Under review as a conference paper at ICLR 2026

GRAPH VARIATE NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Modelling dynamically evolving spatio-temporal signals is a prominent challenge in the Graph
Neural Network (GNN) literature. Notably, GNNs assume an existing underlying graph
structure. While this underlying structure may not always exist or is derived independently
from the signal, a temporally evolving functional network can always be constructed from
multi-channel data. Graph Variate Signal Analysis (GVSA) defines a unified framework
consisting of a network tensor of instantaneous connectivity profiles against a stable support
usually constructed from the signal itself. Building on Graph-Variate Signal Analysis
(GVSA) and tools from graph signal processing, we introduce Graph-Variate Neural
Networks (GVNNSs): layers that convolve spatio-temporal signals with a signal-dependent
connectivity tensor combining a stable long-term support with instantaneous, data-driven
interactions. This design captures dynamic statistical interdependencies at each time step
without ad-hoc sliding windows and admits an efficient implementation with linear complexity
in sequence length. Across forecasting benchmarks, GVNNs consistently outperform strong
graph-based baselines and are competitive with widely used sequence models such as LSTMs
and Transformers. On EEG motor-imagery classification, GVNNs achieve strong accuracy
highlighting their potential for brain—computer interface applications.

1 INTRODUCTION

The modeling of graph signals has been a pervasive topic in recent years in Graph Signal Processing (GSP)
and Graph Neural Networks (GNN) (Xu et al., 2019; Kenlay et al., 2020) with a lack of a general consensus of
the best underlying graph structure for modeling (Ortega et al., 2018; Scarselli et al., 2008; Ruiz et al., 2021).
Often, this structure is unrelated to the graph signal itself (for example, geometric graphs for traffic signals).
CoVariance Neural Networks (VNN) propose the use of the sample covariance matrix as the underlying graph
shift operator (GSO)(Sihag et al., 2022). This approach encodes pairwise relationships in a robust statistical
object. Yet, while this represents relevant interactions in a static case this does not necessarily hold when
time-evolving graph signals are being modeled (Li and Zhu, 2016).

Graph temporal convolutional neural networks (GTCNN) (Isufi and Mazzola, 2021; Sabbaqi and Isufi, 2023)
are a notable development in the spatio-temporal modeling of dynamically evolving graph signals. This class
of models typically constructs a fully connected Cartesian or Kronecker product graph. While this effectively
captures instantaneous interactions, convolutions in this domain result in a computational complexity that is
quadratic in time, thus infeasible for longer time-series (Leskovec et al., 2010).

Given a time-evolving multi-variate signal the sample covariance represents the long-term correlation between
variables over the entire time period. However, each snap shot in time has varying instantaneous interac-
tions(Roy et al., 2024). This difference is in fact, non-trivial. While approaches like temporal PCA (Scharf
et al., 2022) perform projections over the time averaged sample covariance matrix, this aggregation loses
potentially useful information. This is demonstrated by the development of the time-varying graphical lasso
(Hallac et al., 2017), an optimization framework that estimates a dynamic inverse covariance matrix directly
from time series data. While this approach is intuitive and useful, the large computational cost of solving
such an optimization problem has limited the use of this approach in neural network architectures (Hamilton
et al., 2017).

Graph Variate Signal Analysis (GVSA)(Smith et al., 2019) provides an extended general framework to GSP
for the analysis of spatio-temporal signals, using general instantaneous pairwise node functions (unrestricted
by matrix multiplication) to formulate data constructed dynamic graph structures. This framework motivates
methods such Graph-Variate Dynamic Connectivity and FAST Functional Connectivity, where these instan-
taneous graphs are filtered by a stable support constructed from the long term signal coupling information of



Under review as a conference paper at ICLR 2026

the signal itself (GVDC) or a global cohort (FAST), reducing noise in short temporal windows while providing
a very high, sample by sample, temporal resolution which does not rely on a window length compared to
traditional sliding window approaches.

In this work we integrate GVSA with the more traditional "convolution" aggregation found in modern Graph
Neural Networks (GNNs) (Li et al., 2016; Abadal et al., 2021; Pfrommer et al., 2021; Isufi et al., 2024;
Velickovi¢ et al., 2018). For each input into the network an instantaneous connectivity tensor against a
stable (and potentially learnt) support is constructed. This tensor is multiplied with its respective signal
vector, this results in the capturing of spatio-temporal functional interactions. With this, we derive two
important theoretical insights. Firstly, we show that while instantaneous connectivity matrices are typically
rank-deficient and non-invertible, Hadamard multiplication with a full-rank stable support remedies this.
Furthermore, we show that by using parallelized batch processing and low-rank matrix construction we
achieve a speed up resulting in a linear time-complexity. This allows, for the first time, the capture of sample
resolution signal dependent connectivity in a efficient, scalable manner.

We evaluate GVNN forecasting performance in 3 chaotic maps,2 weather forecasting tasks and 2 EEG motor
imagery tasks. GVNNs successfully capture the non-trivial instantaneous temporal interactions present in
multi-variable time-series. Particularly, we show that it outperforms the state of the art conventional graph
based methods for time-series. Showing that the inductive bias provided by GVNNs improve performance. In
application, we study EEG motor imagery classification, demonstrating that GVNNs capture the high temporal
resolution of EEG signals while effectively reducing noise outperforming approaches such as EEGNet(Lawhern
et al., 2016) and the Transformer model. Our results indicate that GVNNs could play a pivotal role in
advancing the next generation of Brain—Computer Interfaces (BCIs)(Aristimunha et al., 2023; Keutayeva
et al., 2024; Zhang and Liu, 2018), where minimizing calibration time and maximizing online responsiveness
are crucial engineering challenges(Bessadok et al., 2021).

2 BACKGROUND AND MOTIVATION

2.1 GRAPH NEURAL NETWORKS

Graph Signal Processing (GSP) extends classical signal processing to data indexed by the vertices of a
graph. A key component is the Graph Shift Operator (GSO), whose eigen-decomposition underlies operations
analogous to the Discrete Fourier Transform (DFT). These components are the foundation on which Graph
Neural Networks are built (Isufi et al., 2024; Maskey et al., 2023; Levie et al., 2020).

Definition 1 (Graph Convolutional Filter). Let h = [hq, ..., hg|" be filter coefficients. A graph convolutional
filter of order K is the linear map

K
H(S)x = Y h,S"x = H(S)x, (1)
k=0

where H(S) = ZkK:o hiS*.
Definition 2 (Graph Fourier Transform (GFT)). For a diagonalizable GSO 8 = VAV ™! with eigenvectors
V and eigenvalues A, the GFT of a graph signal x is x = V" 'x, and the inverse GFT is x = V.

Definition 3 (Graph Convolutional Network (GCN)). A Graph Convolutional Network (Sandryhaila and
Moura, 2013; Ziigner and Giinnemann, 2019; Keriven and Peyré, 2019; Hamilton et al., 2017) layer updates a
graph signal X € RV*¥ (with N nodes and F input features) as:

XD = a(H(S) XWW“)) , 2)

where S is the graph shift operator (GSO) of choice, W) € RFe*Fei1 are learnable weights, and o(-) is a
nonlinear activation function.

2.2 GRAPH-TIME CONVOLUTIONAL NEURAL NETWORKS (GTCNNS).

The standard way to model spatiotemporal signals is the use of product graphs to create Graph time
Convolutional filters and thus GTCNN’s.
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Figure 1: Graph Variate Fourier Transform (GVFT). Each panel shows the GVFT coefficients of
a synthetic multivariate time series projected onto the eigenbasis of its own graph-structured connectivity
profile at each time step. The left heatmap uses a squared-difference formulation for Q; = (z; —z;)? - C, while
the right uses instantaneous correlation: €; = corr(x;) - C', where C is the long-term correlation matrix across
the full signal. The GVFT transforms the input signal X € RV*T into a new matrix X € RV*T where
each column represents the projection of x; onto the eigenbasis of ;. This figure illustrates how different
formulations of signal-derived connectivity affect the spectral content and dynamics of the transformed signal.
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Definition 4 (Graph-Time Convolutional Neural Network (GTCNN) (Isufi and Mazzola, 2021; Sabbaqi and
Isufi, 2023)). Let Gp = (Vp,Ep, Sp) be a spatio-temporal product graph with shift operator Sp € RNTXNT
A spatio-temporal signal X € RV*7T is vectorized as xp = vec(X) € RNT.

The graph-time convolutional filter of order K is defined as

y = (th S7’§>X7p = H(Sp)xp, (3)

k=0
which aggregates information from K-hop spatio-temporal neighborhoods.

For multiple features, let X,(,f_l) € RVNT*Fe-1 denote the input at layer £ — 1. We apply a bank of polynomial
filters with coefficient matrices {H,(f)}szo. The propagation rule of layer /£ is

K
4 l— 4
X§>>=o(ZS¢»X§> ”H,‘J), (4)
k=0

where H\") € RFi-1F are trainable filter coefficient matrices and o(-) is a pointwise nonlinearity (c.g.,
ReLU).

A L-layer GTCNN is obtained by stacking such modules.

While effective for shorter temporal sequences the clear bottleneck here is the quadratic dependency in both
the number of nodes and sequence length, this makes the modeling of long time-series unfeasible. Furthermore
the product graphs do not capture instantaneous signal specfici dependencies and are usually a binary graph.

2.3 GRAPH VARIATE SIGNAL ANALYSIS

A potential issue with GSP based neural network architectures is that the relationship and relevance of the
underlying graph structure to the signal is unclear and typically unchanging. There have been recent progress
in addressing this in the form of CoVariance Neural Networks (VNN). Here the sample covariance matrix is
used a GSO, giving us a natural interpretation of Graph Convolution that is inherently linked to Principal
Component Analysis (PCA) (Mackiewicz and Ratajczak, 1993).
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Figure 2: Graph-Variate Neural Network (GVNN) layer. A multivariate sequence X € RY¥*T induces
instantaneous connectivity J(t), which is combined with a long-term support W to form Q(t) = W o J(¢). In
parallel, X and (t) drive a batched graph convolution Z(t) = Q(¢) X (¢). A skip connection carries X to the
combiner, which applies a learned linear map and a nonlinearity, Y (¢) = o(©[a; X (t) + b, Z(t)]).

Temporal data however, is dynamic (Manuca and Savit, 1996), i.e a single covariance estimation aggregating
information over time may not be a suitable representation, particularly in the presence of irrelevant noise.
Graph Variate Signal Analysis (GVSA) brings a sample-level, graph-weighted perspective to multivariate
signals: it re-introduces node-to-node relationships in each time instant, but modulates their impact with a
stable (or longer-term) graph. Importantly this does not depend on a window length. This yields time-varying
connectivity estimates and graph metrics that are more robust against momentary noise yet still capture
fine-grained transient dynamics. It has been shown that GVSA outperforms many sliding-window or purely
instantaneous techniques (Smith et al., 2019).

Definition 5 (Graph-Variate Signal Analysis). Let I' = (V, X, E, W) be a graph-variate signal, where
e V is the set of n nodes,
e X € R™*? is the multivariate signal (each of the n nodes has p samples),
e F is the set of edges, and
o W e R™" is the weighted adjacency matrix with entries w;.

Define a bivariate node-space function Fy as
Jij(t) = Fy(wi(t), z;(t)), fori#j, Ju(t)=0.

Graph-Variate Signal Analysis (GVSA) produces, at each time sample ¢, an n X n matrix given by the
Hadamard (element wise) product
Q) = W o J(t),
whose entries are
Qi(t) = [WoJ(t)]l.j = Wi Fy(zi(t), ;(1)).

This, overall, gives a N x N x T Tensor representation.

This framework not only allows a sample by sample high temporal resolution but is also computationally
efficient. Note that no eigendecomposition is done at any stage and the entire analysis is in the node-space.
Furthermore, node functions are typically chosen to exploit computational efficiency through low rank, vector
outer product based operations. The stable support acts as an inherent stabilizer emphasizing stable long-term
correlations and minimizing noise while still readily picking up instantaneous dynamics, providing a trade-off
between global and local connectivity information. This is typically chose as the long-term correlation matrix
of the signal itself or averaged over a cohort (Roy et al., 2024; Smith et al., 2019).

3 GRAPH VARIATE NEURAL NETWORKS

By combining GSP and GVSA approaches we conjecture that time-step wise convolution of the graph signal
with its own instantaneous temporal connectivity profile can exploit the rich spatio-temporal information
present in many real-life signals.
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In this vein, we define Graph-Variate Neural Networks as follows.

Definition 6 (Graph-Variate Neural Network (GVNN, layer-wise form)). Let W € RV*Y be a stable
(long-term) graph support. For an input sequence X() € RN*T at layer ¢, denote its t-th column by
x(t) € RN,

The input-dependent graph-variate tensor is
¢ ¢ [
QO (X @) e RV (1) = Wiy (2 (1), 257 (1)). (5)
for a chosen bivariate function Fy (-, ).

Let a b® ¢ RT be learnable scalar filter coefficients (one per time step), and let D,y = diag(a(é)),
Dy oy = diag(b®). Define the time-aligned multiplication

(QOXO)«xO) = aO)xO1), t=1,...,T (6)

Then the pre-activation output is

7z = XOD, o + (Q(f)(X(f)) *X(Z)) Dy, (7)

which is followed by a trainable time-mizing weight block ©) € RT*T and a pointwise activation o(-):

XD = 5(z"0") e RVNXT, (8)

Stacking L such layers yields XX, which can be further mapped to a task-dependant readout layer.

Here, utilizing the fast batch based parallel processing allows a natural convolution operation where a
spatio-temporal signal at a given timestep is convolved with its own connectivity profile. Also given the low
rank nature of the connectivity profiles, we provide a robust platform to capture signal dependent functional
inter-dependencies while being computationally efficient. Note also that we can optimize the stable support,
and thus the entire dynamic connectivity profile, efficiently through training. This retains a high temporal
resolution while allowing end-to-end optimization.

Equivalently, from a GSP lens, we can define the Graph-Variate Fourier Transform (GVFT) as projections of
the signal vector onto its own temporal connectivity profile, this returns a matrix of size N x T that allows a
simultaneous time-frequency decomposition. That is, each column of the GVFT represents the frequencies in
terms of the eigenbasis of the functional graph at that time step.

Definition 7 (Graph Variate Fourier Transform). Let X = [x1,...,x7] € RV*T be a spatio-temporal signal,
where x;, € RY is the t-th snapshot. For each t, define
; ) N
Qt = I:f(xt(l),l't(j)) Wij:li,j:l’ (9)

with W € RV*N a connectivity matrix and f(-,-) a symmetric node-pair function (e.g. f(a,b) = (a — b)?).
Since €2; is symmetric, it admits ; = UtAtUtT. The GVFT of x; is

§t = UtTXt, (10)

and stacking over time yields X = [X1,...,X7]

Definition 8 (Graph-Variate frequency response). For a fixed time index ¢, let the instantaneous connectivity
slice Q(t) € RY*N be symmetric with eigendecomposition

Q(t) = ViAth?
A = diag()\l(t), ce )\N(t)),

Consider the two-tap Graph-Variate filter
y(t) = Qg l'(t) + bt Q(t) .’L'(t)7 at,bt S R,
acting on an input vector z(t) € RY. Define the Graph Fourier transforms

B(t) =V a(t),  §t) =V y().
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Substituting the eigen-decomposition yields
g(t) = (at IN + bt At) (E(t)7

or component-wise,
Gi(t) = (ar+bN(1)) @i(t), i=1,...,N.

he(Xi (1))

The scalar function

ht()\) = a; + bt A (11)
is called the instantaneous frequency response of the Graph-Variate filter at time t. Thus, spectrally, the filter
acts as point-wise multiplication:

gi(t) = he(Ai(t)) 23 (1). (12)

Definition 6 is in direct analogy with the classical convolution theorem g; = iz()\l) Z; for polynomial graph
filters, but with a spectrum {;(¢)} and a response h; that are re-evaluated at every time step.

While we can clearly extend GVNNs by including higher order polynomials per time-step, we exclude these
for the sake of simplicity. We further note that, computationally (and intuitively), a right multiplication
with a time-wise filter coefficient matrix is more efficient then using polynomial filter coefficients (the typical
choice in the GNN literature).

This dual perspective is a shift from the traditional GSP sense of graph frequencies given that the graph is
constructed from the signal itself. In fact there is a closer link to PCA present here. Projecting signals onto a
data-driven dynamic eigenbasis (i.e the sample Covariance matrix in PCA), supported by a stable support,
allows a high level of precision and interpretability.

3.1 TEMPORAL SIGNAL DEPENDENT CONVOLUTION

Temporal information provides rich, discriminative information that could significantly enhance machine
learning models. As an example, EEG signals have a very high temporal resolution. While traditionally
being studied in the frequency or spectral domain, the time domain analysis of EEG signals provide great
potential in enhancing Brain Computer Interfaces (BCI).

We focus here on two common temporal domain node-space functions, given graph signals x we define:

o Instantaneous correlation(IC):
Py (i(t),2;(t) = [(za(t) — ) (2;(t) — 75)] - (13)

where Z; = + Zthl x;(t) is the temporal mean of node i.
o Local Dirichlet Energy (LDE) (Smith et al., 2017):

Fy(i(t), 25 (1) = (2:(t) — 2;(¢))". (14)

Instantaneous correlation is rank-1 and LDE rank-3, both expressible as sums of outer products. Such
structures are efficient, as outer products reduce to parallelizable vector operations that GPUs compute rapidly.
This approach combined with the Hadamard support are inspired from recent advances in Parameter—efficient
fine-tuning (PEFT)(Hu et al., 2021; Huang et al., 2025), a method to improve the efficiency of Large Language
Model’s (LLM’s). We direct the interested reader to A.11.

The instantaneous correlation captures co-deviation from mean temporal patterns.The LDE node function
has a direct relationship to the Dirichlet energy and captures local node gradient changes. We can also take
linear combinations of these two node functions in order to exploit both their contrasting views.

There is an important observation to make here with transformers here, given that the attention mechanism
can be argued to use a "graph' constructed from the data itself for convolution (Vaswani et al., 2017), in fact
recent ideas have provided a unifying view on Transformers and GNNs, arguing that transformers are GNN’s
that operate on a data-specific graph (Joshi, 2025). Thus GVNNs can be argued to be a form of attention
with a fundamentally different formulation, i.e the time-step specific tensor weighted against a stable support.
We expand on this in the appendix for the interested reader A.12.
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Theorem 1 (Full-rank preservation under Hadamard filtering). Let J;; = Fy (z;(t), z;(t)) = x;(t)z;(t) be
the unfiltered instantaneous correlation profile with rank m < N. If every component of :Egm) is non-zero,
and W is of full rank then

rank(Q(t) = W o J(t)) =N, ie. Q(¢) is invertible.

Moreover €2(t) is symmetric positive-definite, preserving the signature of C'.
Proof. See Appendix A.6 O

This theorem shows that Hadamard filtration with a stable support induces stability into the instantaneous
correlation profile.

Figure 2 shows empirical evidence of Theorem 1 where the Hadamard filtered matrix by the full-rank long-term
correlation matrix is now invertible and has a much lower condition number. We prove similar results for the
LDE case in the appendix A.8.

The LDE connectivity profile has a distinct relationship with the traditional Dirichlet Energy of a signal
(naturally encoding a measure of smoothness into signal convolutions) as shown in the following theorem.

Theorem 2 (Gershgorin-Dirichlet Bound). Let W € RV*Y be symmetric and x € R any signal. Form
Jij(t) = Fy (wi(t),z;(8)) = (z:(t) —;(t))%, Q) = Wo J(t),

and define
Eabs = 3 E [Wij (zi(t) — (t))?].
%,

the spectral radius is

P(Q1) < 2 Eun(t)
Proof. See Appendix A.7 O

Theorem 2 shows that the spectral radius of the Hadamard Filtered LDE is upper bounded by twice the
absolute Dirichlet energy of the signal on the stable support. Intuitively, this ensures that the GVNN
convolution is smoothness-aware (See Appendix for more details). This relates the spectral radius of the LDE
connectivity profile with the traditional Dirichlet Energy of a graph signal on the stable support W.

4 EXPERIMENTAL RESULTS

4.1 CHAOTIC MAPS

Chaotic systems pose unique challenges to statistical learning models and are also interpretable as benchmarks.
They thus provide a baseline to compare GVNN’s with other graph based models for time-series (Gilpin,
2023).

We compare GVNNs with a standard GTCNN, a Gated Graph RNN (GGRNN) and Graph VARMA
(GVARMA) model. For our node function we used a linear combination of the local dirchlet energy and
instantaneous correlation while allowing the stable support to be learnt from data.

We have chosen these models primarily due to their core operation being some sort of Graph Convolution.
Note we are not considering hybrid models such as Graph Wavenet () however do foresee future work
incorporating GVNNs into hybrid architectures. We have chosen these models primarily due to their core
operation being some sort of Graph Convolution. Note we are not considering hybrid models such as Graph
Wavenet (Wu et al., 2019) however we do foresee future work incorporating GVNNs into hybrid architectures.

For all models except GTCNN (Which uses the long-term correlation as the spatial component for fairness) we
initialize the stable support with the long-term stable correlation of the chaotic map and let the model optimize
this end-to-end. The node function was a linear combination of the LDE and instantaneous correlation.

We evaluate three multi-dimensional chaotic maps. The Coupled Lorenz, Hopfield and MacArthur maps

We see that GVNNs perform the best over all horizons on the Hopfield and Macarthur Map with large gains
being visible in the MacArthur dataset in particular. In the coupled Lorenz map, while GVNNs perform the
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Table 1: Chaotic datasets: MSE () across horizons and time per epoch.

Dataset Model H=3 H=6 H=12 Time/epoch (s)
GVNN 0.0237 £0.0008 0.1131 +0.0024 0.1837 £0.0053 0.1
Hopfeld GTCNN 0.1029 + 0.0052 0.1683 + 0.0014 0.2229 4+ 0.0031 0.1
P GVARMA  0.5283 £ 0.0082 0.5846 £ 0.0086 0.6514 + 0.0060 0.1
GGRNN 0.0628 £ 0.0166 0.1742 £ 0.0083 0.2662 £ 0.0107 0.1
GVNN 0.2143 £ 0.0083 0.5001 +0.1623  0.7325 £ 0.0092 0.1
Lorenz GTCNN 0.8163 £ 0.0456 0.8595 + 0.0282 0.9039 £+ 0.0145 0.1
GVARMA  0.8739 +0.0188 0.8764 + 0.0397 0.9027 + 0.0027 0.1
GGRNN 0.3528 £ 0.0271 0.5327 £0.0159  0.5971 £ 0.0049 0.1
GVNN 0.0910 £ 0.0004 0.2509 +0.0046 0.3914 + 0.0087 0.3
MacArthur GTCNN 0.8800 £ 0.0148 0.8479 £+ 0.0123 0.8856 + 0.0015 0.2
GVARMA  0.5454 £ 0.0325 0.7608 £+ 0.0794 0.8355 £ 0.0212 0.2
GGRNN 0.2232 £ 0.0009 0.4252 £ 0.0099 0.5073 £ 0.0034 0.2

best over horizons of length 1 and 3, they are outperformed by GGRNNs over the horizon of length 5. This
could be due to temporal interactions being less predictive for longer horizon in this chaotic map, further, a
model incorporating a combination of GVNNs and GGRNNs may be promising.

4.2 TRAFFIC FORECASTING

We evaluate four graph-based forecasting models on the METR-LA and PEMS-BAY traffic networks. We
also compare performance with the more commonly used transformer and LSTM models. METR-LA contains
four months of speed measurements from 207 sensors in Los Angeles County at 5 minute intervals, and

PEMS-BAY comprises six months of data from 325 sensors in the Bay Area at the same resolution(Sun et al.,
2020; Li et al., 2018).

Following standard practice, we predict future speeds at horizons h € {3,6, 12} time-steps (i.e. 15, 30, and 60
minutes ahead) given the past T = 6 observations (30 minutes). The graph based models follow the same
layout as in the previous experiment. However, we evaluate the case of the two layer GVNN’s with and
without a trainable support W.

Table 2 shows our results. It can be noted that using a fixed support GVNN’s outperform the graph based
models but remain inferior to the LSTM and Transformer models. Allowing W to be learned however, results
in large gains in performance where GVNN’s significantly outperform all models. As these datasets have a
large number of nodes we do observe GVNN’s have a large increase in training time, however, we believe that
the increase in performance justifies this decrease in speed.

Table 2: Final Test MSE (lower is better) for PEMS-BAY and METR-LA across all models.

Dataset Model Horizon 3 Horizon 6 Horizon 12 Time per epoch(s)
GVNN (Trainable W) 0.1722 4+ 0.0093 0.2323 +0.0080 0.3250 £+ 0.0229 7.2
Transformer 0.3126 £+ 0.0099 0.3467 + 0.0026 0.3858 + 0.0061 1.1
LSTM 0.3686 + 0.0231 0.3810 % 0.0085 0.4058 £+ 0.0022 1.1

PEMS-BAY GVNN(Static W) 0.7017 £+ 0.0460 0.7642 + 0.0611 0.8097 £+ 0.0280 3.4
GTCNN 0.9703 + 0.0032 1.0010 £ 0.0099 1.0474 £ 0.0071 1.06
GVARMA 0.7940 + 0.0128 0.8271 +0.0113 0.8862 + 0.0052 1.01
GGRNN 0.8766 £ 0.0040 0.9175 £ 0.0061 0.9736 + 0.0018 1.15
GVNN (Trainable W) 0.2218 +0.0017 0.3082 + 0.0158 0.4434 + 0.0033 2.4
Transformer 0.2928 + 0.0104 0.3799 £+ 0.0072 0.5384 + 0.0214 0.6
LSTM 0.3554 £ 0.0054 0.4355 + 0.0021 0.6644 + 0.0280 0.6

METR-LA GVNN (Static W) 0.6012 4+ 0.0625 0.6631 + 0.0790 0.7076 + 0.0301 1.1
CPGraphST 0.9082 £ 0.0191 0.9234 £ 0.0211 0.9887 £ 0.0138 0.5
GVARMA 0.9713 + 0.0364 0.9527 + 0.0447 1.0680 £ 0.0339 0.3
GGRNN 0.8205 + 0.0167 0.8621 £+ 0.0089 0.9281 + 0.0048 0.4
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4.3 EEG MoTOR IMAGERY TASKS

The BCI Competition IV 2a dataset (Aristimunha et al., 2023) comprises EEG recordings from nine subjects
performing four motor imagery tasks (left hand, right hand, feet, tongue) with data recorded in a 17 channel
setup. The Physionet dataset comprises a dataset including EEG recordings of 109 healthy subjects. The
participant imagines opening and closing their right or left fist and is a binary classification task. The data is
recorded in a 64 channel setup.

We evaluate with cross fold validation using 5 independent data folds. For the BCI-2A dataset we use a fixed
W set as the global long term correlation matrix computed from the training set and allow the W to be
learned for the PhysioNet task.

Table 3: BCI-2A: Overall summary (K-fold CV)

Model Accuracy (%) Kappa Time (s)
GVNN (LDE + Static W)  60.15 +1.21 0.4686 4+ 0.0162 0.5
EEGNet 60.51 +=3.88 0.4735+0.0517 1.0
Transformer 51.99 £ 3.01 0.3598 £+ 0.0401 1.5
LSTM 52.76 £ 2.27 0.3701 £ 0.0303 1.5

Table 4: PhysioNet: Overall summary (K-fold CV)

Model Accuracy (%) F1 Kappa Time (s)
GraphVar+MLP (LDE + Learned W)  80.29 £ 0.82 0.8021 £ 0.0104 0.6058 £ 0.0164 2.0
Transformer 80.94 +0.87 0.8095+0.0091 0.6189+0.0173 0.9
LSTM 7419+ 1.74 0.7279 £ 0.0277 0.4834 £ 0.0351 1.4
EEGNet 79.61 £ 1.55 0.7959 £+ 0.0145 0.5922 4+ 0.0310 3.2

Table 3 and 4 show our results. As expected, GVNN’s have a faster training speed on the lower channel
BCI-2A dataset and is the fastest model with EEGNet only outperforming it slightly and significantly
surpasses LSTM and Transformer models.

For the PhysioNet dataset we see an increase in training time for the GVNN model given the increase in channel
count to 64 yet we still see competitive performance with the Transformer model while it outperforming
EEGNet and being faster.

5 CONCLUSION AND LIMITATIONS

In this work we have introduced Graph Variate Neural Networks- a general framework that constructs
signal dependant dynamic graph structures in a computationally efficient manner by exploiting one-shot
batch processing. We further introduced two interpretable node functions, the Local Dirichlet Energy
and instantaneous correlation. We show theoretically how a stable support can ’stabilize’ these low-rank
instantaneous structures while also being computationally simple.

In the notoriously hard task of EEG motor imagery classification, we show that GVNNs are competitive
with and sometimes outperform (in terms of efficiency) traditionally used models such as the Transformer
Architecture or EEGNet. This improvement in performance was sustained in the forecasting of chaotic
systems, where non-trivial instantaneous interactions are present. GVNNSs retained their superiority in traffic
forecasting tasks, strongly outperforming strong traditional and graph based baselines.

We note that while we effectively capture intra-channel connectivity, we are disregarding auto-correlative
behaviour by not connecting nodes in the time dimension. However, the improvement in performance
by including signal dependent graph structures and reduction in computational time justify this decision.
Furthermore, mechanisms such as a temporal attention or convolutional module can be applied right after a
GVNN layer to attend to inter time-dependencies.

We also note that our approach retains the quadratic complexity with the number of nodes such as in
GTCNNSs. This can become large when constructing signal specific connectivity profiles, however such an
approach would not be possible using a product graph. Further work should also develop new node functions
and stable supports, potentially incorporating spatial properties or even information theoretic measures.
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REPRODUCIBILITY STATEMENT

All datasets used in this study are publicly available and open source. Detailed experimental settings,
including model architectures, hyperparameters, and training procedures, are described in the main text and
appendix. To facilitate reproducibility, the codebase implementing our methods will be made available upon
reasonable request from the authors.

ETHICS STATEMENT

This work relies exclusively on open-source datasets that do not contain personally identifiable or sensitive
information. We anticipate no direct harms, ethical concerns, or foreseeable negative societal impacts arising
from this research. The proposed methods are intended for advancing scientific understanding and improving
model efficiency in a responsible manner.

LARGE LANGUAGE MODEL (LLM) USAGE STATEMENT

During the preparation of this manuscript, we made limited use of a large language model for two purposes:
(i) assisting in code ideation and refactoring for clarity and efficiency, and (ii) tidying up the exposition of
the text for grammar and readability. The core research ideas, experimental design,theory, implementation,
methodology and validation are entirely the work of the authors. No parts of the manuscript were generated
verbatim by the LLM, and all content was critically reviewed and edited by the authors prior to submission.
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 HARDWARE

All experiments were run on a single NVIDIA A100 GPU (40 GB VRAM). Training used FP32 precision
(no mixed precision), and all runs were executed on a single device without model or data parallelism.

A.2 EXPERIMENTAL DETAILS: CHAOTIC MAPS

We consider three standard discrete-time chaotic benchmarks(Gilpin, 2023): Coupled Lorenz: a network of
Lorenz oscillators with diffusive coupling between state variables, producing high-dimensional, synchronized—
desynchronized regimes; Hopfield map: a discrete-time Hopfield network with frustrated connectivity (compet-
ing attractors) yielding complex transient dynamics; MacArthur map: a discrete-time ecological competition
model (species competing for shared resources) exhibiting multi-species chaotic population fluctuations. Each
dataset provides multivariate sequences X € RV*T" (channels = N nodes).

We use a sliding window of length T'=3 to forecast horizons H € {1,3,5} (one-, three-, and five-step ahead).
Windows slide with stride 1. Data are split chronologically into 80% train+val and 20% test; within the first
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Figure 3: PCA of Chaotic Maps

Table 5: Chaotic maps forecasting: dataset-level hyperparameters (identical across maps).

Map T H Stride Split Batch Epochs Seeds Norm

Coupled Lorenz 3 1,35 1 80/20 (chron.) 128 500 124, 14, 124235 per-sample z-score (channels)
Hopfield 3 1,35 1 80/20 (chron.) 128 500 124, 14, 124235  per-sample z-score (channels)
MacArthur 3 1,35 1 80/20 (chron.) 128 500 124, 14, 124235 per-sample z-score (channels)

80% we take 80% train and 20% validation. Inputs are z-scored per sample across channels. All graph-based
models use a trainable support W initialized from the long-term channel wise Pearson correlation over the
training split , and fuse instantaneous operators by Hadamard product; dynamic slices are re-normalized as
D~z (A+I)D~2. All models use 1 convolution layer with the GVNN using a linear combination of the two
node functions. We treat GTCNN as a simple baseline with it’s spatial component being the fixed long-term
correlation matrix and the rest of the models allow end to end training of the graph. All models consist of a
MLP readout layer with Leaky ReLU activation.

We train for 500 epochs with Adam (MSE loss), batch size 128, and report the best-validation checkpoint on
test. Unless otherwise stated, we use three seeds {124, 14, 124235} and hidden dimension 128.

A.3 EXPERIMENTAL DETAILS: TRAFFIC FORECASTING (METR-LA & PEMS-BAY)

We use a sliding window of =6 (30 min) to forecast H € {3,6,12} steps (15/30/60 min). Data are split
chronologically: 80% train+val and 20% test; within the first 80% we take 80% train and 20% validation. Inputs
are z-scored per sample across channels. Dynamic adjacencies are renormalized slice-wise as D3 (A+I )D’%.
We train with Adam and MSE loss for 200 epochs, select the best validation checkpoint, and evaluate on test.
Runs use three seeds {124, 14,124235}. All models use 2 convolution layers with the GVNN having the LDE
as the first layer and IC as second. The transformer and LSTM models also use 2 layers with the transformer
only consisting of one attention head.

Table 7: Dataset-level hyperparameters (both model families run on both datasets; the only dataset difference
is batch size).

Dataset T H Split Batch Epochs Seeds Optimizer / Loss
METR-LA 6 3,6,12 80/20 (chron.) 1280 200 124, 14, 124235 Adam / MSE
PEMS-BAY 6 3,612 80/20 (chron.) 1024 200 124, 14, 124235 Adam / MSE

Graph construction (used by all graph-based models). We build a static channel similarity matrix
We € RE*C from channelwise Pearson correlations over the full training set . Models that mark We as
trainable initialize from this correlation and update it end-to-end; otherwise W¢ is fixed. All dynamic
operators (t) are fused with W by Hadamard product and renormalized slice-wise.
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Table 6: Model hyperparameters and operator details for chaotic maps (all are graph-based; W is trainable

and initialized from long-term correlation).

Model LR Hidden Epochs Trainable W¢
GTCNN 1x107% 128 500 Yes
GVARMA (P=1, Q=1, K=2) 1x107* 128 500 Yes
GGRNN 1x107% 128 500 Yes
GVNN 1x107* 128 500 Yes

Evolution of Learned Stable Support W
Trained

Initial

-2.0

1.0

0.5

0.0

--0.5

Figure 4: Learned graph support matrix W before and after training. The figure illustrates how
the static graph support matrix W¢ evolves through training. The left panel shows the initialized matrix,
while the right panel presents the learned weights after optimization, revealing how the model adapts graph

connectivity structure for improved forecasting.

Table 8: Model hyperparameters and operator details (applied identically on METR-LA and PEMS-BAY).

Family Model LR Hidden Epochs Trainable W¢
GVNN 1x107* 128 200 No
Graph-based GTCNN 1x107* 128 200 No
GVARMA (P=1, Q=1,K=2) 1x107* 128 200 No
GGRNN 1x107* 128 200 No
GVNN 1x107* 128 200 Yes
Sequence-based  LSTM (2 layers) 1x1073 128 200 —
d Transformer (1 head, 2 layers) 1 x 1073 128 200 —

A.4 EEG EXPERIMENTS: DATASETS AND HYPERPARAMETERS

PhysioNet MI (binary: T1 vs. T2). We load raw EDF files from per-participant folders S{001..109}
=, excluding faulty IDs {088, 089,092, 100}. For each valid subject we select only the motor imagery runs

'For both EEG datasets the Transformer and LSTM models consisted of two layers while the GVNN was 1 layer.
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Figure 5: Instantaneous Correlation Connectivity profiles in the BCI-2A Multivariate Time series.

R04,R08,R12, read EDF with mne, and extract events from annotations. We dynamically map the annotation
codes for T1 and T2, keep only those trials, and epoch each trial with ty,in=0 to t.x=3.1s at 160 Hz (496
samples). Trials and labels are concatenated across all participants. We then perform stratified K=5-fold
CV across all trials (pooled cross-subject), building the stable support W within each fold from training
windows only as the absolute channelwise Pearson correlation |corr| . All models receive inputs normalized
per sample across channels (z-score), and all graph operators use slice-wise symmetric renormalization

D=Y2(A+I)D~1/2,

Table 9: PhysioNet MI: dataset-level protocol and hyperparameters.

Trials Classes Epoch FS CV Batch Epochs LR / WD Metrics
pooled (all subj.) 2 (T1/T2) 3.1s (T=496) 160Hz strat. 5-fold 64 50 1073 /107 Acc

BNCI2014_ 001 (BCI 2a, 4-class). We use MOABB/Braindecode (Aristimunha et al., 2023) to load
all subjects (1..9). Preprocessing: pick EEG, scale by 10°, band-pass 0.01 —20 Hz, exponential moving
standardization (factor_new=10"3, init_block_size=1000). Windows are created from events with a
start offset of —0.5s (MOABB defaults for stop/length are used). We concatenate windows across subjects
and run stratified 5-fold CV. In each fold, W = |corr| is computed from training windows only, and used by
GVNN; inputs are per-sample channel z-scored inside each model (Dornhege et al., 2007).

Table 10: BNCI2014_ 001 (4-class): dataset-level protocol and hyperparameters.

Trials Classes Preproc CV Batch Epochs LR /WD Metrics

pooled (all subj.) 4 bp. 0.01-20 Hz & EMS  strat. 5-fold 64 100 107* /107 Acc

A.5 COMPUTATIONAL COMPLEXITY ANALYSIS

We compare two hypothetical ways to realize signal-dependent graph convolution on inputs z € REX¢*T
with a fixed spatial support W, € R®*¢ and temporal path adjacency Ly € RTXT,

1. Naive Cartesian (Kronecker) Method. For each sample b, compute per-time masked connectivity
and then build a full spatiotemporal kernel by the Kronecker product with Ly, yielding K, € R(CT)*(CT)
and apply K to Zp.

2. Proposed Graph-Variate Low-Rank Batched Method. Construct rank-1 (IC) or rank-3 expanded
quadratic (LDE) connectivities on-the-fly, mask by W via Hadamard product, and perform T batched
mat—vecs without explicit Kronecker expansion.
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1. NAIvE ProDUCT GRAPH METHOD
Foreachb=1,...,Bandt=1,...,T:
(a) Per-time connectivity & masking
Sé(i =Tp.t xl—,'::’t, SZI;PE = (2,4t O T, 1) 1T +1 (2,0 © xb,;’t)—r — 2.y x;—,:!t, §b,t = Sy 0 Ws.

(b) Stacking Sy = [S'b’l, s §b7T] c ROXCOXT
(c) Kronecker expansion & apply Ky = Lt ® §b e RECDIX(CT) 5, — K, &,.

Complexity. Per-time connectivity: O(BC?T); kernel formation: O(BC?T?); application: O(BC?T?);
memory for all Kp: O(BC?T?). Net time: O(BC?T?); memory: O(BC?T?).

2. PROPOSED GRAPH-VARIATE LOw-RANK BATCHED METHOD
Form, for all (b,t) in parallel,
IC T LDE T T T
Jot = Tot Ty g Joie = @bt © o) 1+ 1 (20,00 Tpe) | — 2@b0 Ty g

then mask with Wy: Q4 = Jp+ o Wy (using the appropriate case). All T masked matrices live implicitly
inside Q € REXEXCXT We then compute, in one batched call,

Yb,:t = Qb,t Th,: ty

vectorizing over b and t.

Complexity. Connectivity+masking: O(BC?T); T batched mat-vecs: O(BC?T); memory O(BC?T). Net
time: O(BC?T); memory: O(BC?T).

Table 11: Asymptotic comparison: naive Cartesian vs. batched low-rank.

Method Time Memory
Naive Cartesian (Kronecker) O(BC*T?) O(BC*T?)
Batched Low-Rank (ours) O(BC*T)  O(BC*T)

Takeaway. Avoiding explicit Kronecker formation with Lz removes the quadratic dependence on T in
both compute and memory. Using rank-1 (IC) and rank-3 expanded quadratic (LDE) constructions,
plus Hadamard masking and batched mat—vecs, yields linear O(BC?T) execution.

MAIN CONVOLUTION

Listing 1: Core PyTorch implementation of normalization, graph construction, and convolution.

import torch
EPS = 1le-5

def renormalize_dynamic (A, eps=EPS):
nmnn
A: (B, C, C, T) dynamic affinity
Returns symmetric renmorm: D~{-1/2} (A + I) D~{-1/2}

nnn

I = torch.eye(A.size (1), device=A.device) [None, :, :, Nomel]
At = A + I

deg = At.sum(2, keepdim=True)

inv = deg.clamp(min=eps).pow(-0.5)

S = inv * At * inv.transpose(l, 2)
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return S

def graph_variate(x, fun=’corr’, Zave=True, eps=EPS):
nun
x: (B, C, T)

returns normalized dynamic adjacency Om: (B, C, C, T)
nmnn

B, C_, T_ = x.shape
if Zave:
mu = x.mean(l, keepdim=True)
sig = x.std(1, keepdim=True, unbiased=True)

x = (x - mu) / (sig + eps)

if fun == ’sqd’:

D = x - x.mean(1l, keepdim=True)

Om = (x.unsqueeze(2) - x.unsqueeze (1)) .pow(2)
elif fun == ’corr’:

D = x - x.mean(2, keepdim=True)

Om = D.unsqueeze (2) * D.unsqueeze (1)

return Om

def graph_conv(x, Om):
X: (B, C, T)
Om: (B, C, C, T) dynamic (optionally renormalized) adjacency
returns: (B, C, T)

nnn

Om_t = Om.permute(0, 3, 1, 2)
sig_t = x.permute(0, 2, 1).unsqueeze(-1)
out = torch.matmul (Om_t, sig_t).squeeze(-1)

return out.permute(0, 2, 1)

In practice, we build  via graph_variate, apply the spatial mask (Hadamard with W), optionally call
renormalize_dynamic slice-wise, and then use graph_conv to perform all BT mat—vecs in one call—achieving
O(BC?T) time and memory.

A.6 PROOF OF THEOREM 1

We first introduce the following defintions Definition 1. we observe T time-centered samples x; € RV for
t=1,...,T, and define
1z
f:fot, ,i’t:xt*.’f
t=1

and we assume

(PsD),

Let w;; = W;;. For each fixed t, define the stabilized instantaneous correlation profile

peli g) = Wiy |20 (1) 2™ ()

. d,j=1,...,N.

Definition 2 (Sylvester’s Law of Inertia). Let A € SV be a symmetric matrix of rank r with inertia
(p,q,0), meaning p positive and ¢ negative eigenvalues such that p + ¢ = r. Then A is congruent to the

diagonal normal form
I, 0 O
G:<O -1, O), ptqg=r.

0 0 O

Two symmetric matrices are congruent if and only if they have the same rank and signature (p, ¢, 0).
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Figure 6: Comparison of instantaneous correlation profile, long-term covariance, and Hadamard-filtered

covariance matrices. Each panel displays the respective matrix with its condition number and invertibility
status.

Proof. of Theorem 1
Set
dt = |.'i?t‘ S ]RN, Dt = dlag(dt),
so each ng) is diagonal with strictly positive entries and thus invertible. The Hadamard product identity
gives
Ot) = Wo (£3™") = D, W Dy,
ie. Q(t) is congruent to C.

Now applying Sylvester’s Law, since C' > 0 has inertia (N, 0,0), any matrix congruent to it must share the
same inertia. Therefore

Q(t) = 0, rank(Q(t)) = rank(W) = N.

This establishes both invertibility and positive-definiteness.
This completes the proof. O

A.7 PROOF OoF THEOREM 2

Proof. Recall Gershgorin’s circle theorem: if A = (a;;) is any N x N matrix then each eigenvalue A of A
satisfies

A € D(aj;, Ri(A)) where R;(A)= Z |aij|-
J#i
In our case Q(t);; = 0 and
Ri(Q(1) = > 12(1)ss] = D Wi (ws(t) — 25(1))?,
J#i J#i
so every eigenvalue ¢ of {2 lies in one of the real intervals [—R;, R;]. Taking the union over ¢ gives

N
p(Q) C U[—Ri,Ri] = [~ max R;, max R;].
i—1 K] 7
By definition,
Ry = |Wi (wilt) — z;(8))°).

J#i
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Summing these radii over all i yields

N N
ZRZ' =D > (Wi (wi(t) — z;())?]

i=1 j#i

= > IWi (a(t) — ()%
= 2Eabs-

Thus the total “Gershgorin mass” equals twice the Dirichlet energy.

Since p(§2) = max [6| < max; R;, we need only show max; R; < 2E,ps. But from Step 2, Y. R; = 2,1, and
the largest term in a sum of nonnegative numbers is no bigger than the sum itself. Hence

max R; < Y Ri=2&ms,

hence
p(Q) < 2&aps-

completing the proof. O

A.8 RANK-LIFTING OF THE LDE CONNECTIVITY PROFILE

Theorem 3. Let x1,...,xy be N distinct real numbers and define the instantaneous squared-difference
matrix

J(t) S RNXN, Jij(t) = (l‘i — {Ej)Q, Jl(t) =0.

Let
W ={CeRY*N:Cy; #0 forall i # j},

and for each C' € W form the Hadamard product
Q(t) = J(t) o W, Q5 = Ji; (t) Wiy
Then:
1. rank(D) < 3, hence det(J(¢)) = 0 and D is singular.

2. The determinant
P(Ci2,Chs,...,Cn-1,n) = det(DoC)

is a nonzero polynomial in the off-diagonal entries of C'. Consequently, outside its algebraic zero-locus
of Lebesgue measure 0, one has

det(J(t) o W) #0, rank(J(t)oW)=N,

so the Hadamard-weighted matrix is generically invertible.

Proof. (1) rank(J(t)) < 3. Define column-vectors in RY by

Then
J”(t) = (xl(t) — l'j(t))z = U; ]-j — Q’Ui Uj -+ ]-z Uj7

so in matrix form
Jt)=ul? — 2007 + 14T,

Each term on the right is rank 1, hence rank(J(¢)) <1414 1 = 3. In particular when N > 3, J(¢) is singular
and det(J(t)) = 0.
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Instantaneous H (rank=3, singular)

Weighted F (rank=10, invertible)
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Figure 7: Top-left: the instantaneous squared-difference matrix H at a single time point, which is rank-
deficient (rank = 3) and singular, showing large pairwise distances only for a few node pairs. Top-right:
the Hadamard-weighted matrix F' = C o H, where C is the long-term correlation; weighting lifts H to full
rank (rank = 10) and makes F' invertible. Bottom-left: the sorted eigenvalues of H, displaying exactly three
nonzero modes and seven zeros, consistent with rank(H) = 3. Bottom-right: the sorted eigenvalues of F, all
ten nonzero and of mixed sign, confirming that F' is indefinite but invertible.

(2) det(J(t) o W) is a nonzero polynomial. By the Leibniz formula,

det(Q(t)) =

Z sgn(m
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since Q(¢);

det(J(t) o W) =

TESN
7 (3)#1
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a multivariate polynomial P({W;;}) in the off-diagonal W;;.
To show P # 0, pick the N-cycle mp: i — i+ 1 (mod N). Its monomial is

N
H Wiroi)y =Wi2Waz - Wy_1 v Wna,
i1

and its coefficient is

N

sgn(mo) [[J()imei) = % (21 — 22)* (w2 — 23)* -+ (25 — 21)> # 0
i=1

because the x; are distinct. Hence P has at least one nonzero coefficient and so is not the zero polynomial.
Therefore it vanishes only on a proper hypersurface in W, proving that for almost every full-support W,
det(J(t) o W) # 0 and rank(J(t) o W) = N.

A.9 StaBILITY OF GVNN LAYER

Theorem 4 (GVNN Layer is Globally Lipschitz). Let W € R¥*N bhe symmetric with nonnegative entries,
and define

N
a = max Wi;
1<i<N 4
=
Let
X =[z(1) ... 2(T)] € RV*T,
and write

M = 12&;3\[’.%‘%(75) — Wi
1<<T

)

B = max |z;(t)].
1<i<N
1<<T

Let scalar filters a = (a¢)7_, and b = (b;)L_, satisfy

a* = max |ay, b* = max |b.
1<t<T 1<t<T

For each t define two node functions:
Tig () = |(@it) = ) (z;(t) =), T3P = (wilt) — z5(t))*,
and form the Hadamard products
Q1) = Wo @),  QP@) = WoJ ().
Given any pointwise-1-Lipschitz nonlinearity o : R — R, define
y(t) = o(arz(t) + b Q) x@)),F(X) = [y(1) ... y(T)] € RN*T
Then for every pair X, X’ € RV*T|
IF(X) = F(X)lr < (a* + ab"M?) | X - X'|[r (1),

|F(X) - F(X)||p < (a* + 4ab*B*) | X — X'|r (SD).
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Proof. Because W is symmetric with nonnegative entries, Gershgorin’s circle theorem guarantees that every
eigenvalue A of W lies in the interval [0, «]. Consequently, the spectral (operator) norm of W satisfies

[Wlop < a.

Fix an arbitrary time index ¢t € {1,...,T}. We treat the IC and SD cases in parallel, noting only where the
node function definition differs.

Define the diagonal matrix
N

D(t) = diag(|a(t) — pil),_,-
By definition of M,
= (1) — | < M.
1D(Ollop = v ai(t) = | < M
Since the Hadamard product with G'©(¢) coincides with the congruence
Q'°(t) = D(t) W D(t),
submultiplicativity of the operator norm yields
12 @)llop < NDE)llop = W llop - 1 D(E)llop
<M-o-M=aM>

Here each entry of the instantaneous matrix is (z;(t) — z;(¢))?. We bound this directly in terms of the
maximum node value B:

(i(t) — 25(1))? = |zs(t) — 2;(1)|
< (Jes(®)] + |z (1))
<(B+B)?=4B%

Therefore, for every i, 7, D 9 9
177 ()] = Wi - (2:(t) — 2;(1))° < 4B7 W

Summing over j shows that each row sum of |QSD(t)| is at most > 4B?W,;; = 4 B? > Wi <da B2. Since

Q5P (1) remains symmetric with nonnegative entries, its operator norm is upper bounded by its maximum
row sum, giving

N
SD _ SD SD 2
1252 () llop = p(2°P (1)) < II%%VZ;% (t) < 4aB”
j:
In either case define the map ¢, : RV — RY by
gt(2) = arz + b Q1) 2.
For any two vectors u,v € RV, we have
gi(u) — gi(v) = (at I+b; Q(t)) (u—v).
Applying the triangle inequality together with the operator-norm bound on () yields
9:(w) = ge(0)l, < lae lu—=vllz + (o] 1) [lop 1w = ]2
Since |a;| < a* and |b| < b*, it follows that
l9¢(w) = ge(0)]l, < (a* + 0" Q) llop) Ilu—vll2.

Because o is pointwise 1-Lipschitz, for each ¢ and each pair of signals z(t), 2’ (¢),
ly(t) = ' (®)]l2 = ||o (g:(x(8)) = o (g:(2" (1)) ],

< [lge(2(®)) — ge(=' ()],
< Lia(t) = 2'(8)]|2,
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where
a* +ab* M?, 1C,
" la* +4ab* B2, LDE
Finally, summing these squared-norm inequalities over ¢t = 1,...,T and taking the square root gives:

1/2
| F(X) - |h~<§:”y |b>

(z ot ||2> "

=L|X - X'|[p.

This completes the proof.

A.10 EXTENDED THEOREMS AND PROOFS

This section will include more theorems and propositions for completeness
Theorem 5 (Parseval identity for the GVFT). For every time index ¢ and every signal vector z(t), one has

Equivalently,

[Z()[l2 = [l(t)]l2-

Proof. Due to Corollary 1, as long as the stable support is symmetric, the eigendecomposition of a connectivity
profile results in U; being orthonormal, i.e., U] U; = Iy. Applying this to Z(t) = U] z(t), we get:

1213 = 2(2)" 2(2)
= (U] 2(1))" (U] (1))
t) UyU; a(t)

O

Remark 6. Because the GVFT basis U; depends on the instantaneous, signal-derived slice (t), Parseval’s
identity above holds separately for each time step ¢; summing over ¢ shows energy conservation for the entire
spatio-temporal matrix X = [z(1)... x(T)]:

2: Hm—}j”x )3

The next theorem develops bounds on the eigenvalues of the instantaneous correlation node function profile
againt a PSD stable support in terms of the eigenvalues of the PSD stable support.

Theorem 7 (IC Spectral bounds under amplitude-scaling). Let
W e S{L have spectrum = Apin(W) < -+ < Apax (W),
and at time ¢ let the centred sample 7; € R satisfy 7;(t) # 0 for all . Define
D; = diag(\th, pe =D W Dy, my = miin |Z;(t)], M= max | (t)]-
If 61, <--- < 0N, are the eigenvalues of p;, then for each i =1,..., N

)

mt2 Amin(W) S 51’,1& S ME )\max(W)-
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Proof. Recall the Rayleigh quotient of a symmetric matrix A and nonzero w is

w' Aw

wlw

R(A;w) :==

By the Rayleigh-Ritz theorem (a special case of the Courant—Fischer min-max theorem),
Amin(4) < R(4A;w) < Amax(4), Yw #£0,

and the eigenvalues of A coincide with the extremal values of R(A;w) over appropriate subspaces.

For any unit vector v € RY (||v]| = 1), consider
v piv=20"(D; W D;)v = (Dyv) "W (D v).
We will bound (D;v) "W (Dyv) using R(W; -).

Define
Dt’U
u=—- u#0, |ul=1
D¢l
Then
D) TW (Dyw)
D, 0)TW (D v) = D, vl? (t—
(D v) (Div) = || Dy RXIE
=R(W;u)

By the Rayleigh—Ritz result of Step 1,
Amin(W) S R(W; U) § Amax(W)a

SO
(DtU)TW(Dtv) € p‘min(W) HDtUHZa Amax (W) ||Dtv||2]~

Since v has ||v|| =1 and D, = diag(di,...,dn,) with d; = |£:(¢)] € [me, My], we have

it Ui

N
IDwl® =" i, of € [mf, M),
=1

Therefore for every unit v,

v prv = (D) W (D) € [m? Amin(W), M? Amax(W)].

Finally, by the Courant-Fischer characterization of eigenvalues, the ith largest eigenvalue 6;; of p;
is the extremal Rayleigh quotient over an i-dimensional subspace. Since all Rayleigh quotients lie in
[mf)\min(W), Mf/\max(W)], each d;, must also satisfy

M Amin(W) < it < MP Amax(W), i=1,...,N.
This completes the proof. O

Theorem 8 ( IC Condition-number bound under amplitude-scaling). Under the hypotheses of Theorem 1,
let

~(m) .
di =12, (t)|, dmin = min d;, dmnax = max d;,
1<i<N 1<i<N

and recall W ¢ Sf 4 has spectrum Apin (W) < -+ < Apax(W). Then the instantaneous filtered matrix
pe = Dy W Dy is SPD and its condition number satisfies

_ Amax(pt) d12nax )‘maX(W)
ﬁ(pt) - )\min(/)t) = dr2nin . /\min(W).
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Proof. From Theorem 1, pgm) is congruent to the SPD matrix W, so it remains SPD, hence all eigenvalues

are strictly positive and the condition number is well-defined.

From the Rayleigh—Ritz characterization, for any unit vector v,
v pw = (D) W (Dyw)
€ [)‘min(W) ”Dtv”?» Amax (W) ||Dt”H2]'

Since dmin < d; < dmax for all 4, and ||v]| = 1, one checks
d12nin < ||DtUH2 < d?nax'

Hence every eigenvalue 0 of pgm) satisfies
d? Amin(W) < 6 < d2

max

Amax (W).

Writing 5min = )\min(pt) and 5max = )\max(pt)a the above yieldS

5min 2 diqin )‘min (W)v 5max § dlznax Amax(W)'
Therefore 5 2 an (V) 2 A (W)
)= G S B i)~ B i)
which completes the proof. O

Theorem 9 (Gershgorin bounds on p;). Let p, € SY, as above, and define
Qi = pis = Wi df,t, R, = Z |Wi;l didj.
J#i

Then every eigenvalue J; of p; satisfies

N N
0; € U D((Iii, Rz) = U{Z : |Z — Wi d§| < dlz |W1J|d]}
i=1 i=1 j#i
In particular, since W is SPD and its diagonal entries W;; > 0, each disc lies strictly in the right-half plane
and hence p; has all positive eigenvalues.
Moreover, letting
dmin = min dia dmax = max di> Tmax = Max Z |Wzg |7
K3 K3 K3
J#i
we obtain the simplified bound

2 . 2 2 2
6 € [don min Wi — dipax Tmaxs Qmax max Wii + dax Tmax) -

Proof. By Gershgorin’s circle theorem, each eigenvalue § of p = p; lies in at least one disc
{z ]z = pul < Z lpisl}, pii = Waud?,  pij = Wijdid;.
J#i
Thus
6; = Wady| < di > [Wij|d;.
i
Since W is SPD, W;; =3, Ak“i,i > 0 and each d; > 0. Hence the real parts of all discs lie strictly to the
right of zero, proving §; > 0.

For the coarse bound, note

Wii Z Hllln Wiia Z ‘Wz]‘ S Tmax; dmin S di,t S dmaxa
j#i
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Gershgorin Discs, Dirichlet & Spectral Bounds, Eigenvalues of Instantaneous Correlation Weighted LDE Matrix

Dirichlet energy Eaps = 1.09 + r=2Eas
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Figure 8: Main panel: Light-blue shaded circles show the Gershgorin discs of the Hadamard-weighted
matrix F' = C o H, each centered at the origin with radius R; = 3_,_, [Ci;|(2; — z;)%. Red dotted circle
marks the upper Dirichlet-energy bound r = 2F,s, orange dashed circle marks the average-energy bound
r = 2E,ps/N, and green dash—dot circle marks the spectral radius » = p(F'). Red crosses are the eigenvalues
of F, all lying within the union of the Gershgorin discs. We can see how the spectral radius is upper bounded
by the Dirichlet Energy.

Zoomed In: A close-up around the origin shows the small Gershgorin discs, the tight Dirichlet lower bound
2E,1s/N, and the spectral-radius circle relative to the cluster of eigenvalues, we clearly see how max; R;
strictly exceeds 2F,ps/N yet remains below 2FE,ps.

So every disc collapses to the real interval (as all eigenvalues are real):
D(Wiid?7 d; ijﬁz‘ (Wi dj)

2 in W, 2 2 1%% 2
C [dmin min Wi — dmaxrmax, dmax max Wi + dmaxrmax] .
i i

Therefore all eigenvalues §; lie in the stated interval. O
Proposition 1. Let x1(t),...,zn(t) be distinct real numbers,
Jij(t) = (@s(t) —2;(1)%,  Ju(t) =0,
and let W € RNXN be any symmetric matriz with W;; # 0 for all i # j. Define the Hadamard product
Q) = Jt) oW, Qt)i; = J(t)i; Wi
Then Q(t) is symmetric and invertible, yet tr(Q(t)) =0, so Q(t) cannot be positive (semi-)definite.

Proof. First, symmetry of Q(t) follows immediately from symmetry of J(t) and W, since
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Invertibility is guaranteed by the Hadamard rank-lifting argument: because W has full support, det(DoC') # 0
for generic such W, hence rank(§2(t)) = N.

Next, compute the trace:

N N

N
Q1) =Y Q)i =Y J()ia Wi =Y 0- Wi = 0.

i=1 i=1

Finally, if M were positive semi definite then all its eigenvalues {\x} would satisfy A\ > 0. But their sum is

N
> A =tr(M) =0,
k=1

forcing each A; = 0, contradicting invertibility. Hence M has both positive and negative eigenvalues and is
indefinite. O

Theorem 10 (Spectral bounds for LDE weighting). Let C € R¥*¥ be a real symmetric, full-rank matrix
with eigenvalues

)\min(c) S tee S Amax(c)~

At time ¢, let 2(t) € RY and define the instantaneous squared-difference matrix

Tij(t) = (i(t) — 25 (8))%,  Jia(t) =0,
and form the Hadamard-weighted matrix

Q(t) =Wo J(t), Qij (t) == Wij Jij (t)
Set

my = min|x;(t) — z;(t)], M, = max|z;(t) — z;(t)|,
i#£j i#£]

and let 614 < --- <y, be the eigenvalues of Q(¢). Then for each i =1,..., N,

m% )\min(W) S 6i,t S MtQ )\max(W)~

Proof. Let v € RN be any unit vector, ||v|| = 1. The Rayleigh quotient of (¢) at v is

UTQ(t) v = Z Wij (l‘l(t) — Iy (t))2 (ZA%D

Since for all i # j we have m? < (z;(t) — z;(t))? < MZ, it follows that
mfZWijvivj < 0'Qt)v < MfZWijij.
2% 4,J
But Z” Wijviv; = v W v, and by the Rayleigh-Ritz theorem
Amin(W) < 0T W < Apax(W).
Combining these inequalities gives
M2 Amin(W) < 0v'Qv < M2 Apax (W).

Finally, the Courant-Fischer characterization implies that each eigenvalue d;, of Q(¢) lies within the range of
v Q(t) v over unit v. Therefore
M Amin(W) < 8ip < M Apax(W), i=1,...,N,

as claimed. O
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GVNN (data-driven graph tensor) Transformer (data-driven directed graph)
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Figure 9: Both architectures construct a graph from the input and then convolve over it. GVNN forms a
data-driven adjacency tensor (t) = WoJ(t) and performs Z(t) = Q(¢)X (¢) before a learned mixing and
nonlinearity Y (¢) = o(©[a; X (t) + b;Z(t)]). A Transformer builds a directed, data-driven attention graph
A = softmax(QK " /v/dy) and aggregates via A -V, followed by residual connections and a feed-forward
network.

A.11 RELATION TO LORA AND HIRA ADAPTERS

Parameter—efficient fine-tuning (PEFT) adapts large models by training only a small number of parameters.
LoRA (Hu et al., 2021) achieves this by expressing the update as a low-rank factorization, AW = AB with
rank(AW) < r, trading full expressiveness for efficiency. HiIRA (Huang et al., 2025) increases expressiveness
without sacrificing PEFT by applying a Hadamard (elementwise) product between a high-rank base and a
low—rank factor:

AW =Wy @ (AB), with rank(AW) < rank(Wp) rank(AB).

This allows the update to attain a much higher effective rank while keeping trainable parameters comparable
to LoRA.

GVNNSs leverage the same algebraic idea. At each time step, an instantaneous (often low-rank) connectivity
J¢ is fused with a stable, typically high-rank support W via a Hadamard product, Q; = W ® J;. This
multiplicative fusion boosts the rank and stabilizes (), ensuring a more expressive operator even when J; is
rank—deficient.

In fact, the support W need not be fixed. In analogy to LoRA, one can parameterize W itself as
W = Whase + AW, AW = AB,

where Whase is an initialization (e.g., long—term correlation) and AW is a low—rank adapter. This formulation
enables efficient adaptation of the support while avoiding the cost of learning a full IV x N matrix. Alternatively,
in a HiIRA-style design, we may define

W = Wbase © (AB)7

so that the expressive capacity of the Hadamard product is preserved even when AB is low—rank.

This perspective shows that the Hadamard support in GVNNs can itself be learned using LoRA/HiRA
adapters: low-rank updates capture task—specific variations, while the Hadamard structure ensures that these
updates interact multiplicatively with instantaneous connectivities J;. In practice, this allows GVNNs to
scale to large graphs without incurring prohibitive parameter costs, while retaining the flexibility to adapt
supports across datasets and tasks.

A.12 TRANSFORMERS ARE GRAPH VARIATE NEURAL NETWORKS (AND VICE-VERSA)

Recent work has suggested that the transformer model is in fact a graph neural network that has "won the
hardware lottery’. This suggests that we can, in fact, go the other direction and build better Graph Neural
Network architectures by leveraging ideas from the transformer model.

The following discussion will demonstrate that the transformer architecture is in fact not only a Graph Neural
Network but in fact a Graph Variate Neural Network, i.e one that’s core operation is an input dependent
graph convolution. In fact, the transformer block can be reinterpreted as a GVNN with a static graph variable
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tensor (i.e the attention matrix replicated over all T) just with differences in normalization and Linear Weight
projections.

A.12.1 TRANSFORMER SELF-ATTENTION AS DIRECTED DATA-DRIVEN GRAPH CONVOLUTION

Given token features X € R7*¢ the Transformer computes queries, keys, and values
Q= XWoy, K = XWk, V=XWy, (15)

then forms a row-stochastic, directed attention matrix

KT
A= softmax(%) € RT*T (16)

and aggregates values via
Attn(X) = AV € RT*dv, (17)

Equations equation 16—equation 17 implement graph convolution on a data-driven, directed graph whose
adjacency is A: each row of A defines outgoing edges from a token to all others with weights given by the
softmax of similarities. Residual connections and a position-wise feed-forward network complete the encoder
block.

Multi-head attention. For H heads with A" and V") the aggregation is Concaty, (A(h)V(h))WO, a
parallel sum of graph convolutions on H distinct data-driven graphs.

A.12.2 GVNN aASs DATA-DRIVEN GRAPH CONVOLUTION

GVNN constructs a graph—variate tensor via two ingredients:

1. A node-wise similarity/interaction functional Fy, : R x R — R producing
Jij@) = Fy(z;(t),2;(t)) = J(t) € RNV, (18)

Examples include the LDE and instantaneous correlation.

2. A stable support W € RV*N (fixed or learned) that encodes long-term topology or sparsity. GVNN
forms the pointwise (Hadamard) product

Q(t) = WolJ(t), (19)
which gates/filters instantaneous interactions by the support.
Given Q(t), GVNN performs a batched graph convolution of the current signal:
Z(t) = Q) X(t) € RV, (20)
A compact GVNN layer then mixes the original and aggregated signals followed by a nonlinearity:

Y(t) = a(@[atX(t) + b, Z(t)]), (21)

where © € RV*Y ig a learned linear map (or small MLP), and a;, b; are (optionally learned) scalar/broadcast
coefficients. Stacking L layers yields H® (t) with H® () = X (t) and

QW) =Wo W),  JPt) = Fu(h! V), nl (1))

Multi-node function convolution. Similar to multi-head attention one may aggregate convolutions with
different node functions and stable supports.
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