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ABSTRACT

One major challenge of disentanglement learning with variational autoencoders
is the trade-off between disentanglement and reconstruction fidelity. Previous in-
cremental methods with only on latent space cannot optimize these two targets
simultaneously, so they expand the Information Bottleneck while training to op-
timize from disentanglement to reconstruction. However, a large bottleneck will
lose the constraint of disentanglement, causing the information diffusion problem.
To tackle this issue, we present a novel decremental variational autoencoder with
disentanglement-invariant transformations to optimize multiple objectives in dif-
ferent layers , termed DeVAE, for balancing disentanglement and reconstruction
fidelity by decreasing the information bottleneck of diverse latent spaces grad-
ually. Benefiting from the multiple latent spaces, DeVAE allows simultaneous
optimization of multiple objectives to optimize reconstruction while keeping the
constraint of disentanglement, avoiding information diffusion. DeVAE is also
compatible with large models with high-dimension latent space. Experimental
results on dSprites and Shapes3D that DeVAE achieves a good balance between
disentanglement and reconstruction. DeVAE shows high tolerant of hyperparam-
eters and on high-dimensional latent spaces.

1 INTRODUCTION

Unsupervised learning for sensing the properties of objects is crucial to reduce the gap between hu-
mans and machines intelligence. Inline with human intelligence disentanglement learning (Bengio
et al., 2013) is considered to be a promising direction to obtain explanatory representations from
observations to understand and reason objects without any supervision.

In the recent years, various approaches (Higgins et al., 2017; Chen et al., 2018; Kim & Mnih, 2018;
Burgess et al., 2018; Chen et al., 2016) have been proposed to successfully extract basic prop-
erties of objects, such as position, color, orientation, and scale (Burgess & Kim, 2018; Matthey
et al., 2017). The commonly-used methods are based on variational autoencoder (VAE) (Kingma
& Welling, 2014). In particular, β-VAE (Higgins et al., 2017) introduced an extra parameter β on
the Kullback-Leibler (KL) divergence to promote disentanglement. However, there is a trade-off
between disentanglement and reconstruction fidelity on β-VAE, which is a problem to be solved in
the following works.

One common direction for dealing with the trade-off is to penalize the Total Correlation (TC) be-
tween latent variables, avoiding reducing the mutual information, such as FactorVAE (Kim & Mnih,
2018), β-TCVAE (Chen et al., 2018), and DIPVAE (Kumar et al., 2018). As pointed out in (Träuble
et al., 2020; Dittadi et al., 2020), TC-based VAEs have a strong prior assumption that the factors
are statistically independent. Beyond that, when it comes to high-dimension latent space, the esti-
mation of TC becomes inaccurate due to the curse of dimensionality, as our experiments observed
in Section 3.2. The realistic problems usually have numerous factors, therefore it would need a
large model with high latent space to extract representations. For example, the popular deep model
ResNet50 (He et al., 2016) has 2048 dimensional feature space. However, the current TC esti-
mations are not scaled to high dimensional problems, causing the low performance of BC-based
methods in practice. In this work, instead of calculating TC, we leverage the information bottleneck
(IB) (Tishby et al., 1999; Burgess et al., 2018) to promotes disentanglement.
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In the meanwhile, previous information bottleneck (IB)-based methods (Burgess et al., 2018; Shao
et al., 2022; Wu et al., 2022) have tried to solve the obstacle of trade-off between disentanglement
and reconstruction fidelity. A narrow IB enforces the model to find efficient codes for representing
the data, which encourages disentanglement. Therefore, they first set a high pressure with a narrow
IB and then expand the IB gradually to promote disentanglement to reconstruction fidelity , termed
incremental methods. For example, DynamicVAE (Shao et al., 2022) initiated β with a large value at
the beginning of training for disentanglement and stably increase the KL divergence for reconstruc-
tion by a non-linear PI controller (Åström & Hägglund, 2006). However, they lost the constraint
of disentanglement when expanding the IB, which causes the information diffusion problem (Wu
et al., 2022). In this work, to avoid information diffusion, we aim to optimize reconstruction while
keeping the constraint of disentanglement.

Different from IB-Incremental based approaches listed above, our key motivation is to optimize
disentanglement and reconstruction simultaneously. revious methods only have one latent space and
are unable to optimize disentanglement and reconstruction at the same time, which causes them to
have to change the target from disentanglement to reconstruction during training. Instead, our work
proposes a novel multi-layer framework with its own latent spaces and objectives in each layer,
allowing optimizing multiple targets at a time. In this way, the first layer is a vanilla VAE to rebuild
high-quality images, and the subsequent layers will distill some important variables by narrow IBs
to promote disentanglement. To inherit disentanglement from the subsequent layers, we introduce
disentanglement-invariant transformations to connect the layers one by one. These extra layers
can be seen as regularizations for disentanglement to constrain the representation.

To achieve this, we propose a simple yet effective VAE framework composed of multiple continuous
latent sub-spaces with a novel IB-Decremental strategy and disentanglement-invariant transform
operators, which we call DeVAE. Specifically, we decrease the information bottleneck of each latent
space layer by layer, where we constrain the first space for informativeness to recover the input
image, and other disentangled spaces for learning factors of the image by narrow IBs. Furthermore,
we introduce the disentanglement-invariant transform operator to ensure simultaneous optimization
of disentanglement across continuous latent sub-spaces, which avoids the information diffusion.
Our decremental model avoids ID by keeping the constraints of disentanglement while optimizing
reconstruction. We also conducted comprehensive comparisons with popular methods quantitatively
and qualitatively. Experimental results demonstrate that DeVAE is robust in hyperparameters and
the size of latent spaces.

Our contributions can be summarized as follows:

• We introduce several latent spaces sharing disentanglement by disentanglement-invariant
transformations.

• We propose a novel diagram for disentanglement learning by decreasing IB, termed decre-
mental VAE (DeVAE). Our decremental model can handle large-scale problems and show
robustness on several datasets.

2 METHODOLOGY

2.1 PRELIMINARIES

Problem Setup & Notations. Disentanglement learning aims to learn the factors of variation
which raises the change of observations. Given a set of samples x ∈ X , they can be uniquely
described by a set of ground-truth factors c ∈ C. Generally, the generation process g(·) is invisible
x = g(c). We say a representation for factor ci is disentangled if it is invariant for the samples
with cj . We use variational inference to learn the disentangled representation for a given problem.
p(z|x) denotes the probability of z = f(x), p(x|z) denotes the probability of x = g(z). The
representation function is a conditional Bayesian network of the form qϕ(z|x) to estimate p(z|x).
The generative model is another network of the form pθ(x|z)p(z). ϕ, θ are trainable parameters.

Revisit VAE & β-VAE. The VAE framework (Kingma & Welling, 2014) computes the repre-
sentation function by introducing qϕ(z|x) and optimizing the variational lower bound (ELBO).
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Figure 1: Illustration of our Decremental Variational Autoencoder (DeVAE). The solid lines denote
the information flow of the encoding process. The dash lines denote the decoding process which
randomly selects one layer’s representation and concatenates the corresponding embedding vector.
vi denotes a layer embedding. τi denotes a disentanglement-invariant transformation. µi,σi denote
the parameters of latent variables zi. N denotes a random noise. Each layer has a pressure βi to
control the capacity of IB.

β-VAE (Higgins et al., 2017) introduces the hyperparameter β to control the IB:

L(θ, ϕ) = Eqϕ(z|x)[log pθ(x|z)]− βDKL(qϕ(x|z)||p(z)). (1)

Consider using β-VAE to learn a representation of the data; the representation will be disentan-
gled but lose information when β is large (Burgess et al., 2018). We can set a large β to learn a
disentangled representation and a small β to learn an informative representation.

However, previous disentanglement methods (Higgins et al., 2017; Chen et al., 2018; Burgess et al.,
2018) are limited in low-dimension latent space and poorly deal with the trade-off between disen-
tanglement and reconstruction. Current state-of-the-art approach (Shao et al., 2022) with an an-
nealing manner from high pressure to low pressure will loosen the constraint of disentanglement
when reducing the pressure. To address this issue, we propose a novel decremental variational
autoencoder with hierarchical latent spaces, namely DeVAE, to optimize disentanglement and re-
construction fidelity simultaneously, which can handle high-dimensional latent spaces, as shown
in Figure 1. Our DeVAE applies a hierarchical structure with a decremental information bottleneck
and disentanglement-invariant transformation to produce latent variables layer by layer. The decoder
part randomly selects one layer’s latents concatenating an embedding vector to generate images.

2.2 HIERARCHICAL LATENT SPACES WITH DECREMENTAL INFORMATION BOTTLENECK

In order to retain the disentanglement constraint while optimizing the reconstruction fidelity, we
introduce a Hierarchical Latent Space (HiS) with K layers and assign a pressure βi for the ith layer
Zi to promote disentanglement.

The first layer aims to rebuild the dataset and uses the ELBO as objective. The subsequent layers
will promote disentanglement by reducing the IB. Therefore, the objective of the ith layer is

Li(θ, ϕ) = Eqϕ(zi|x)[log pθ(x|zi,vi)]− βiDKL(qϕ(zi|x)||p(zi)), (2)

where vi ∈ R1×D denotes the learnable layer embedding for the ith layer, pθ(x|zi,vi) is the de-
coder network shared with all layers, qϕ(zi|x) is the encoder network dependent on previous ones,
β ∈ RK is a set of coefficients to penalize the IB, particularly β0 = 1. The parameters of each layer
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are parameterized as a bottom-up process:

q(zi|x) = N (µi(x), σi(x)
2),

q(z0|x) = N (µ0(x), σ0(x)
2),

µi(x), σi(x) = τi(µi−1(x), σi−1(x)), i > 0

(3)

where the first layer qϕ(z0|x) is a conditional Bayesian network, τi denotes a transformation to
modify the poster distribution of the previous layer to fit the layer objective Li(θ, ϕ).

According to information theory, information can only decrease while processing, therefore we
gradually decrease the IB in the sequential layers, i.e., βi+1 > βi. In this way, the last layer
with a narrow IB can promote disentanglement only, and the reconstruction fidelity will become
better and better from the bottom to the top.

2.3 DISENTANGLEMENT-INVARIANT TRANSFORMATION

Though we create multiple latent spaces, these objectives only encourage the local representations
to be disentangled or informative. We need a mechanism to connect these objectives for balancing
disentanglement and reconstruction in one layer. In order to make sure disentanglement across all
latent layers, we propose a disentanglement-invariant transformation (DiT) denoted as τ .

Theorem 1 w · z is disentangled if z is disentangled, w is a diagonal matrix.

Proof in Appendix A.2.

According to Theorem 1, we can scale the latent space to keep disentanglement. Scaling the poste-
rior zi violates the generation process which wants the marginal distribution q(z) =

∑
qϕ(z|x)p(x)

to be close to a standard normal distribution. Besides, most downstream tasks use the mean repre-
sentation instead of sampled representation. Therefore, we only need the mean representations
disentanglement-invariant.

The disentanglement-invariant transformation scales the parameters of the ith layer:

τw1,w2(µ,σ) = h(w1)µ, h(w2)σ, (4)

where w1,w2 are learnable diagonal matrices belonging to the ith layer, h(w) = ew is the power
function to make sure the scaling values greater than 0. Therefore, we get the parameters of ith
latent variables

µi = h(

i−1∑
j=0

w1
j )µ0, σi = h(

i−1∑
j=0

w2
j )σ0, i > 0. (5)

and the ith KL divergence

DKLi =
1

2
(1 + 2

i−1∑
j=0

w2
j + 2 log(σ0)− h(2

i−1∑
j=0

w2
j )σ

2
0 − h(2

i−1∑
j=0

w1
j )µ

2
0). (6)

2.4 OPTIMIZATION ALGORITHM

In this section, we combine the above components and introduce the optimization algorithm for
the multiple objectives. We use a random process to optimize one layer’s objective from K latent
spaces:

L(θ, ϕ) = Ep(zi)[Li(θ, ϕ)], (7)
where p(zi) denotes the probability of optimizing the ith latent space zi, which is defined as:

p(zi) =


1
K , for s = 1

(1− s)
si

1− si+1
, for s > 1

(8)

where s denotes the power annealing of scale hyper-parameter for each p(zi). In experiments, we
empirically find that s = 1 achieves better performance, as observed in Section 3.3. Note that we do
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1 def loss_fn(x,encoder,decoder,W,embeddings,betas,K):
2 idx = np.random.randint(K)
3 mu, logvar = encoder(x)
4 for i in range(idx):
5 w1, w2 = W[i]
6 mu = torch.exp(w1[i]) * mu
7 logvar = logvar + w2[i]
8 z = sample(mu, logvar) # re-parameter trick
9 recon = decoder(torch.cat([z,embeddings(idx)],1))

10 loss = F.mse(recon,x) + betas[idx] * kld(mu,logvar)
11 return loss

Algorithm 1: PyTorch-like implementation of DeVAE loss.

not aggregate the objectives into a loss, instead, DeVAE only rebuilds the images and optimizes the
objective of one layer in one mini-batch.

In our model, qϕ(z|x) and decoder pθ(x|z) are modelled by two neural networks, a K-size se-
quence ‘betas’ denotes the penalties on the KL divergences of corresponding layers, w1,w2 stores
the learnable parameters for transforming latent spaces. First, we randomly sample a mini-batch
and choose a target layer to optimize. Then use the algorithm introduced in Section 2.3 to obtain
the representation of the target layer and reconstruct the corresponding images. Instead of using K
separated decoders to rebuild images, we apply a shared decoder with layer embeddings to reduce
the parameter size. The only extra computational cost comes from w1,w2 and layer embeddings.
Therefore, the parameter size and overhead are similar to the vanilla VAE. The PyTorch-like algo-
rithm is shown in Algorithm 1.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Datasets. We evaluate our method on two widely-used datasets (dSprites, Shapes3D).
dSprites (Matthey et al., 2017) has 737,280 binary 64 × 64 x 1 images generated from five fac-
tors: shape (5), orientation (40), scale (6), position X (32), and position Y (32). Shapes3D (Burgess
& Kim, 2018) has 480,000 RGB 64 × 64 × 3 images of 3D shapes generated from six factors: floor
color (10), wall color (10), object color (10), object size (8), object shape (4), and azimuth (15).

Evaluation Metrics. We apply the following metrics to evaluate the performance of disentan-
glement and reconstruction. MIG (Chen et al., 2018): the mutual information gap between two
variables with the highest and the second-highest mutual information. FactorVAE metric (Kim &
Mnih, 2018): the error rate of the classifier, which predicts the latent variable with the lowest vari-
ance. DCI Dis.: abbreviation for DCI Disentanglement (Eastwood & Williams, 2018), a matrix of
relative importance by regression. Recon.: abbreviation for Reconstruction Error, a measure of the
distance between images; we use Mean Squared Error for RGB images and Binary Cross Entropy
for binary images.

Implementation. We use a convolutional neural network as the encoder and a deconvolutional
neural network as the decoder. Detailed architecture can be found in Appendix A.1. The activation
function is ReLU. The optimizer is Adam (Kingma & Ba, 2015) with a learning rate of 1e-4, β1 =
0.9, β2 = 0.999. The batch size is 256, which accelerates the training process. All experiments
train 300, 000 iterations by default. For the hyperparameters, we set β = 12 for β-TCVAE, β = 6
for β-VAE, and Ki = 0.001,Kp = 0.01 for DynamicVAE. According to the information freezing
points (IFP) (Wu et al., 2022), beta=40 can filter factors orientation and shape, beta=10 can only
filter factor orientation, so we set {βi} = [1, 10, 40], s = 1 for DeVAE.
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Figure 2: Box plots of quantitative benchmarks MIG, FactorVAE, Disentanglement, and reconstruc-
tion error on dSprites and Shapes3D.

3.2 COMPARISON TO PRIOR WORK

To demonstrate the effectiveness of the proposed DeVAE, we compare it to previous all types of
baselines: 1) β-VAE (Higgins et al., 2017): the popular method for disentanglement and also the
baseline model for DeVAE when there is only one latent layer; 2) β-TCVAE (Chen et al., 2018):
the TC-based method with a good balance of simplicity and effectiveness; 3) Dynamic-VAE (Shao
et al., 2022): the latest method with incremental information bottleneck.

Disentanglement & Reconstruction. We conducted experiments on dSprites and Shapes3D to
compare the above methods. Each trail was repeated 10 times with different random seeds. We
draw the distributions of three disentanglement scores and reconstruction errors in Figure 2. The
visualization of sampling from the best models is shown in Appendix A.5. Experimental results
reveal that DeVAE achieves an average improvement of 8% comparing to β-TCVAE and 47% to
β-VAE on dSprites for disentanglement. DeVAE has a lower average reconstruction error on two
datasets by 2% for β-TCVAE and by 30% for β-VAE. Though the improvement is not significant, β-
TCVAE and β-VAE are not robust to one hyperparameter setting. Though DynamicVAE achieves
the best overall results, it still suffers from ID problems and is incapable of dealing with high-
dimensional space, see Figure 5 and Appendix A.7.

Qualitative Visualization. We also conducted a qualitative analysis to assess disentanglement.
R3Q4We show the selected latent traversals whose KL divergence is larger than 0.5 in Figure 3. We
can see that DeVAE disentangles position X and position Y perfectly. Shape, scale, and orientation
are hard to be disentangled. We show the latent traversals of the best models with the highest MIG
in Appendix A.4.

Preventing Information Diffusion. Information diffusion is a phenomenon of disentangling that
one factor’s information diffuses into other latent variables while training, causing the disentangle-
ment scores to fluctuate during training (Wu et al., 2022). We hypothesize that losing the constraint
of disentanglement is the reason for ID.

To prove it, we monitored the changes in mutual information during training. From Figure 4, we
see that DynamicVAE has a significant trend of losing information on iteration 3e5. It means that
the learned structure of representation was destroyed when expanding the IB. In contrast, DeVAE
shows a relatively steady trend of increasing information for consistent regularizing. DeVAE over-
comes the drawback of traditional information bottleneck-based methods by keeping the constraint
of disentanglement.
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Figure 3: Latent traversal of DeVAE with the best MIG score on dSprites. Each block shows the
generated images of traversing the latent variable from −2 to 2. Each group shows the traversal
images sampling from 3 different random noise. The title above each group denotes the index of
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Figure 4: Comparison results of information diffusion. Each colored curve denotes the learned
information that belongs to one factor over training iterations.

Scaling to High-dimensional Latent Space. Most disentanglement methods evaluate their per-
formance on simple scenes with only one object and few factors. It is a challenge to extend these
methods to complex scenes. However, whether these methods adapt to a large latent space to fit more
factors is questionable. In particular, the dimension of latent space affects the estimation accuracy
of MI for the TC-based methods.

To study the effect of high-dimensional latent space on estimating TC, we first generate samples
from a D-dimensional multi-variable normal distribution x which is divided into two groups x1 and
x2 with D/2 dimensions. The variables in a group are independent Cov(xm

i ,xm
j ) = 0, i ̸= j; the

variables between groups are correlative Cov(xm
i ,xn

i ) = ρ,m ̸= n; each variable is a standard
normal distribution. So, the TC of x is

TC(x) = −D

4
log(1− ρ2). (9)

We trained a discriminator for 2000 iterations to estimate the TC introduced in FactorVAE (Kim &
Mnih, 2018). We compared the estimated TC and the real TC over dimensions and ρ. Each trail
was repeated 10 times, and we report the average results as shown in Table 1. One can see that
increasing ρ or dimension diminishes the accuracy of estimation, and the estimators always have
low errors when the dimension is 10. However, the estimation becomes extremely inaccurate when
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Figure 5: Distributions of MIG scores and reconstruction errors for low-dimensional space (blue)
and high-dimensional space (green). The points in the bottom right have a better balance of disen-
tanglement and reconstruction.

Table 1: The estimated MI of FactorVAE and the real MI on high dimensional spaces. The cases
having large error are bold. ρ denotes the correlation of two random variables.

Estimated TC TC Error
Dim ρ

10 0.3 0.23 0.24 0.03
0.6 1.08 1.12 0.03
0.9 4.14 4.15 0.00

100 0.3 2.17 2.36 0.08
0.6 10.27 11.16 0.08
0.9 23.39 41.52 0.44

1000 0.3 8.62 23.58 0.63
0.6 17.40 111.57 0.84
0.9 22.47 415.18 0.95

the dimension raises to 1000, which means such estimation will fail to penalize the TC for large
models.

We further conduct experiments on dSprites to validate the above conclusion. The experimental
settings are the same except for increasing the dimension of latent space to 1024. From Figure 5, we
can see that β-TCVAE and DynamicVAE have significant performance decay. Higher dimensional
space increases the complexity of calculating the TC and leads to significant estimation errors and
also increases the chance of the ID problem for DynamicVAE see in Appendix A.7. β-VAE and
DeVAE show robustness in high-dimensional latent spaces, which is necessary to train a large model
on large data.

3.3 EXPERIMENTAL ANALYSIS

In this section, we performed ablation studies on the benefit of the proposed Hierarchical Latent
Spaces (HiS) and Disentanglement-invariant Transformation (DiT). We also conducted extensive
experiments to explore the effect of β and s on disentanglement and reconstruction performance.

Hierarchical Latent Spaces & Disentanglement-invariant Transformation. To demonstrate
the effectiveness of the introduced Hierarchy Latent Spaces (HiS) and Disentanglement-invariant
Transformation (DiT), we performed ablation experiments on the following situations: 1) The model
has one single latent space; 2) The model applies a parallel structure instead of the hierarchy that
latent spaces are independent; 3) We replace DiT with Linear Transformation (τi(zi) = wzi), w is
an arbitrary matrix; 4) The proposed model DeVAE.

We report the MIG and Recon. for each layer in Table 2. MS and HiS can optimize multiple
objectives for these layers separately. DiT enforces all layers to share disentanglement. In this
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Table 2: Ablation Study on Multiple Spaces (MS), Hierarchical Structure (HiS) and
Disentanglement-invariant Transformation (DiT). The reconstruction fidelity becomes better and
better from the bottom layer to the top layer, but the disentanglement gets worse. DiT can prevent
disentanglement to degenerate.

MS HiS DiT MIG Recon.
Layer0 Layer1 Layer2 Layer0 Layer1 Layer2

✗ ✗ ✗ 0.19 - - 47.49 - -
✓ ✗ ✗ 0.24 0.32 0.35 22.21 40.79 62.40
✓ ✓ ✗ 0.24 0.29 0.30 38.82 45.48 63.78

✓ ✓ ✓ 0.35 0.35 0.35 43.29 75.11 175.99

Table 3: Exploration study of betas on disentangle-
ment (MIG) and reconstruction (Recon.). l1, l2, l3 de-
note [1,10,20,40,80], [1,10,40], [1,10] respectively. s
is fixed to 1.

Dataset MIG Recon.
No. betas

dSprites l1 0.30±0.03 79.65±16.06
l2 0.35±0.02 51.99±26.99
l3 0.16±0.11 38.19±02.35

Shapes3D l1 0.54±0.06 65.01±25.37
l2 0.57±0.01 43.24±11.41
l3 0.55±0.04 39.31±06.96

Table 4: Comparison of scale. We report
the mean±std of MIG and reconstruction
for 5 trails on dSprites and Shapes3D. The
sequence of betas is fixed to [1,10,40].

MIG Recon.
scale

0.3 0.21±0.14 16.01±01.14
0.5 0.29±0.09 22.40±01.78
1.0 0.35±0.02 51.99±26.99

0.3 0.55±0.02 24.43±01.37
0.5 0.57±0.02 28.48±03.31
1.0 0.57±0.01 43.24±11.41

way, the first layer aims to optimize the ELBO, and the subsequent layers optimize disentanglement
jointly by DiT which works like a constraint of disentanglement. Therefore, the key of DeVAE is to
connect the multiple latent spaces by DiT to form a hierarchical structure with a decremental IB.

Effect of β. More latent layers mean more chance to explore disentanglement solutions but need
more time to converge. Though Wu. etc. (Wu et al., 2022) proposes the Annealing Test to determine
the value of β, it requires labels to learn the information freezing point (IFP). Choosing a suitable
β for each layer is difficult without knowing the information of factors. Fortunately, DeVAE is
insensitive to the choice of β, which means we can create redundant latent layers to cover all suitable
βs. In Table 3, we compared tree cases: redundant betas ([1,10,20,40,80]), just betas ([1,10,40]),
insufficient betas ([1,10]). Redundant betas slightly diminish the performance of disentanglement
and reconstruction. It is an advantage to increase the parameter size and training iterations without
rebooting

Effect of Scale s. Increasing s will add the weights of higher beta, encouraging disentanglement
more than reconstruction fidelity. It is a crucial hyperparameter to balance the objectives of latent
layers. Note that our model equals the vanilla VAE when s = 0. In Table 4, we compared the effects
of choosing s and reported the mean±std scores of MIG (Chen et al., 2018) and reconstruction. For
most cases, s = 1 is a good choice.

3.4 LIMITATION

Since our model creates several diverse latent spaces, it is a challenge to optimize multiple objec-
tives. Though there are numerous combinations for setting pressures and weighting these objectives,
we only search a limited range of hyper-parameters. Even so, DeVAE shows compatible perfor-
mance on the benchmarks. Though we validated that our model is adequate for high-dimensional
space, we did not test it on real problems. It is challenging to train a disentanglement model on
large-scale problems, such as ImageNet.
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4 RELATED WORK

Disentanglement Learning. Disentanglement learning aims at learning generative factors existing
in the dataset, that is, disentangled representation learning. Though the definition of disentanglement
is still an open topic (Kumar et al., 2018; Do & Tran, 2020; Abdi et al., 2019; Duan et al., 2020),
it is widely accepted that the redundancy between latent variables diminishes disentanglement. Pe-
nalizing the Total Correlation (TC) (Watanabe, 1960) is an important direction in disentanglement
learning, and many SOTA methods are based on it (Chen et al., 2018; Kim & Mnih, 2018; Esmaeili
et al., 2019; Kumar et al., 2018; Wei et al., 2021). PM algorithm promotes factorial codes but only
works for binary codes (Schmidhuber, 1992); Though ICA (Comon, 1994) and PCA (Wold et al.,
1987) ensure independence theoretically, they extract linear representations. Until recently, deep
learning has made it workable. FactorVAE (Kim & Mnih, 2018) applies an adversarial training
method to approximate and penalize the TC term. β-TCVAE (Chen et al., 2018) decomposed the
KL term into three parts: mutual information (MI), total correlation (TC), and dimensional-wise
KL (DWKL). However, these methods rely on the estimation of TC, which is extremely hard for
high-dimensional spaces.

Information Bottleneck. Information bottleneck theory (Tishby et al., 1999; Shannon, 1948) plays
a vital role in interpreting neural networks. Some methods encourage disentanglement by increas-
ing the information bottleneck while training (Jeong & Song, 2019; Burgess et al., 2018; Shao et al.,
2022; Dupont, 2018; Wu et al., 2022). These methods vary in the way of expanding the IB. Cascade-
VAE (Jeong & Song, 2019) sequentially relieves one latent variable at one stage to increase the IB.
DynamicVAE (Shao et al., 2022) designs a non-linear PI controller for manipulating β to control
IB steadily increasing. DEFT (Wu et al., 2022) applies a multi-stage training strategy with sepa-
rated encoders to extract one factor at one stage according to its information freezing point (IFP).
However, the above incremental models, increasing the IB while training, suffer from the informa-
tion diffusion (ID) problem (Wu et al., 2022) that the disentangled representation may diffuse the
learned information into other variables. This work presents a novel framework with a decremental
information bottleneck to solve the ID problem.

Hierarchical Latent Variables. Normalizing Flow (Rezende & Mohamed, 2015; Kingma et al.,
2016) also uses hierarchical latent layers to generate an arbitrary distribution. Unlike Normalizing
Flow, each layer aims to encourage disentanglement or reconstruction. Besides, Normalizing Flow
gradually increases the complexity of the output distribution after entering a new layer. In contrast,
our model reduces the complexity layer by layer. LadderVAE (Sønderby et al., 2016) also applies
hierarchical latent variables in the encoder, but it using a symmetry structure decodes these latent
variables in hierarchy. Therefore, the information among the i-th layer will increase comparing to
the last layer.

5 CONCLUSION

We propose a novel framework with a decremental information bottleneck for disentanglement. Hi-
erarchical latent spaces with disentanglement-invariant transformation are the key to overcoming
the problem of losing disentanglement constraint while expanding the information bottleneck. The
decremental method is compatible with high-dimensional problems and reduces the information
diffusion problem. In practice, the typical disentanglement methods have to refine suitable hyperpa-
rameters for a dataset without labels by trail and error. In contrast, DeVAE is tolerant to redundant
layers such that we can set a large parameter set to fit kinds of datasets.

Broader Impact Unlike previous works that spread the conflict of the trade-off over time, our work
demonstrates a novel direction to solve the trade-off by spreading the conflict in spaces. Our work
provides insights on balancing disentanglement and reconstruction.
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Table 5: The architecture details. “FC.” denotes fully connected layer, “conv.” denotes convolutional
layer, “deconv” denotes transposed convolution layer. c is the dimension of color channel.

Encoder Decoder

4× 4 conv. 32 stride 2 FC.256

4× 4 conv. 32 stride 2 FC. 4× 4× 64

4× 4 conv. 64 stride 2 4× 4 deconv. 64 stride 2

4× 4 conv. 64 stride 2 4× 4 deconv. 32 stride 2

FC. 256 4× 4 deconv. 32 stride 2

FC. 10 4× 4 deconv. c stride 2

A APPENDIX

A.1 ARCHITECTURE

The details of architectures are listed in Table 5.

A.2 DISENTANGLEMENT-INVARIANT REPRESENTATIONS

In this section, we prove the proposed disentanglement-invariant transformation. Consider that we
have a new representation by multiplying a diagonal matrix: z′ = wz, w. We can calculate the
Covariance between any two latent variables:

Cov(wizi,wjzj) = E[(wizi − E[wizi])(wjzj − E[wjzj ])]

= wiwj(E[zj ]− E[zi]E[zj ])
= wiwj Cov(zi, zj),

(10)

where the subscript denotes the index of latent variables. Note that we use a different notion in this
section to simplify the formula.

Then we can get the correlation coefficient by

ρ(wizi,wjzj) =
Cov(wizi,wjzj)√
Var[wizi] Var[wjzj ]

= ρ(zi, zj).

(11)

Therefore, the correlation matrix will not change by multiplying a diagonal matrix w,w ̸= 0. We
could create a disentanglement-invariant representation by multiplying a diagonal matrix.

A.3 ESTIMATION OF I(zj ; ci)

Given an inference network q(z|x), we use the Markov chain Monte Carlo (MCMC) method to get
samples from q(z) by the formula q(z) = q(z|x)p(x). We use 10, 000 points to estimate q(z).
Then, we discretize these latent variables by a histogram with 20 bins. After discretizing one latent
variable, we call a discrete mutual information estimation algorithm to calculate I(wjzj ; ci) by a
2D histogram.

A.4 LATENT TRAVERSALS

We compare DeVAE to others with latent traversals on Shapes3D and dSprites. Each column denotes
the generated images by traversing one latent variable from -2 to 2. We also interpret the extracted
factor at the bottom. From Figure 6 and Figure 7, we can see that DeVAE has a lower entanglement
level. Note that only DeVAE disentangles object size isolated on Shapes3D.

13
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Figure 6: Latent traversal on Shapes3D. ”back.“ denotes background color, “floor” denotes floor
color, “obj.” denotes object, and “wall” denotes wall color.

A.5 RANDOM SAMPLING

We show the visualization of random sampling from the best models with the highest MIG trained
on dSprites and Shapes3D in Figure 8 9 10.

A.6 DECREMENTAL DIAGRAM

Figure 11 shows how the mutual information between factors and latent variables decreases over
layers on dSprites. One can see the mutual information decreases along the layers, and information
of shape, scale, and orientation is totally disappeared in layer2. The last layer is more likely to

14
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Figure 7: Latent traversal on dSprites.

disentangle them, and that property will be preserved and passed to the first layer for a constraint of
disentanglement.

A.7 HIGH-DIMENSIONAL LATENT SAPCE

DeVAE has significant advantages for handling high-dimensional latent spaces. Though Dynamic-
VAE outperforms low-dimensional latent spaces, there is a gap in the high-dimensional latent spaces.
We trained DynamicVAE and DeVAE with 1024-dimensional latent spaces on dSprites to investi-
gate what causes the difference. (Cao et al., 2022) found that existing disentanglement metrics fail to
make meaningful measurements for high-dimensional representation models, therefore we apply the
proposed metric by them in this experiment. Active variables denote the latent variables containing
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Figure 8: Generated images of β-TCVAE and DeVAE from sampling random noise on dSprites.
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Figure 9: Generated images of β-TCVAE and DeVAE from sampling random noise on Shapes3D.
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Figure 10: Generated images of DynamicVAE and β-VAE from sampling random noise on dSprites
and Shapes3D. 18
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Figure 11: The mutual information between factors and latent variables over layers on dSprites. We
select five informative variables, and the title denotes the index of the latent variable. The rows
denote the factors, shape, scale, orientation, posX, and posY respectively. The column denotes the
layer where the latent variable (title) is.
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Figure 12: Comparison of active variables and MED scores on 1024-dimensional models on
dSprites. DynamicVAE is unstable while expanding the information bottleneck.
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Table 6: Comparison of reconstruction error (Recon.), MIG score, and ELBO for six disentangle-
ment methods.

dataset model Recon. MIG ELBO

dSprites

FactorVAE 21.55±0.84 0.34±0.04 -46.05±2.24
CascadeVAE 12.04±1.23 0.20±0.07 -32.14 ± 1.29

Dynamic 19.81±1.19 0.35±0.01 -37.83±1.17
beta-TCVAE 73.04±3.41 0.29±0.10 -82.29±3.71

beta-VAE 48.75±2.84 0.17±0.05 -61.17±3.13
DeVAE 36.02±20.02 0.32±0.11 -51±22.26

Shapes3D

FactorVAE 18.48±2.28 0.38±0.28 -38.08±1.87
CascadeVAE 14.84±1.98 0.46±0.11 -32.54±2.10

Dynamic 29.70±4.15 0.54±0.04 -47.68±4.28
beta-TCVAE 44.53±5.69 0.49±0.11 -60.01±6.29

beta-VAE 34.95±2.34 0.42±0.18 -49.09±2.72
DeVAE 46.80±13.97 0.52±0.10 -74.73±31.66

information, and those containing no information will collapse into one point, so the active variables
will have large variances. From Figure 12, DynamicVAE has more active variables and performs
worse than DeVAE. DynamicVAE expanding the IB smoothly could have a good performance on
low-dimensional spaces, but the increment of dimensions raises the chance of leaking information
to others. As a result, the number of active variables increases quickly when expanding the IB, see
iteration 20000 to 100000.

A.8 COMPARISON WITH FACTORVAE AND CASCADEVAE

FactorVAE (Kim & Mnih, 2018) and CascadeVAE (Jeong & Song, 2019) are two relevant methods
for disentanglement. We compare six disentanglement methods on dSprites in Table 6. Similar to β-
TCVAE, FactorVAE can not consistently outperform one hyperparameter on two datasets. Though
CascadeVAE has good reconstruction fidelity, it cannot disentangle all factors properly.
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