Om Roy, Yashar Moshfeghi, Agustín Ibáñez, Francisco Lopera, Mario A. Parra, and Keith M. Smith. Fast
functional connectivity implicates p300 connectivity in working memory deficits in alzheimer’s disease.
Network Neuroscience, 8(4):1467–1490, 2024.

Luana Ruiz, Fernando Gama, and Alejandro Ribeiro. Graph neural networks: Architectures, stability, and
transferability. Proceedings of the IEEE, 109(5):660–682, 2021.

Mohammad Sabbaqi and Elvin Isufi. Graph-time convolutional neural networks: Architecture and theoretical
analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.

11

https://arxiv.org/abs/2506.22084
https://arxiv.org/abs/2506.22084
https://arxiv.org/abs/1707.01926
https://www.sciencedirect.com/science/article/pii/S016727899600139X
https://www.sciencedirect.com/science/article/pii/009830049390090R
https://www.sciencedirect.com/science/article/pii/009830049390090R

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Aliaksei Sandryhaila and José M. F. Moura. Discrete signal processing on graphs. IEEE Transactions on
Signal Processing, 61(7):1644–1656, 2013.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The graph
neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2008.

Florian Scharf, Andreas Widmann, Carolina Bonmassar, and Nicole Wetzel. A tutorial on the use of temporal
principal component analysis in developmental erp research – opportunities and challenges. Developmental
Cognitive Neuroscience, 54:101072, 2022. doi: 10.1016/j.dcn.2022.101072.

Saurabh Sihag, Gonzalo Mateos, Corey McMillan, and Alejandro Ribeiro. Covariance neural networks. In
Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, 2022. Curran Associates.

Keith Smith, Benjamin Ricaud, Nauman Shahid, Stephen Rhodes, John M. Starr, Agustin Ibáñez, Mario
A. Parra, Javier Escudero, and Pierre Vandergheynst. Locating temporal functional dynamics of visual
short-term memory binding using graph modular dirichlet energy. Scientific Reports, 7:1–12, February
2017. ISSN 2045-2322. doi: 10.1038/srep42013.

Keith Smith, Loukas Spyrou, and Javier Escudero. Graph-variate signal analysis. IEEE Transactions on
Signal Processing, 67(2):293–305, 2019. doi: 10.1109/TSP.2018.2881658.

Yizhou Sun, Yulong Wang, Kun Fu, Zhizhong Wang, Chuan Zhang, and Jieping Ye. Constructing geographic
and long-term temporal graph for traffic forecasting, 2020. arXiv:2004.10958.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st International Conference on
Neural Information Processing Systems, NIPS’17, page 6000–6010, Red Hook, NY, USA, 2017. Curran
Associates Inc. ISBN 9781510860964.

Petar Veličković, Guillem Cucurull, Arantón Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio.
Graph attention networks. In International Conference on Learning Representations (ICLR), 2018.

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Graph wavenet for deep spatial-
temporal graph modeling, 2019. arXiv:1906.00121.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In
International Conference on Learning Representations (ICLR), 2019.

Qiong Zhang and Yang Liu. Improving brain computer interface performance by data augmentation with
conditional deep convolutional generative adversarial networks, 2018. arXiv:1806.07108.

Daniel Zügner and Stephan Günnemann. Certifiable robustness and robust training for graph convolutional
networks. In KDD, pages 246–256, 2019.

A Appendix / supplemental material

A.1 Hardware

All experiments were run on a single NVIDIA A100 GPU (40 GB VRAM). Training used FP32 precision
(no mixed precision), and all runs were executed on a single device without model or data parallelism.

A.2 Experimental Details: Chaotic Maps

We consider three standard discrete-time chaotic benchmarks(Gilpin, 2023): Coupled Lorenz: a network of
Lorenz oscillators with diffusive coupling between state variables, producing high-dimensional, synchronized–
desynchronized regimes; Hopfield map: a discrete-time Hopfield network with frustrated connectivity (compet-
ing attractors) yielding complex transient dynamics; MacArthur map: a discrete-time ecological competition
model (species competing for shared resources) exhibiting multi-species chaotic population fluctuations. Each
dataset provides multivariate sequences X ∈ RN×T (channels = N nodes).
We use a sliding window of length T=3 to forecast horizons H ∈ {1, 3, 5} (one-, three-, and five-step ahead).
Windows slide with stride 1. Data are split chronologically into 80% train+val and 20% test; within the first

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Figure 3: PCA of Chaotic Maps

Table 5: Chaotic maps forecasting: dataset-level hyperparameters (identical across maps).

Map T H Stride Split Batch Epochs Seeds Norm
Coupled Lorenz 3 1,3,5 1 80/20 (chron.) 128 500 124, 14, 124235 per-sample z-score (channels)
Hopfield 3 1,3,5 1 80/20 (chron.) 128 500 124, 14, 124235 per-sample z-score (channels)
MacArthur 3 1,3,5 1 80/20 (chron.) 128 500 124, 14, 124235 per-sample z-score (channels)

80% we take 80% train and 20% validation. Inputs are z-scored per sample across channels. All graph-based
models use a trainable support WC initialized from the long-term channel wise Pearson correlation over the
training split , and fuse instantaneous operators by Hadamard product; dynamic slices are re-normalized as
D− 1

2 (A+I)D− 1
2 . All models use 1 convolution layer with the GVNN using a linear combination of the two

node functions. We treat GTCNN as a simple baseline with it’s spatial component being the fixed long-term
correlation matrix and the rest of the models allow end to end training of the graph. All models consist of a
MLP readout layer with Leaky ReLU activation.
We train for 500 epochs with Adam (MSE loss), batch size 128, and report the best-validation checkpoint on
test. Unless otherwise stated, we use three seeds {124, 14, 124235} and hidden dimension 128.

A.3 Experimental Details: Traffic Forecasting (METR–LA & PEMS–BAY)

We use a sliding window of T=6 (30 min) to forecast H ∈ {3, 6, 12} steps (15/30/60 min). Data are split
chronologically: 80% train+val and 20% test; within the first 80% we take 80% train and 20% validation. Inputs
are z-scored per sample across channels. Dynamic adjacencies are renormalized slice-wise as D− 1

2 (A+I)D− 1
2 .

We train with Adam and MSE loss for 200 epochs, select the best validation checkpoint, and evaluate on test.
Runs use three seeds {124, 14, 124235}. All models use 2 convolution layers with the GVNN having the LDE
as the first layer and IC as second. The transformer and LSTM models also use 2 layers with the transformer
only consisting of one attention head.

Table 7: Dataset-level hyperparameters (both model families run on both datasets; the only dataset difference
is batch size).

Dataset T H Split Batch Epochs Seeds Optimizer / Loss
METR–LA 6 3,6,12 80/20 (chron.) 1280 200 124, 14, 124235 Adam / MSE
PEMS–BAY 6 3,6,12 80/20 (chron.) 1024 200 124, 14, 124235 Adam / MSE

Graph construction (used by all graph-based models). We build a static channel similarity matrix
WC ∈ RC×C from channelwise Pearson correlations over the full training set . Models that mark WC as
trainable initialize from this correlation and update it end-to-end; otherwise WC is fixed. All dynamic
operators Ω(t) are fused with WC by Hadamard product and renormalized slice-wise.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 6: Model hyperparameters and operator details for chaotic maps (all are graph-based; WC is trainable
and initialized from long-term correlation).

Model LR Hidden Epochs Trainable WC

GTCNN 1 × 10−4 128 500 Yes
GVARMA (P=1, Q=1, K=2) 1 × 10−4 128 500 Yes
GGRNN 1 × 10−4 128 500 Yes
GVNN 1 × 10−4 128 500 Yes

Figure 4: Learned graph support matrix WC before and after training. The figure illustrates how
the static graph support matrix WC evolves through training. The left panel shows the initialized matrix,
while the right panel presents the learned weights after optimization, revealing how the model adapts graph
connectivity structure for improved forecasting.

Table 8: Model hyperparameters and operator details (applied identically on METR–LA and PEMS–BAY).

Family Model LR Hidden Epochs Trainable WC

Graph-based

GVNN 1 × 10−4 128 200 No

GTCNN 1 × 10−4 128 200 No
GVARMA (P=1, Q=1, K=2) 1 × 10−4 128 200 No

GGRNN 1 × 10−4 128 200 No
GVNN 1 × 10−4 128 200 Yes

Sequence-based LSTM (2 layers) 1 × 10−3 128 200 —
Transformer (1 head, 2 layers) 1 × 10−3 128 200 —

A.4 EEG Experiments: Datasets and Hyperparameters
1

PhysioNet MI (binary: T1 vs. T2). We load raw EDF files from per-participant folders S{001..109}
=, excluding faulty IDs {088, 089, 092, 100}. For each valid subject we select only the motor imagery runs

1For both EEG datasets the Transformer and LSTM models consisted of two layers while the GVNN was 1 layer.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 5: Instantaneous Correlation Connectivity profiles in the BCI-2A Multivariate Time series.

R04, R08, R12, read EDF with mne, and extract events from annotations. We dynamically map the annotation
codes for T1 and T2, keep only those trials, and epoch each trial with tmin=0 to tmax=3.1 s at 160 Hz (496
samples). Trials and labels are concatenated across all participants. We then perform stratified K=5-fold
CV across all trials (pooled cross-subject), building the stable support WC within each fold from training
windows only as the absolute channelwise Pearson correlation |corr| . All models receive inputs normalized
per sample across channels (z-score), and all graph operators use slice-wise symmetric renormalization
D−1/2(A+I)D−1/2.

Table 9: PhysioNet MI: dataset-level protocol and hyperparameters.

Trials Classes Epoch FS CV Batch Epochs LR / WD Metrics
pooled (all subj.) 2 (T1/T2) 3.1 s (T =496) 160 Hz strat. 5-fold 64 50 10−3 / 10−4 Acc

BNCI2014_001 (BCI 2a, 4-class). We use MOABB/Braindecode (Aristimunha et al., 2023) to load
all subjects (1..9). Preprocessing: pick EEG, scale by 106, band-pass 0.01−20 Hz, exponential moving
standardization (factor_new=10−3, init_block_size=1000). Windows are created from events with a
start offset of −0.5 s (MOABB defaults for stop/length are used). We concatenate windows across subjects
and run stratified 5-fold CV. In each fold, WC = |corr| is computed from training windows only, and used by
GVNN; inputs are per-sample channel z-scored inside each model (Dornhege et al., 2007).

Table 10: BNCI2014_001 (4-class): dataset-level protocol and hyperparameters.

Trials Classes Preproc CV Batch Epochs LR / WD Metrics
pooled (all subj.) 4 bp. 0.01−20 Hz & EMS strat. 5-fold 64 100 10−3 / 10−4 Acc

A.5 Computational Complexity Analysis

We compare two hypothetical ways to realize signal-dependent graph convolution on inputs x ∈ RB×C×T ,
with a fixed spatial support Ws ∈ RC×C and temporal path adjacency LT ∈ RT ×T .

1. Naive Cartesian (Kronecker) Method. For each sample b, compute per-time masked connectivity
and then build a full spatiotemporal kernel by the Kronecker product with LT , yielding Kb ∈ R(CT)×(CT),
and apply Kb to x̂b.

2. Proposed Graph-Variate Low-Rank Batched Method. Construct rank-1 (IC) or rank-3 expanded
quadratic (LDE) connectivities on-the-fly, mask by Ws via Hadamard product, and perform T batched
mat–vecs without explicit Kronecker expansion.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

1. Naive Product Graph Method

For each b = 1, . . . , B and t = 1, . . . , T :

(a) Per-time connectivity & masking

SIC
b,t = xb,:,t x⊤

b,:,t, SLDE
b,t = (xb,:,t⊙ xb,:,t) 1⊤ + 1 (xb,:,t⊙ xb,:,t)⊤ − 2 xb,:,t x⊤

b,:,t, S̃b,t = Sb,t ◦ Ws.

(b) Stacking S̃b = [S̃b,1, . . . , S̃b,T] ∈ RC×C×T .

(c) Kronecker expansion & apply Kb = LT ⊗ S̃b ∈ R(CT)×(CT), ŷb = Kb x̂b.

Complexity. Per-time connectivity: O(BC2T); kernel formation: O(BC2T 2); application: O(BC2T 2);
memory for all Kb: O(BC2T 2). Net time: O(BC2T 2); memory: O(BC2T 2).

2. Proposed Graph-Variate Low-Rank Batched Method

Form, for all (b, t) in parallel,

J IC
b,t = xb,:,t x⊤

b,:,t, JLDE
b,t = (xb,:,t⊙ xb,:,t) 1⊤ + 1 (xb,:,t⊙ xb,:,t)⊤ − 2 xb,:,t x⊤

b,:,t,

then mask with Ws: Ωb,t = Jb,t ◦ Ws (using the appropriate case). All T masked matrices live implicitly
inside Ω ∈ RB×C×C×T . We then compute, in one batched call,

yb,:,t = Ωb,t xb,:,t,

vectorizing over b and t.

Complexity. Connectivity+masking: O(BC2T); T batched mat–vecs: O(BC2T); memory O(BC2T). Net
time: O(BC2T); memory: O(BC2T).

Table 11: Asymptotic comparison: naive Cartesian vs. batched low-rank.

Method Time Memory
Naive Cartesian (Kronecker) O(BC2T 2) O(BC2T 2)
Batched Low-Rank (ours) O(BC2T) O(BC2T)

Takeaway. Avoiding explicit Kronecker formation with LT removes the quadratic dependence on T in
both compute and memory. Using rank-1 (IC) and rank-3 expanded quadratic (LDE) constructions,
plus Hadamard masking and batched mat–vecs, yields linear O(BC2T) execution.

Main Convolution

Listing 1: Core PyTorch implementation of normalization, graph construction, and convolution.
import torch

EPS = 1e-5

def renormalize_dynamic (A, eps=EPS):
"""
A: (B, C, C, T) dynamic affinity
Returns symmetric renorm : D^{ -1/2} (A + I) D^{ -1/2}
"""
I = torch.eye(A.size (1) , device =A. device)[None , :, :, None] # (1, C, C, 1)
At = A + I
deg = At.sum (2, keepdim =True) # (B, C, 1, T)
inv = deg.clamp(min=eps).pow (-0.5)
S = inv * At * inv. transpose (1, 2) # symmetric

renorm

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

return S

def graph_variate (x, fun=’corr ’, Zave=True , eps=EPS):
"""
x: (B, C, T)
returns normalized dynamic adjacency Om: (B, C, C, T)
"""
B, C_ , T_ = x.shape
if Zave:

mu = x.mean (1, keepdim =True)
sig = x.std (1, keepdim =True , unbiased =True)
x = (x - mu) / (sig + eps)

if fun == ’sqd ’:
D = x - x.mean (1, keepdim =True)
Om = (x. unsqueeze (2) - x. unsqueeze (1)).pow (2)

elif fun == ’corr ’:
D = x - x.mean (2, keepdim =True) # zero -mean over time
Om = D. unsqueeze (2) * D. unsqueeze (1) # rank -1 outer per time

return Om

def graph_conv (x, Om):
"""
x: (B, C, T)
Om: (B, C, C, T) dynamic (optionally renormalized) adjacency
returns : (B, C, T)
"""
Om_t = Om. permute (0, 3, 1, 2) # (B, T, C, C)
sig_t = x. permute (0, 2, 1). unsqueeze (-1) # (B, T, C, 1)
out = torch. matmul (Om_t , sig_t). squeeze (-1) # (B, T, C)
return out. permute (0, 2, 1)

In practice, we build Ω via graph_variate, apply the spatial mask (Hadamard with Ws), optionally call
renormalize_dynamic slice-wise, and then use graph_conv to perform all BT mat–vecs in one call—achieving
O(BC2T) time and memory.

A.6 Proof of Theorem 1

We first introduce the following defintions Definition 1. we observe T time-centered samples xt ∈ RN for
t = 1, . . . , T , and define

x̄ = 1
T

T∑
t=1

xt, x̃t = xt − x̄

and we assume
W ≻ 0 (PSD).

Let wij = Wij . For each fixed t, define the stabilized instantaneous correlation profile

ρt(i, j) = Wij

∣∣x̃(m)
i (t) x̃

(m)
j (t)

∣∣, i, j = 1, . . . , N.

Definition 2 (Sylvester’s Law of Inertia). Let A ∈ SN be a symmetric matrix of rank r with inertia
(p, q, 0), meaning p positive and q negative eigenvalues such that p + q = r. Then A is congruent to the
diagonal normal form

G =
(

Ip 0 0
0 −Iq 0
0 0 0

)
, p + q = r.

Two symmetric matrices are congruent if and only if they have the same rank and signature (p, q, 0).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 6: Comparison of instantaneous correlation profile, long-term covariance, and Hadamard-filtered
covariance matrices. Each panel displays the respective matrix with its condition number and invertibility
status.

Proof. of Theorem 1
Set

dt :=
∣∣x̃t

∣∣ ∈ RN , Dt := diag
(
dt

)
,

so each D
(m)
t is diagonal with strictly positive entries and thus invertible. The Hadamard product identity

gives
Ω(t) = W ◦

(
x̃tx̃

(m)⊤
t

)
= Dt W Dt,

i.e. Ω(t) is congruent to C.
Now applying Sylvester’s Law, since C ≻ 0 has inertia (N, 0, 0), any matrix congruent to it must share the
same inertia. Therefore

Ω(t) ≻ 0, rank(Ω(t)) = rank(W) = N.

This establishes both invertibility and positive-definiteness.

This completes the proof.

A.7 Proof of Theorem 2

Proof. Recall Gershgorin’s circle theorem: if A = (aij) is any N × N matrix then each eigenvalue λ of A
satisfies

λ ∈ D
(
aii, Ri(A)

)
where Ri(A) =

∑
j ̸=i

|aij |.

In our case Ω(t)ii = 0 and

Ri(Ω(t)) =
∑
j ̸=i

|Ω(t)ij | =
∑
j ̸=i

|Wij (xi(t) − xj(t))2|,

so every eigenvalue δ of Ω lies in one of the real intervals [−Ri, Ri]. Taking the union over i gives

ρ(Ω) ⊂
N⋃

i=1
[−Ri, Ri] =

[
− max

i
Ri, max

i
Ri

]
.

By definition,
Ri =

∑
j ̸=i

|Wij (xi(t) − xj(t))2|.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Summing these radii over all i yields
N∑

i=1
Ri =

N∑
i=1

∑
j ̸=i

∣∣Wij (xi(t) − xj(t))2∣∣
=
∑
i,j

∣∣Wij (xi(t) − xj(t))2∣∣
= 2 Eabs.

Thus the total “Gershgorin mass” equals twice the Dirichlet energy.
Since ρ(Ω) = max |δ| ≤ maxi Ri, we need only show maxi Ri ≤ 2Eabs. But from Step 2,

∑
i Ri = 2Eabs, and

the largest term in a sum of nonnegative numbers is no bigger than the sum itself. Hence

max
i

Ri ≤
∑

i

Ri = 2 Eabs,

hence
ρ(Ω) ≤ 2 Eabs.

completing the proof.

A.8 Rank-Lifting of the LDE Connectivity profile

Theorem 3. Let x1, . . . , xN be N distinct real numbers and define the instantaneous squared-difference
matrix

J(t) ∈ RN×N , Jij(t) = (xi − xj)2, Jii(t) = 0.

Let
W = { C ∈ RN×N : Cij ̸= 0 for all i ̸= j},

and for each C ∈ W form the Hadamard product

Ω(t) = J(t) ◦ W, Ωij = Jij(t) Wij .

Then:

1. rank(D) ≤ 3, hence det(J(t)) = 0 and D is singular.

2. The determinant
P (C12, C13, . . . , CN−1,N) = det

(
D ◦ C

)
is a nonzero polynomial in the off-diagonal entries of C. Consequently, outside its algebraic zero-locus
of Lebesgue measure 0, one has

det(J(t) ◦ W) ̸= 0, rank(J(t) ◦ W) = N,

so the Hadamard-weighted matrix is generically invertible.

Proof. (1) rank(J(t)) ≤ 3. Define column-vectors in RN by

ui = x2
i (t), vi = xi(t), 1i = 1.

Then
Jij(t) = (xi(t) − xj(t))2 = ui 1j − 2 vi vj + 1i uj ,

so in matrix form
J(t) = u 1T − 2 v vT + 1 uT .

Each term on the right is rank 1, hence rank(J(t)) ≤ 1 + 1 + 1 = 3. In particular when N > 3, J(t) is singular
and det(J(t)) = 0.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 7: Top-left: the instantaneous squared-difference matrix H at a single time point, which is rank-
deficient (rank = 3) and singular, showing large pairwise distances only for a few node pairs. Top-right:
the Hadamard-weighted matrix F = C ◦ H, where C is the long-term correlation; weighting lifts H to full
rank (rank = 10) and makes F invertible. Bottom-left: the sorted eigenvalues of H, displaying exactly three
nonzero modes and seven zeros, consistent with rank(H) = 3. Bottom-right: the sorted eigenvalues of F , all
ten nonzero and of mixed sign, confirming that F is indefinite but invertible.

(2) det(J(t) ◦ W) is a nonzero polynomial. By the Leibniz formula,

det(Ω(t)) =
∑

π∈SN

sgn(π)
N∏

i=1
Ω(t)i,π(i)

=
∑

π∈SN

π(i)̸=i ∀i

sgn(π)
N∏

i=1

[
J(t)i,π(i) Wi,π(i)

]
.

since Ω(t)ii = 0 kills any term with a fixed point. Thus

det(J(t) ◦ W) =
∑

π∈SN

π(i)̸=i

(
sgn(π)

N∏
i=1

J(t)i,π(i)

)(N∏
i=1

Wi,π(i)

)
,

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

a multivariate polynomial P ({Wij}) in the off-diagonal Wij .
To show P ̸≡ 0, pick the N -cycle π0 : i 7→ i + 1 (mod N). Its monomial is

N∏
i=1

Wi,π0(i) = W1,2 W2,3 · · · WN−1,N WN,1,

and its coefficient is

sgn(π0)
N∏

i=1
J(t)i,π0(i) = ± (x1 − x2)2 (x2 − x3)2 · · · (xN − x1)2 ̸= 0

because the xi are distinct. Hence P has at least one nonzero coefficient and so is not the zero polynomial.
Therefore it vanishes only on a proper hypersurface in W, proving that for almost every full-support W ,
det(J(t) ◦ W) ̸= 0 and rank(J(t) ◦ W) = N .

A.9 Stability of GVNN Layer

Theorem 4 (GVNN Layer is Globally Lipschitz). Let W ∈ RN×N be symmetric with nonnegative entries,
and define

α = max
1≤i≤N

N∑
j=1

Wij .

Let
X = [x(1) . . . x(T)] ∈ RN×T ,

and write

µi = 1
T

T∑
t=1

xi(t),

M = max
1≤i≤N
1≤t≤T

∣∣xi(t) − µi

∣∣,
B = max

1≤i≤N
1≤t≤T

∣∣xi(t)
∣∣.

Let scalar filters a = (at)T
t=1 and b = (bt)T

t=1 satisfy

a⋆ = max
1≤t≤T

|at|, b⋆ = max
1≤t≤T

|bt|.

For each t define two node functions:

J IC
ij (t) = |(xi(t) − µi) (xj(t) − µj)| , JSD

ij (t) = (xi(t) − xj(t))2,

and form the Hadamard products

ΩIC(t) = W ◦ J IC(t), ΩSD(t) = W ◦ JSD(t).

Given any pointwise-1-Lipschitz nonlinearity σ : R → R, define

y(t) = σ
(
at x(t) + bt Ω(t) x(t)

)
, F (X) =

[
y(1) . . . y(T)

]
∈ RN×T .

Then for every pair X, X ′ ∈ RN×T ,

∥F (X) − F (X ′)∥F ≤
(
a⋆ + α b⋆ M2) ∥X − X ′∥F (IC),

∥F (X) − F (X ′)∥F ≤
(
a⋆ + 4 α b⋆ B2) ∥X − X ′∥F (SD).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Proof. Because W is symmetric with nonnegative entries, Gershgorin’s circle theorem guarantees that every
eigenvalue λ of W lies in the interval [0, α]. Consequently, the spectral (operator) norm of W satisfies

∥W∥op ≤ α.

Fix an arbitrary time index t ∈ {1, . . . , T}. We treat the IC and SD cases in parallel, noting only where the
node function definition differs.

Define the diagonal matrix
D(t) = diag

(
|xi(t) − µi|

)N

i=1.

By definition of M ,
∥D(t)∥op = max

1≤i≤N

∣∣xi(t) − µi

∣∣ ≤ M.

Since the Hadamard product with GIC(t) coincides with the congruence
ΩIC(t) = D(t) W D(t),

submultiplicativity of the operator norm yields
∥ΩIC(t)∥op ≤ ∥D(t)∥op · ∥W∥op · ∥D(t)∥op

≤ M · α · M = α M2.

Here each entry of the instantaneous matrix is (xi(t) − xj(t))2. We bound this directly in terms of the
maximum node value B:

(xi(t) − xj(t))2 =
∣∣xi(t) − xj(t)

∣∣2
≤
(
|xi(t)| + |xj(t)|

)2

≤ (B + B)2 = 4 B2.

Therefore, for every i, j,
|ΩSD

ij (t)| = Wij · (xi(t) − xj(t))2 ≤ 4 B2 Wij .

Summing over j shows that each row sum of
∣∣ΩSD(t)

∣∣ is at most
∑

j 4 B2 Wij = 4 B2∑
j Wij ≤ 4 α B2. Since

ΩSD(t) remains symmetric with nonnegative entries, its operator norm is upper bounded by its maximum
row sum, giving

∥ΩSD(t)∥op = ρ
(
ΩSD(t)

)
≤ max

1≤i≤N

N∑
j=1

ΩSD
ij (t) ≤ 4 α B2.

In either case define the map gt : RN → RN by
gt(z) = at z + bt Ω(t) z.

For any two vectors u, v ∈ RN , we have
gt(u) − gt(v) =

(
at I + bt Ω(t)

)
(u − v).

Applying the triangle inequality together with the operator-norm bound on Ω(t) yields∥∥gt(u) − gt(v)
∥∥

2 ≤ |at| ∥u − v∥2 + |bt| ∥Ω(t)∥op ∥u − v∥2.

Since |at| ≤ a⋆ and |bt| ≤ b⋆, it follows that∥∥gt(u) − gt(v)
∥∥

2 ≤
(
a⋆ + b⋆ ∥Ω(t)∥op

)
∥u − v∥2.

Because σ is pointwise 1-Lipschitz, for each t and each pair of signals x(t), x′(t),
∥y(t) − y′(t)∥2 =

∥∥σ
(
gt(x(t))

)
− σ

(
gt(x′(t))

)∥∥
2

≤
∥∥gt(x(t)) − gt(x′(t))

∥∥
2

≤ L ∥x(t) − x′(t)∥2,

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

where

L =
{

a⋆ + α b⋆ M2, IC,

a⋆ + 4 α b⋆ B2, LDE.

Finally, summing these squared-norm inequalities over t = 1, . . . , T and taking the square root gives:

∥F (X) − F (X ′)∥F =
(

T∑
t=1

∥y(t) − y′(t)∥2
2

)1/2

≤ L

(
T∑

t=1
∥x(t) − x′(t)∥2

2

)1/2

= L ∥X − X ′∥F .

This completes the proof.

A.10 Extended Theorems and Proofs

This section will include more theorems and propositions for completeness
Theorem 5 (Parseval identity for the GVFT). For every time index t and every signal vector x(t), one has

N∑
i=1

∣∣x̂i(t)
∣∣2 =

N∑
i=1

∣∣xi(t)
∣∣2.

Equivalently,
∥x̂(t)∥2 = ∥x(t)∥2.

Proof. Due to Corollary 1, as long as the stable support is symmetric, the eigendecomposition of a connectivity
profile results in Ut being orthonormal, i.e., U⊤

t Ut = IN . Applying this to x̂(t) = U⊤
t x(t), we get:

∥x̂(t)∥2
2 = x̂(t)⊤x̂(t)

= (U⊤
t x(t))⊤(U⊤

t x(t))
= x(t)⊤UtU

⊤
t x(t)

= x(t)⊤x(t)
= ∥x(t)∥2

2.

Remark 6. Because the GVFT basis Ut depends on the instantaneous, signal-derived slice Ω(t), Parseval’s
identity above holds separately for each time step t; summing over t shows energy conservation for the entire
spatio-temporal matrix X = [x(1) . . . x(T)]:

T∑
t=1

∥x̂(t)∥2
2 =

T∑
t=1

∥x(t)∥2
2.

The next theorem develops bounds on the eigenvalues of the instantaneous correlation node function profile
againt a PSD stable support in terms of the eigenvalues of the PSD stable support.
Theorem 7 (IC Spectral bounds under amplitude-scaling). Let

W ∈ SN
++ have spectrum λmin(W) ≤ · · · ≤ λmax(W),

and at time t let the centred sample x̃t ∈ RN satisfy x̃i(t) ̸= 0 for all i. Define
Dt = diag

(
|x̃t|
)
, ρt = Dt W Dt, mt = min

i
|x̃i(t)|, Mt = max

i
|x̃i(t)|.

If δ1,t ≤ · · · ≤ δN,t are the eigenvalues of ρt, then for each i = 1, . . . , N ,
m2

t λmin(W) ≤ δi,t ≤ M2
t λmax(W).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Proof. Recall the Rayleigh quotient of a symmetric matrix A and nonzero w is

R(A; w) := w⊤A w

w⊤w
.

By the Rayleigh–Ritz theorem (a special case of the Courant–Fischer min–max theorem),

λmin(A) ≤ R(A; w) ≤ λmax(A), ∀ w ̸= 0,

and the eigenvalues of A coincide with the extremal values of R(A; w) over appropriate subspaces.

For any unit vector v ∈ RN (∥v∥ = 1), consider

v⊤ρt v = v⊤(Dt W Dt) v = (Dt v)⊤W (Dt v).

We will bound (Dtv)⊤W (Dtv) using R(W ; ·).

Define
u = Dt v

∥Dt v∥
, u ̸= 0, ∥u∥ = 1.

Then

(Dt v)⊤W (Dt v) = ∥Dt v∥2 (Dtv)⊤W (Dtv)
∥Dtv∥2︸ ︷︷ ︸
=R(W ;u)

.

By the Rayleigh–Ritz result of Step 1,

λmin(W) ≤ R(W ; u) ≤ λmax(W),

so
(Dtv)⊤W (Dtv) ∈

[
λmin(W) ∥Dtv∥2, λmax(W) ∥Dtv∥2].

Since v has ∥v∥ = 1 and Dt = diag(d1,t, . . . , dN,t) with di,t = |x̃i(t)| ∈ [mt, Mt], we have

∥Dtv∥2 =
N∑

i=1
d2

i,t v2
i ∈ [m2

t , M2
t].

Therefore for every unit v,

v⊤ρt v = (Dtv)⊤W (Dtv) ∈
[
m2

t λmin(W), M2
t λmax(W)

]
.

Finally, by the Courant–Fischer characterization of eigenvalues, the ith largest eigenvalue δi,t of ρt

is the extremal Rayleigh quotient over an i-dimensional subspace. Since all Rayleigh quotients lie in[
m2

t λmin(W), M2
t λmax(W)

]
, each δi,t must also satisfy

m2
t λmin(W) ≤ δi,t ≤ M2

t λmax(W), i = 1, . . . , N.

This completes the proof.

Theorem 8 (IC Condition-number bound under amplitude-scaling). Under the hypotheses of Theorem 1,
let

di = |x̃(m)
i (t)|, dmin = min

1≤i≤N
di, dmax = max

1≤i≤N
di,

and recall W ∈ SN
++ has spectrum λmin(W) ≤ · · · ≤ λmax(W). Then the instantaneous filtered matrix

ρt = Dt W Dt is SPD and its condition number satisfies

κ
(
ρt

)
=

λmax
(
ρt

)
λmin

(
ρt

) ≤ d2
max

d2
min

· λmax(W)
λmin(W) .

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Proof. From Theorem 1, ρ
(m)
t is congruent to the SPD matrix W , so it remains SPD, hence all eigenvalues

are strictly positive and the condition number is well-defined.

From the Rayleigh–Ritz characterization, for any unit vector v,
v⊤ρtv = (Dtv)⊤ W (Dtv)

∈
[
λmin(W) ∥Dtv∥2, λmax(W) ∥Dtv∥2].

Since dmin ≤ di ≤ dmax for all i, and ∥v∥ = 1, one checks

d2
min ≤ ∥Dtv∥2 ≤ d2

max.

Hence every eigenvalue δ of ρ
(m)
t satisfies

d2
min λmin(W) ≤ δ ≤ d2

max λmax(W).

Writing δmin = λmin(ρt) and δmax = λmax(ρt), the above yields

δmin ≥ d2
min λmin(W), δmax ≤ d2

max λmax(W).
Therefore

κ
(
ρt

)
= δmax

δmin
≤ d2

max λmax(W)
d2

min λmin(W) = d2
max

d2
min

· λmax(W)
λmin(W) ,

which completes the proof.

Theorem 9 (Gershgorin bounds on ρt). Let ρt ∈ SN
++ as above, and define

aii = ρii = Wii d2
i,t, Ri =

∑
j ̸=i

|Wij | di dj .

Then every eigenvalue δi of ρt satisfies

δi ∈
N⋃

i=1
D
(
aii, Ri

)
=

N⋃
i=1

{
z : |z − Wii d2

i | ≤ di

∑
j ̸=i

|Wij | dj

}
.

In particular, since W is SPD and its diagonal entries Wii > 0, each disc lies strictly in the right-half plane
and hence ρt has all positive eigenvalues.
Moreover, letting

dmin = min
i

di, dmax = max
i

di, rmax = max
i

∑
j ̸=i

|Wij |,

we obtain the simplified bound
δi ∈

[
d2

min min
i

Wii − d2
max rmax, d2

max max
i

Wii + d2
max rmax

]
.

Proof. By Gershgorin’s circle theorem, each eigenvalue δ of ρ = ρt lies in at least one disc

{z : |z − ρii| ≤
∑
j ̸=i

|ρij |}, ρii = Wiid
2
i , ρij = Wijdidj .

Thus
| δi − Wiid

2
i | ≤ di

∑
j ̸=i

|Wij | dj .

Since W is SPD, Wii =
∑

k λku2
k,i > 0 and each di > 0. Hence the real parts of all discs lie strictly to the

right of zero, proving δi > 0.
For the coarse bound, note

Wii ≥ min
i

Wii,
∑
j ̸=i

|Wij | ≤ rmax, dmin ≤ di,t ≤ dmax,

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 8: Main panel: Light-blue shaded circles show the Gershgorin discs of the Hadamard-weighted
matrix F = C ◦ H, each centered at the origin with radius Ri =

∑
j ̸=i |Cij |(xi − xj)2. Red dotted circle

marks the upper Dirichlet-energy bound r = 2Eabs, orange dashed circle marks the average-energy bound
r = 2Eabs/N , and green dash–dot circle marks the spectral radius r = ρ(F). Red crosses are the eigenvalues
of F , all lying within the union of the Gershgorin discs. We can see how the spectral radius is upper bounded
by the Dirichlet Energy.
Zoomed In: A close-up around the origin shows the small Gershgorin discs, the tight Dirichlet lower bound
2Eabs/N , and the spectral-radius circle relative to the cluster of eigenvalues, we clearly see how maxi Ri

strictly exceeds 2Eabs/N yet remains below 2Eabs.

So every disc collapses to the real interval (as all eigenvalues are real):

D
(
Wiid

2
i , di

∑
j ̸=i |Wij | dj

)
⊂
[
d2

min min
i

Wii − d2
maxrmax, d2

max max
i

Wii + d2
maxrmax

]
.

Therefore all eigenvalues δi lie in the stated interval.

Proposition 1. Let x1(t), . . . , xN (t) be distinct real numbers,

Jij(t) = (xi(t) − xj(t))2, Jii(t) = 0,

and let W ∈ RN×N be any symmetric matrix with Wij ̸= 0 for all i ̸= j. Define the Hadamard product

Ω(t) = J(t) ◦ W, Ω(t)ij = J(t)ij Wij .

Then Ω(t) is symmetric and invertible, yet tr(Ω(t)) = 0, so Ω(t) cannot be positive (semi-)definite.

Proof. First, symmetry of Ω(t) follows immediately from symmetry of J(t) and W , since
Ω(t)ij = Jij(t) Wij = Jji(t) Wji = Ω(t)ji.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Invertibility is guaranteed by the Hadamard rank-lifting argument: because W has full support, det(D◦C) ̸= 0
for generic such W , hence rank(Ω(t)) = N .
Next, compute the trace:

tr(Ω(t)) =
N∑

i=1
Ω(t)ii =

N∑
i=1

J(t)ii Wii =
N∑

i=1
0 · Wii = 0.

Finally, if M were positive semi definite then all its eigenvalues {λk} would satisfy λk ≥ 0. But their sum is

N∑
k=1

λk = tr(M) = 0,

forcing each λk = 0, contradicting invertibility. Hence M has both positive and negative eigenvalues and is
indefinite.

Theorem 10 (Spectral bounds for LDE weighting). Let C ∈ RN×N be a real symmetric, full-rank matrix
with eigenvalues

λmin(C) ≤ · · · ≤ λmax(C).
At time t, let x(t) ∈ RN and define the instantaneous squared-difference matrix

Jij(t) = (xi(t) − xj(t))2, Jii(t) = 0,

and form the Hadamard-weighted matrix

Ω(t) = W ◦ J(t), Ωij(t) = Wij Jij(t).

Set
mt = min

i̸=j
|xi(t) − xj(t)|, Mt = max

i̸=j
|xi(t) − xj(t)|,

and let δ1,t ≤ · · · ≤ δN,t be the eigenvalues of Ω(t). Then for each i = 1, . . . , N ,

m2
t λmin(W) ≤ δi,t ≤ M2

t λmax(W).

Proof. Let v ∈ RN be any unit vector, ∥v∥ = 1. The Rayleigh quotient of Ω(t) at v is

v⊤Ω(t) v =
∑
i,j

Wij (xi(t) − xj(t))2 vi vj .

Since for all i ̸= j we have m2
t ≤ (xi(t) − xj(t))2 ≤ M2

t , it follows that

m2
t

∑
i,j

Wijvivj ≤ v⊤Ω(t) v ≤ M2
t

∑
i,j

Wijvivj .

But
∑

i,j Wijvivj = v⊤W v, and by the Rayleigh–Ritz theorem

λmin(W) ≤ v⊤W v ≤ λmax(W).

Combining these inequalities gives

m2
t λmin(W) ≤ v⊤Ω v ≤ M2

t λmax(W).

Finally, the Courant–Fischer characterization implies that each eigenvalue δi,t of Ω(t) lies within the range of
v⊤Ω(t) v over unit v. Therefore

m2
t λmin(W) ≤ δi,t ≤ M2

t λmax(W), i = 1, . . . , N,

as claimed.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

GVNN (data-driven graph tensor) Transformer (data-driven directed graph)

Graph construction from data
J(t) = FV

(
xi(t), xj(t)

)
, Ω(t) = W ◦ J(t)

Graph convolution (batched)
Z(t) = Ω(t) X(t)

Mixing + nonlinearity
Y (t) = σ

(
Θ[atX(t) + btZ(t)]

)

Attention graph from data

Q = XWQ, K = XWK , V = XWV , A = softmax
(

QK⊤
√

dk

)

Aggregation as graph convolution
A · V

Residual + nonlinearity
Add & Norm + FFN

data-driven graph

graph convolution

nonlinear mixing / head

Figure 9: Both architectures construct a graph from the input and then convolve over it. GVNN forms a
data-driven adjacency tensor Ω(t) = W ◦J(t) and performs Z(t) = Ω(t)X(t) before a learned mixing and
nonlinearity Y (t) = σ

(
Θ[atX(t) + btZ(t)]

)
. A Transformer builds a directed, data-driven attention graph

A = softmax(QK⊤/
√

dk) and aggregates via A · V , followed by residual connections and a feed-forward
network.

A.11 Relation to LoRA and HiRA Adapters

Parameter–efficient fine-tuning (PEFT) adapts large models by training only a small number of parameters.
LoRA (Hu et al., 2021) achieves this by expressing the update as a low–rank factorization, ∆W = AB with
rank(∆W) ≤ r, trading full expressiveness for efficiency. HiRA (Huang et al., 2025) increases expressiveness
without sacrificing PEFT by applying a Hadamard (elementwise) product between a high–rank base and a
low–rank factor:

∆W = W0 ⊙ (AB), with rank(∆W) ≤ rank(W0) rank(AB).
This allows the update to attain a much higher effective rank while keeping trainable parameters comparable
to LoRA.
GVNNs leverage the same algebraic idea. At each time step, an instantaneous (often low–rank) connectivity
Jt is fused with a stable, typically high–rank support W via a Hadamard product, Ωt = W ⊙ Jt. This
multiplicative fusion boosts the rank and stabilizes Ωt, ensuring a more expressive operator even when Jt is
rank–deficient.
In fact, the support W need not be fixed. In analogy to LoRA, one can parameterize W itself as

W = Wbase + ∆W, ∆W = AB,

where Wbase is an initialization (e.g., long–term correlation) and ∆W is a low–rank adapter. This formulation
enables efficient adaptation of the support while avoiding the cost of learning a full N ×N matrix. Alternatively,
in a HiRA–style design, we may define

W = Wbase ⊙ (AB),
so that the expressive capacity of the Hadamard product is preserved even when AB is low–rank.
This perspective shows that the Hadamard support in GVNNs can itself be learned using LoRA/HiRA
adapters: low–rank updates capture task–specific variations, while the Hadamard structure ensures that these
updates interact multiplicatively with instantaneous connectivities Jt. In practice, this allows GVNNs to
scale to large graphs without incurring prohibitive parameter costs, while retaining the flexibility to adapt
supports across datasets and tasks.

A.12 Transformers are Graph Variate Neural Networks (and vice-versa)

Recent work has suggested that the transformer model is in fact a graph neural network that has ’won the
hardware lottery’. This suggests that we can, in fact, go the other direction and build better Graph Neural
Network architectures by leveraging ideas from the transformer model.
The following discussion will demonstrate that the transformer architecture is in fact not only a Graph Neural
Network but in fact a Graph Variate Neural Network, i.e one that’s core operation is an input dependent
graph convolution. In fact, the transformer block can be reinterpreted as a GVNN with a static graph variable

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

tensor (i.e the attention matrix replicated over all T) just with differences in normalization and Linear Weight
projections.

A.12.1 Transformer Self-Attention as Directed Data-Driven Graph Convolution

Given token features X ∈ RT ×d, the Transformer computes queries, keys, and values

Q = XWQ, K = XWK , V = XWV , (15)

then forms a row-stochastic, directed attention matrix

A = softmax
(

QK⊤
√

dk

)
∈ RT ×T, (16)

and aggregates values via
Attn(X) = A V ∈ RT ×dv . (17)

Equations equation 16–equation 17 implement graph convolution on a data-driven, directed graph whose
adjacency is A: each row of A defines outgoing edges from a token to all others with weights given by the
softmax of similarities. Residual connections and a position-wise feed-forward network complete the encoder
block.

Multi-head attention. For H heads with A(h) and V (h), the aggregation is Concath

(
A(h)V (h))WO, a

parallel sum of graph convolutions on H distinct data-driven graphs.

A.12.2 GVNN as Data-Driven Graph Convolution

GVNN constructs a graph–variate tensor via two ingredients:

1. A node-wise similarity/interaction functional FV : R × R → R producing

Jij(t) = FV

(
xi(t), xj(t)

)
⇒ J(t) ∈ RN×N . (18)

Examples include the LDE and instantaneous correlation.
2. A stable support W ∈ RN×N (fixed or learned) that encodes long-term topology or sparsity. GVNN

forms the pointwise (Hadamard) product

Ω(t) = W ◦ J(t) , (19)

which gates/filters instantaneous interactions by the support.

Given Ω(t), GVNN performs a batched graph convolution of the current signal:

Z(t) = Ω(t) X(t) ∈ RN . (20)

A compact GVNN layer then mixes the original and aggregated signals followed by a nonlinearity:

Y (t) = σ
(

Θ [at X(t) + bt Z(t)]
)

, (21)

where Θ ∈ RN×N is a learned linear map (or small MLP), and at, bt are (optionally learned) scalar/broadcast
coefficients. Stacking L layers yields H(l)(t) with H(0)(t) = X(t) and

Ω(l)(t) = W ◦ J (l)(t), J
(l)
ij (t) = FV

(
h

(l−1)
i (t), h

(l−1)
j (t)

)
.

Multi-node function convolution. Similar to multi-head attention one may aggregate convolutions with
different node functions and stable supports.

29

	Introduction
	Background and Motivation
	Graph Neural Networks
	Graph-Time Convolutional Neural Networks (GTCNNs).
	Graph Variate Signal Analysis

	Graph Variate Neural Networks
	Temporal Signal Dependent Convolution

	Experimental Results
	Chaotic Maps
	Traffic Forecasting
	EEG Motor Imagery Tasks

	Conclusion and Limitations
	Appendix / supplemental material
	Hardware
	Experimental Details: Chaotic Maps
	Experimental Details: Traffic Forecasting (METR–LA & PEMS–BAY)
	EEG Experiments: Datasets and Hyperparameters
	Computational Complexity Analysis
	Proof of Theorem 1
	Proof of Theorem 2
	Rank-Lifting of the LDE Connectivity profile
	Stability of GVNN Layer
	Extended Theorems and Proofs
	Relation to LoRA and HiRA Adapters
	Transformers are Graph Variate Neural Networks (and vice-versa)
	Transformer Self-Attention as Directed Data-Driven Graph Convolution
	GVNN as Data-Driven Graph Convolution

