Efficient Verified Machine Unlearning for Distillation

Yijun Quan, Zushu Li, and Giovanni Montana

Warwick Manufacturing Group
University of Warwick
CV4 7AL
{yijun.quan, z.li.19, g.montana}@warwick.ac.uk

Abstract

Growing data privacy demands, driven by regulations like GDPR and CCPA, require machine unlearning methods capable of swiftly removing the influence of specific training points. Although verified approaches like SISA, using data slicing and checkpointing, achieve efficient unlearning for single models by reverting to intermediate states, these methods struggle in teacher-student knowledge distillation settings. Unlearning in the teacher typically forces costly, complete student retraining due to pervasive information propagation during distillation. Our primary contribution is PURGE (Partitioned Unlearning with Retraining Guarantee for Ensembles), a novel framework integrating verified unlearning with distillation. We introduce constituent mapping and an incremental multi-teacher strategy that partitions the distillation process, confines each teacher constituent model's impact to distinct student data subsets, and crucially maintains data isolation. The PURGE framework substantially reduces retraining overhead—requiring only partial student updates—when teacher-side unlearning occurs. We provide both theoretical analysis, quantifying significant speed-ups in the unlearning process, and empirical validation on multiple datasets, demonstrating that PURGE achieves these efficiency gains while maintaining student accuracy comparable to standard baselines.

1 Introduction

Growing data privacy demands, driven by a global wave of data privacy regulations exemplified by the General Data Protection Regulation (GDPR) and California Consumer Privacy Act (CCPA), grant users the right to retract their data from machine learning models. Fulfilling these rights is critical, as models can potentially memorize training data [10, 4], necessitating alterations to trained models upon data retraction requests. However, naively retraining modern deep neural networks, which can contain billions of parameters, from scratch after each data removal is computationally prohibitive and economically unviable, especially given the potential frequency of such requests. This necessitates efficient machine unlearning techniques. Furthermore, many applications demand *verified* unlearning methods that formally guarantee the complete removal of data influence, a property often lacking in approximate or model-specific approaches which may only offer heuristic or probabilistic removal guarantees[25, 32, 19]. The challenge lies in developing methods that are both computationally efficient and provably effective in removing data influence.

The Sharded, Isolated, Sliced, and Aggregated (SISA) framework [1] offers a prominent solution for achieving verified, model-agnostic unlearning. SISA partitions the training data into isolated shards and trains an ensemble of constituent models, where each model learns exclusively from its assigned shard. Training proceeds incrementally on data 'slices' within each shard, with intermediate model checkpoints saved after processing each slice. This inherent isolation ensures that unlearning a data point typically requires only reverting the single affected constituent model to a relevant prior state

and partially retraining it on a small fraction of data. This mechanism provides exact unlearning guarantees (matching the model distribution as if trained without the removed data) while offering significant efficiency gains over full retraining in standard single-model scenarios.

While SISA is powerful for individual models, adapting verified unlearning effectively to more complex learning paradigms like Knowledge Distillation (KD) poses unique, previously unaddressed challenges. KD is crucial in modern machine learning, enabling the deployment of state-of-the-art capabilities by transferring knowledge from large, computationally intensive 'teacher' models (often trained on vast datasets) to smaller, more efficient 'student' models suitable for resource-constrained environments or low-latency applications [15, 5, 26]. During this distillation process, however, information about the teacher's training data can leak and propagate pervasively throughout the student network [24]. Consequently, even if SISA's partitioning and checkpointing are applied independently to both teacher and student ensembles, unlearning data from the teacher side forces costly, complete retraining of the *entire* student network. This occurs because all student constituent models are exposed to influence derived from the original, complete teacher ensemble during initial training, fundamentally breaking the data isolation necessary for efficient unlearning when the teacher model is updated. This critical issue negates SISA's efficiency benefits within the coupled teacher-student system, hindering the practical application of verified unlearning in common KD pipelines.

To address this critical gap, we propose PURGE (Partitioned Unlearning with Retraining Guarantee for Ensembles), a novel framework specifically designed for efficient and verified unlearning within the KD paradigm, focusing particularly on the challenge of teacher-side updates. The PURGE framework integrates SISA with KD by introducing constituent mapping, where each teacher constituent model's influence is restricted to a dedicated subset of student constituent models, and an incremental multiteacher strategy for managing the distillation flow within student shards. This structure crucially maintains data isolation during the distillation phase itself, preventing the cross-model information propagation that plagues naive SISA applications in KD. PURGE enables efficient student unlearning: only a small, targeted fraction of the student network needs retraining when teacher data is removed, thereby restoring the efficiency promise of SISA for the entire system. Evaluated on both image classification and sentiment analysis tasks using public datasets, including MNIST[8], SVHN[12], CIFAR-100[20] and SST5[28], our proposed PURGE delivers significant speed-ups over SISA while preserving model performance across various conditions.

Our key contributions are: (1) the first framework, to our knowledge, providing verified unlearning specifically tailored for distillation scenarios involving teacher updates; (2) the novel mapping and incremental multi-teacher mechanism designed to preserve data isolation during distillation; (3) theoretical analysis quantifying the significant retraining speedups achieved by our method; and (4) empirical validation on multiple datasets demonstrating substantial practical efficiency gains without sacrificing student predictive performance compared to relevant baselines.

2 Related Work

Machine unlearning aims to efficiently remove the influence of specific data points from trained models, driven largely by data privacy regulations and the need to correct data errors. Broadly, approaches can be categorized into (1) approximate unlearning and (2) exact (or verified) unlearning.

Approximate unlearning often rely on heuristics such as proposing unlearning as learning with negative updates [3], using influence functions or Newton updates [13], model scrubbing [11], or leveraging connections to differential privacy [27] to estimate and counteract the contribution of data points to be removed. While potentially faster or applicable in specific settings (e.g., convex models [13, 27]), these methods typically lack formal guarantees regarding the complete removal of data influence for general deep learning models, and therefore may fall short of meeting the strict requirements of certain data privacy regulations.

Verified unlearning methods, in contrast, aim to produce a model state identical in distribution to one trained without the removed data. The Sharded, Isolated, Sliced, and Aggregated (SISA) framework [1] is a leading approach in this category. As outlined in Section 1, SISA achieves verified, model-agnostic unlearning through data partitioning (sharding), incremental training on data slices, and checkpointing, enabling efficient retraining of only isolated constituent models when data is removed.

While powerful, the architectural assumptions of SISA mean its effective application often requires adaptation for specific machine learning paradigms beyond standard supervised learning on independent data. For instance, significant research has explored adapting SISA for Federated Learning (FL), addressing challenges related to decentralized data and communication constraints [29]. Similarly, applying SISA to Graph Neural Networks (GNNs) necessitates handling graph structure dependencies [6], and adaptations exist for non-differentiable models like random forests where partitioning applies to the model structure itself [2]. Further demonstrating this need, Kumar et al. adapted SISA principles for large NLP models by retraining only lightweight adapter layers within shards to manage the high computational and memory costs [21]. This pattern highlights that achieving efficient verified unlearning often demands tailored solutions that respect the constraints and information flow of the target learning paradigm.

Knowledge Distillation (KD) presents another such paradigm with unique challenges for unlearning. As discussed, KD transfers knowledge from a teacher to a student model, a process crucial for model compression and deployment. However, this knowledge transfer intrinsically creates dependencies: information about the teacher's training data can leak to the student [24], complicating unlearning. Research addressing unlearning specifically within KD is sparse and has focused on approximate methods or student-side updates. For instance, SCRUB [22] trains a new student model to selectively "disobey" the original teacher on data intended for forgetting, offering no formal unlearning guarantees and leaving the original teacher model unchanged. RKLD [30] uses a supposedly "clean" reference teacher model to guide the original model (acting as a student) via reverse KL divergence to forget specific information, again lacking formal verification and relying on the availability of a suitable reference model. Other related works also utilize KD or fine-tuning primarily for approximate unlearning speedups on the student side [18, 17]. To our knowledge, no existing method provides efficient, verified unlearning directly applicable to the teacher model within a KD pipeline using SISA's partitioning principles. Thus, the most direct verified approach, applying SISA independently to both ensembles, fails for teacher-side unlearning, as information propagation during initial distillation forces costly full retraining of the student network whenever the teacher model is updated.

Our work, PURGE, directly addresses this gap by proposing the first SISA-based framework, to our knowledge, specifically designed for efficient and verified unlearning in KD, particularly handling teacher-side updates. Unlike approximate methods [3, 13, 11, 27, 22, 30, 18, 17], PURGE provides exact unlearning guarantees inherited from SISA. Critically, unlike the naive application of SISA to KD, and distinct from prior KD-unlearning techniques that focus on student retraining or require reference models, PURGE employs constituent mapping and an incremental multi-teacher distillation strategy (detailed in Section 3) to maintain data isolation during the distillation process while preserving student model performance. This structural modification prevents the information propagation problem and enables efficient, partial retraining of the student network when the teacher unlearns, making verified unlearning practical in teacher-student pipelines.

3 Methodology

The effectiveness of the SISA framework comes from the data isolation introduced by making each constituent model only trained on its corresponding shard without access to data in other shards. Such isolation is broken when the teacher network is used to train the student network in the standard distillation setup described previously. By using the teacher network as an entirety (providing a single supervisory signal derived from the full teacher ensemble), every constituent model of the student network gains indirect access to information influenced by all the data used to train the teacher network. As a result, any change in the upstream teacher network, such as unlearning a data point, necessitates updates that propagate to every downstream student constituent model, mandating the full, costly retraining of the student network. Clearly, the key to addressing this problem and restoring unlearning efficiency is to maintain isolation between the influence of different teacher data shards within the student network's training process as well. Thus, we propose a student-teacher constituent mapping strategy designed to isolate the influence of data associated with specific teacher constituent models to only a limited subset of student constituent models.

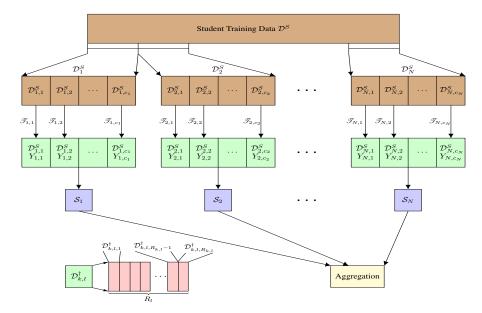


Figure 1: Overview of the proposed framework (PURGE) integrating SISA with knowledge distillation for efficient, verified unlearning. The structure maintains data isolation during distillation, enabling efficient student retraining upon teacher updates. Key steps: (1) Sharding: Student data \mathcal{D}^S is partitioned into N shards (\mathcal{D}_k^S) , each assigned to a student constituent model (\mathcal{S}_k) . (2) Mapping: Each \mathcal{S}_k is mapped to a distinct teacher ensemble $\mathscr{T}_k = \{\mathcal{T}_{k,1},...,\mathcal{T}_{k,c_k}\}$. (3) Incremental Distillation: The student shard \mathcal{D}_k^S is processed in c_k sequential chunks $(\mathcal{D}_{k,l}^S)$. Crucially, soft labels $(\mathcal{Y}_{k,l})$ for chunk l are generated only by an incrementally growing teacher subensemble $\mathscr{T}_{k,l} = \bigcup_{i \in [l]} \mathcal{T}_{k,i}$, limiting information propagation from the full teacher ensemble. (4) SISA Slicing & Training: Each resulting data-label chunk $\mathcal{D}_{k,l}^{\dagger} = [\mathcal{D}_{k,l}^S, Y_{k,l}]$ is further divided into R_l slices $(\mathcal{D}_{k,l,j}^{\dagger})$. \mathcal{S}_k trains incrementally on these slices using standard SISA checkpointing. (5) Aggregation: Final predictions are aggregated from all trained student constituent models $\{\mathcal{S}_k\}$. This design ensures that unlearning affecting teacher $\mathcal{T}_{k,i}$ only requires partial retraining of the corresponding student \mathcal{S}_k .

3.1 The PURGE framework

The PURGE framework maintains the data isolation required for efficient unlearning within the distillation process by implementing a strategy based on mapping specific teacher constituent models to specific student constituent models. This prevents the problematic information propagation identified in Section 2. Figure 1 illustrates the PURGE framework.

We consider a setup with M teacher constituent models, $\{\mathcal{T}_1, \mathcal{T}_2, \dots, \mathcal{T}_M\}$, and N student constituent models, $\{\mathcal{S}_1, \mathcal{S}_2, \dots, \mathcal{S}_N\}$, where M and N are not necessarily equal. Our core idea within PURGE is to partition the set of teacher constituent models into N disjoint ensembles, $\mathcal{T}_1, \dots, \mathcal{T}_N$, such that each student constituent model \mathcal{S}_k learns exclusively from the teachers in its assigned ensemble \mathcal{T}_k . Let $\mathcal{T}_k = \{\mathcal{T}_{k,1}, \mathcal{T}_{k,2}, \dots, \mathcal{T}_{k,c_k}\}$ be the ensemble assigned to \mathcal{S}_k , containing c_k teacher constituent models (this number can vary per student). Crucially, each teacher constituent model \mathcal{T}_m belongs to exactly one student's teacher ensemble: $\bigcap_{k \in [N]} \mathcal{T}_k = \emptyset$ and $\bigcup_{k \in [N]} \mathcal{T}_k = \{\mathcal{T}_1, \dots, \mathcal{T}_M\}$. This strict mapping ensures that if unlearning affects a single teacher constituent model $\mathcal{T}_{k,i}$, only the corresponding student constituent model \mathcal{S}_k will potentially need retraining.

To implement the distillation under this mapping, we first follow SISA by dividing the student dataset \mathcal{D}^S into N disjoint shards $\{\mathcal{D}_1^S,\dots,\mathcal{D}_N^S\}$ $\{\cup_{k\in[N]}\mathcal{D}_k^S=\mathcal{D}^S,\cap_{k\in[N]}\mathcal{D}_k^S=\emptyset\}$, where shard \mathcal{D}_k^S is used for training \mathcal{S}_k . The PURGE framework then introduces one further level of partitioning (Chunking) specific to its design and applies SISA's Slicing methodology within these chunks:

1. **Chunking:** Each student data shard \mathcal{D}_k^S is further divided into c_k ordered, disjoint data chunks $\{\mathcal{D}_{k,1}^S, \dots, \mathcal{D}_{k,c_k}^S\}$, where c_k is the number of teacher constituent models mapped to \mathcal{S}_k .

- 2. Incremental Multi-Teacher Distillation: Soft labels for training \mathcal{S}_k are generated chunk by chunk using progressively larger subensembles of \mathscr{T}_k . For the l^{th} chunk $\mathcal{D}_{k,l}^S$, the soft label set $Y_{k,l}$ is generated using only the first l teachers in the assigned ensemble: $Y_{k,l} = \mathscr{T}_{k,l}(\mathcal{D}_{k,l}^S)$, where $\mathscr{T}_{k,l} = \bigcup_{i \in [l]} \mathcal{T}_{k,i}$. This incremental approach further limits the scope of influence of each individual teacher constituent model $\mathcal{T}_{k,i}$ primarily to chunks $l \geq i$.
- 3. **Slicing:** Each combined data and soft-label pair chunk, denoted $\mathcal{D}_{k,l}^{\dagger} = [\mathcal{D}_{k,l}^{S}, Y_{k,l}]$, is then further divided into $R_{k,l}$ disjoint slices $\{\mathcal{D}_{k,l,1}^{\dagger}, \ldots, \mathcal{D}_{k,l,R_{k,l}}^{\dagger}\}$ $\{\cup_{j \in [R_{k,l}]} \mathcal{D}_{k,l,j}^{\dagger} = \mathcal{D}_{k,l}^{\dagger}, \cap_{j \in [R_{k,l}]} \mathcal{D}_{k,l,j}^{\dagger} = \emptyset\}$, analogous to standard SISA slicing.

This hierarchical structure within PURGE (shards \rightarrow chunks \rightarrow slices) allows for fine-grained checkpointing and efficient unlearning. The student constituent model \mathcal{S}_k is trained incrementally over both chunks and slices, following the SISA principle. Training starts with the first slice of the first chunk $(\mathcal{D}_{k,1,1}^{\dagger})$ from an initial state $\mathcal{S}_{k,0}$. The model state is checkpointed after completing training for each slice. Let $\mathcal{S}_{k,l,j}$ denote the model state after processing slice j of chunk l. To obtain $\mathcal{S}_{k,l,j}$, the preceding state (either $\mathcal{S}_{k,l,j-1}$ if j>1, or $\mathcal{S}_{k,l-1,R_{k,l-1}}$ if j=1,l>1) is trained for $e_{l,j}$ epochs using the cumulative data processed so far, which includes all data from chunks 1 to l-1 plus slices 1 to j of chunk l: $(\bigcup_{i=1}^{l-1} \mathcal{D}_{k,i}^{\dagger}) \cup (\bigcup_{j=1}^{l} \mathcal{D}_{k,l,j}^{\dagger})$. The loss for a data-label pair [d,y] from a slice is typically a standard distillation loss, $\mathcal{L}(\mathcal{S}_k(d),y)$. This process continues until the final student constituent model $\mathcal{S}_k = \mathcal{S}_{k,c_k,R_{k,c_k}}$ is obtained after processing all chunks and slices derived from shard \mathcal{D}_k^S . All intermediate states $\mathcal{S}_{k,l,j}$ are stored to facilitate the fast unlearning process provided by PURGE, as detailed in Section 3.2.

Finally, after all student constituent models $\{S_1, \ldots, S_N\}$ are trained via the PURGE framework, a straightforward, non-trainable aggregation function (e.g., averaging the output predictions or logits) is applied during inference to produce the overall output of the student network S. To enhance clarity for the reader, we present the PURGE training procedure in pseudo-code in Appendix A.1.

3.2 Unlearning process

The PURGE framework provides mechanisms for efficiently handling unlearning requests targeting either the student's training data or the teacher's training data. A detailed discussion on handling simultaneous unlearning requests for both is provided in the Appendix A.3.

Unlearning student data When a request involves removing a student data point d_u (and its corresponding teacher-generated soft label y_u) located in slice $\mathcal{D}_{k,l,j}^{\dagger}$, PURGE follows the standard SISA unlearning procedure for the affected student constituent model \mathcal{S}_k . The network state is reverted to the previously saved checkpoint $\mathcal{S}_{k,l,j-1}$ (the state before slice $\mathcal{D}_{k,l,j}^{\dagger}$ was first processed). Retraining then commences incrementally from this point onwards, using the modified data slice (excluding $[d_u, y_u]$) and all subsequent slices and chunks for that constituent model. This ensures that the unlearning process for student-side data inherits the efficiency benefits of the SISA framework, requiring only partial retraining of a single constituent model.

Unlearning teacher data A key challenge addressed by PURGE is handling unlearning requests for data used to train the teacher models. Suppose a data point d_v is removed from the training set originally used for a teacher constituent model $\mathcal{T}_{k,l}$ (which belongs to the ensemble \mathcal{T}_k mapped to student \mathcal{S}_k). The unlearning process within PURGE proceeds as follows:

- 1. The teacher constituent model $\mathcal{T}_{k,l}$ is updated to $\mathcal{T}'_{k,l}$ (presumably using SISA efficiently if the teacher also uses it).
- 2. All soft labels generated by teacher subensembles that included $\mathcal{T}_{k,l}$ must be updated. This affects chunks $l, l+1, \ldots, c_k$ for student \mathcal{S}_k . Specifically, the soft label sets $Y_{k,i}$ (for $i \in [l, c_k]$) need to be regenerated using the updated teacher $\mathcal{T}'_{k,l}$ within the respective subensembles $\mathcal{S}_{k,i}$. This results in updated data-label chunks $\mathcal{D}^{\dagger\prime}_{k,i}$ for $i \in [l, c_k]$.

- 3. The affected student constituent model S_k must revert its state. Since the distillation process for chunk l was the first to potentially use $T_{k,l}$, the student reverts to the state saved just before processing chunk l, which is $S_{k,l-1}$ (equivalent to $S_{k,l-1,R_{k,l-1}}$).
- 4. Student S_k resumes incremental training from chunk l onwards, using the regenerated data-label chunks $\mathcal{D}_{k,i}^{\dagger \prime}$ for $i \in [l, c_k]$ and their constituent slices. The final updated student constituent model is denoted S_k' .

This procedure ensures that the influence of the teacher's unlearned data d_v is removed from the student network S_k , while only requiring partial retraining of that single student constituent model. The corresponding pseudo-code can be found in Appendix A.1.

Efficiency analysis of teacher unlearning We analyze the efficiency gain of PURGE compared to a naive SISA application for teacher-side unlearning. In the naive case, as argued in Section 2, any teacher update requires retraining the entire student network. This takes time equivalent to training the SISA student ensemble from scratch, denoted $t_{\rm sisa}$. Assuming training time scales linearly with the total number of data points processed (epochs × dataset size), $t_{\rm sisa}$ is proportional to e'D, where $D = |\mathcal{D}^S|$ is the student dataset size and e' is the equivalent number of full-dataset epochs reflecting the total computational effort used for initial training.

For PURGE, only the affected constituent model \mathcal{S}_k retrains partially. We consider an idealized scenario with even distribution: N student constituent models, M teacher constituent models, c=M/N chunks per student shard, and r slices per chunk (total R=cr slices per shard). We assume each slice is trained for e_R epochs, where $e_R=\frac{2}{cr+1}e'$ relates the per-slice epochs to the equivalent full-training epochs e' based on total computational effort [1]. When unlearning affects teacher $\mathcal{T}_{k,l}$, \mathcal{S}_k retrains from chunk l onwards. The average number of slice-processing steps required, \bar{K} , averaging over which chunk $l \in [1,c]$ is affected, is derived in the Appendix and given by:

$$\bar{K} = \frac{e_R}{c} \sum_{i=0}^{c-1} \frac{(((ir+1) + cr)((c-i)r)}{2}$$
 (1)

The retraining time for PURGE, t_{PURGE} , is proportional to the number of slice-processing steps times the number of data points per slice $(\frac{D}{Ncr})$. Thus, $t_{\text{PURGE}} \propto \bar{K} \frac{D}{Ncr}$. The theoretical speed-up of PURGE over naive SISA is then:

$$\frac{t_{\rm sisa}}{t_{\rm PURGE}} = \frac{e'D}{\bar{K}\frac{D}{Ncr}} \tag{2}$$

Substituting $e_R = \frac{2}{cr+1}e'$ and the expression for \bar{K} (details in Appendix), this simplifies to:

$$\frac{t_{\rm sisa}}{t_{\rm PURGE}} = N \cdot \frac{6c^2r + 6c}{4c^2r + 3cr + 3c - r + 3} \tag{3}$$

As shown in the Appendix (Equation 10), the second factor is greater than 1 for all positive integers r and c. Therefore, PURGE provides a speed-up of at least $N \times$ compared to the naive SISA approach for teacher-side unlearning. Expressing this in terms of the total number of teacher constituent models M = Nc:

$$\frac{t_{\text{sisa}}}{t_{\text{PURGE}}} = M \cdot \frac{6cr + 6}{4c^2r + 3cr + 3c - r + 3}.$$
 (4)

This factor decreases as c (chunks per student) increases for fixed M and r. This implies that for a fixed number of teachers M, the speed-up is maximized when c is minimal (ideally c=1), which corresponds to having more student constituent models (N=M).

For unlearning request sent directly to the student side, the efficiency is determined by the total number of slices per shard, $R=c\cdot r$, the product of chunks (c) and slices per-chunk (r). In this case, the soft-labels do not require updates and the unlearning procedure follows the standard SISA approach. As a result, the expected unlearning cost for a single request can be analyzed as in SISA[1]: it is proportional to $\frac{2}{3}+\frac{1}{3R}$ times the cost of retraining the full shard. Therefore, increasing r leads to a larger R which in turn reduces the unlearning time for student-side requests. The speed-up approaches a maximum of of $1.5\times$ compared to a shard with no slicing. This introduces a trade-off between student-side unlearning speed and the teacher-side unlearning: a larger r will improves student-side unlearning speed but slows down teacher-side unlearning. Consequently, the optimal

Table 1: Datasets and model architectures used in the experiments.

Dataset	Type	Size	Classes	Model architecture
MNIST [8]	Image	70,000	10	2 Conv + 2 FC Layers
SVHN [12]	Image	630,420	10	2 Conv + 2 FC Layers
CIFAR-100 [20]	Image	60,000	100	ResNet50 [14]
SST5 [28]	Sentence	11,855	5	Qwen2.5-7B[31] & BERT[9]

choice of r depends on the expected ratio of student-side to teacher-side unlearning requests, which is application dependent.

The detailed derivations for Equations 1-4 are presented in the Appendix.

Rationale for incremental multi-teacher distillation A core component of PURGE is the incremental multi-teacher training within each student shard, where the subensemble $\mathcal{T}_{k,l}$ grows as training progresses through chunks $l=1,\ldots,c_k$. This ensures teacher $\mathcal{T}_{k,i}$'s influence is primarily limited to data processed from chunk i onwards. One might consider an alternative: using only a single, different teacher constituent model $\mathcal{T}_{k,l}$ to generate soft labels $Y_{k,l}^{\text{single}} = \mathcal{T}_{k,l}(\mathcal{D}_{k,l}^S)$ for each chunk l. Intuitively, this might seem to isolate influence even further.

However, regarding unlearning efficiency for teacher updates, this alternative offers no advantage. If teacher $\mathcal{T}_{k,l}$ requires unlearning, the student \mathcal{S}_k must still revert to state $\mathcal{S}_{k,l-1}$ and retrain from chunk l onwards, regardless of whether chunk l was trained using only $\mathcal{T}_{k,l}$ or the subensemble $\mathcal{T}_{k,l}$. The number of retraining steps remains the same, and since retraining time is dominated by model training rather than the (usually negligible) difference in inference time for generating soft labels (single vs. subensemble), the overall unlearning time is similar for both approaches.

Crucially, however, the incremental multi-teacher approach provides a more stable training process for the student constituent models. Learning sequentially from potentially diverse single teachers $(\mathcal{T}_{k,1}$, then $\mathcal{T}_{k,2}$, etc.) can introduce abrupt changes in the supervisory signal, destabilizing training. The incremental ensemble $\mathcal{T}_{k,l}$ smooths these transitions by gradually incorporating new teachers while retaining previous ones, leading to better convergence and performance, as demonstrated in our experiments (Section 4). Thus, the incremental multi-teacher strategy is adopted in PURGE.

Honest Service Provider Assumption Our proposed PURGE framework focus on providing verified unlearning guarantees in knowledge distillation settings, addressing unlearning requests that target either the teacher or the student model. When such an unlearning request occurs, the impacted constituent model is reverted to a previously saved checkpoint, before the influence of the removed data, and this data point is fully excluded from the subsequent training. This approach is both auditable and provable: assuming an honest service provider, the authority can audit the code to confirm the proper execution of PURGE training and unlearning, thereby ensuring verified unlearning. While these guarantees may not hold with a dishonest service provider, our proposed method is orthogonal to the methods enforcing the execution of the exact unlearning algorithms.

4 Experimental results

We conducted experiments on both image and sentiment classification tasks using the MNIST, SVHN, CIFAR-100 and SST5 (detailed in Table 1) to evaluate the effectiveness of PURGE. The image classification tasks were conducted on a machine equipped with one NVIDIA RTX 3090 GPU (24GB VRAM) while the sentiment classification task was conducted on a machine with 8 NVIDIA A100 GPUs (80GB VRAM each) to support the large number of BERT constituent models.

4.1 Unlearning speed evaluation

We first evaluate the speed-up PURGE provides to the student network when unlearning requests target the teacher network's data. Following the setup described in Section 3.2, we assume each slice is trained for the same number of epochs, e_R . This is related to the equivalent full-dataset training epochs e' by $e_R = \frac{2}{rc+1}e'$ [1], ensuring comparable total computation during initial training. For this experiment, we set e' = 120 and evaluate on the MNIST dataset. We measure the wall-clock

retraining time required for student networks trained using PURGE and compare it against a baseline representing a naive SISA application, where the student network must be fully retrained upon any teacher update. In both cases, the teacher network itself is assumed to use SISA, allowing its own updates to be efficient.

Figure 2 plots the student retraining time against the number of teacher-side unlearning requests processed. For simplicity, we refer to the baseline naive SISA approach as SISA. As our focus is the efficiency gain for student retraining provided by PURGE, the times shown exclude the retraining time of the teacher network itself (which is assumed efficient via SISA in both scenarios) and the inference time required by the teacher to generate updated soft labels. While PURGE's constituent mapping allows for faster soft label regeneration compared to the baseline (where the full teacher ensemble always contributes), this inference time is typically negligible compared to retraining time and is thus excluded from our comparison.

We configured the teacher network with M=32 constituent models. For the baseline SISA approach, where full student retraining is always required upon a teacher update, the student retraining time is independent of the number of student constituent models N. We thus use N=8 constituent models for the baseline measurement. For PURGE, we varied the number of student constituent models N from 1 to 32. We tested two configurations for the number of slices per chunk: r=1 and r=4. Note that while the theoretical analysis uses $e_R=\frac{2}{rc+1}e'$, our practical implementation uses $e_R=\lceil \frac{2}{rc+1}e'\rceil$. This ceiling function means PURGE might perform slightly more computation than the theoretical minimum, particularly for larger rc values (i.e., smaller N or larger r), potentially leading to minor deviations from the theoretical speed-up analysis derived using Equations (1-4). We simulated 100 sequential unlearning requests targeting randomly chosen teacher constituent models. For generality, we assume the teacher and student datasets are distinct ($\mathcal{D}_T \not\equiv \mathcal{D}_S$), so only teacher models and subsequently soft labels are updated, while the student dataset \mathcal{D}^S remains unchanged. Figure 2(a) shows the cumulative retraining time, and Figure 2(b) shows the measured average speed-up relative to the baseline SISA.

Clearly, for both r values, PURGE's retraining time decreases (and speedup increases) as the number of student constituent models N increases. With N = 32 (where c = M/N = 1), PURGE requires averaging $23.17 \pm$ 0.17 seconds to handle an unlearning request, achieving $\approx 32 \times$ speed-up over the baseline SISA, which requires averaging 737.14 ± 10.08 seconds for each unlearning request. The empirical average speed-up values in Figure 2(b) closely align with the theoretical prediction from Equation (4) (plotted as the red curve). Minor deviations are consistent with the use of the ceiling function for e_R , being slightly more noticeable for r=4 and small N (large c), as predicted.

Comparing the results for r=1 and r=4, we observe that a larger r (more slices per chunk) can lead to a slightly smaller speed-up when unlearning teacher data. This stems from the incremental training structure: re-

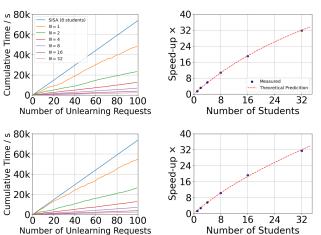


Figure 2: Speed comparison of the student network update process for 100 unlearning requests sent to the teacher network with 32 constituent models (M=32) on MNIST dataset. Top row: r=1; bottom row: r=4 slices per chunk. Left column: cumulative processing time. Right column: measured average speed-up over naive SISA (red curve follows Eq. 4).

training involves recomputing later slices more often (see Eq. 1), and with large r, these later slices incorporate more preceding data. Equation (4) confirms this dependency on r. It is important to note the trade-off: while larger r might slightly slow down student retraining for teacher unlearning requests, it simultaneously accelerates student retraining for student unlearning requests, because the standard SISA efficiency depends on the total number of slices (R = cr). The optimal choice of r

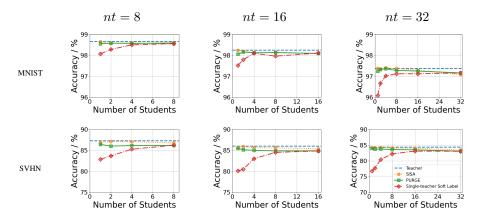


Figure 3: Comparison of student network accuracy on MNIST (top row) and SVHN (bottom row). Accuracy is plotted against the number of student constituent models (N) for different teacher ensemble sizes (M=8,16,32). The plot shows results for PURGE, the SISA baseline student, the original Teacher ensemble, and the Single-teacher Soft Label ablation.

therefore depends on the expected frequency ratio of teacher versus student unlearning requests for a specific application.

Overall, this experiment demonstrates that PURGE substantially accelerates student network retraining when teacher-side unlearning occurs, validating our theoretical analysis. The efficiency gains scale predictably with the number of student constituent models, confirming the effectiveness of the proposed partitioning and mapping strategy.

4.2 Performance evaluation

Having demonstrated PURGE's effectiveness in accelerating retraining, we now evaluate whether these efficiency gains compromise the student network's predictive performance. We compare the performance of student networks trained using our proposed framework against key baselines and an ablation. The baselines are:

- *Teacher*: The original teacher network ensemble, trained using the standard SISA pipeline. This represents an upper bound on performance expected via distillation.
- SISA: A student network ensemble trained using the standard SISA pipeline, where each student constituent model learns from its data shard and soft labels generated by the aggregated output of the full *Teacher* ensemble. This represents the naive SISA application to distillation that PURGE aims to outperform in terms of unlearning efficiency.

We also compare PURGE against an ablation using single-teacher soft labels (Single-teacher), where soft labels for chunk l are generated only by teacher $\mathcal{T}_{k,l}$. For the multi-teacher aspects within PURGE (and the ablation), we use simple averaging of teacher outputs to generate soft labels. While more advanced multi-teacher distillation techniques exist, averaging serves as a clear baseline for evaluating the structural benefits of PURGE without confounding factors. The datasets and corresponding model architectures (Simple CNN for MNIST/SVHN, ResNet50 for CIFAR-100, BERT and Qwen2.5-7B for SST5) are detailed in Table 1. The experimental results on CIFAR-100 and SST5 are shown in the Appendix.

Results on MNIST and SVHN We investigated performance on MNIST and SVHN datasets, varying the number of teacher constituent models $M \in \{8, 16, 32\}$ and, for each M, varying the number of student constituent models N from 1 up to M (implying c = M/N chunks per student). Figure 3 presents these results. Both teacher and student networks were trained on the full training sets with data evenly allocated across shards and chunks. The results show that PURGE achieves performance very similar to the baseline SISA student, with only a minor degradation compared to the original Teacher. For instance, with M=32 teacher constituent models and N=32 student constituent models (c=1), PURGE achieves 97.16% and 83.09% accuracy on MNIST and SVHN respectively, while the SISA baseline attains 97.08% and 83.44%. This confirms

that PURGE's structural modifications for unlearning efficiency do not significantly compromise predictive performance on these tasks.

As expected, accuracy tends to decline slightly for both PURGE and the SISA baseline as the number of student constituent models N increases. This is attributable to the reduced amount of training data available to train each individual constituent model. However, this trend does not hold for the Single-teacher ablation (shown in Figure 3). This ablation shows substantial performance degradation compared to the Teacher and SISA baseline, particularly when N is small (i.e., when each student constituent model learns from many different single teachers sequentially across chunks, c = M/N is large). This performance drop stems from the instability induced by abrupt changes in the supervisory signal when switching between different single teachers for consecutive chunks. In contrast, PURGE's incremental multi-teacher strategy smooths these transitions by gradually incorporating new teachers into the subensemble $\mathcal{I}_{k,l}$, stabilizing the training process. Quantitatively, when learning from an M=32 teacher ensemble with only N=1 student constituent model (c=32), PURGE's accuracy drop relative to the SISA baseline is minimal (0.14% on MNIST, 0.18% on SVHN), whereas the Single-teacher ablation suffers significant losses (1.30% on MNIST, 7.35% on SVHN). This validates the design choice of using the incremental multi-teacher within PURGE for maintaining performance.

5 Conclusions

The need for efficient, verifiable machine unlearning is critical, especially for KD used in deploying large models. However, applying verified frameworks like SISA naively to KD is inefficient for teacher-side unlearning, because information propagation forces costly full student retraining, negating SISA's benefits. To address this critical gap, we introduced PURGE (Partitioned Unlearning with Retraining Guarantee for Ensembles), a novel framework integrating the principles of SISA with the specifics of KD. By employing constituent mapping—whereby each teacher constituent model's influence is restricted to specific student constituent models—and utilizing an incremental multi-teacher distillation strategy within each student shard, this framework successfully maintains data isolation throughout the student's training process.

Our theoretical analysis and empirical evaluations on image and language tasks demonstrate that our method achieves its primary objective: it enables efficient, verified unlearning even when teacher data is removed, requiring only partial retraining of the affected student constituent model(s). This results in a substantial speedup (at least $N \times$, where N is the number of student constituent models) compared to the naive baseline. Furthermore, the approach naturally retains SISA's efficiency for handling student-side unlearning requests and, crucially, maintains student performance comparable to the standard SISA baseline, validating the stability provided by the incremental multi-teacher strategy.

By ensuring efficient and verified unlearning within teacher-student pipelines, this capability makes the responsible deployment and maintenance of distilled models significantly more practical, particularly for systems involving large foundation models as teachers. Future research could explore several promising directions: integrating more sophisticated multi-teacher distillation algorithms within this structure to potentially enhance student learning efficiency and final performance; extending the theoretical analysis to cover different data distributions or aggregation methods; and applying and evaluating the framework in complex, large-scale distillation scenarios involving state-of-the-art vision or language models.

Acknowledgments

This research was financially supported by Engineering and Physical Sciences Research Council (EPSRC), United Kingdom, [SUSTAIN Manufacturing Hub EP/S018107/1].

GM acknowledges support from a UKRI AI Turing Acceleration Fellowship (EPSRC EP/V024868/1).

References

[1] Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In 2021 IEEE Symposium on Security and Privacy (SP), pages 141–159. IEEE, 2021.

- [2] Jonathan Brophy and Daniel Lowd. Machine unlearning for random forests. In Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pages 1092–1104. PMLR, 18–24 Jul 2021.
- [3] Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In 2015 IEEE Symposium on Security and Privacy, pages 463–480, 2015.
- [4] Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. The secret sharer: Evaluating and testing unintended memorization in neural networks. In 28th USENIX security symposium (USENIX security 19), pages 267–284, 2019.
- [5] Guobin Chen, Wongun Choi, Xiang Yu, Tony Han, and Manmohan Chandraker. Learning efficient object detection models with knowledge distillation. In *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc., 2017.
- [6] Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert, and Yang Zhang. Graph unlearning. In *Proceedings of the 2022 ACM SIGSAC conference on computer and communications* security, pages 499–513, 2022.
- [7] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge. *arXiv preprint arXiv:1803.05457*, 2018.
- [8] Li Deng. The mnist database of handwritten digit images for machine learning research [best of the web]. *IEEE Signal Processing Magazine*, 29(6):141–142, 2012.
- [9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers)*, pages 4171–4186, 2019.
- [10] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit confidence information and basic countermeasures. In Proceedings of the 22nd ACM SIGSAC conference on computer and communications security, pages 1322–1333, 2015.
- [11] Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless net: Selective forgetting in deep networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern* recognition, pages 9304–9312, 2020.
- [12] Ian J Goodfellow, Yaroslav Bulatov, Julian Ibarz, Sacha Arnoud, and Vinay Shet. Multi-digit number recognition from street view imagery using deep convolutional neural networks. arXiv preprint arXiv:1312.6082, 2013.
- [13] Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens Van Der Maaten. Certified data removal from machine learning models. In *Proceedings of the 37th International Conference on Machine Learning*, pages 3832–3842, 2020.
- [14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 770–778, 2016.
- [15] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. *arXiv* preprint arXiv:1503.02531, 2015.
- [16] Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International Conference on Learning Representations*, 2022.
- [17] Hyunjune Kim, Sangyong Lee, and Simon S Woo. Layer attack unlearning: Fast and accurate machine unlearning via layer level attack and knowledge distillation. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pages 21241–21248, 2024.
- [18] Junyaup Kim and Simon S. Woo. Efficient two-stage model retraining for machine unlearning. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pages 4360–4368, 2022.
- [19] Yongwoo Kim, Sungmin Cha, and Donghyun Kim. Are we truly forgetting? a critical re-examination of machine unlearning evaluation protocols. *arXiv* preprint arXiv:2503.06991, 2025.
- [20] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-100 (canadian institute for advanced research).

- [21] Vinayshekhar Bannihatti Kumar, Rashmi Gangadharaiah, and Dan Roth. Privacy adhering machine un-learning in nlp. In Findings of the Association for Computational Linguistics: IJCNLP-AACL 2023 (Findings), pages 268–277, 2023.
- [22] Meghdad Kurmanji, Peter Triantafillou, Jamie Hayes, and Eleni Triantafillou. Towards unbounded machine unlearning. In Advances in Neural Information Processing Systems, volume 36, pages 1957–1987. Curran Associates, Inc., 2023.
- [23] Alexandra Sasha Luccioni, Sylvain Viguier, and Anne-Laure Ligozat. Estimating the carbon footprint of bloom, a 176b parameter language model. *Journal of Machine Learning Research*, 24(253):1–15, 2023.
- [24] Utkarsh Ojha, Yuheng Li, Anirudh Sundara Rajan, Yingyu Liang, and Yong Jae Lee. What knowledge gets distilled in knowledge distillation? Advances in Neural Information Processing Systems, 36:11037–11048, 2023.
- [25] Youyang Qu, Xin Yuan, Ming Ding, Wei Ni, Thierry Rakotoarivelo, and David Smith. Learn to unlearn: A survey on machine unlearning. arXiv preprint arXiv:2305.07512, 2023.
- [26] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter. *arXiv preprint arXiv:1910.01108*, 2019.
- [27] Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh. Remember what you want to forget: Algorithms for machine unlearning. In *Advances in Neural Information Processing Systems*, volume 34, pages 18075–18086. Curran Associates, Inc., 2021.
- [28] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of the 2013 conference on empirical methods in natural language processing, pages 1631–1642, 2013.
- [29] Ningxin Su and Baochun Li. Asynchronous federated unlearning. In IEEE INFOCOM 2023 IEEE Conference on Computer Communications, pages 1–10, 2023.
- [30] Bichen Wang, Yuzhe Zi, Yixin Sun, Yanyan Zhao, and Bing Qin. Rkld: Reverse kl-divergence-based knowledge distillation for unlearning personal information in large language models. arXiv preprint arXiv:2406.01983, 2024.
- [31] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. *arXiv preprint arXiv:2412.15115*, 2025.
- [32] Kairan Zhao, Meghdad Kurmanji, George-Octavian Bărbulescu, Eleni Triantafillou, and Peter Triantafillou. What makes unlearning hard and what to do about it. Advances in Neural Information Processing Systems, 37:12293–12333, 2024.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: Our proposed method PURGE (presented in Section 3) provides an efficient verified unlearning method that directly addresses potential information leakage from teacher to student in knowledge distillation, as outlined in the abstract and introduction. Experimental results on unlearning speed evaluation and performance evaluation presented in Section 4 support this claim.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We did not use a standalone section dedicated to limitations, but such discussions are integrated throughout the presentation. We briefly discussed the challenges of ensemble learning in multi-teacher distillation in Appendix A.6 and suggest that a potential way to improve the proposed PURGE framework is to improve the soft-label aggregation strategy while keeping the data isolation. Another key limitation of the work is the computational overhead associated with retraining from checkpoints. Since the proposed PURGE framework is a SISA-based verified unlearning method, it inherits this limitation from SISA and similar verified unlearning approaches. While we did not explicitly emphasize this point, it is acknowledged in Section 2, where we compare the verified unlearning methods against approximate unlearning methods, admitting that approximate unlearning methods could be faster but lack formal guarantees for the removal of the data. This trade-off is well-established in the literature, and due to page constraints, we did not elaborate further.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.

- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: We provided the theoretical proof of the speed-up that the proposed PURGE framework provides in Supplemental Material A.2 with assumptions clearly stated.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All the details for the proposed framework are provided.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.

- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: The experiments are done on 4 public datasets, and the code is released.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Training details like the number of epochs are provided in the paper, or otherwise included in the publicly available code. We use standard train, test, and validation splits from public datasets. The random seeds used for data splits across constituent models are included in the code.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The standard deviation of the the time required to handle each unlearning request is reported in Section 4.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: The specification of the GPUs used for the experiment on both image and sentiment classification tasks is reported. The time of execution (unlearning time), a key performance metric of the proposed PURGE framework, is clearly presented in Section 4.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Code of ethics read and understood by the authors.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: The paper proposes a verified unlearning framework for knowledge distillation, a method designed to safeguard data privacy, which represents a positive societal impact. The potential positive economic and environmental impact is also discussed in the Appendix. To the author's knowledge, it does not pose any immediate negative societal impact.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: The datasets used in the paper are properly cited and credited.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: The code submitted is well documented and structured.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation. or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent)
 may be required for any human subjects research. If you obtained IRB approval, you
 should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method developed does not involve LLMS as any important, original, or non-standard components.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

A Supplemental material

A.1 Pseudo-code For PURGE

Algorithm 1 Algorithmic outline of the PURGE training framework

```
1: for k = 1 to N do
           Divide \mathcal{D}_k^S into c_k ordered, disjoint chunks \{\mathcal{D}_{k,1}^S, \dots, \mathcal{D}_{k,c_k}^S\}
 2:
 3:
           Initialize student model state S_{k,0}
 4:
           for l=1 to c_k do
 5:
                 Generate soft labels Y_{k,l} for chunk \mathcal{D}_{k,l}^S using teachers \mathscr{T}_{k,l} = \bigcup_{i=1}^l \mathcal{T}_{k,i}
                Pair chunk data and labels: \mathcal{D}_{k,l}^{\dagger} = [\mathcal{D}_{k,l}^{S}, Y_{k,l}]
 6:
                Partition \mathcal{D}_{k,l}^{\dagger} into R_{k,l} slices \{\mathcal{D}_{k,l,1}^{\dagger},\ldots,\mathcal{D}_{k,l,R_{k-l}}^{\dagger}\}
 7:
 8:
                for j=1 to R_{k,l} do
                      Select previous state: S_{k,l,j-1} if j > 1; else S_{k,l-1,R_{k,l-1}} if l > 1; else S_{k,0}
 9:
                      Gather cumulative data: (\cup_{i=1}^{l-1}\mathcal{D}_{k,i}^{\dagger}) \cup (\cup_{g=1}^{j}\mathcal{D}_{k,l,g}^{\dagger})
10:
                      For e_{l,i} epochs, do:
11:
                          Compute distillation loss \mathcal{L}(\mathcal{S}_k(d), y) for each [d, y] in cumulative data
12:
13:
                          Update model parameters via gradient descent
14:
                      Store updated intermediate state S_{k,l,j} for efficient unlearning
15:
                 end for
           end for
16:
           Final model for shard: S_k = S_{k,c_k,R_{k,c_k}}
17:
18: end for
```

Algorithm 2 Algorithmic outline for student-side unlearning when unlearning request sent to the teacher-side in PURGE

```
1: Update teacher constituent model: \mathcal{T}_{k,l} is the current teacher constituent model

2: \mathcal{T}'_{k,l} is obtained by SISAUpdate(\mathcal{T}_{k,l}, remove data point d_v)

3: for i=l to c_k do

4: Generate soft labels Y_{k,i} for chunk i using updated teachers \mathcal{T}_{k,i} (including \mathcal{T}'_{k,l})

5: Pair chunk data and labels: \mathcal{D}^{\dagger'}_{k,i} = [\mathcal{D}^S_{k,i}, Y_{k,i}]

6: end for

7: Revert student constituent model: set \mathcal{S}_{k,l-1} to checkpoint before chunk l

8: Initialize \mathcal{S}'_k \leftarrow \mathcal{S}_{k,l-1}

9: for i=l to c_k do

10: Incrementally train \mathcal{S}'_k using \mathcal{D}^{\dagger'}_{k,i} and slices

11: Update and store intermediate state \mathcal{S}'_{k,i}

12: end for

13: return \mathcal{S}'_k
```

A.2 Proof of speed-up when teacher unlearns

We follow the same setup for the epoch number as done in SISA with the same number of epochs e_R for each round of training on all slices. With incremental training applied on the slice level, with training progressing through the slices, the number of data points to cover in one epoch is increasing. We consider evenly distributed data, slices, chunks, and shards for a student network with student constituent models $\{\mathcal{S}_i\}$. When the l^{th} teacher for the k^{th} student is changed, the student constituent model \mathcal{S}_k will reverse back to $S_{k,l-1}$ and retrained from $(l-1)r+1^{\text{th}}$ chunk to cr^{th} chunk. Thus, the total number of slices the retraining process needs to run is:

$$K(l) = \sum_{j=(l-1)r+1}^{cr} \sum_{i=1}^{j} e_R = e_R \frac{(((l-1)r+1) + cr)(cr - (l-1)r)}{2},$$
 (5)

where c is the number of chunks per shard and r is the number of slices per chunk.

Assuming that every teacher shares the same probability of receiving an unlearning request, the average number of data points for a student to retrain when an unlearning request is sent to one teacher can be calculated as:

$$\bar{K} = \frac{1}{c} \sum_{l=1}^{c} K(l)$$

$$= \frac{1}{c} \sum_{l=1}^{c} e_{R} \frac{(((l-1)r+1) + cr)(cr - (l-1)r)}{2}$$

$$= \frac{e_{R}}{c} \sum_{l=0}^{c-1} \frac{((lr+1) + cr)((c-l)r)}{2}$$
(6)

With the assumption that the training time is solely dependent on the amount of training data and each network is initially trained for equal time from scratch, we consider a data set of size D trained for e' epochs. As the proposed framework should be trained for equal time, for a network with N student constituent models, this gives:

$$e'D = ND_{\text{slice}} \sum_{i=1}^{cr} e_R = N \frac{D}{Ncr} \sum_{i=1}^{cr} e_R = e_R \frac{(cr+1)D}{2},$$
 (7)

where $D_{\text{slice}} \frac{D}{Nrc}$ is the number of data points in one slice and $\sum_{i=1}^{cr} e_R$ is the total number of slices a student constituent model would run through over the entire training process. It can be easily derived that

$$e_R = \frac{2}{cr+1}e'. (8)$$

Given that SISA requires full retraining when an unlearning request is sent to a teacher constituent model and requires training on e'D data points, the ratio of retraining time for SISA against the proposed method can be computed as:

$$\frac{t_{\text{SISA}}}{t_{\text{couple}}} = \frac{e'D}{\bar{K}D_{\text{slice}}} \\
= \frac{e'D}{\frac{e_R}{c} \sum_{i=0}^{c-1} \frac{((lr+1)+cr)(c-l)r}{2} \frac{D}{Ncr}} \\
= \frac{1}{\frac{1}{c} \frac{2}{cr+1} \sum_{i=0}^{c-1} \frac{((lr+1)+cr)(c-l)r}{2} \frac{1}{Ncr}} \\
= N \cdot \frac{6c^2r + 6c}{4c^2r + 3cr + 3c - r + 3}$$
(9)

It can be shown that the proposed method provides at least $N \times$ speed-up by showing that the second part of the expression in Equation (9) is bigger than 1:

For evenly distributed chunks, we have N=M/c. From Equation (10), we can write the ratio for speed-up in terms of the number of teacher constituent models M and the number of chunks per student c as:

$$\frac{t_{\text{SISA}}}{t_{\text{couple}}} = M \cdot \frac{6cr + 6}{4c^2r + 3cr + 3c - r + 3}.$$
 (11)

For the second part, its derivative with respect to c is:

$$\frac{d(\frac{6cr+6}{4c^2r+3cr+3c-r+3})}{dc} = -\frac{6(r^2(4c^2+1)+8cr+3)}{(c+1)^2(r(4c-1)+3)^2},$$
(12)

which is negative for all positive integer r and c. Thus, we will have less speed-up when we have more chunks for each student constituent model. When the number of teacher constituent models is fixed, this means that by having more student constituent models, we can have a faster retraining process.

A.3 Handling simultaneous unlearning requests

In Section 3, we discussed how the proposed PURGE can address individual unlearning requests directed at the student's or the teacher's data. In scenarios where the teacher and student potentially share the same underlying dataset ($\mathcal{D}^T \equiv \mathcal{D}^S$, common in self-distillation or when using a public dataset), an unlearning request might require removing a data point d_u simultaneously from both networks. The PURGE framework efficiently handles this as well. We consider two main cases:

Scenario 1: aligned data removal. Suppose the data point d_u to be removed exists in student slice $\mathcal{D}_{k,l,j}^{\dagger}$ and also corresponds exactly to data originally used to train the teacher constituent model $\mathcal{T}_{k,l}$ (i.e., the teacher responsible for generating labels starting from chunk l in the affected student constituent model \mathcal{S}_k). The unlearning process can be combined:

- 1. Teacher $\mathcal{T}_{k,l}$ updates to $\mathcal{T}'_{k,l}$.
- 2. Soft labels $Y_{k,i}$ for $i \in [l, c_k]$ are regenerated using updated subensembles including $\mathcal{T}'_{k,l}$.
- 3. The student constituent model S_k reverts to state $S_{k,l-1}$ (due to the teacher change affecting chunk l onwards).
- 4. S_k retrains incrementally from chunk l onwards, using the updated soft labels *and* excluding d_u from the relevant student slice $\mathcal{D}_{k,l,j}$. The effective slice becomes $\mathcal{D}'_{k,l,j} = \mathcal{D}_{k,l,j} \setminus \{[d_u,y_u]\}$.

The retraining time is dominated by the steps required for the teacher update (reverting to $S_{k,l-1}$) and is nearly identical to handling only the teacher unlearning request, ignoring the negligible effect of removing one data point from the student's retraining path.

Scenario 2: misaligned data removal Suppose d_u is removed from student slice $\mathcal{D}_{k,l,j}^{\dagger}$, but the corresponding data point's removal affects a *different* teacher constituent model $\mathcal{T}_{\mu,\nu}$, where $(k,l) \neq (\mu,\nu)$. In this case, two separate unlearning processes occur concurrently:

- 1. Student constituent model S_k handles the removal of d_u using the standard SISA process: revert to $S_{k,l,j-1}$ and retrain onwards.
- 2. Student constituent model S_{μ} handles the update resulting from teacher $\mathcal{T}_{\mu,\nu}$ unlearning its data, following the PURGE process for teacher unlearning: revert to $S_{\mu,\nu-1}$ and retrain onwards using updated soft labels.

The total unlearning time is approximately the sum of the times for these two independent partial retraining processes. In both scenarios, PURGE requires only partial retraining of at most two student constituent models. This contrasts sharply with a naive SISA application, where any teacher update (as occurs in both scenarios) would necessitate full retraining of all N student constituent models. Therefore, PURGE offers substantial efficiency gains even when handling simultaneous unlearning requests.

A.4 Training Stability: Multi-Teacher vs. Single-Teacher Soft Labels Approaches

Our experimental results demonstrate that the incremental multi-teacher learning strategy introduced by the PURGE framework consistently outperforms the single-teacher soft label ablation approach. This advantage primarily stems from the enhanced training stability provided by multi-teacher soft label generation. Unlike conventional epoch-based methods, SISA-based unlearning frameworks employ incremental training over data slices, enabling checkpointing at the point each data slice is first introduced. While this design allows efficient backtracking to specific checkpoints for unlearning requests, it introduces potential instability. Specifically, early training rounds on smaller data slices may cause the model to overfit to those initial slices. Subsequently, when a new slice is added, the

model's loss can fluctuate more than in standard epoch-based training, since it must train on both previously learned and new data, resulting in greater gradient variation and increased instability.

Figure 4: Loss curve comparison between multiteacher soft label generation and single-teacher ablation

The PURGE framework introduces additional data chunk partitioning to enable precise mapping between teacher and student constituent models. This design exacerbates instability in the single-teacher soft-label setup: the model must simultaneously adapt to both newly introduced data and an unfamiliar teacher constituent model responsible for generating the corresponding soft labels. To illustrate this effect, Figure 4 plots the loss curve during the training of a student constituent model, showing the dynamics when learning from a shard comprised of data chunks with soft labels produced by 8 teacher constituent models.

The blue curve in Figure 4 corresponds to the single-teacher ablation while the orange curve

being the proposed multi-teacher soft label generation. We plot the loss against the cumulative chunk training steps, counting every instance a chunk is trained (including repeats). The vertical dashed lines are the indicators when a new data chunk is introduced to the incremental training process. Except for the first interval, which involves training on a single chunk, each subsequent chunk training step selects a different chunk for training. This process cycles through all available chunks in turn, ensuring that each chunk is trained for exactly e_R epochs before the next chunk is introduced.

From the plot, we observe that during the first three intervals, the loss curves for the single-teacher ablation and the multi-teacher soft-label training are quite similar, as the training process cycles through only a small number of data chunks. However, as training progresses and more chunks are introduced, the single-teacher ablation exhibits significantly larger fluctuations. This increased instability arises because the model alternates between data chunks that have already been trained extensively and newly added chunks. The newly introduced chunks not only provide previously unseen inputs, but their corresponding soft labels generated by a newly introduced teacher model are also unfamiliar to the student. This unfamiliarity can result in pronounced changes in the loss and, consequently, larger gradients, leading to an unstable training process.

In contrast, our multi-teacher soft-label generation approach mitigates such fluctuations. Although the data may still be new to the student model, the soft labels are produced by averaging predictions across multiple teacher models from prior training steps. This aggregation moderates sharp changes and smooths the training dynamics. As a result, while some fluctuations are still present, their magnitude is much lower than in the single-teacher ablation, providing a more stable training process and ultimately better model performance.

A.5 Performance on distillation with smaller student training dataset

In knowledge distillation, it is common for the student to be trained on a smaller subset of the data distilled by the teacher. With less overall training data, each student constituent model will receive a smaller data allocation. Consequently, the balance between increasing the number of constituent models for faster unlearning and ensuring each constituent model is well-trained becomes more critical. To investigate how the proposed method may perform under such conditions, we conduct experiments on the 10%, 20%, and 50% subsets of MNIST and SVHN. The experimental results show that PURGE produces similar performance to SISA under all conditions, with more stable performance compared to $Single-teacher\ Soft\ Label$ when each student constituent model learning from a large number of teacher constituent models. Overall, the effectiveness of PURGE is demonstrated.

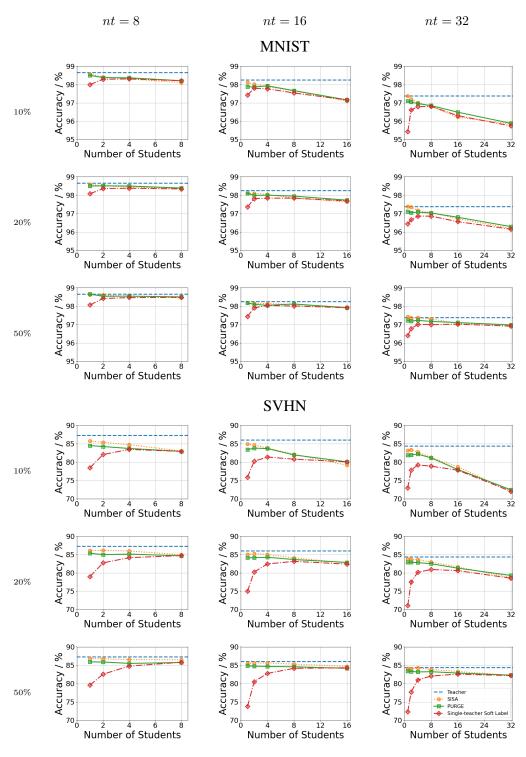


Figure 5: Comparison of student network accuracy on 10%, 20% and 50% versions of MNIST and SVHN. The plot shows results for PURGE, the *SISA* baseline student, the original *Teacher* ensemble, and the *Single-teacher Soft Label* ablation. The original *Teacher* ensemble was trained on the full training sets, while the student networks are trained on the corresponding subsets.

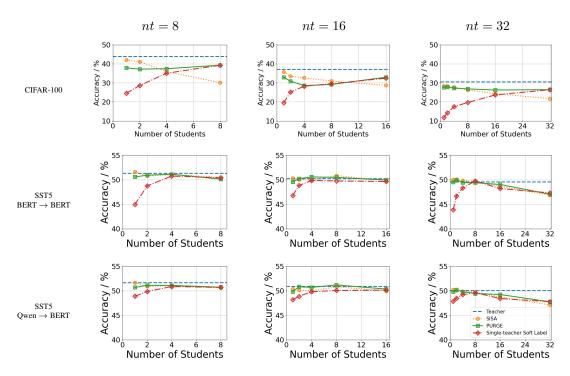


Figure 6: Comparison of student network accuracy on CIFAR-100 (top row) and SST5 (mid and bottom rows). For the SST5 experiment, we employed both BERT and Qwen2.5-7B as teacher models, distilling their knowledge into BERT student models. Accuracy is plotted against the number of student constituent models (N) for different teacher ensemble sizes (M=8,16,32). The plot shows results for PURGE, the SISA baseline student, the original Teacher ensemble, and the Single-teacher Soft Label ablation. Models were trained on the full training sets of CIFAR0-100 and SST5.

A.6 Experimental Results: CIFAR-100, SST-5, and Large Language Models (Qwen2.5 7B/32B)

We evaluated performance on the more challenging CIFAR-100 dataset for image classification using ResNet50 and the SST5 dataset for sentiment analysis using BERT. Figure 6 shows the performance of PURGE compared to the baselines under these conditions.

The complexity of the image classification task on CIFAR-100 is reflected in the relatively low accuracy of the Teacher ensemble itself, which achieved 30.5% on the test set with a teacher ensemble of M=32 constituent models. Despite the task's difficulty and the performance gap relative to the original Teacher, PURGE demonstrates effectiveness by achieving performance very comparable to the SISA baseline student across different numbers of student constituent models (N). As seen in Figure 6, the accuracy of PURGE closely follows that of the SISA baseline while significantly outperforms the Single-teacher Soft Labels, particularly when the number of students is small. When the number of students is large, especially when the teacher and student have the same number of constituent models, M=N, we see the proposed PURGE outperforms baseline SISA.

This highlights that for complex tasks, the constituent mapping introduced in the proposed PURGE framework enables each student constituent model to learn fine-grained information contained in the soft labels produced by its corresponding teacher sub-ensemble of constituent models. In contrast, the baseline SISA aggregates teacher outputs, which can obscure these detailed signals and lead to reduced performance. The results also highlight the broader challenges of ensemble learning in multi-teacher distillation, with such challenges also existing for the proposed PURGE framework since soft-label aggregation still occurs within each teacher sub-ensemble. A promising direction for future work is to explore more refined multi-teacher aggregation strategies while preserving the data isolation between teacher constituent models as established in PURGE.

Although sentiment analysis is a different task from image classification, the results on the SST5 dataset shown in Figure 6 exhibit a similar trend to those observed in image-based tasks. In this experiment, we trained two versions of the teacher model: one based on BERT and the other on Qwen2.5-7B. Both teacher models were trained for e'=20 epochs, and in both cases, distilled to BERT student models. Interestingly, the results of the BERT and Qwen-based experiments are highly comparable, with the more capable Owen 2.5-7B teacher delivering only modest improvements over the BERT teacher. This minor performance difference suggests that the limiting factor may be the sharding strategy used in the SISA framework, rather than architectural differences or model scale. Notably, the largest difference between the two scenarios arises in the results for the singleteacher ablation, where Qwen2.5-7B-distilled students outperform their BERT-based counterparts, demonstrating that single-teacher setups may experience larger performance drops, even when the teacher model itself differs slightly. By contrast, the proposed PURGE framework maintains stable performance across both version of the experiment. In both cases, PURGE demonstrates performance comparable to SISA, while the incremental multi-teacher distillation approach proves more effective than using single-teacher soft labels alone. Combined with the results on CIFAR-100, these findings confirm PURGE's viability for moderately complex tasks, its scalability to larger model like Qwen2.5-7B, and its general applicability across different domains, preserving the accuracy of standard SISA distillation while introducing substantial unlearning efficiency.

To further extend our evaluation beyond sentiment analysis, we applied the PURGE framework to the more demanding domain of language reasoning on the ARC dataset[7], employing Qwen2.5-32B as the teacher model and distilling into Qwen2.5-3B student models. Using an 8-teacher, 8-student configuration and LoRA [16] fine-tuning, we compared PURGE with naive SISA on ARC-challenge four-choice questions. In this scenario, the teacher only achieved 27.76% accuracy, and both PURGE and naive-SISA exhibited limited student performance, 26.09% and 26.42% accuracy, respectively. It reflects the further constraints imposed by sharding strategies, which limits the data availability for each constituent model, in complex reasoning tasks. As a result, even the teacher merely surpasses chance levels, and student models trained under both frameworks struggle to provide high accuracy. These findings underscore a pressing need for future work to achieve stronger results while maintaining strict data isolation required for sharding-based verified unlearning.

Despite these accuracy limitations, our analysis of unlearning efficiency highlights the practical value of PURGE. Leveraging an 8 Nvidia A100 GPU setup, the PURGE framework enabled student-side updates in just 2.36 GPU-hours for teacher-side unlearning requests, compared to 18.9 GPU-hours for naive-SISA. Given that each teacher checkpoint occupies 128GB and each student checkpoint uses 12GB, PURGE does require storage of multiple checkpoints for each student constituent model. For example, in our experimental setup with eight student constituent models, each composed of one chunk and four slices per chunk, the overall storage requirement for student checkpoints reached 386GB. In similar distillation settings, this additional storage demand for student models remains well within the capabilities of typical server infrastructures. The trade-off between increased storage requirements and accelerated unlearning can be flexibly managed according to the specific demands of the application, taking into account available storage resources and the expected frequency of unlearning requests. More importantly, PURGE achieves a substantial reduction in computational time and cost for verified unlearning in large-scale deployments, outperforming both naive-SISA and conventional retraining from scratch. Thus, even as scaling challenges remain for complex tasks, the PURGE framework demonstrates significant improvements in computational resource efficiency for unlearning, positioning it as a practical approach for efficient, privacy-preserving model deployment.

A.7 Data Mapping

Data mapping is a critical component of sharding-based unlearning frameworks. In this work, we use uniform random partitioning as it provides generality, prevents systematic bias, and scales well by enabling uniform hyperparameters across constituent models.

While uniform partitioning is the default, alternative strategies are possible. Notably, distribution-aware sharding, as demonstrated in the original SISA framework, groups data points that are more likely to be unlearned into dedicated shards. This can optimize unlearning speed in scenarios where such prior knowledge is available and our PURGE framework is fully compatible with such alternatives.

In addition to distribution-aware sharding, our study of the student-teacher knowledge distillation framework also raises important questions regarding how data is mapped between students and teachers, particularly when faced with imbalanced data distributions. To investigate this, we conducted experiments on the SST-5 dataset focusing on label-imbalanced partitioning. In this setting, each teacher shard was deliberately structured to have one class overrepresented and the others underrepresented, with a fixed class ratio of 0.24:0.19:0.19:0.19:0.19 across the five sentiment categories. For each of the five teacher shards, one class was assigned the largest proportion (0.24) while the rest were each allocated 0.19, and the final shard contained any remaining samples cover the whole training dataset.

Table 2: Impact of label-imbalanced partitioning on teacher and student performance under matched and mismatched data mappings on SST-5. The reported values are the model accuracy.

No. of students	1	2	4	8		
Matched (Single) Matched (PURGE)	45.02% $50.59%$	48.57% $51.02%$	49.59% 51.87%	49.77% $49.77%$		
Mismatched (Single) Mismatched (PURGE)	45.10% $50.72%$	48.78% $50.90%$	49.59% $51.95%$	25.34% $25.34%$		
Teacher Baseline	48.86%					

We explored two main scenarios: a "matched" setup, where each student was trained on a data shard exhibiting the same class imbalance as its corresponding teacher, and a "mismatched" configuration, where students received shards with different imbalanced class distributions. In both scenarios, we trained the models using our proposed PURGE framework with the multi-teacher soft label strategy and, for comparison, the single-teacher soft label ablation. Each approach utilized eight teacher constituent models and varied the number of student models. Both the teacher and student models are implemented using BERT. Our results (Table 2) demonstrate that under matched conditions, the accuracy of teacher models fell from 51.32% (with uniform partitioning as shown in Figure 6) to 48.86% with the imbalanced class ratio. This decline was even more pronounced following 1-to-1 distillation, with student accuracy sharply dropping to 25.34% by training 8 student constituent models, each paired with a single teacher. This significant degradation highlights how even relatively mild label imbalances in partitioning can be strongly amplified by the distillation process, particularly in small datasets like SST-5, where each shard contains approximately 1,000 examples.

However, the impact of label imbalance is substantially mitigated once we move away from the strict matching between teacher and student distributions. Training each student on a mismatched data chunk led to a significant recovery in performance, with student accuracy rising to 48.77%. Importantly, once students learn from multiple teachers, the performance gap between matched and mismatched scenarios becomes minimal for both single- and multi-teacher soft label generation setups. Furthermore, aggregating soft labels from multiple teachers further enhanced resilience to bias. For instance, in the eight-teacher, four-student configuration, mismatched student accuracy reached 51.95%, closely matching the 51.84% achieved under matched conditions, and both outperformed the single-teacher ablation baselines (49.68% and 49.59% for mismatched and matched, respectively). These trends validate the robustness of incremental multi-teacher distillation, which consistently outperforms single-teacher setups and maintains data isolation between teacher shards.

The results show that while label imbalance can significantly amplify bias and degrade performance under strict matching, this effect is mitigated by mismatched mappings or by aggregating information from multiple teacher constituent models. Consequently, the choice of partitioning strategy could be guided by the application context and available prior knowledge, with uniform random partitioning serving as a robust default and alternative strategies offering potential efficiency gains and maintain performance when appropriately applied.

A.8 Broader Impacts

Artificial intelligence has become deeply integrated into many aspects of society, with generative models, large language models (LLMs), and other AI tools significantly boosting societal productivity. However, training these models, particularly LLMs, can incur substantial costs. For instance, Sam Altman stated that the cost of training *GPT-4* was more than \$100 million.

Beyond financial cost, the environmental impact is also significant. Luccioni *et al.*[23] estimated the training process of BLOOM, a 176B parameter language model, contributed to around 24.7 tonnes of carbon dioxide equivalent (CO₂eq) emissions. Therefore, reducing unnecessary model training brings both economic and environmental benefits.

Verified unlearning methods are designed to safeguard user data privacy by ensuring that once a data removal is requested, all influence of that data is effectively and provably eliminated from the trained model. This strict compliance with data regulations like GDPR and CCPA, which grant individuals the right to request their personal data to be erased, requires more than simply deleting data from the training set. It requires the guarantee that the model no longer retains any information derived from the removed data. By enabling efficient model updates without the need for full retraining, verified unlearning safeguards user data privacy, meets the rigorous legal standards, but also provides clear economic and environmental benefits in the process, particularly in real-world scenarios where a large volume of unlearning requests may occur.

Our proposed PURGE framework is specifically designed for verified unlearning in the context of knowledge distillation (KD), which is widely used in domain adaptation and model compression for local deployment of machine learning models, e.g., the distillation of models like ChatGPT. Existing verified unlearning methods typically require full retraining of the student model whenever the teacher model is updated, due to the lack of solutions tailored to the student-teacher paradigm. PURGE addresses this gap by enabling efficient model updates in response to unlearning requests on either the teacher or student side. As KD is common in practice, the proposed PURGE framework can significantly reduce the economic cost and alleviate the environmental impact associated with the retraining process. Thereby, the proposed PURGE can contribute to more sustainable and privacy-compliant AI deployment, bringing broader societal impact through responsible and efficient use of machine learning technology.