

000 001 002 003 GRAPH VARIATE NEURAL NETWORKS

004
005
006
007
008
009
010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Modelling dynamically evolving spatio-temporal signals is a prominent challenge in the Graph Neural Network (GNN) literature. Notably, GNNs assume an existing underlying graph structure. While this underlying structure may not always exist or is derived independently from the signal, a temporally evolving *functional* network can always be constructed from multi-channel data. Graph Variate Signal Analysis (GVSA) defines a unified framework consisting of a network tensor of instantaneous connectivity profiles against a stable support usually constructed from the signal itself. Building on Graph-Variate Signal Analysis (GVSA) and tools from graph signal processing, we introduce **Graph-Variate Neural Networks (GVNNs)**: layers that convolve spatio-temporal signals with a signal-dependent connectivity tensor combining a stable long-term support with instantaneous, data-driven interactions. This design captures dynamic statistical interdependencies at each time step without ad-hoc sliding windows and admits an efficient implementation with linear complexity in sequence length. Across forecasting benchmarks, GVNNs consistently outperform strong graph-based baselines and are competitive with widely used sequence models such as LSTMs and Transformers. On EEG motor-imagery classification, GVNNs achieve strong accuracy highlighting their potential for brain–computer interface applications.

1 INTRODUCTION

The modeling of graph signals has been a pervasive topic in recent years in Graph Signal Processing (GSP) and Graph Neural Networks (GNN) (Xu et al., 2019; Kenlay et al., 2020) with a lack of a general consensus of the best underlying graph structure for modeling (Ortega et al., 2018; Scarselli et al., 2008; Ruiz et al., 2021). Often, this structure is unrelated to the graph signal itself (for example, geometric graphs for traffic signals). CoVariance Neural Networks (VNN) propose the use of the sample covariance matrix as the underlying graph shift operator (GSO) (Sihag et al., 2022). This approach encodes pairwise relationships in a robust statistical object. Yet, while this represents relevant interactions in a *static* case this does not necessarily hold when time-evolving graph signals are being modeled (Li and Zhu, 2016).

Graph temporal convolutional neural networks (GTCNN) (Isufi and Mazzola, 2021; Sabbagi and Isufi, 2023) are a notable development in the spatio-temporal modeling of dynamically evolving graph signals. This class of models typically constructs a fully connected Cartesian or Kronecker product graph. While this effectively captures instantaneous interactions, convolutions in this domain result in a computational complexity that is quadratic in time, thus infeasible for longer time-series (Leskovec et al., 2010).

Given a time-evolving multi-variate signal the sample covariance represents the *long-term* correlation between variables over the entire time period. However, each snap shot in time has varying *instantaneous* interactions (Roy et al., 2024). This difference is in fact, non-trivial. While approaches like temporal PCA (Scharf et al., 2022) perform projections over the time averaged sample covariance matrix, this aggregation loses potentially useful information. This is demonstrated by the development of the time-varying graphical lasso (Hallac et al., 2017), an optimization framework that estimates a dynamic inverse covariance matrix directly from time series data. While this approach is intuitive and useful, the large computational cost of solving such an optimization problem has limited the use of this approach in neural network architectures (Hamilton et al., 2017).

Graph Variate Signal Analysis (GVSA) (Smith et al., 2019) provides an extended general framework to GSP for the analysis of spatio-temporal signals, using general instantaneous pairwise node functions (unrestricted by matrix multiplication) to formulate data constructed dynamic graph structures. This framework motivates methods such Graph-Variate Dynamic Connectivity and FAST Functional Connectivity, where these instantaneous graphs are filtered by a stable support constructed from the long term signal coupling information of

054 the signal itself (GVDC) or a global cohort (FAST), reducing noise in short temporal windows while providing
 055 a very high, sample by sample, temporal resolution which does not rely on a window length compared to
 056 traditional sliding window approaches.
 057

058 In this work we integrate GVSA with the more traditional "convolution" aggregation found in modern Graph
 059 Neural Networks (GNNs) (Li et al., 2016; Abadal et al., 2021; Pfrommer et al., 2021; Isufi et al., 2024;
 060 Veličković et al., 2018). For each input into the network an instantaneous connectivity tensor against a
 061 stable (and potentially learnt) support is constructed. This tensor is multiplied with its respective signal
 062 vector, this results in the capturing of spatio-temporal functional interactions. With this, we derive two
 063 important theoretical insights. Firstly, we show that while instantaneous connectivity matrices are typically
 064 rank-deficient and non-invertible, Hadamard multiplication with a full-rank stable support remedies this.
 065 Furthermore, we show that by using parallelized batch processing and low-rank matrix construction we
 066 achieve a speed up resulting in a linear time-complexity. This allows, for the first time, the capture of sample
 067 resolution signal dependent connectivity in a efficient, scalable manner.
 068

069 We evaluate GVNN forecasting performance in 3 chaotic maps, 2 weather forecasting tasks and 2 EEG motor
 070 imagery tasks. GVNNs successfully capture the non-trivial instantaneous temporal interactions present in
 071 multi-variable time-series. Particularly, we show that it outperforms the state of the art conventional graph
 072 based methods for time-series. Showing that the inductive bias provided by GVNNs improve performance. In
 073 application, we study EEG motor imagery classification, demonstrating that GVNNs capture the high temporal
 074 resolution of EEG signals while effectively reducing noise outperforming approaches such as EEGNet (Lawhern
 075 et al., 2016) and the Transformer model. Our results indicate that GVNNs could play a pivotal role in
 076 advancing the next generation of Brain-Computer Interfaces (BCIs) (Aristimunha et al., 2023; Keutayeva
 077 et al., 2024; Zhang and Liu, 2018), where minimizing calibration time and maximizing online responsiveness
 078 are crucial engineering challenges (Bessadok et al., 2021).
 079

080 2 BACKGROUND AND MOTIVATION

081 2.1 GRAPH NEURAL NETWORKS

082 Graph Signal Processing (GSP) extends classical signal processing to data indexed by the vertices of a
 083 graph. A key component is the Graph Shift Operator (GSO), whose eigen-decomposition underlies operations
 084 analogous to the Discrete Fourier Transform (DFT). These components are the foundation on which Graph
 085 Neural Networks are built (Isufi et al., 2024; Maskey et al., 2023; Levie et al., 2020).
 086

087 **Definition 1** (Graph Convolutional Filter). Let $\mathbf{h} = [h_0, \dots, h_K]^\top$ be filter coefficients. A graph convolutional
 088 filter of order K is the linear map

$$089 \mathbf{H}(\mathbf{S}) \mathbf{x} = \sum_{k=0}^K h_k \mathbf{S}^k \mathbf{x} = H(\mathbf{S}) \mathbf{x}, \quad (1)$$

090 where $\mathbf{H}(\mathbf{S}) = \sum_{k=0}^K h_k \mathbf{S}^k$.
 091

092 **Definition 2** (Graph Fourier Transform (GFT)). For a diagonalizable GSO $\mathbf{S} = \mathbf{V} \Lambda \mathbf{V}^{-1}$ with eigenvectors
 093 \mathbf{V} and eigenvalues Λ , the GFT of a graph signal \mathbf{x} is $\tilde{\mathbf{x}} = \mathbf{V}^{-1} \mathbf{x}$, and the inverse GFT is $\mathbf{x} = \mathbf{V} \tilde{\mathbf{x}}$.
 094

095 **Definition 3** (Graph Convolutional Network (GCN)). A Graph Convolutional Network (Sandryhaila and
 096 Moura, 2013; Zügner and Günnemann, 2019; Keriven and Peyré, 2019; Hamilton et al., 2017) layer updates a
 097 graph signal $\mathbf{X} \in \mathbb{R}^{N \times F}$ (with N nodes and F input features) as:
 098

$$099 \mathbf{X}^{(\ell+1)} = \sigma \left(\mathbf{H}(\mathbf{S}) \mathbf{X}^{(\ell)} \mathbf{W}^{(\ell)} \right), \quad (2)$$

100 where \mathbf{S} is the graph shift operator (GSO) of choice, $\mathbf{W}^{(\ell)} \in \mathbb{R}^{F_\ell \times F_{\ell+1}}$ are learnable weights, and $\sigma(\cdot)$ is a
 101 nonlinear activation function.
 102

103 2.2 GRAPH-TIME CONVOLUTIONAL NEURAL NETWORKS (GTCNNs).

104 The standard way to model spatiotemporal signals is the use of product graphs to create Graph time
 105 Convolutional filters and thus GTCNN's.
 106

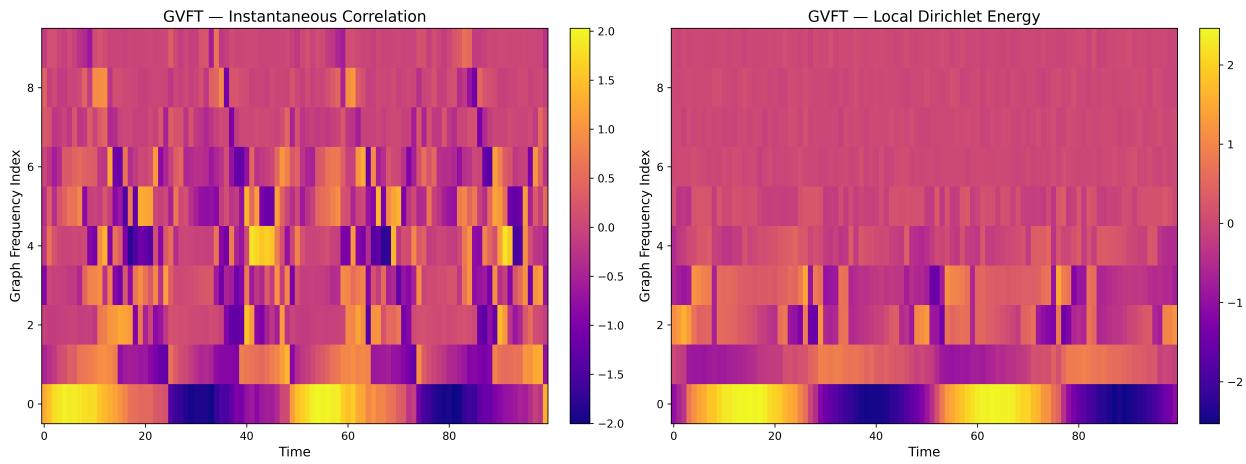


Figure 1: Graph Variate Fourier Transform (GVFT). Each panel shows the GVFT coefficients of a synthetic multivariate time series projected onto the eigenbasis of its own graph-structured connectivity profile at each time step. The left heatmap uses a squared-difference formulation for $\Omega_t = (x_i - x_j)^2 \cdot C$, while the right uses instantaneous correlation: $\Omega_t = \text{corr}(x_t) \cdot C$, where C is the long-term correlation matrix across the full signal. The GVFT transforms the input signal $X \in \mathbb{R}^{N \times T}$ into a new matrix $\hat{X} \in \mathbb{R}^{N \times T}$, where each column represents the projection of x_t onto the eigenbasis of Ω_t . This figure illustrates how different formulations of signal-derived connectivity affect the spectral content and dynamics of the transformed signal.

Definition 4 (Graph-Time Convolutional Neural Network (GTCNN)) (Isufi and Mazzola, 2021; Sabbagi and Isufi, 2023)). Let $\mathcal{G}_P = (\mathcal{V}_P, \mathcal{E}_P, \mathbf{S}_P)$ be a spatio-temporal product graph with shift operator $\mathbf{S}_P \in \mathbb{R}^{NT \times NT}$. A spatio-temporal signal $\mathbf{X} \in \mathbb{R}^{N \times T}$ is vectorized as $\mathbf{x}_P = \text{vec}(\mathbf{X}) \in \mathbb{R}^{NT}$.

The *graph-time convolutional filter* of order K is defined as

$$\mathbf{y} = \left(\sum_{k=0}^K h_k \mathbf{S}_P^k \right) \mathbf{x}_P \equiv \mathbf{H}(\mathbf{S}_P) \mathbf{x}_P, \quad (3)$$

which aggregates information from K -hop spatio-temporal neighborhoods.

For multiple features, let $\mathbf{X}_P^{(\ell-1)} \in \mathbb{R}^{NT \times F_{\ell-1}}$ denote the input at layer $\ell - 1$. We apply a bank of polynomial filters with coefficient matrices $\{\mathbf{H}_k^{(\ell)}\}_{k=0}^K$. The propagation rule of layer ℓ is

$$\mathbf{X}_P^{(\ell)} = \sigma \left(\sum_{k=0}^K \mathbf{S}_P^k \mathbf{X}_P^{(\ell-1)} \mathbf{H}_k^{(\ell)} \right), \quad (4)$$

where $\mathbf{H}_k^{(\ell)} \in \mathbb{R}^{F_{\ell-1} \times F_\ell}$ are trainable filter coefficient matrices and $\sigma(\cdot)$ is a pointwise nonlinearity (e.g., ReLU).

A L -layer GTCNN is obtained by stacking such modules.

While effective for shorter temporal sequences the clear bottleneck here is the quadratic dependency in *both* the number of nodes and sequence length, this makes the modeling of long time-series unfeasible. Furthermore the product graphs do not capture instantaneous signal specific dependencies and are usually a binary graph.

2.3 GRAPH VARIATE SIGNAL ANALYSIS

A potential issue with GSP based neural network architectures is that the relationship and relevance of the underlying graph structure to the signal is unclear and typically unchanging. There have been recent progress in addressing this in the form of CoVariance Neural Networks (VNN). Here the sample covariance matrix is used a GSO, giving us a natural interpretation of Graph Convolution that is inherently linked to Principal Component Analysis (PCA) (Maćkiewicz and Ratajczak, 1993).

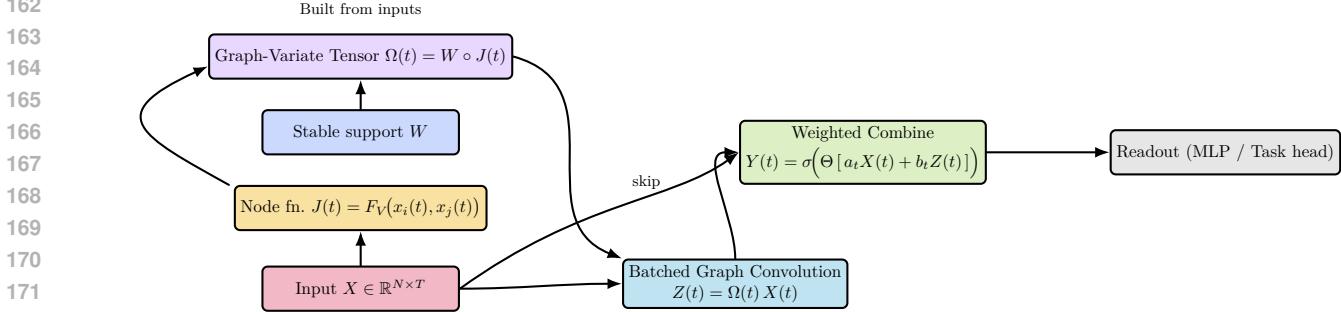


Figure 2: Graph-Variate Neural Network (GVNN) layer. A multivariate sequence $X \in \mathbb{R}^{N \times T}$ induces instantaneous connectivity $J(t)$, which is combined with a long-term support W to form $\Omega(t) = W \circ J(t)$. In parallel, X and $\Omega(t)$ drive a batched graph convolution $Z(t) = \Omega(t)X(t)$. A skip connection carries X to the combiner, which applies a learned linear map and a nonlinearity, $Y(t) = \sigma(\Theta[a_tX(t) + b_tZ(t)])$.

Temporal data however, is dynamic (Manuca and Savit, 1996), i.e a single covariance estimation aggregating information over time may not be a suitable representation, particularly in the presence of irrelevant noise. Graph Variate Signal Analysis (GVSA) brings a sample-level, graph-weighted perspective to multivariate signals: it re-introduces node-to-node relationships in each time instant, but modulates their impact with a stable (or longer-term) graph. Importantly this *does not depend on a window length*. This yields time-varying connectivity estimates and graph metrics that are more robust against momentary noise yet still capture fine-grained transient dynamics. It has been shown that GVSA outperforms many sliding-window or purely instantaneous techniques (Smith et al., 2019).

Definition 5 (Graph-Variate Signal Analysis). Let $\Gamma = (V, X, E, W)$ be a graph-variate signal, where

- V is the set of n nodes,
- $X \in \mathbb{R}^{n \times p}$ is the multivariate signal (each of the n nodes has p samples),
- E is the set of edges, and
- $W \in \mathbb{R}^{n \times n}$ is the weighted adjacency matrix with entries w_{ij} .

Define a bivariate *node-space function* F_V as

$$J_{ij}(t) = F_V(x_i(t), x_j(t)), \quad \text{for } i \neq j, \quad J_{ii}(t) = 0.$$

Graph-Variate Signal Analysis (GVSA) produces, at each time sample t , an $n \times n$ matrix given by the Hadamard (element wise) product

$$\Omega(t) = W \circ J(t),$$

whose entries are

$$\Omega_{ij}(t) = [W \circ J(t)]_{ij} = W_{ij} F_V(x_i(t), x_j(t)).$$

This, overall, gives a $N \times N \times T$ Tensor representation.

This framework not only allows a sample by sample high temporal resolution but is also computationally efficient. Note that no eigendecomposition is done at any stage and the entire analysis is in the node-space. Furthermore, node functions are typically chosen to exploit computational efficiency through low rank, vector outer product based operations. The stable support acts as an inherent stabilizer emphasizing stable long-term correlations and minimizing noise while still readily picking up instantaneous dynamics, providing a trade-off between global and local connectivity information. This is typically chose as the long-term correlation matrix of the signal itself or averaged over a cohort (Roy et al., 2024; Smith et al., 2019).

3 GRAPH VARIATE NEURAL NETWORKS

By combining GSP and GVSA approaches we conjecture that time-step wise convolution of the graph signal with its own instantaneous temporal connectivity profile can exploit the rich spatio-temporal information present in many real-life signals.

216 In this vein, we define Graph-Variate Neural Networks as follows.
 217

218 **Definition 6** (Graph-Variate Neural Network (GVNN, layer-wise form)). Let $\mathbf{W} \in \mathbb{R}^{N \times N}$ be a stable
 219 (long-term) graph support. For an input sequence $\mathbf{X}^{(\ell)} \in \mathbb{R}^{N \times T}$ at layer ℓ , denote its t -th column by
 220 $\mathbf{x}^{(\ell)}(t) \in \mathbb{R}^N$.

221 The input-dependent graph-variate tensor is
 222

$$\Omega^{(\ell)}(\mathbf{X}^{(\ell)}) \in \mathbb{R}^{N \times N \times T}, \quad \Omega_{ij}^{(\ell)}(t) = W_{ij} F_V(x_i^{(\ell)}(t), x_j^{(\ell)}(t)). \quad (5)$$

224 for a chosen bivariate function $F_V(\cdot, \cdot)$.
 225

226 Let $\mathbf{a}^{(\ell)}, \mathbf{b}^{(\ell)} \in \mathbb{R}^T$ be learnable scalar filter coefficients (one per time step), and let $D_{\mathbf{a}^{(\ell)}} = \text{diag}(\mathbf{a}^{(\ell)})$,
 227 $D_{\mathbf{b}^{(\ell)}} = \text{diag}(\mathbf{b}^{(\ell)})$. Define the time-aligned multiplication
 228

$$(\Omega^{(\ell)}(\mathbf{X}^{(\ell)}) * \mathbf{X}^{(\ell)})_{:,t} = \Omega^{(\ell)}(t) \mathbf{x}^{(\ell)}(t), \quad t = 1, \dots, T. \quad (6)$$

230 Then the pre-activation output is
 231

$$\mathbf{Z}^{(\ell)} = \mathbf{X}^{(\ell)} D_{\mathbf{a}^{(\ell)}} + (\Omega^{(\ell)}(\mathbf{X}^{(\ell)}) * \mathbf{X}^{(\ell)}) D_{\mathbf{b}^{(\ell)}}, \quad (7)$$

234 which is followed by a *trainable time-mixing weight block* $\Theta^{(\ell)} \in \mathbb{R}^{T \times T}$ and a pointwise activation $\sigma(\cdot)$:
 235

$$\mathbf{X}^{(\ell+1)} = \sigma(\mathbf{Z}^{(\ell)} \Theta^{(\ell)}) \in \mathbb{R}^{N \times T}. \quad (8)$$

238 Stacking L such layers yields $\mathbf{X}^{(L)}$, which can be further mapped to a task-dependant readout layer.
 239

240 Here, utilizing the fast batch based parallel processing allows a natural convolution operation where a
 241 spatio-temporal signal at a given timestep is convolved with its own connectivity profile. Also given the low
 242 rank nature of the connectivity profiles, we provide a robust platform to capture signal dependent functional
 243 inter-dependencies while being computationally efficient. Note also that we can optimize the stable support,
 244 and thus the entire dynamic connectivity profile, efficiently through training. This retains a high temporal
 245 resolution while allowing end-to-end optimization.

246 Equivalently, from a GSP lens, we can define the Graph-Variate Fourier Transform (GVFT) as projections of
 247 the signal vector onto its own temporal connectivity profile, this returns a matrix of size $N \times T$ that allows a
 248 simultaneous time-frequency decomposition. That is, each column of the GVFT represents the frequencies in
 249 terms of the eigenbasis of the functional graph at that time step.

250 **Definition 7** (Graph Variate Fourier Transform). Let $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_T] \in \mathbb{R}^{N \times T}$ be a spatio-temporal signal,
 251 where $\mathbf{x}_t \in \mathbb{R}^N$ is the t -th snapshot. For each t , define
 252

$$\Omega_t = [f(x_t(i), x_t(j)) W_{ij}]_{i,j=1}^N, \quad (9)$$

254 with $W \in \mathbb{R}^{N \times N}$ a connectivity matrix and $f(\cdot, \cdot)$ a symmetric node-pair function (e.g. $f(a, b) = (a - b)^2$).
 255 Since Ω_t is symmetric, it admits $\Omega_t = U_t \Lambda_t U_t^\top$. The GVFT of \mathbf{x}_t is
 256

$$\hat{\mathbf{x}}_t = U_t^\top \mathbf{x}_t, \quad (10)$$

258 and stacking over time yields $\hat{\mathbf{X}} = [\hat{\mathbf{x}}_1, \dots, \hat{\mathbf{x}}_T]$.
 259

260 **Definition 8** (Graph-Variate frequency response). For a fixed time index t , let the instantaneous connectivity
 261 slice $\Omega(t) \in \mathbb{R}^{N \times N}$ be symmetric with eigendecomposition
 262

$$\begin{aligned} \Omega(t) &= V_t \Lambda_t V_t^\top, \\ \Lambda_t &= \text{diag}(\lambda_1(t), \dots, \lambda_N(t)), \end{aligned}$$

265 Consider the *two-tap* Graph-Variate filter
 266

$$y(t) = a_t x(t) + b_t \Omega(t) x(t), \quad a_t, b_t \in \mathbb{R},$$

268 acting on an input vector $x(t) \in \mathbb{R}^N$. Define the Graph Fourier transforms
 269

$$\tilde{x}(t) := V_t^\top x(t), \quad \tilde{y}(t) := V_t^\top y(t).$$

270 Substituting the eigen-decomposition yields
 271

$$272 \tilde{y}(t) = (a_t I_N + b_t \Lambda_t) \tilde{x}(t),$$

273 or component-wise,
 274

$$275 \tilde{y}_i(t) = \underbrace{(a_t + b_t \lambda_i(t))}_{h_t(\lambda_i(t))} \tilde{x}_i(t), \quad i = 1, \dots, N.$$

277 The scalar function
 278

$$279 h_t(\lambda) := a_t + b_t \lambda \quad (11)$$

280 is called the *instantaneous frequency response* of the Graph-Variate filter at time t . Thus, spectrally, the filter
 281 acts as point-wise multiplication:

$$282 \tilde{y}_i(t) = h_t(\lambda_i(t)) \tilde{x}_i(t). \quad (12)$$

283 Definition 6 is in direct analogy with the classical convolution theorem $\tilde{y}_i = \tilde{h}(\lambda_i) \tilde{x}_i$ for polynomial graph
 284 filters, but with a spectrum $\{\lambda_i(t)\}$ and a response h_t that are re-evaluated at every time step.
 285

286 While we can clearly extend GVNNs by including higher order polynomials per time-step, we exclude these
 287 for the sake of simplicity. We further note that, computationally (and intuitively), a right multiplication
 288 with a time-wise filter coefficient matrix is more efficient than using polynomial filter coefficients (the typical
 289 choice in the GNN literature).

290 This dual perspective is a shift from the traditional GSP sense of graph frequencies given that the graph is
 291 constructed from the signal itself. In fact there is a closer link to PCA present here. Projecting signals onto a
 292 data-driven dynamic eigenbasis (i.e the sample Covariance matrix in PCA), supported by a stable support,
 293 allows a high level of precision and interpretability.

294 3.1 TEMPORAL SIGNAL DEPENDENT CONVOLUTION

295 Temporal information provides rich, discriminative information that could significantly enhance machine
 296 learning models. As an example, EEG signals have a very high temporal resolution. While traditionally
 297 being studied in the frequency or spectral domain, the time domain analysis of EEG signals provide great
 298 potential in enhancing Brain Computer Interfaces (BCI).

299 We focus here on two common temporal domain node-space functions, given graph signals x we define:
 300

- 302 • **Instantaneous correlation(IC):**

$$304 F_V(x_i(t), x_j(t)) = |(x_i(t) - \bar{x}_i)(x_j(t) - \bar{x}_j)|. \quad (13)$$

306 where $\bar{x}_i = \frac{1}{T} \sum_{t=1}^T x_i(t)$ is the temporal mean of node i .

- 307 • **Local Dirichlet Energy (LDE) (Smith et al., 2017):**

$$309 F_V(x_i(t), x_j(t)) = (x_i(t) - x_j(t))^2. \quad (14)$$

310 Instantaneous correlation is rank-1 and LDE rank-3, both expressible as sums of outer products. Such
 311 structures are efficient, as outer products reduce to parallelizable vector operations that GPUs compute rapidly.
 312 This approach combined with the Hadamard support are inspired from recent advances in Parameter-efficient
 313 fine-tuning (PEFT)(Hu et al., 2021; Huang et al., 2025), a method to improve the efficiency of Large Language
 314 Model's (LLM's). We direct the interested reader to A.11.

315 The instantaneous correlation captures co-deviation from mean temporal patterns. The LDE node function
 316 has a direct relationship to the Dirichlet energy and captures local node gradient changes. We can also take
 317 linear combinations of these two node functions in order to exploit both their contrasting views.
 318

319 There is an important observation to make here with transformers here, given that the attention mechanism
 320 can be argued to use a "graph" constructed from the data itself for convolution (Vaswani et al., 2017), in fact
 321 recent ideas have provided a unifying view on Transformers and GNNs, arguing that transformers are GNN's
 322 that operate on a data-specific graph (Joshi, 2025). Thus GVNNs can be argued to be a form of attention
 323 with a fundamentally different formulation, i.e the time-step specific tensor weighted against a stable support.
 We expand on this in the appendix for the interested reader A.12.

324 **Theorem 1** (Full-rank preservation under Hadamard filtering). Let $J_{ij} = F_V(x_i(t), x_j(t)) = x_i(t)x_j(t)$ be
 325 the *unfiltered* instantaneous correlation profile with rank $m < N$. If every component of $\tilde{x}_t^{(m)}$ is non-zero,
 326 and W is of full rank then
 327

$$\text{rank}(\Omega(t) = W \circ J(t)) = N, \quad \text{i.e. } \Omega(t) \text{ is invertible.}$$

328 Moreover $\Omega(t)$ is symmetric positive-definite, preserving the signature of C .
 329

330 *Proof.* See Appendix A.6 □

331 This theorem shows that Hadamard filtration with a stable support *induces* stability into the instantaneous
 332 correlation profile.
 333

334 Figure 2 shows empirical evidence of Theorem 1 where the Hadamard filtered matrix by the full-rank long-term
 335 correlation matrix is now invertible and has a much lower condition number. We prove similar results for the
 336 LDE case in the appendix A.8.
 337

338 The LDE connectivity profile has a distinct relationship with the traditional Dirichlet Energy of a signal
 339 (naturally encoding a measure of smoothness into signal convolutions) as shown in the following theorem.
 340

341 **Theorem 2** (Gershgorin–Dirichlet Bound). Let $W \in \mathbb{R}^{N \times N}$ be symmetric and $x \in \mathbb{R}^N$ any signal. Form
 342

$$J_{ij}(t) = F_V(x_i(t), x_j(t)) = (x_i(t) - x_j(t))^2, \quad \Omega(t) = W \circ J(t),$$

343 and define
 344

$$\mathcal{E}_{\text{abs}} = \frac{1}{2} \sum_{i,j} |W_{ij} (x_i(t) - x_j(t))^2|.$$

345 the spectral radius is
 346

$$\rho(\Omega(t)) \leq 2 \mathcal{E}_{\text{abs}}(t)$$

347 *Proof.* See Appendix A.7 □

348 Theorem 2 shows that the spectral radius of the Hadamard Filtered LDE is upper bounded by twice the
 349 absolute Dirichlet energy of the signal on the stable support. Intuitively, this ensures that the GVNN
 350 convolution is *smoothness-aware* (See Appendix for more details). This relates the spectral radius of the LDE
 351 connectivity profile with the traditional Dirichlet Energy of a graph signal on the stable support W .
 352

353 4 EXPERIMENTAL RESULTS

354 4.1 CHAOTIC MAPS

355 Chaotic systems pose unique challenges to statistical learning models and are also interpretable as benchmarks.
 356 They thus provide a baseline to compare GVNN’s with other graph based models for time-series (Gilpin,
 357 2023).

358 We compare GVNNs with a standard GTCNN, a Gated Graph RNN (GGRNN) and Graph VARMA
 359 (GVARMA) model. For our node function we used a linear combination of the local dirchlet energy and
 360 instantaneous correlation while allowing the stable support to be learnt from data.
 361

362 We have chosen these models primarily due to their core operation being some sort of Graph Convolution.
 363 Note we are not considering hybrid models such as Graph Wavenet () however do foresee future work
 364 incorporating GVNNs into hybrid architectures. We have chosen these models primarily due to their core
 365 operation being some sort of Graph Convolution. Note we are not considering hybrid models such as Graph
 366 Wavenet (Wu et al., 2019) however we do foresee future work incorporating GVNNs into hybrid architectures.
 367

368 For all models except GTCNN (Which uses the long-term correlation as the spatial component for fairness) we
 369 initialize the stable support with the long-term stable correlation of the chaotic map and let the model optimize
 370 this end-to-end. The node function was a linear combination of the LDE and instantaneous correlation.
 371

372 We evaluate three multi-dimensional chaotic maps. The Coupled Lorenz, Hopfield and MacArthur maps
 373

374 We see that GVNNs perform the best over all horizons on the Hopfield and Macarthur Map with large gains
 375 being visible in the MacArthur dataset in particular. In the coupled Lorenz map, while GVNNs perform the
 376

378 **Table 1:** Chaotic datasets: MSE (\downarrow) across horizons and time per epoch.
379

380 Dataset	381 Model	382 $H=3$	383 $H=6$	384 $H=12$	385 Time/epoch (s)
386 Hopfield	387 GVNN	388 0.0237 ± 0.0008	389 0.1131 ± 0.0024	390 0.1837 ± 0.0053	391 0.1
	GTCNN	0.1029 ± 0.0052	0.1683 ± 0.0014	0.2229 ± 0.0031	0.1
	GVARMA	0.5283 ± 0.0082	0.5846 ± 0.0086	0.6514 ± 0.0060	0.1
	GGRNN	0.0628 ± 0.0166	0.1742 ± 0.0083	0.2662 ± 0.0107	0.1
394 Lorenz	395 GVNN	396 0.2143 ± 0.0083	397 0.5001 ± 0.1623	398 0.7325 ± 0.0092	399 0.1
	GTCNN	0.8163 ± 0.0456	0.8595 ± 0.0282	0.9039 ± 0.0145	0.1
	GVARMA	0.8739 ± 0.0188	0.8764 ± 0.0397	0.9027 ± 0.0027	0.1
	GGRNN	0.3528 ± 0.0271	0.5327 ± 0.0159	0.5971 ± 0.0049	0.1
394 MacArthur	395 GVNN	396 0.0910 ± 0.0004	397 0.2509 ± 0.0046	398 0.3914 ± 0.0087	399 0.3
	GTCNN	0.8800 ± 0.0148	0.8479 ± 0.0123	0.8856 ± 0.0015	0.2
	GVARMA	0.5454 ± 0.0325	0.7608 ± 0.0794	0.8355 ± 0.0212	0.2
	GGRNN	0.2232 ± 0.0009	0.4252 ± 0.0099	0.5073 ± 0.0034	0.2

395 best over horizons of length 1 and 3, they are outperformed by GGRNNs over the horizon of length 5. This
396 could be due to temporal interactions being less predictive for longer horizon in this chaotic map, further, a
397 model incorporating a combination of GVNNs and GGRNNs may be promising.

400 4.2 TRAFFIC FORECASTING

401 We evaluate four graph-based forecasting models on the METR-LA and PEMS-BAY traffic networks. We
402 also compare performance with the more commonly used transformer and LSTM models. METR-LA contains
403 four months of speed measurements from 207 sensors in Los Angeles County at 5 minute intervals, and
404 PEMS-BAY comprises six months of data from 325 sensors in the Bay Area at the same resolution (Sun et al.,
405 2020; Li et al., 2018).

406 Following standard practice, we predict future speeds at horizons $h \in \{3, 6, 12\}$ time-steps (i.e. 15, 30, and 60
407 minutes ahead) given the past $T = 6$ observations (30 minutes). The graph based models follow the same
408 layout as in the previous experiment. However, we evaluate the case of the two layer GVNN's with and
409 without a trainable support W .

410 Table 2 shows our results. It can be noted that using a fixed support GVNN's outperform the graph based
411 models but remain inferior to the LSTM and Transformer models. Allowing W to be learned however, results
412 in large gains in performance where GVNN's significantly outperform all models. As these datasets have a
413 large number of nodes we do observe GVNN's have a large increase in training time, however, we believe that
414 the increase in performance justifies this decrease in speed.

416 **Table 2:** Final Test MSE (lower is better) for PEMS-BAY and METR-LA across all models.

417 Dataset	418 Model	419 Horizon 3	420 Horizon 6	421 Horizon 12	422 Time per epoch(s)
423 PEMS-BAY	424 GVNN (Trainable W)	425 0.1722 ± 0.0093	426 0.2323 ± 0.0080	427 0.3250 ± 0.0229	428 7.2
	Transformer	0.3126 ± 0.0099	0.3467 ± 0.0026	0.3858 ± 0.0061	1.1
	LSTM	0.3686 ± 0.0231	0.3810 ± 0.0085	0.4058 ± 0.0022	1.1
	428 GVNN(Static W)	0.7017 ± 0.0460	0.7642 ± 0.0611	0.8097 ± 0.0280	3.4
	GTCNN	0.9703 ± 0.0032	1.0010 ± 0.0099	1.0474 ± 0.0071	1.06
	GVARMA	0.7940 ± 0.0128	0.8271 ± 0.0113	0.8862 ± 0.0052	1.01
	GGRNN	0.8766 ± 0.0040	0.9175 ± 0.0061	0.9736 ± 0.0018	1.15
430 METR-LA	431 GVNN (Trainable W)	432 0.2218 ± 0.0017	433 0.3082 ± 0.0158	434 0.4434 ± 0.0033	435 2.4
	Transformer	0.2928 ± 0.0104	0.3799 ± 0.0072	0.5384 ± 0.0214	0.6
	LSTM	0.3554 ± 0.0054	0.4355 ± 0.0021	0.6644 ± 0.0280	0.6
	435 GVNN (Static W)	0.6012 ± 0.0625	0.6631 ± 0.0790	0.7076 ± 0.0301	1.1
	CPGraphST	0.9082 ± 0.0191	0.9234 ± 0.0211	0.9887 ± 0.0138	0.5
	GVARMA	0.9713 ± 0.0364	0.9527 ± 0.0447	1.0680 ± 0.0339	0.3
	GGRNN	0.8205 ± 0.0167	0.8621 ± 0.0089	0.9281 ± 0.0048	0.4

432 4.3 EEG MOTOR IMAGERY TASKS
433

434 The BCI Competition IV 2a dataset (Aristimunha et al., 2023) comprises EEG recordings from nine subjects
435 performing four motor imagery tasks (left hand, right hand, feet, tongue) with data recorded in a 17 channel
436 setup. The Physionet dataset comprises a dataset including EEG recordings of 109 healthy subjects. The
437 participant imagines opening and closing their right or left fist and is a binary classification task. The data is
438 recorded in a 64 channel setup.

439 We evaluate with cross fold validation using 5 independent data folds. For the BCI-2A dataset we use a fixed
440 W set as the global long term correlation matrix computed from the training set and allow the W to be
441 learned for the PhysioNet task.

442 443 **Table 3:** BCI-2A: Overall summary (K-fold CV)

444 Model	445 Accuracy (%)	446 Kappa	447 Time (s)
446 GVNN (LDE + Static W)	447 60.15 ± 1.21	448 0.4686 ± 0.0162	449 0.5
447 EEGNet	60.51 ± 3.88	0.4735 ± 0.0517	1.0
448 Transformer	51.99 ± 3.01	0.3598 ± 0.0401	1.5
449 LSTM	52.76 ± 2.27	0.3701 ± 0.0303	1.5

450 451 **Table 4:** PhysioNet: Overall summary (K-fold CV)

452 Model	453 Accuracy (%)	454 F1	455 Kappa	456 Time (s)
454 GraphVar+MLP (LDE + Learned W)	455 80.29 ± 0.82	456 0.8021 ± 0.0104	457 0.6058 ± 0.0164	458 2.0
455 Transformer	80.94 ± 0.87	0.8095 ± 0.0091	0.6189 ± 0.0173	0.9
456 LSTM	74.19 ± 1.74	0.7279 ± 0.0277	0.4834 ± 0.0351	1.4
457 EEGNet	79.61 ± 1.55	0.7959 ± 0.0145	0.5922 ± 0.0310	3.2

458 Table 3 and 4 show our results. As expected, GVNN’s have a faster training speed on the lower channel
459 BCI-2A dataset and is the fastest model with EEGNet only outperforming it slightly and significantly
460 surpasses LSTM and Transformer models.

461 For the PhysioNet dataset we see an increase in training time for the GVNN model given the increase in channel
462 count to 64 yet we still see competitive performance with the Transformer model while it outperforming
463 EEGNet and being faster.

464 5 CONCLUSION AND LIMITATIONS

465 In this work we have introduced Graph Variate Neural Networks- a general framework that constructs
466 signal dependant dynamic graph structures in a computationally efficient manner by exploiting one-shot
467 batch processing. We further introduced two interpretable node functions, the Local Dirichlet Energy
468 and instantaneous correlation. We show theoretically how a stable support can ‘stabilize’ these low-rank
469 instantaneous structures while also being computationally simple.

470 In the notoriously hard task of EEG motor imagery classification, we show that GVNNs are competitive
471 with and sometimes outperform (in terms of efficiency) traditionally used models such as the Transformer
472 Architecture or EEGNet. This improvement in performance was sustained in the forecasting of chaotic
473 systems, where non-trivial instantaneous interactions are present. GVNNs retained their superiority in traffic
474 forecasting tasks, strongly outperforming strong traditional and graph based baselines.

475 We note that while we effectively capture *intra*-channel connectivity, we are disregarding auto-correlative
476 behaviour by not connecting nodes in the time dimension. However, the improvement in performance
477 by including signal dependent graph structures and reduction in computational time justify this decision.
478 Furthermore, mechanisms such as a temporal attention or convolutional module can be applied right after a
479 GVNN layer to attend to inter time-dependencies.

480 We also note that our approach retains the quadratic complexity with the number of nodes such as in
481 GTCNNs. This can become large when constructing signal specific connectivity profiles, however such an
482 approach *would not be possible* using a product graph. Further work should also develop new node functions
483 and stable supports, potentially incorporating spatial properties or even information theoretic measures.

486 REPRODUCIBILITY STATEMENT
487488 All datasets used in this study are publicly available and open source. Detailed experimental settings,
489 including model architectures, hyperparameters, and training procedures, are described in the main text and
490 appendix. To facilitate reproducibility, the codebase implementing our methods will be made available upon
491 reasonable request from the authors.
492493 ETHICS STATEMENT
494495 This work relies exclusively on open-source datasets that do not contain personally identifiable or sensitive
496 information. We anticipate no direct harms, ethical concerns, or foreseeable negative societal impacts arising
497 from this research. The proposed methods are intended for advancing scientific understanding and improving
498 model efficiency in a responsible manner.
499500 LARGE LANGUAGE MODEL (LLM) USAGE STATEMENT
501502 During the preparation of this manuscript, we made limited use of a large language model for two purposes:
503 (i) assisting in code ideation and refactoring for clarity and efficiency, and (ii) tidying up the exposition of
504 the text for grammar and readability. The core research ideas, experimental design, theory, implementation,
505 methodology and validation are entirely the work of the authors. No parts of the manuscript were generated
506 verbatim by the LLM, and all content was critically reviewed and edited by the authors prior to submission.
507508 REFERENCES
509

510 Sergi Abadal, Akshay Jain, Robert Guirado, Jorge López-Alonso, and Eduard Alarcón. Computing graph
511 neural networks: A survey from algorithms to accelerators. *ACM Computing Surveys*, 54(9):1–38, 2021.

512 Bernardo Aristimunha, Igor Carrara, Pierre Guetschel, Stefan Sedlar, Pedro Rodrigues, Jakub Sosulski, Dilin
513 Narayanan, Erik Bjareholt, Bastien Quentin, Robin Tibor Schirrmeister, Emmanuel Kalunga, Laurent
514 Darmet, Clement Gregoire, Asif Abdul Hussain, Raffaele Gatti, Vladyslav Goncharenko, Jörg Thielen,
515 Thomas Moreau, Yannick Roy, Vijay Jayaram, Alexandre Barachant, and Sylvain Chevallier. Mother of all
516 bci benchmarks (moabb), 2023.

517 Alaa Bessadok, Mohamed Ali Mahjoub, and Islem Rekik. Graph neural networks in network neuroscience,
518 2021. arXiv preprint arXiv:2106.03535.

519 Guido Dornhege, José del R. Millán, Thilo Hinterberger, Dennis J. McFarland, and Klaus-Robert Müller.
520 *BCI2000: A General-Purpose Software Platform for BCI*, pages 359–368. 2007.

521 William Gilpin. Chaos as an interpretable benchmark for forecasting and data-driven modelling, 2023. URL
522 <https://arxiv.org/abs/2110.05266>.

523 David Hallac, Youngsuk Park, Stephen Boyd, and Jure Leskovec. Network inference via the time-varying
524 graphical lasso. In *Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery
525 and Data Mining*, pages 205–213, 2017.

526 William L. Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods and
527 applications, 2017. arXiv:1709.05584.

528 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
529 Weizhu Chen. Lora: Low-rank adaptation of large language models. *arXiv preprint arXiv:2106.09685*,
530 2021. URL <https://arxiv.org/abs/2106.09685>.

531 QiuShi Huang, Tom Ko, Zhan Zhuang, Lilian Tang, and Yu Zhang. HiRA: Parameter-efficient hadamard
532 high-rank adaptation for large language models. In *The Thirteenth International Conference on Learning
533 Representations (ICLR 2025)*, 2025. URL <https://openreview.net/forum?id=TwJrTz9cRS>.

534 Elvin Isufi and Gabriele Mazzola. Graph-time convolutional neural networks. In *IEEE Data Science and
535 Learning Workshop (DSLW)*, 2021.

540 Elvin Isufi, Fernando Gama, David I. Shuman, and Santiago Segarra. Graph filters for signal processing and
 541 machine learning on graphs. *IEEE Transactions on Signal Processing*, 2024. doi: 10.1109/TSP.2024.3349788.

542

543 Chaitanya K. Joshi. Transformers are graph neural networks, 2025. URL <https://arxiv.org/abs/2506.22084>.

544

545 Henry Kenlay, Dorina Thanou, and Xiaowen Dong. On the stability of polynomial spectral graph filters. In
 546 *ICASSP*, pages 5350–5354, 2020.

547

548 Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural networks. In *NeurIPS*,
 549 pages 7092–7101, 2019.

550

551 Aruzhan Keutayeva, Nikita Fakhrutdinov, and Bekzod Abibullaev. Compact convolutional transformer
 552 for subject-independent motor imagery eeg-based bcis. *Scientific Reports*, 14:25775, 2024. doi: 10.1038/
 553 s41598-024-73755-4.

554 Vernon J. Lawhern, Amelia J. Solon, Nicholas R. Waytowich, Stephen M. Gordon, Chou Po Hung, and Brent
 555 Lance. Eegnet: a compact convolutional neural network for eeg-based brain–computer interfaces. *Journal
 556 of Neural Engineering*, 15, 2016.

557 Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and Zoubin Ghahramani. Kronecker
 558 graphs: An approach to modeling networks. *Journal of Machine Learning Research*, 11:985–1042, 2010.

559

560 Ron Levie, Wen Huang, Luca Bucci, Michael Bronstein, and Gitta Kutyniok. Transferability of spectral
 561 graph convolutional neural networks, 2020. arXiv:1907.12972.

562

563 Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural network:
 564 Data-driven traffic forecasting, 2018. URL <https://arxiv.org/abs/1707.01926>.

565

566 Yang Li and Zhengyuan Zhu. Modeling nonstationary covariance function with convolution on sphere.
 567 *Computational Statistics & Data Analysis*, 104:233–246, 2016. ISSN 0167-9473. doi: 10.1016/j.csda.2016.07.
 568 001.

569

570 Yujia Li, Richard Zemel, Marc Brockschmidt, and Daniel Tarlow. Gated graph sequence neural networks. In
 571 *International Conference on Learning Representations (ICLR)*, 2016.

572

573 Radu Manuca and Robert Savit. Stationarity and nonstationarity in time series analysis. *Physica D: Nonlinear
 574 Phenomena*, 99(2):134–161, 1996. ISSN 0167-2789. doi: [https://doi.org/10.1016/S0167-2789\(96\)00139-X](https://doi.org/10.1016/S0167-2789(96)00139-X).
 URL <https://www.sciencedirect.com/science/article/pii/S016727899600139X>.

575

576 Saurabh Maskey, Ron Levie, and Gitta Kutyniok. Transferability of graph neural networks: An extended
 577 graphon approach. *Applied and Computational Harmonic Analysis*, 63:48–83, 2023.

578

579 Andrzej Maćkiewicz and Waldemar Ratajczak. Principal components analysis (pca). *Computers & Geosciences*,
 19(3):303–342, 1993. ISSN 0098-3004. doi: [https://doi.org/10.1016/0098-3004\(93\)90090-R](https://doi.org/10.1016/0098-3004(93)90090-R). URL <https://www.sciencedirect.com/science/article/pii/009830049390090R>.

580

581 Antonio Ortega, Pascal Frossard, Jelena Kovačević, José M. F. Moura, and Pierre Vandergheynst. Graph
 582 signal processing: Overview, challenges, and applications. *Proceedings of the IEEE*, 106(5):808–828, May
 583 2018. doi: 10.1109/JPROC.2018.2820126.

584

585 Samuel Pfrommer, Alejandro Ribeiro, and Fernando Gama. Discriminability of single-layer graph neural
 586 networks. In *ICASSP*, pages 8508–8512, 2021. doi: 10.1109/ICASSP39728.2021.9414583.

587

588 Om Roy, Yashar Moshfeghi, Agustín Ibáñez, Francisco Lopera, Mario A. Parra, and Keith M. Smith. Fast
 589 functional connectivity implicates p300 connectivity in working memory deficits in alzheimer’s disease.
Network Neuroscience, 8(4):1467–1490, 2024.

590

591 Luana Ruiz, Fernando Gama, and Alejandro Ribeiro. Graph neural networks: Architectures, stability, and
 592 transferability. *Proceedings of the IEEE*, 109(5):660–682, 2021.

593

Mohammad Sabbaqi and Elvin Isufi. Graph-time convolutional neural networks: Architecture and theoretical
 594 analysis. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2023.

594 Aliaksei Sandryhaila and José M. F. Moura. Discrete signal processing on graphs. *IEEE Transactions on*
 595 *Signal Processing*, 61(7):1644–1656, 2013.

596

597 Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The graph
 598 neural network model. *IEEE Transactions on Neural Networks*, 20(1):61–80, 2008.

599 Florian Scharf, Andreas Widmann, Carolina Bonmassar, and Nicole Wetzel. A tutorial on the use of temporal
 600 principal component analysis in developmental erp research – opportunities and challenges. *Developmental*
 601 *Cognitive Neuroscience*, 54:101072, 2022. doi: 10.1016/j.dcn.2022.101072.

602

603 Saurabh Sihag, Gonzalo Mateos, Corey McMillan, and Alejandro Ribeiro. Covariance neural networks. In
 604 *Advances in Neural Information Processing Systems (NeurIPS)*, New Orleans, LA, 2022. Curran Associates.

605 Keith Smith, Benjamin Ricaud, Nauman Shahid, Stephen Rhodes, John M. Starr, Agustín Ibáñez, Mario
 606 A. Parra, Javier Escudero, and Pierre Vandergheynst. Locating temporal functional dynamics of visual
 607 short-term memory binding using graph modular dirichlet energy. *Scientific Reports*, 7:1–12, February
 608 2017. ISSN 2045-2322. doi: 10.1038/srep42013.

609

610 Keith Smith, Loukas Spyrou, and Javier Escudero. Graph-variate signal analysis. *IEEE Transactions on*
 611 *Signal Processing*, 67(2):293–305, 2019. doi: 10.1109/TSP.2018.2881658.

612 Yizhou Sun, Yulong Wang, Kun Fu, Zhizhong Wang, Chuan Zhang, and Jieping Ye. Constructing geographic
 613 and long-term temporal graph for traffic forecasting, 2020. arXiv:2004.10958.

614

615 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser,
 616 and Illia Polosukhin. Attention is all you need. In *Proceedings of the 31st International Conference on*
 617 *Neural Information Processing Systems*, NIPS’17, page 6000–6010, Red Hook, NY, USA, 2017. Curran
 618 Associates Inc. ISBN 9781510860964.

619

620 Petar Veličković, Guillem Cucurull, Arantón Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio.
 Graph attention networks. In *International Conference on Learning Representations (ICLR)*, 2018.

621

622 Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Graph wavenet for deep spatial-
 623 temporal graph modeling, 2019. arXiv:1906.00121.

624

625 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In
 626 *International Conference on Learning Representations (ICLR)*, 2019.

627

628 Qiong Zhang and Yang Liu. Improving brain computer interface performance by data augmentation with
 629 conditional deep convolutional generative adversarial networks, 2018. arXiv:1806.07108.

630

631 Daniel Zügner and Stephan Günnemann. Certifiable robustness and robust training for graph convolutional
 632 networks. In *KDD*, pages 246–256, 2019.

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 HARDWARE

All experiments were run on a single **NVIDIA A100** GPU (40 GB VRAM). Training used **FP32** precision (no mixed precision), and all runs were executed on a single device without model or data parallelism.

A.2 EXPERIMENTAL DETAILS: CHAOTIC MAPS

We consider three standard discrete-time chaotic benchmarks(Gilpin, 2023): *Coupled Lorenz*: a network of Lorenz oscillators with diffusive coupling between state variables, producing high-dimensional, synchronized-desynchronized regimes; *Hopfield map*: a discrete-time Hopfield network with frustrated connectivity (competing attractors) yielding complex transient dynamics; *MacArthur map*: a discrete-time ecological competition model (species competing for shared resources) exhibiting multi-species chaotic population fluctuations. Each dataset provides multivariate sequences $X \in \mathbb{R}^{N \times T}$ (channels = N nodes).

We use a sliding window of length $T=3$ to forecast horizons $H \in \{1, 3, 5\}$ (one-, three-, and five-step ahead). Windows slide with stride 1. Data are split chronologically into 80% train+val and 20% test; within the first

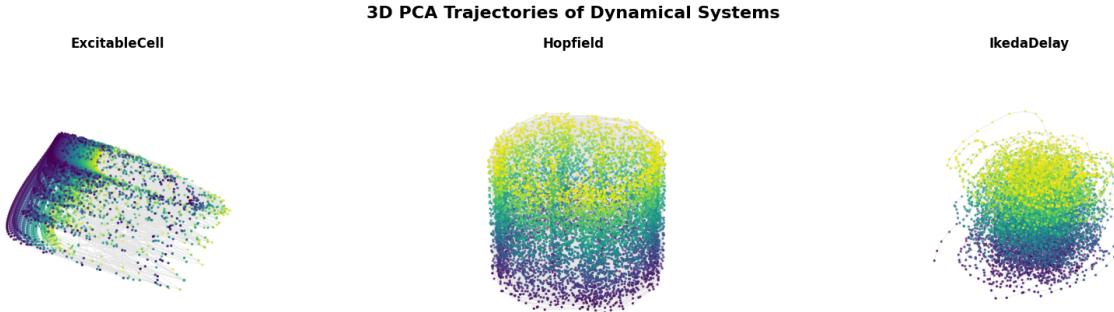


Figure 3: PCA of Chaotic Maps

Table 5: Chaotic maps forecasting: dataset-level hyperparameters (identical across maps).

Map	T	H	Stride	Split	Batch	Epochs	Seeds	Norm
Coupled Lorenz	3	1,3,5	1	80/20 (chron.)	128	500	124, 14, 124235	per-sample z-score (channels)
Hopfield	3	1,3,5	1	80/20 (chron.)	128	500	124, 14, 124235	per-sample z-score (channels)
MacArthur	3	1,3,5	1	80/20 (chron.)	128	500	124, 14, 124235	per-sample z-score (channels)

80% we take 80% train and 20% validation. Inputs are z-scored per sample across channels. All graph-based models use a *trainable* support W_C initialized from the long-term channel wise Pearson correlation over the *training* split, and fuse instantaneous operators by Hadamard product; dynamic slices are re-normalized as $D^{-\frac{1}{2}}(A+I)D^{-\frac{1}{2}}$. All models use 1 convolution layer with the GVNN using a linear combination of the two node functions. We treat GTCNN as a simple baseline with it's spatial component being the **fixed** long-term correlation matrix and the rest of the models allow end to end training of the graph. All models consist of a MLP readout layer with Leaky ReLU activation.

We train for 500 epochs with Adam (MSE loss), batch size 128, and report the best-validation checkpoint on test. Unless otherwise stated, we use three seeds $\{124, 14, 124235\}$ and hidden dimension 128.

A.3 EXPERIMENTAL DETAILS: TRAFFIC FORECASTING (METR-LA & PEMB-BAY)

We use a sliding window of $T=6$ (30 min) to forecast $H \in \{3, 6, 12\}$ steps (15/30/60 min). Data are split chronologically: 80% train+val and 20% test; within the first 80% we take 80% train and 20% validation. Inputs are z-scored *per sample across channels*. Dynamic adjacencies are renormalized slice-wise as $D^{-\frac{1}{2}}(A+I)D^{-\frac{1}{2}}$. We train with Adam and MSE loss for 200 epochs, select the best validation checkpoint, and evaluate on test. Runs use three seeds $\{124, 14, 124235\}$. All models use 2 convolution layers with the GVNN having the LDE as the first layer and IC as second. The transformer and LSTM models also use 2 layers with the transformer only consisting of one attention head.

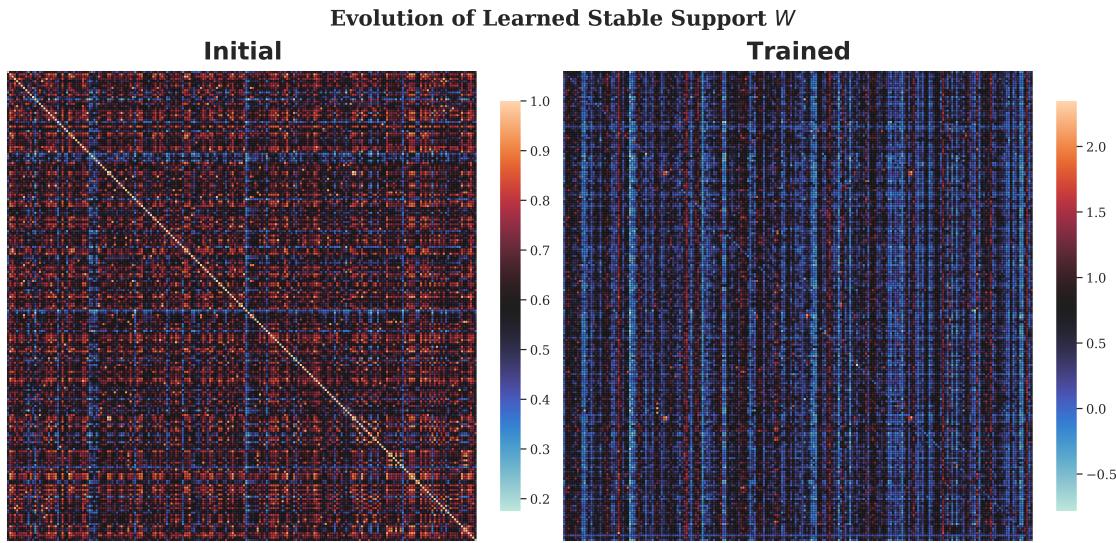
Table 7: Dataset-level hyperparameters (both model families run on both datasets; the *only* dataset difference is batch size).

Dataset	T	H	Split	Batch	Epochs	Seeds	Optimizer / Loss
METR-LA	6	3,6,12	80/20 (chron.)	1280	200	124, 14, 124235	Adam / MSE
PEMS-BAY	6	3,6,12	80/20 (chron.)	1024	200	124, 14, 124235	Adam / MSE

Graph construction (used by all graph-based models). We build a static channel similarity matrix $W_C \in \mathbb{R}^{C \times C}$ from channelwise Pearson correlations over the full training set. Models that mark W_C as *trainable* initialize from this correlation and update it end-to-end; otherwise W_C is fixed. All dynamic operators $\Omega(t)$ are fused with W_C by Hadamard product and renormalized slice-wise.

702 **Table 6:** Model hyperparameters and operator details for chaotic maps (all are graph-based; W_C is *trainable*
 703 and initialized from long-term correlation).

705 Model	706 LR	707 Hidden	708 Epochs	709 Trainable W_C
710 GTCNN	1×10^{-4}	128	500	Yes
711 GVARMA (P=1, Q=1, K=2)	1×10^{-4}	128	500	Yes
712 GGRNN	1×10^{-4}	128	500	Yes
713 GVNN	1×10^{-4}	128	500	Yes



730 **Figure 4: Learned graph support matrix W_C before and after training.** The figure illustrates how
 731 the static graph support matrix W_C evolves through training. The left panel shows the initialized matrix,
 732 while the right panel presents the learned weights after optimization, revealing how the model adapts graph
 733 connectivity structure for improved forecasting.

735 **Table 8:** Model hyperparameters and operator details (applied identically on METR–LA and PEMS–BAY).

737 Family	738 Model	739 LR	740 Hidden	741 Epochs	742 Trainable W_C
743 Graph-based	GVNN	1×10^{-4}	128	200	No
	GTCNN	1×10^{-4}	128	200	No
	GVARMA (P=1, Q=1, K=2)	1×10^{-4}	128	200	No
	GGRNN	1×10^{-4}	128	200	No
	GVNN	1×10^{-4}	128	200	Yes
746 Sequence-based	LSTM (2 layers)	1×10^{-3}	128	200	—
	Transformer (1 head, 2 layers)	1×10^{-3}	128	200	—

747 A.4 EEG EXPERIMENTS: DATASETS AND HYPERPARAMETERS

748 1

749 **PhysioNet MI (binary: T1 vs. T2).** We load raw EDF files from per-participant folders $S\{001..109\}$
 750 =, excluding faulty IDs {088, 089, 092, 100}. For each valid subject we select only the motor imagery runs

751 ¹For both EEG datasets the Transformer and LSTM models consisted of two layers while the GVNN was 1 layer.

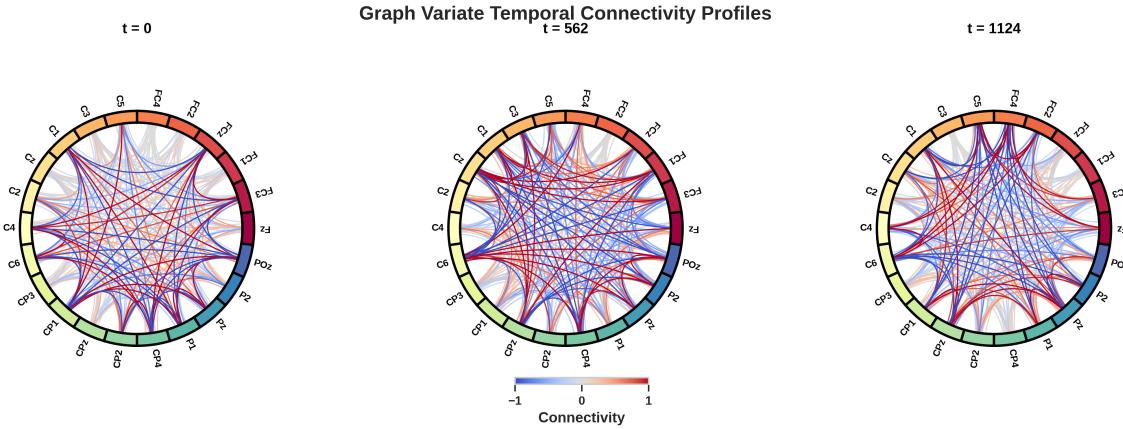


Figure 5: Instantaneous Correlation Connectivity profiles in the BCI-2A Multivariate Time series.

R04, R08, R12, read EDF with `mne`, and extract events from annotations. We dynamically map the annotation codes for T1 and T2, keep only those trials, and epoch each trial with $t_{\min}=0$ to $t_{\max}=3.1$ s at 160 Hz (496 samples). Trials and labels are concatenated across all participants. We then perform stratified $K=5$ -fold CV across *all* trials (pooled cross-subject), building the stable support W_C *within each fold from training windows only* as the absolute channelwise Pearson correlation $|\text{corr}|$. All models receive inputs normalized per sample across channels (z-score), and all graph operators use slice-wise symmetric renormalization $D^{-1/2}(A+I)D^{-1/2}$.

Table 9: PhysioNet MI: dataset-level protocol and hyperparameters.

Trials	Classes	Epoch	FS	CV	Batch	Epochs	LR / WD	Metrics
pooled (all subj.)	2 (T1/T2)	3.1 s ($T=496$)	160 Hz	strat. 5-fold	64	50	$10^{-3} / 10^{-4}$	Acc

BNCI2014_001 (BCI 2a, 4-class). We use MOABB/Braindecode (Aristimunha et al., 2023) to load all subjects (1..9). Preprocessing: pick EEG, scale by 10^6 , band-pass 0.01–20 Hz, exponential moving standardization (`factor_new=10-3`, `init_block_size=1000`). Windows are created from events with a start offset of -0.5 s (MOABB defaults for stop/length are used). We concatenate windows across subjects and run stratified 5-fold CV. In each fold, $W_C = |\text{corr}|$ is computed from training windows only, and used by GVNN; inputs are per-sample channel z-scored inside each model (Dornhege et al., 2007).

Table 10: BNCI2014_001 (4-class): dataset-level protocol and hyperparameters.

Trials	Classes	Preproc	CV	Batch	Epochs	LR / WD	Metrics
pooled (all subj.)	4	bp. 0.01–20 Hz & EMS	strat. 5-fold	64	100	$10^{-3} / 10^{-4}$	Acc

A.5 COMPUTATIONAL COMPLEXITY ANALYSIS

We compare two *hypothetical* ways to realize signal-dependent graph convolution on inputs $x \in \mathbb{R}^{B \times C \times T}$, with a fixed spatial support $W_s \in \mathbb{R}^{C \times C}$ and temporal path adjacency $L_T \in \mathbb{R}^{T \times T}$.

- 1. Naive Cartesian (Kronecker) Method.** For each sample b , compute per-time masked connectivity and then build a full spatiotemporal kernel by the Kronecker product with L_T , yielding $K_b \in \mathbb{R}^{(CT) \times (CT)}$, and apply K_b to \hat{x}_b .
- 2. Proposed Graph-Variate Low-Rank Batched Method.** Construct rank-1 (IC) or *rank-3 expanded quadratic* (LDE) connectivities on-the-fly, mask by W_s via Hadamard product, and perform T batched matvecs *without* explicit Kronecker expansion.

810 1. NAIVE PRODUCT GRAPH METHOD

811 For each $b = 1, \dots, B$ and $t = 1, \dots, T$:812 (a) *Per-time connectivity & masking*

813
$$S_{b,t}^{\text{IC}} = x_{b,:,t} x_{b,:,t}^\top, \quad S_{b,t}^{\text{LDE}} = (x_{b,:,t} \odot x_{b,:,t}) \mathbf{1}^\top + \mathbf{1} (x_{b,:,t} \odot x_{b,:,t})^\top - 2 x_{b,:,t} x_{b,:,t}^\top, \quad \tilde{S}_{b,t} = S_{b,t} \circ W_s.$$

814 (b) *Stacking* $\tilde{S}_b = [\tilde{S}_{b,1}, \dots, \tilde{S}_{b,T}] \in \mathbb{R}^{C \times C \times T}$.815 (c) *Kronecker expansion & apply* $K_b = L_T \otimes \tilde{S}_b \in \mathbb{R}^{(CT) \times (CT)}$, $\hat{y}_b = K_b \hat{x}_b$.816 **Complexity.** Per-time connectivity: $O(BC^2T)$; kernel formation: $O(BC^2T^2)$; application: $O(BC^2T^2)$; 817 memory for all K_b : $O(BC^2T^2)$. Net time: $O(BC^2T^2)$; memory: $O(BC^2T^2)$.

818 2. PROPOSED GRAPH-VARIATE LOW-RANK BATCHED METHOD

819 Form, for all (b, t) in parallel,

820
$$J_{b,t}^{\text{IC}} = x_{b,:,t} x_{b,:,t}^\top, \quad J_{b,t}^{\text{LDE}} = (x_{b,:,t} \odot x_{b,:,t}) \mathbf{1}^\top + \mathbf{1} (x_{b,:,t} \odot x_{b,:,t})^\top - 2 x_{b,:,t} x_{b,:,t}^\top,$$

821 then mask with W_s : $\Omega_{b,t} = J_{b,t} \circ W_s$ (using the appropriate case). All T masked matrices live implicitly 822 inside $\Omega \in \mathbb{R}^{B \times C \times C \times T}$. We then compute, in one batched call,

823
$$y_{b,:,t} = \Omega_{b,t} x_{b,:,t},$$

824 vectorizing over b and t .825 **Complexity.** Connectivity+masking: $O(BC^2T)$; T batched mat–vecs: $O(BC^2T)$; memory $O(BC^2T)$. Net 826 time: $O(BC^2T)$; memory: $O(BC^2T)$.827 **Table 11:** Asymptotic comparison: naive Cartesian vs. batched low-rank.

Method	Time	Memory
Naive Cartesian (Kronecker)	$O(BC^2T^2)$	$O(BC^2T^2)$
Batched Low-Rank (ours)	$O(BC^2T)$	$O(BC^2T)$

Takeaway. Avoiding explicit Kronecker formation with L_T removes the quadratic dependence on T in both compute and memory. Using rank-1 (IC) and rank-3 expanded quadratic (LDE) constructions, plus Hadamard masking and batched mat–vecs, yields linear $O(BC^2T)$ execution.

843 MAIN CONVOLUTION

844 **Listing 1:** Core PyTorch implementation of normalization, graph construction, and convolution.

```
845 import torch
846
847 EPS = 1e-5
848
849 def renormalize_dynamic(A, eps=EPS):
850     """
851     A: (B, C, C, T) dynamic affinity
852     Returns symmetric renorm: D^{-1/2} (A + I) D^{-1/2}
853     """
854     I = torch.eye(A.size(1), device=A.device)[None, :, :, None] # (1, C, C, 1)
855     At = A + I
856     deg = At.sum(2, keepdim=True) # (B, C, 1, T)
857     inv = deg.clamp(min=eps).pow(-0.5)
858     S = inv * At * inv.transpose(1, 2) # symmetric
859     renorm
```

```

864     return S
865
866 def graph_variate(x, fun='corr', Zave=True, eps=EPS):
867     """
868     x: (B, C, T)
869     returns normalized dynamic adjacency  $\Omega_m$ : (B, C, C, T)
870     """
871     B, C_, T_ = x.shape
872     if Zave:
873         mu = x.mean(1, keepdim=True)
874         sig = x.std(1, keepdim=True, unbiased=True)
875         x = (x - mu) / (sig + eps)
876
876     if fun == 'sqd':
877         D = x - x.mean(1, keepdim=True)
878         Om = (x.unsqueeze(2) - x.unsqueeze(1)).pow(2)
879     elif fun == 'corr':
880         D = x - x.mean(2, keepdim=True)           # zero-mean over time
881         Om = D.unsqueeze(2) * D.unsqueeze(1)       # rank-1 outer per time
882
883     return Om
884
885 def graph_conv(x, Om):
886     """
887     x: (B, C, T)
888     Om: (B, C, C, T) dynamic (optionally renormalized) adjacency
889     returns: (B, C, T)
890     """
891     Om_t = Om.permute(0, 3, 1, 2)           # (B, T, C, C)
892     sig_t = x.permute(0, 2, 1).unsqueeze(-1)  # (B, T, C, 1)
893     out = torch.matmul(Om_t, sig_t).squeeze(-1) # (B, T, C)
894     return out.permute(0, 2, 1)
895

```

In practice, we build Ω via `graph_variate`, apply the spatial mask (Hadamard with W_s), optionally call `renormalize_dynamic` slice-wise, and then use `graph_conv` to perform all BT mat–vecs in one call—achieving $O(BC^2T)$ time and memory.

A.6 PROOF OF THEOREM 1

We first introduce the following definitions **Definition 1.** we observe T time-centered samples $x_t \in \mathbb{R}^N$ for $t = 1, \dots, T$, and define

$$\bar{x} = \frac{1}{T} \sum_{t=1}^T x_t, \quad \tilde{x}_t = x_t - \bar{x}$$

and we assume

$$W \succ 0 \quad (\text{PSD}).$$

Let $w_{ij} = W_{ij}$. For each fixed t , define the stabilized *instantaneous correlation profile*

$$\rho_t(i, j) = W_{ij} |\tilde{x}_i^{(m)}(t) \tilde{x}_j^{(m)}(t)|, \quad i, j = 1, \dots, N.$$

Definition 2 (Sylvester's Law of Inertia). Let $A \in \mathbb{S}^N$ be a symmetric matrix of rank r with inertia $(p, q, 0)$, meaning p positive and q negative eigenvalues such that $p + q = r$. Then A is congruent to the diagonal normal form

$$G = \begin{pmatrix} I_p & 0 & 0 \\ 0 & -I_q & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad p + q = r.$$

Two symmetric matrices are congruent if and only if they have the same rank and signature $(p, q, 0)$.

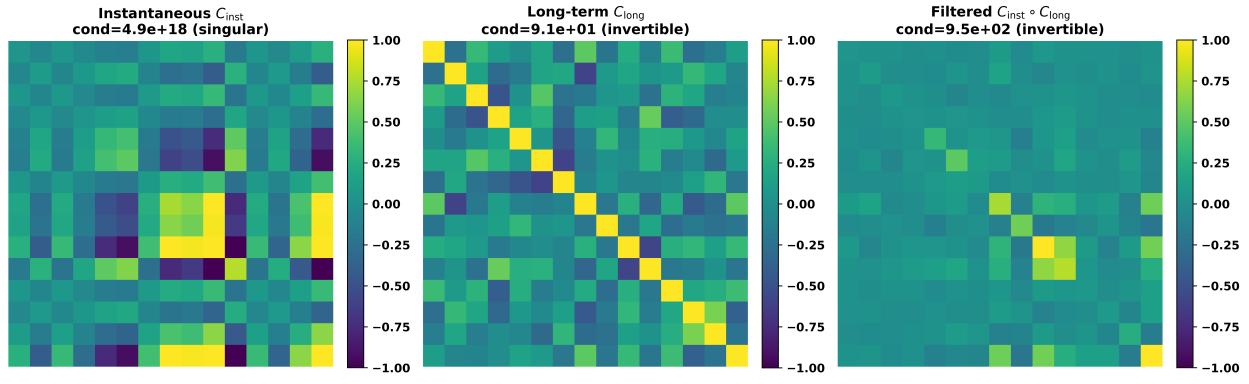


Figure 6: Comparison of instantaneous correlation profile, long-term covariance, and Hadamard-filtered covariance matrices. Each panel displays the respective matrix with its condition number and invertibility status.

Proof. of Theorem 1

Set

$$d_t := |\tilde{x}_t| \in \mathbb{R}^N, \quad D_t := \text{diag}(d_t),$$

so each $D_t^{(m)}$ is diagonal with strictly positive entries and thus invertible. The Hadamard product identity gives

$$\Omega(t) = W \circ (\tilde{x}_t \tilde{x}_t^{(m)\top}) = D_t W D_t,$$

i.e. $\Omega(t)$ is congruent to C .

Now applying Sylvester's Law, since $C \succ 0$ has inertia $(N, 0, 0)$, any matrix congruent to it must share the same inertia. Therefore

$$\Omega(t) \succ 0, \quad \text{rank}(\Omega(t)) = \text{rank}(W) = N.$$

This establishes both invertibility and positive-definiteness.

This completes the proof. □

A.7 PROOF OF THEOREM 2

Proof. Recall Gershgorin's circle theorem: if $A = (a_{ij})$ is any $N \times N$ matrix then each eigenvalue λ of A satisfies

$$\lambda \in D(a_{ii}, R_i(A)) \quad \text{where} \quad R_i(A) = \sum_{j \neq i} |a_{ij}|.$$

In our case $\Omega(t)_{ii} = 0$ and

$$R_i(\Omega(t)) = \sum_{j \neq i} |\Omega(t)_{ij}| = \sum_{j \neq i} |W_{ij} (x_i(t) - x_j(t))^2|,$$

so every eigenvalue δ of Ω lies in one of the real intervals $[-R_i, R_i]$. Taking the union over i gives

$$\rho(\Omega) \subset \bigcup_{i=1}^N [-R_i, R_i] = [-\max_i R_i, \max_i R_i].$$

By definition,

$$R_i = \sum_{j \neq i} |W_{ij} (x_i(t) - x_j(t))^2|.$$

Summing these radii over all i yields

$$\begin{aligned} \sum_{i=1}^N R_i &= \sum_{i=1}^N \sum_{j \neq i} |W_{ij} (x_i(t) - x_j(t))^2| \\ &= \sum_{i,j} |W_{ij} (x_i(t) - x_j(t))^2| \\ &= 2 \mathcal{E}_{\text{abs}}. \end{aligned}$$

Thus the total “Gershgorin mass” equals twice the Dirichlet energy

Since $\rho(\Omega) = \max |\delta| \leq \max_i R_i$, we need only show $\max_i R_i \leq 2\mathcal{E}_{\text{abs}}$. But from Step 2, $\sum_i R_i = 2\mathcal{E}_{\text{abs}}$, and the largest term in a sum of nonnegative numbers is no bigger than the sum itself. Hence

$$\max_i R_i \leq \sum_i R_i = 2\mathcal{E}_{\text{abs}},$$

hence

$$\rho(\Omega) \leq 2\mathcal{E}_{\text{abs}}.$$

completing the proof.

A.8 RANK-LIFTING OF THE LDE CONNECTIVITY PROFILE

Theorem 3. Let x_1, \dots, x_N be N distinct real numbers and define the instantaneous squared-difference matrix

$$J(t) \in \mathbb{R}^{N \times N}, \quad J_{ij}(t) = (x_i - x_j)^2, \quad J_{ii}(t) = 0.$$

Let

$$\mathcal{W} = \{ C \in \mathbb{R}^{N \times N} : C_{ij} \neq 0 \text{ for all } i \neq j \}$$

and for each $C \in \mathcal{W}$ form the Hadamard product

$$\Omega(t) = J(t) \circ W, \quad \Omega_{ij} = J_{ij}(t) W_{ij}.$$

Then:

1. $\text{rank}(D) \leq 3$, hence $\det(J(t)) = 0$ and D is singular.
2. The determinant

$$P(C_{12}, C_{13}, \dots, C_{N-1, N}) \equiv \det(D \circ C)$$

is a nonzero polynomial in the off-diagonal entries of C . Consequently, outside its algebraic zero-locus of Lebesgue measure 0, one has

$$\det(J(t) \circ W) \neq 0, \quad \text{rank}(J(t) \circ W) = N.$$

so the Hadamard-weighted matrix is generically invertible.

$$y_i \equiv x_i^2(t), \quad w_i \equiv x_i(t), \quad 1_i \equiv 1$$

Then

$$J_{i\dot{i}}(t) \equiv (x_i(t) - x_{\dot{i}}(t))^2 \equiv y_i \mathbf{1}_{\dot{i}} - 2 y_i y_{\dot{i}} + \mathbf{1}_i y_{\dot{i}}$$

so in matrix form

$$I(t) = u \mathbf{1}^T - 2u\mathbf{v}^T + \mathbf{1}u^T$$

Each term on the right is rank 1, hence $\text{rank}(J(t)) \leq 1 + 1 + 1 = 3$. In particular when $N > 3$, $J(t)$ is singular and $\text{det}(J(t)) = 0$.

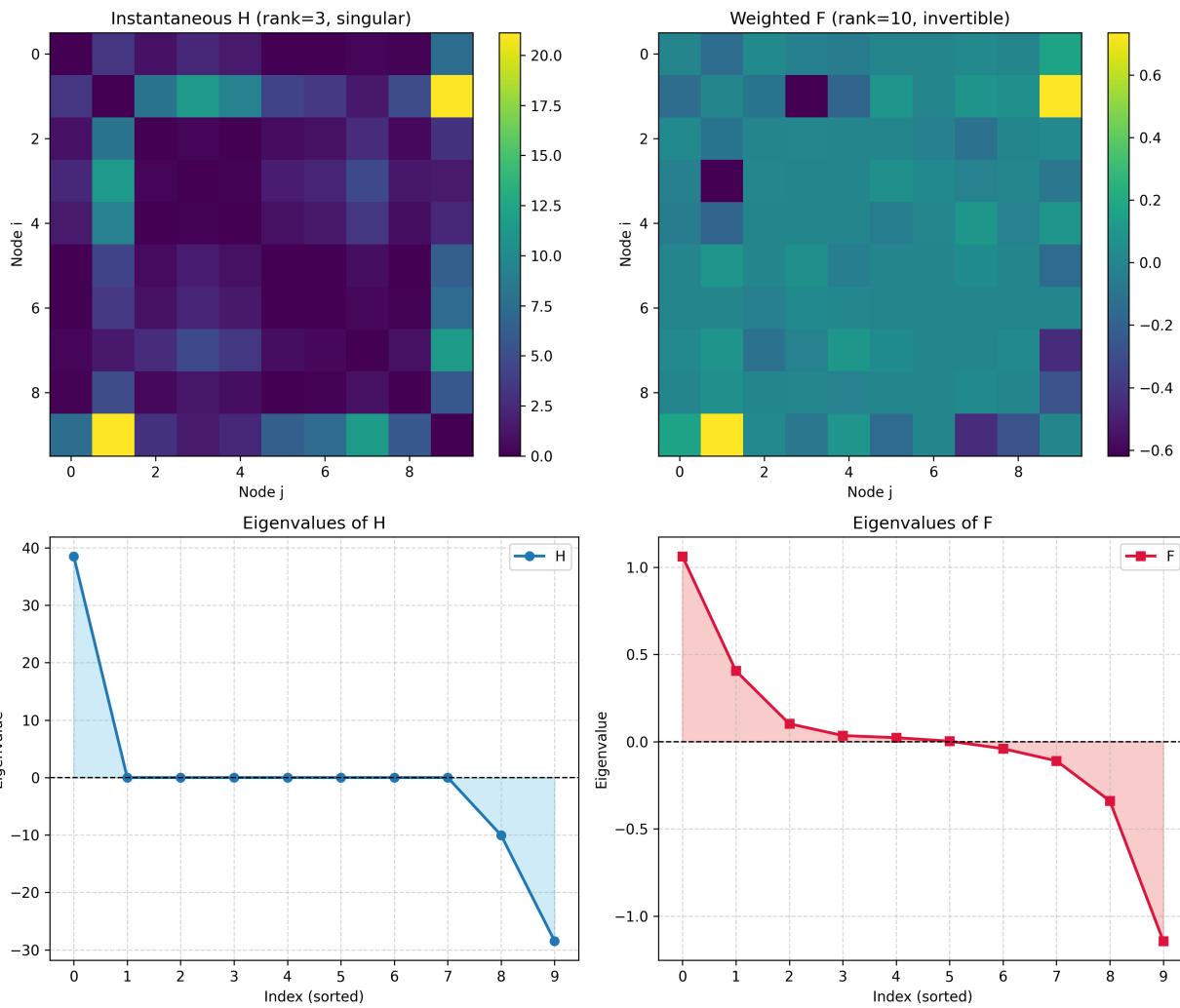


Figure 7: Top-left: the instantaneous squared-difference matrix H at a single time point, which is rank-deficient (rank = 3) and singular, showing large pairwise distances only for a few node pairs. Top-right: the Hadamard-weighted matrix $F = C \circ H$, where C is the long-term correlation; weighting lifts H to full rank (rank = 10) and makes F invertible. Bottom-left: the sorted eigenvalues of H , displaying exactly three nonzero modes and seven zeros, consistent with $\text{rank}(H) = 3$. Bottom-right: the sorted eigenvalues of F , all ten nonzero and of mixed sign, confirming that F is indefinite but invertible.

(2) $\det(J(t) \circ W)$ is a nonzero polynomial. By the Leibniz formula,

$$\begin{aligned} \det(\Omega(t)) &= \sum_{\pi \in S_N} \text{sgn}(\pi) \prod_{i=1}^N \Omega(t)_{i,\pi(i)} \\ &= \sum_{\substack{\pi \in S_N \\ \pi(i) \neq i \forall i}} \text{sgn}(\pi) \prod_{i=1}^N [J(t)_{i,\pi(i)} W_{i,\pi(i)}]. \end{aligned}$$

since $\Omega(t)_{ii} = 0$ kills any term with a fixed point. Thus

$$\det(J(t) \circ W) = \sum_{\substack{\pi \in S_N \\ \pi(i) \neq i}} \left(\text{sgn}(\pi) \prod_{i=1}^N J(t)_{i,\pi(i)} \right) \left(\prod_{i=1}^N W_{i,\pi(i)} \right),$$

1080 a multivariate polynomial $P(\{W_{ij}\})$ in the off-diagonal W_{ij} .

1081 To show $P \not\equiv 0$, pick the N -cycle $\pi_0: i \mapsto i + 1 \pmod{N}$. Its monomial is

$$1083 \quad 1084 \quad \prod_{i=1}^N W_{i,\pi_0(i)} = W_{1,2} W_{2,3} \cdots W_{N-1,N} W_{N,1},$$

1086 and its coefficient is

$$1088 \quad 1089 \quad \text{sgn}(\pi_0) \prod_{i=1}^N J(t)_{i,\pi_0(i)} = \pm (x_1 - x_2)^2 (x_2 - x_3)^2 \cdots (x_N - x_1)^2 \neq 0$$

1091 because the x_i are distinct. Hence P has at least one nonzero coefficient and so is not the zero polynomial.
1092 Therefore it vanishes only on a proper hypersurface in \mathcal{W} , proving that for almost every full-support W ,
1093 $\det(J(t) \circ W) \neq 0$ and $\text{rank}(J(t) \circ W) = N$. \square

1095 A.9 STABILITY OF GVNN LAYER

1097 **Theorem 4** (GVNN Layer is Globally Lipschitz). Let $W \in \mathbb{R}^{N \times N}$ be symmetric with nonnegative entries,
1098 and define

$$1099 \quad 1100 \quad \alpha = \max_{1 \leq i \leq N} \sum_{j=1}^N W_{ij}.$$

1102 Let

$$1103 \quad X = [x(1) \dots x(T)] \in \mathbb{R}^{N \times T},$$

1104 and write

$$1108 \quad 1109 \quad \mu_i = \frac{1}{T} \sum_{t=1}^T x_i(t),$$

$$1111 \quad 1112 \quad M = \max_{\substack{1 \leq i \leq N \\ 1 \leq t \leq T}} |x_i(t) - \mu_i|,$$

$$1114 \quad 1115 \quad B = \max_{\substack{1 \leq i \leq N \\ 1 \leq t \leq T}} |x_i(t)|.$$

1117 Let scalar filters $a = (a_t)_{t=1}^T$ and $b = (b_t)_{t=1}^T$ satisfy

$$1119 \quad a^* = \max_{1 \leq t \leq T} |a_t|, \quad b^* = \max_{1 \leq t \leq T} |b_t|.$$

1121 For each t define two node functions:

$$1122 \quad J_{ij}^{\text{IC}}(t) = |(x_i(t) - \mu_i)(x_j(t) - \mu_j)|, \quad J_{ij}^{\text{SD}}(t) = (x_i(t) - x_j(t))^2,$$

1124 and form the Hadamard products

$$1125 \quad \Omega^{\text{IC}}(t) = W \circ J^{\text{IC}}(t), \quad \Omega^{\text{SD}}(t) = W \circ J^{\text{SD}}(t).$$

1127 Given any pointwise-1-Lipschitz nonlinearity $\sigma: \mathbb{R} \rightarrow \mathbb{R}$, define

$$1128 \quad 1129 \quad y(t) = \sigma(a_t x(t) + b_t \Omega(t) x(t)), \quad F(X) = [y(1) \dots y(T)] \in \mathbb{R}^{N \times T}.$$

1130 Then for every pair $X, X' \in \mathbb{R}^{N \times T}$,

$$1132 \quad \|F(X) - F(X')\|_F \leq (a^* + \alpha b^* M^2) \|X - X'\|_F \quad (\text{IC}),$$

$$1133 \quad \|F(X) - F(X')\|_F \leq (a^* + 4\alpha b^* B^2) \|X - X'\|_F \quad (\text{SD}).$$

1134 *Proof.* Because W is symmetric with nonnegative entries, Gershgorin's circle theorem guarantees that every
 1135 eigenvalue λ of W lies in the interval $[0, \alpha]$. Consequently, the spectral (operator) norm of W satisfies
 1136

$$1137 \|W\|_{\text{op}} \leq \alpha.$$

1138 Fix an arbitrary time index $t \in \{1, \dots, T\}$. We treat the IC and SD cases in parallel, noting only where the
 1139 node function definition differs.
 1140

1141 Define the diagonal matrix

$$1142 D(t) = \text{diag}(|x_i(t) - \mu_i|)_{i=1}^N.$$

1143 By definition of M ,

$$1144 \|D(t)\|_{\text{op}} = \max_{1 \leq i \leq N} |x_i(t) - \mu_i| \leq M.$$

1145 Since the Hadamard product with $G^{\text{IC}}(t)$ coincides with the congruence
 1146

$$1147 \Omega^{\text{IC}}(t) = D(t) W D(t),$$

1148 submultiplicativity of the operator norm yields
 1149

$$1150 \|\Omega^{\text{IC}}(t)\|_{\text{op}} \leq \|D(t)\|_{\text{op}} \cdot \|W\|_{\text{op}} \cdot \|D(t)\|_{\text{op}} \\ 1151 \leq M \cdot \alpha \cdot M = \alpha M^2.$$

1152 Here each entry of the instantaneous matrix is $(x_i(t) - x_j(t))^2$. We bound this directly in terms of the
 1153 maximum node value B :

$$1154 (x_i(t) - x_j(t))^2 = |x_i(t) - x_j(t)|^2 \\ 1155 \leq (|x_i(t)| + |x_j(t)|)^2 \\ 1156 \leq (B + B)^2 = 4B^2.$$

1157 Therefore, for every i, j ,

$$1158 |\Omega_{ij}^{\text{SD}}(t)| = W_{ij} \cdot (x_i(t) - x_j(t))^2 \leq 4B^2 W_{ij}.$$

1159 Summing over j shows that each row sum of $|\Omega^{\text{SD}}(t)|$ is at most $\sum_j 4B^2 W_{ij} = 4B^2 \sum_j W_{ij} \leq 4\alpha B^2$. Since
 1160 $\Omega^{\text{SD}}(t)$ remains symmetric with nonnegative entries, its operator norm is upper bounded by its maximum
 1161 row sum, giving
 1162

$$1163 \|\Omega^{\text{SD}}(t)\|_{\text{op}} = \rho(\Omega^{\text{SD}}(t)) \leq \max_{1 \leq i \leq N} \sum_{j=1}^N \Omega_{ij}^{\text{SD}}(t) \leq 4\alpha B^2.$$

1164 In either case define the map $g_t : \mathbb{R}^N \rightarrow \mathbb{R}^N$ by
 1165

$$1166 g_t(z) = a_t z + b_t \Omega(t) z.$$

1167 For any two vectors $u, v \in \mathbb{R}^N$, we have
 1168

$$1169 g_t(u) - g_t(v) = (a_t I + b_t \Omega(t))(u - v).$$

1170 Applying the triangle inequality together with the operator-norm bound on $\Omega(t)$ yields
 1171

$$1172 \|g_t(u) - g_t(v)\|_2 \leq |a_t| \|u - v\|_2 + |b_t| \|\Omega(t)\|_{\text{op}} \|u - v\|_2.$$

1173 Since $|a_t| \leq a^*$ and $|b_t| \leq b^*$, it follows that
 1174

$$1175 \|g_t(u) - g_t(v)\|_2 \leq (a^* + b^* \|\Omega(t)\|_{\text{op}}) \|u - v\|_2.$$

1176 Because σ is pointwise 1-Lipschitz, for each t and each pair of signals $x(t), x'(t)$,

$$1177 \|y(t) - y'(t)\|_2 = \|\sigma(g_t(x(t))) - \sigma(g_t(x'(t)))\|_2 \\ 1178 \leq \|g_t(x(t)) - g_t(x'(t))\|_2 \\ 1179 \leq L \|x(t) - x'(t)\|_2,$$

1188 where

$$1189 \quad 1190 \quad 1191 \quad L = \begin{cases} a^* + \alpha b^* M^2, & \text{IC,} \\ a^* + 4 \alpha b^* B^2, & \text{LDE.} \end{cases}$$

1192 Finally, summing these squared-norm inequalities over $t = 1, \dots, T$ and taking the square root gives:

$$1193 \quad 1194 \quad 1195 \quad 1196 \quad \|F(X) - F(X')\|_F = \left(\sum_{t=1}^T \|y(t) - y'(t)\|_2^2 \right)^{1/2} \\ 1197 \quad 1198 \quad 1199 \quad \leq L \left(\sum_{t=1}^T \|x(t) - x'(t)\|_2^2 \right)^{1/2} \\ 1200 \quad = L \|X - X'\|_F.$$

1201 This completes the proof. □

1205 A.10 EXTENDED THEOREMS AND PROOFS

1207 This section will include more theorems and propositions for completeness

1208 **Theorem 5** (Parseval identity for the GVFT). For every time index t and every signal vector $x(t)$, one has

$$1209 \quad 1210 \quad 1211 \quad \sum_{i=1}^N |\hat{x}_i(t)|^2 = \sum_{i=1}^N |x_i(t)|^2.$$

1212 Equivalently,

$$1213 \quad \|\hat{x}(t)\|_2 = \|x(t)\|_2.$$

1215 *Proof.* Due to Corollary 1, as long as the stable support is symmetric, the eigendecomposition of a connectivity
1216 profile results in U_t being orthonormal, i.e., $U_t^\top U_t = I_N$. Applying this to $\hat{x}(t) = U_t^\top x(t)$, we get:

$$1217 \quad 1218 \quad \|\hat{x}(t)\|_2^2 = \hat{x}(t)^\top \hat{x}(t) \\ 1219 \quad = (U_t^\top x(t))^\top (U_t^\top x(t)) \\ 1220 \quad = x(t)^\top U_t U_t^\top x(t) \\ 1221 \quad = x(t)^\top x(t) \\ 1222 \quad = \|x(t)\|_2^2.$$

1224 □

1225 *Remark 6.* Because the GVFT basis U_t depends on the instantaneous, *signal-derived* slice $\Omega(t)$, Parseval's
1226 identity above holds *separately* for each time step t ; summing over t shows energy conservation for the entire
1227 spatio-temporal matrix $X = [x(1) \dots x(T)]$:

$$1228 \quad 1229 \quad 1230 \quad \sum_{t=1}^T \|\hat{x}(t)\|_2^2 = \sum_{t=1}^T \|x(t)\|_2^2.$$

1232 The next theorem develops bounds on the eigenvalues of the instantaneous correlation node function profile
1233 against a PSD stable support in terms of the eigenvalues of the PSD stable support.

1234 **Theorem 7** (IC Spectral bounds under amplitude-scaling). Let

$$1235 \quad 1236 \quad W \in \mathbb{S}_{++}^N \quad \text{have spectrum} \quad \lambda_{\min}(W) \leq \dots \leq \lambda_{\max}(W),$$

1237 and at time t let the centred sample $\tilde{x}_t \in \mathbb{R}^N$ satisfy $\tilde{x}_i(t) \neq 0$ for all i . Define

$$1238 \quad 1239 \quad D_t = \text{diag}(|\tilde{x}_t|), \quad \rho_t = D_t W D_t, \quad m_t = \min_i |\tilde{x}_i(t)|, \quad M_t = \max_i |\tilde{x}_i(t)|.$$

1240 If $\delta_{1,t} \leq \dots \leq \delta_{N,t}$ are the eigenvalues of ρ_t , then for each $i = 1, \dots, N$,

$$1241 \quad m_t^2 \lambda_{\min}(W) \leq \delta_{i,t} \leq M_t^2 \lambda_{\max}(W).$$

1242 *Proof.* Recall the Rayleigh quotient of a symmetric matrix A and nonzero w is
 1243

$$1244 \quad \mathcal{R}(A; w) := \frac{w^\top A w}{w^\top w}.$$

1245 By the Rayleigh–Ritz theorem (a special case of the Courant–Fischer min–max theorem),
 1246

$$1247 \quad \lambda_{\min}(A) \leq \mathcal{R}(A; w) \leq \lambda_{\max}(A), \quad \forall w \neq 0,$$

1248 and the eigenvalues of A coincide with the extremal values of $\mathcal{R}(A; w)$ over appropriate subspaces.
 1249

1250 For any unit vector $v \in \mathbb{R}^N$ ($\|v\| = 1$), consider
 1251

$$1252 \quad v^\top \rho_t v = v^\top (D_t W D_t) v = (D_t v)^\top W (D_t v).$$

1253 We will bound $(D_t v)^\top W (D_t v)$ using $\mathcal{R}(W; \cdot)$.
 1254

1255 Define
 1256

$$1257 \quad u = \frac{D_t v}{\|D_t v\|}, \quad u \neq 0, \quad \|u\| = 1.$$

1258 Then
 1259

$$1260 \quad (D_t v)^\top W (D_t v) = \|D_t v\|^2 \underbrace{\frac{(D_t v)^\top W (D_t v)}{\|D_t v\|^2}}_{= \mathcal{R}(W; u)}.$$

1261 By the Rayleigh–Ritz result of Step 1,
 1262

$$1263 \quad \lambda_{\min}(W) \leq \mathcal{R}(W; u) \leq \lambda_{\max}(W),$$

1264 so
 1265

$$(D_t v)^\top W (D_t v) \in [\lambda_{\min}(W) \|D_t v\|^2, \lambda_{\max}(W) \|D_t v\|^2].$$

1266 Since v has $\|v\| = 1$ and $D_t = \text{diag}(d_{1,t}, \dots, d_{N,t})$ with $d_{i,t} = |\tilde{x}_i(t)| \in [m_t, M_t]$, we have
 1267

$$\|D_t v\|^2 = \sum_{i=1}^N d_{i,t}^2 v_i^2 \in [m_t^2, M_t^2].$$

1268 Therefore for every unit v ,
 1269

$$v^\top \rho_t v = (D_t v)^\top W (D_t v) \in [m_t^2 \lambda_{\min}(W), M_t^2 \lambda_{\max}(W)].$$

1270 Finally, by the Courant–Fischer characterization of eigenvalues, the i th largest eigenvalue $\delta_{i,t}$ of ρ_t
 1271 is the extremal Rayleigh quotient over an i -dimensional subspace. Since all Rayleigh quotients lie in
 1272 $[m_t^2 \lambda_{\min}(W), M_t^2 \lambda_{\max}(W)]$, each $\delta_{i,t}$ must also satisfy
 1273

$$m_t^2 \lambda_{\min}(W) \leq \delta_{i,t} \leq M_t^2 \lambda_{\max}(W), \quad i = 1, \dots, N.$$

1274 This completes the proof. □
 1275

1276 **Theorem 8** (IC Condition-number bound under amplitude-scaling). Under the hypotheses of Theorem 1,
 1277 let
 1278

$$d_i = |\tilde{x}_i^{(m)}(t)|, \quad d_{\min} = \min_{1 \leq i \leq N} d_i, \quad d_{\max} = \max_{1 \leq i \leq N} d_i,$$

1279 and recall $W \in \mathbb{S}_{++}^N$ has spectrum $\lambda_{\min}(W) \leq \dots \leq \lambda_{\max}(W)$. Then the instantaneous filtered matrix
 1280 $\rho_t = D_t W D_t$ is SPD and its condition number satisfies
 1281

$$\kappa(\rho_t) = \frac{\lambda_{\max}(\rho_t)}{\lambda_{\min}(\rho_t)} \leq \frac{d_{\max}^2}{d_{\min}^2} \cdot \frac{\lambda_{\max}(W)}{\lambda_{\min}(W)}.$$

1296 *Proof.* From Theorem 1, $\rho_t^{(m)}$ is congruent to the SPD matrix W , so it remains SPD, hence all eigenvalues
 1297 are strictly positive and the condition number is well-defined.
 1298

1299 From the Rayleigh–Ritz characterization, for any unit vector v ,
 1300

$$1301 \quad v^\top \rho_t v = (D_t v)^\top W (D_t v) \\ 1302 \quad \in [\lambda_{\min}(W) \|D_t v\|^2, \lambda_{\max}(W) \|D_t v\|^2].$$

1303 Since $d_{\min} \leq d_i \leq d_{\max}$ for all i , and $\|v\| = 1$, one checks
 1304

$$1306 \quad d_{\min}^2 \leq \|D_t v\|^2 \leq d_{\max}^2.$$

1308 Hence every eigenvalue δ of $\rho_t^{(m)}$ satisfies
 1309

$$1310 \quad d_{\min}^2 \lambda_{\min}(W) \leq \delta \leq d_{\max}^2 \lambda_{\max}(W).$$

1311 Writing $\delta_{\min} = \lambda_{\min}(\rho_t)$ and $\delta_{\max} = \lambda_{\max}(\rho_t)$, the above yields
 1312

$$1313 \quad \delta_{\min} \geq d_{\min}^2 \lambda_{\min}(W), \quad \delta_{\max} \leq d_{\max}^2 \lambda_{\max}(W).$$

1315 Therefore

$$1316 \quad \kappa(\rho_t) = \frac{\delta_{\max}}{\delta_{\min}} \leq \frac{d_{\max}^2 \lambda_{\max}(W)}{d_{\min}^2 \lambda_{\min}(W)} = \frac{d_{\max}^2}{d_{\min}^2} \cdot \frac{\lambda_{\max}(W)}{\lambda_{\min}(W)},$$

1318 which completes the proof. \square

1319 **Theorem 9** (Gershgorin bounds on ρ_t). Let $\rho_t \in \mathbb{S}_{++}^N$ as above, and define
 1320

$$1321 \quad a_{ii} = \rho_{ii} = W_{ii} d_{i,t}^2, \quad R_i = \sum_{j \neq i} |W_{ij}| d_i d_j.$$

1324 Then every eigenvalue δ_i of ρ_t satisfies
 1325

$$1326 \quad \delta_i \in \bigcup_{i=1}^N D(a_{ii}, R_i) = \bigcup_{i=1}^N \{z : |z - W_{ii} d_i^2| \leq d_i \sum_{j \neq i} |W_{ij}| d_j\}.$$

1328 In particular, since W is SPD and its diagonal entries $W_{ii} > 0$, each disc lies strictly in the right-half plane
 1329 and hence ρ_t has all positive eigenvalues.
 1330

1331 Moreover, letting

$$1332 \quad d_{\min} = \min_i d_i, \quad d_{\max} = \max_i d_i, \quad r_{\max} = \max_i \sum_{j \neq i} |W_{ij}|,$$

1334 we obtain the simplified bound

$$1335 \quad \delta_i \in [d_{\min}^2 \min_i W_{ii} - d_{\max}^2 r_{\max}, d_{\max}^2 \max_i W_{ii} + d_{\max}^2 r_{\max}].$$

1338 *Proof.* By Gershgorin’s circle theorem, each eigenvalue δ of $\rho = \rho_t$ lies in at least one disc
 1339

$$1340 \quad \{z : |z - \rho_{ii}| \leq \sum_{j \neq i} |\rho_{ij}|\}, \quad \rho_{ii} = W_{ii} d_i^2, \quad \rho_{ij} = W_{ij} d_i d_j.$$

1342 Thus

$$1343 \quad |\delta_i - W_{ii} d_i^2| \leq d_i \sum_{j \neq i} |W_{ij}| d_j.$$

1345 Since W is SPD, $W_{ii} = \sum_k \lambda_k u_{k,i}^2 > 0$ and each $d_i > 0$. Hence the real parts of all discs lie strictly to the
 1346 right of zero, proving $\delta_i > 0$.
 1347

1348 For the coarse bound, note

$$1349 \quad W_{ii} \geq \min_i W_{ii}, \quad \sum_{j \neq i} |W_{ij}| \leq r_{\max}, \quad d_{\min} \leq d_{i,t} \leq d_{\max},$$

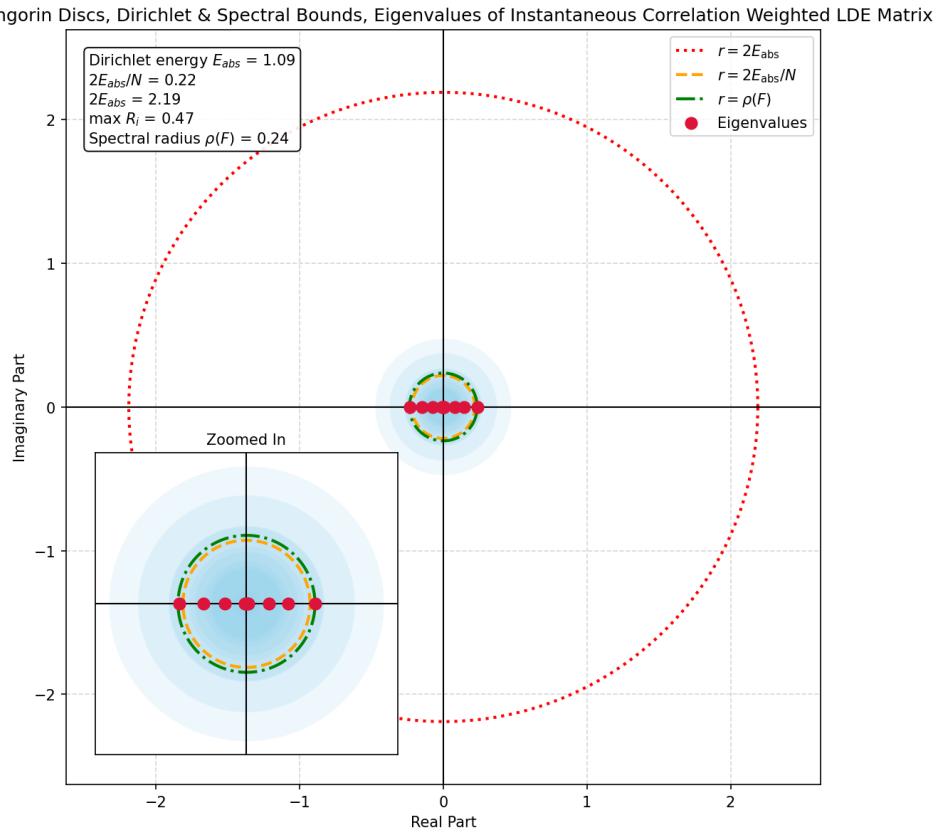


Figure 8: Main panel: Light-blue shaded circles show the Gershgorin discs of the Hadamard-weighted matrix $F = C \circ H$, each centered at the origin with radius $R_i = \sum_{j \neq i} |C_{ij}|(x_i - x_j)^2$. Red dotted circle marks the upper Dirichlet-energy bound $r = 2E_{\text{abs}}$, orange dashed circle marks the average-energy bound $r = 2E_{\text{abs}}/N$, and green dash-dot circle marks the spectral radius $r = \rho(F)$. Red crosses are the eigenvalues of F , all lying within the union of the Gershgorin discs. We can see how the spectral radius is upper bounded by the Dirichlet Energy.

Zoomed In: A close-up around the origin shows the small Gershgorin discs, the tight Dirichlet lower bound $2E_{\text{abs}}/N$, and the spectral-radius circle relative to the cluster of eigenvalues, we clearly see how $\max_i R_i$ strictly exceeds $2E_{\text{abs}}/N$ yet remains below $2E_{\text{abs}}$.

So every disc collapses to the real interval (as all eigenvalues are real):

$$\begin{aligned} D(W_{ii}d_i^2, d_i \sum_{j \neq i} |W_{ij}| d_j) \\ \subset [d_{\min}^2 \min_i W_{ii} - d_{\max}^2 r_{\max}, d_{\max}^2 \max_i W_{ii} + d_{\max}^2 r_{\max}]. \end{aligned}$$

Therefore all eigenvalues δ_i lie in the stated interval. \square

Proposition 1. Let $x_1(t), \dots, x_N(t)$ be distinct real numbers,

$$J_{ij}(t) = (x_i(t) - x_j(t))^2, \quad J_{ii}(t) = 0,$$

and let $W \in \mathbb{R}^{N \times N}$ be any symmetric matrix with $W_{ij} \neq 0$ for all $i \neq j$. Define the Hadamard product

$$\Omega(t) = J(t) \circ W, \quad \Omega(t)_{ij} = J(t)_{ij} W_{ij}.$$

Then $\Omega(t)$ is symmetric and invertible, yet $\text{tr}(\Omega(t)) = 0$, so $\Omega(t)$ cannot be positive (semi-)definite.

Proof. First, symmetry of $\Omega(t)$ follows immediately from symmetry of $J(t)$ and W , since

$$\Omega(t)_{ij} = J_{ij}(t) W_{ij} = J_{ji}(t) W_{ji} = \Omega(t)_{ji}.$$

1404 Invertibility is guaranteed by the Hadamard rank-lifting argument: because W has full support, $\det(D \circ C) \neq 0$
 1405 for generic such W , hence $\text{rank}(\Omega(t)) = N$.

1406
 1407 Next, compute the trace:

1408
 1409
$$\text{tr}(\Omega(t)) = \sum_{i=1}^N \Omega(t)_{ii} = \sum_{i=1}^N J(t)_{ii} W_{ii} = \sum_{i=1}^N 0 \cdot W_{ii} = 0.$$

 1410
 1411

1412 Finally, if M were positive semi definite then all its eigenvalues $\{\lambda_k\}$ would satisfy $\lambda_k \geq 0$. But their sum is

1413
 1414
$$\sum_{k=1}^N \lambda_k = \text{tr}(M) = 0,$$

 1415
 1416

1417 forcing each $\lambda_k = 0$, contradicting invertibility. Hence M has both positive and negative eigenvalues and is
 1418 indefinite. \square

1419
 1420 **Theorem 10** (Spectral bounds for LDE weighting). Let $C \in \mathbb{R}^{N \times N}$ be a real symmetric, full-rank matrix
 1421 with eigenvalues

1422
$$\lambda_{\min}(C) \leq \dots \leq \lambda_{\max}(C).$$

1423 At time t , let $x(t) \in \mathbb{R}^N$ and define the instantaneous squared-difference matrix

1424
 1425
$$J_{ij}(t) = (x_i(t) - x_j(t))^2, \quad J_{ii}(t) = 0,$$

1426 and form the Hadamard-weighted matrix

1427
 1428
$$\Omega(t) = W \circ J(t), \quad \Omega_{ij}(t) = W_{ij} J_{ij}(t).$$

1429 Set

1430
 1431
$$m_t = \min_{i \neq j} |x_i(t) - x_j(t)|, \quad M_t = \max_{i \neq j} |x_i(t) - x_j(t)|,$$

 1432

1433 and let $\delta_{1,t} \leq \dots \leq \delta_{N,t}$ be the eigenvalues of $\Omega(t)$. Then for each $i = 1, \dots, N$,

1434
 1435
$$m_t^2 \lambda_{\min}(W) \leq \delta_{i,t} \leq M_t^2 \lambda_{\max}(W).$$

1436
 1437 *Proof.* Let $v \in \mathbb{R}^N$ be any unit vector, $\|v\| = 1$. The Rayleigh quotient of $\Omega(t)$ at v is

1438
 1439
$$v^\top \Omega(t) v = \sum_{i,j} W_{ij} (x_i(t) - x_j(t))^2 v_i v_j.$$

 1440
 1441

1442 Since for all $i \neq j$ we have $m_t^2 \leq (x_i(t) - x_j(t))^2 \leq M_t^2$, it follows that

1443
 1444
$$m_t^2 \sum_{i,j} W_{ij} v_i v_j \leq v^\top \Omega(t) v \leq M_t^2 \sum_{i,j} W_{ij} v_i v_j.$$

 1445

1446 But $\sum_{i,j} W_{ij} v_i v_j = v^\top W v$, and by the Rayleigh–Ritz theorem

1447
 1448
$$\lambda_{\min}(W) \leq v^\top W v \leq \lambda_{\max}(W).$$

 1449

1450 Combining these inequalities gives

1451
 1452
$$m_t^2 \lambda_{\min}(W) \leq v^\top \Omega(t) v \leq M_t^2 \lambda_{\max}(W).$$

1453 Finally, the Courant–Fischer characterization implies that each eigenvalue $\delta_{i,t}$ of $\Omega(t)$ lies within the range of
 1454 $v^\top \Omega(t) v$ over unit v . Therefore

1455
 1456
$$m_t^2 \lambda_{\min}(W) \leq \delta_{i,t} \leq M_t^2 \lambda_{\max}(W), \quad i = 1, \dots, N,$$

 1457

as claimed. \square

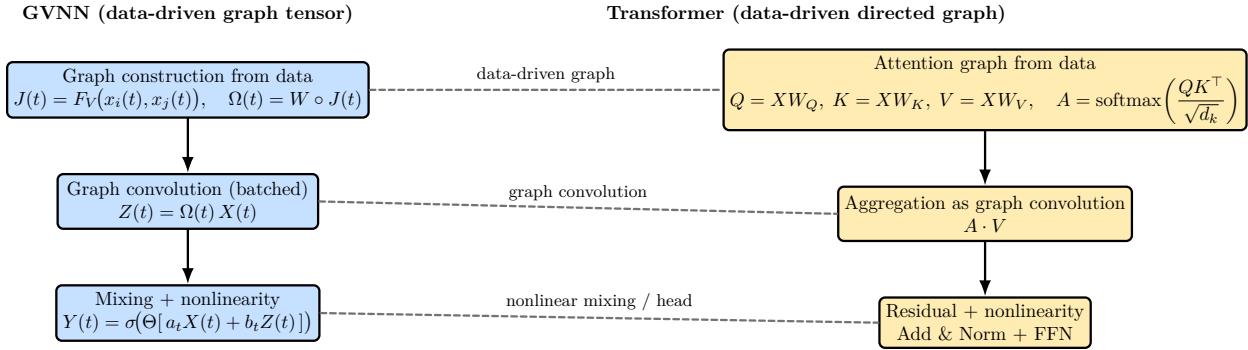


Figure 9: Both architectures construct a graph from the input and then convolve over it. GVNN forms a data-driven adjacency tensor $\Omega(t) = W \circ J(t)$ and performs $Z(t) = \Omega(t)X(t)$ before a learned mixing and nonlinearity $Y(t) = \sigma(\Theta[a_tX(t) + b_tZ(t)])$. A Transformer builds a directed, data-driven attention graph $A = \text{softmax}(QK^\top / \sqrt{d_k})$ and aggregates via $A \cdot V$, followed by residual connections and a feed-forward network.

A.11 RELATION TO LORA AND HiRA ADAPTERS

Parameter-efficient fine-tuning (PEFT) adapts large models by training only a small number of parameters. **LoRA** (Hu et al., 2021) achieves this by expressing the update as a low-rank factorization, $\Delta W = AB$ with $\text{rank}(\Delta W) \leq r$, trading full expressiveness for efficiency. **HiRA** (Huang et al., 2025) increases expressiveness without sacrificing PEFT by applying a Hadamard (elementwise) product between a high-rank base and a low-rank factor:

$$\Delta W = W_0 \odot (AB), \quad \text{with } \text{rank}(\Delta W) \leq \text{rank}(W_0) \text{ rank}(AB).$$

This allows the update to attain a much higher effective rank while keeping trainable parameters comparable to LoRA.

GVNNs leverage the same algebraic idea. At each time step, an instantaneous (often low-rank) connectivity J_t is fused with a stable, typically high-rank support W via a Hadamard product, $\Omega_t = W \odot J_t$. This multiplicative fusion boosts the rank and stabilizes Ω_t , ensuring a more expressive operator even when J_t is rank-deficient.

In fact, the support W need not be fixed. In analogy to LoRA, one can parameterize W itself as

$$W = W_{\text{base}} + \Delta W, \quad \Delta W = AB,$$

where W_{base} is an initialization (e.g., long-term correlation) and ΔW is a low-rank adapter. This formulation enables *efficient adaptation of the support* while avoiding the cost of learning a full $N \times N$ matrix. Alternatively, in a HiRA-style design, we may define

$$W = W_{\text{base}} \odot (AB),$$

so that the expressive capacity of the Hadamard product is preserved even when AB is low-rank.

This perspective shows that the Hadamard support in GVNNs can itself be learned using LoRA/HiRA adapters: low-rank updates capture task-specific variations, while the Hadamard structure ensures that these updates interact multiplicatively with instantaneous connectivities J_t . In practice, this allows GVNNs to scale to large graphs without incurring prohibitive parameter costs, while retaining the flexibility to adapt supports across datasets and tasks.

A.12 TRANSFORMERS ARE GRAPH VARIATE NEURAL NETWORKS (AND VICE-VERSA)

Recent work has suggested that the transformer model is in fact a graph neural network that has ‘*won the hardware lottery*’. This suggests that we can, in fact, go the other direction and build better Graph Neural Network architectures by leveraging ideas from the transformer model.

The following discussion will demonstrate that the transformer architecture is in fact not only a Graph Neural Network but in fact a *Graph Variate Neural Network*, i.e one that’s core operation is an input dependent graph convolution. In fact, the transformer block can be reinterpreted as a GVNN with a static graph variable

1512 tensor (i.e the attention matrix replicated over all T) just with differences in normalization and Linear Weight
 1513 projections.
 1514

1515 A.12.1 TRANSFORMER SELF-ATTENTION AS DIRECTED DATA-DRIVEN GRAPH CONVOLUTION

1517 Given token features $X \in \mathbb{R}^{T \times d}$, the Transformer computes *queries*, *keys*, and *values*

$$1518 \quad Q = XW_Q, \quad K = XW_K, \quad V = XW_V, \quad (15)$$

1520 then forms a *row-stochastic, directed* attention matrix

$$1521 \quad A = \text{softmax}\left(\frac{QK^\top}{\sqrt{d_k}}\right) \in \mathbb{R}^{T \times T}, \quad (16)$$

1524 and aggregates values via

$$1525 \quad \text{Attn}(X) = AV \in \mathbb{R}^{T \times d_v}. \quad (17)$$

1526 Equations equation 16–equation 17 implement *graph convolution on a data-driven, directed graph* whose
 1527 adjacency is A : each row of A defines outgoing edges from a token to all others with weights given by the
 1528 softmax of similarities. Residual connections and a position-wise feed-forward network complete the encoder
 1529 block.

1530 **Multi-head attention.** For H heads with $A^{(h)}$ and $V^{(h)}$, the aggregation is $\text{Concat}_h(A^{(h)}V^{(h)})W_O$, a
 1531 parallel sum of graph convolutions on H distinct data-driven graphs.

1533 A.12.2 GVNN AS DATA-DRIVEN GRAPH CONVOLUTION

1535 GVNN constructs a *graph-variate tensor* via two ingredients:

1537 1. A **node-wise similarity/interaction** functional $F_V : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ producing

$$1539 \quad J_{ij}(t) = F_V(x_i(t), x_j(t)) \Rightarrow J(t) \in \mathbb{R}^{N \times N}. \quad (18)$$

1540 Examples include the LDE and instantaneous correlation.

1541 2. A **stable support** $W \in \mathbb{R}^{N \times N}$ (fixed or learned) that encodes long-term topology or sparsity. GVNN
 1542 forms the pointwise (Hadamard) product

$$1544 \quad \Omega(t) = W \circ J(t), \quad (19)$$

1545 which gates/filters instantaneous interactions by the support.

1547 Given $\Omega(t)$, GVNN performs a batched graph convolution of the current signal:

$$1549 \quad Z(t) = \Omega(t)X(t) \in \mathbb{R}^N. \quad (20)$$

1550 A compact GVNN layer then mixes the original and aggregated signals followed by a nonlinearity:

$$1552 \quad Y(t) = \sigma\left(\Theta[a_t X(t) + b_t Z(t)]\right), \quad (21)$$

1554 where $\Theta \in \mathbb{R}^{N \times N}$ is a learned linear map (or small MLP), and a_t, b_t are (optionally learned) scalar/broadcast
 1555 coefficients. Stacking L layers yields $H^{(l)}(t)$ with $H^{(0)}(t) = X(t)$ and

$$1557 \quad \Omega^{(l)}(t) = W \circ J^{(l)}(t), \quad J_{ij}^{(l)}(t) = F_V(h_i^{(l-1)}(t), h_j^{(l-1)}(t)).$$

1559 **Multi-node function convolution.** Similar to multi-head attention one may aggregate convolutions with
 1560 different node functions and stable supports.