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Abstract

Leveraging large language models, advance-
ments in text augmentation and embedding
models for downstream tasks have shown
promise, However yet challenges remain in dis-
tinguishing texts with similar meanings. The
proposed scheme, incorporating ordered la-
bels to enhance sequence information, em-
ploys an integrated technique combining Con-
trastive and Downstream Learning The pro-
posed scheme outperforms Full Fine-Tuning
methods using only classfication learning in
text classification because it effectively uses
ordered labels to train the model to distinguish
similar texts with greater accuracy. our method
boosts data diversity and model accuracy by re-
fining the model’s sensitivity to nuances, utiliz-
ing strongly hard-negative samples in generated
texts to further enhance Contrastive Learning
outcomes.

1 Introduction

In the field of Natural Language Processing (NLP),
large language models (LLMs) have driven ground-
breaking advancements, demonstrating superior
performance over traditional techniques in various
language tasks. Specifically, encoder-focused mod-
els developed using the Transformer architecture
(1) have shown impressive performance in down-
stream tasks such as text classification, with notable
examples including BERT (2), RoBERTa (3), and
ELECTRA (4). These models have significantly
improved the benchmarks for tasks such as senti-
ment analysis, sentence similarity evaluation, and
document classification.

Text data generation and augmentation, as well
as contrastive learning, are actively researched ar-
eas within NLP. Text data augmentation is an ef-
fective method for enhancing model performance
by addressing data scarcity. Contrastive learning
helps models learn similarities and differences be-
tween data, improving the representation of the
embedding space.

Ordinal labels are used as key features in ma-
chine learning and deep learning. Zhu et al. (5)
applied ordinal label relationships to regression
problems, while Wen et al. (6) improved image
model performance by learning the distribution of
ordinal labels. In NLP tasks such as text classifica-
tion, sentiment analysis, and similarity evaluation,
ordinal labels can play a crucial role. For example,
in sentiment analysis, the intensity of emotions can
be distributed continuously from "very negative"
to "very positive." Correctly learning these ordi-
nal labels impacts the model’s performance and
generalization ability.
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Figure 1: Ordinal Labels for Text Augmentation and
Simultaneous Contrastive Learning for DownStream
Task

We propose a method to augment text through
ordinal label-based data generation, enhancing con-
trastive learning. This study aims to improve NLP
task performance by integrating LLM-based text
augmentation and contrastive learning using or-
dinal labels. We used LLM for data augmen-
tation and prompt engineering to generate addi-
tional data based on the selected original labels
and text(anchor). Each anchor text generated sev-
eral new texts reflecting the differences in ordinal
information. Additionally, we introduce a loss func-
tion that constructs n hard negatives based on the
differences in ordinal labels from the augmented
data. Our approach integrates contrastive learning
and downstream task learning simultaneously to



improve model performance in various tasks in-
volving ordinal labels.

2 RELATED WORK

2.1 Ordinal Labels for Downstream Task

Ordinal labels (Ordinal Label) are a type of data
that lies between categorical and continuous data,
where the order information between labels plays
a crucial role. Downstream tasks utilizing ordinal
labels are differentiated from general classification
problems in that they must consider the order re-
lationship between labels. To effectively handle
ordinal labels, it is important to design the model
to learn while maintaining the order information.

(Ganu et al., 2009)(7) introduced methods for
predicting/classifying ratings based on text reviews
using ordinal labels. They classified ratings, which
are ordinal labels based on text reviews, into four
stages: Positive, Negative, Neutral, Conflict, and
examined Accuracy, Precision, and Recall, and
then predicted ratings through a regression model.
Verma et al., 2017)(8) used a parallel LSTM to
pass text input through and obtain latent vectors,
which were then passed to a GRNN to predict rat-
ings. Chen & Hendry, 2019)(9) proposed methods
for predicting and recommending ordinal labels
through noise reduction processes by configuring
Discriminative classifiers and Generative classi-
fiers.

2.2 Text Data Augmentation

Text data augmentation is crucial for enhancing
model performance in NLP by increasing data di-
versity and helping models generalize better. Tradi-
tional methods include synonym replacement, ran-
dom insertion, random deletion, and sentence shuf-
fling, transforming original data to expose models
to various scenarios.

Adding noise to text data, similar to image noise
in computer vision, has also been explored. Xie
et al. (10) introduced unigram and blank noising
techniques, where tokens are randomly replaced or
removed to create augmented data.

Recent advancements use LLMs like GPT-4(11)
and LLaMA(12) to generate datasets through
prompt engineering. Kieser et al. (13) used Chat-
GPT to simulate diverse groups, validating syn-
thetic data through physical tests. Chowdhury et al.
(14) generated context and question-answer pairs to
improve reading comprehension model robustness.

Research for specific downstream tasks includes

simple data augmentation techniques for text clas-
sification, such as randomly adding punctuation
(15), and generating synthetic datasets using pre-
trained language models and task-specific prompts
(16). These methods highlight the effectiveness of
synthetic data in various NLP tasks, particularly
sentiment analysis, text classification, and machine
translation.

2.3 Contrastive Learning

Contrastive learning extracts useful features by
bringing similar samples closer and pushing dis-
similar ones apart in the embedding space. Ini-
tially used in unsupervised settings, it has recently
been applied in supervised environments, effec-
tively leveraging data structure even with limited
labels.

Contrastive learning’s core is to maximize simi-
larity and differences between data samples using
a margin-based loss function or Noise Contrastive
Estimation (NCE). The InfoNCE loss function, a
representative of NCE, is defined as follows:
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where z; and z; are positive pair embeddings,
2z, are other batch sample embeddings, and 7 is a
scaling parameter.

Contrastive learning is advantageous as it effec-
tively uses unlabeled data, clusters similar samples,
and improves model generalization. It is widely
used in image processing, NLP, and speech recog-
nition.

SimCSE (17) is a notable text contrastive learn-
ing study, presenting both unsupervised and su-
pervised methods, achieving high performance in
benchmarks like STS-B. Unsupervised SimCSE
uses dropout as noise, encoding the same sentence
twice with different dropout masks. Supervised
SimCSE leverages Natural Language Inference
(NLI) datasets, using entailment and contradiction
pairs as positive and hard-negative pairs.

DiffCSE (18) extends SimCSE by adjusting sen-
sitivity to variations, extracting richer contextual
representations through masked language model
(MLM) methods and discriminator training for re-
placed token detection.

SupCon (19) applies supervised learning to im-
age classification using contrastive loss, treating



same-class samples as positive pairs and different-
class samples as negative pairs, learning feature
differences for classification.

3 Proposed Method

3.1 Process

Our proposed method comprises the following two
key processes: 1) generating augmented text data
using an LLM with ordinal label information 2)
leveraging this data for contrastive learning along-
side the original data for classification.

3.1.1 Text Augmentation with Ordinal Labels

We use an LLM API to generate augmented text
data. The augmentation process involves selecting
anchor texts from the original dataset and gener-
ating new texts that reflect different ordinal rating
levels. The steps are as follows:

1. Anchor Text Selection: Sample anchor texts
from the original dataset.

2. Prompt Engineering: Each prompt includes
examples that demonstrate how to transform
a text to reflect different rating levels.xw

3. Text Generation: Use the LLM API with a
temperature setting to generate N variations
of each anchor text, corresponding to ordinal
levels.

Result Example: 2 Review(Anchor): "Arrived
late, sound quality below expectations, short bat-
tery life, slow customer service."

* 1 review: "Very disappointed overall. Never
buy these headphones again."

* 2 review: "Delivery was delayed, and cus-
tomer service was slow to respond. Not bad
sound."

* 4 review: "Late delivery but good sound and
decent battery life. Satisfied overall."

* 5 review: "Quick delivery, excellent sound,
long battery, helpful customer service. Highly
recommend!"

3.1.2 Simultaneous Learning

The generated text data, along with the original
data, is used to perform simultaneous contrastive
learning and classification. Positive pairs consist
of anchor texts and their corresponding generated

texts with the same ordinal label, while negative
pairs consist of anchor texts and generated texts
with different ordinal labels.

Additionally, we proposed a modified con-
trastive loss function, named noc (N-ordinal con-
trastive loss). This loss function includes hard neg-
ative samples to emphasize the differences between
similar but differently labeled texts. It allows for
the adaptive selection of N hard negatives based on
ordinal labels for batch training.
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where z,, is the anchor embedding, 2, is the
positive embedding, and Zhn,, are the hard nega-
tive embeddings. The similarity function sim uses
cosine similarity, and 7 is the scaling parameter(0,
1). The variable j indicates the number of hard
negative samples included in the calculation, and it
can be adaptively selected based on the difference
in ordinal labels.

Train the model using both contrastive learning
and downstream objectives. Use cross-entropy loss
for classification(L1 loss for regression) and com-
bine it with the contrastive loss. The total loss is
calculated as:

»Ctotal = AEclassiﬁcation + (1 - )\)Acnoc (3)

where ) is a weight parameter to balance the two
losses.

4 Experiments

4.1 Dataset Description

The dataset used in this study consists of 200,000
text reviews and ratings from Naver, a major online
shopping platform in Korea. The dataset includes
text reviews and corresponding ratings, which are
used as ordinal labels ranging from 1 to S(except 3).
We selected 4,000 anchor data per label for text gen-
eration.We used the ChatGPT API to generate four
different texts for each anchor text, corresponding
to different labels. A total of 64,000 generated data
were used for contrastive learning.

4.2 Experimental Setup

We conducted experiments to evaluate the effec-
tiveness of the proposed N-ordinal contrastive loss



(Noc) method. The embedding model used was
"klue-roberta-small’ (20) , a pre-trained Korean lan-
guage model. The dataset was split into training,
validation, and test sets with a ratio of 0.6:0.2:0.2,
and stratified sampling was used to maintain an
even distribution of classes across the sets.the best
value for A weight parameter to balance the two
losses was found to be 0.7. All experiments were
performed on a single NVIDIA A100 GPU.

We fixed the contrastive loss and changed the
downstream loss to L1 Loss to measure MAE, and
to CrossEntropy Loss to measure Accuracy.

4.3 Baseline Models

We compared the proposed Noc method with two
baseline models:

 Baseline(Full): A full fine-tuning model that
adjusts all weights of the embedding model
for classification tasks using only the original
dataset. This model is trained exclusively with
classification training.

* Baseline_Gen(Full): A full fine-tuning model
that includes generated data for training, using
the same augmentation method. This model
employs the same methods as the Baseline but
leverages generated data.

* Not Simultaneous Learning: A model where
the embedding model is first trained using con-
trastive learning, and subsequently, the down-
stream task is trained. This approach separates
the contrastive learning phase from the down-
stream learning phase, unlike the proposed
method which integrates both simultaneously.
This method follows the approach used by
Setfit.(21)

4.4 Results and Discussion

The performance of the models was evaluated using
Accuracy and MAE(Mean Absolute Error) as the
primary metric. To ensure robust evaluation, we
performed cross-validation by varying the random
state for dataset splitting and reported the average
accuracy across multiple runs.

Table 1 demonstrate that the proposed model can
more effectively improve the model’s performance
compared to 3 other baselines.

4.5 Model Size Comparison

Additionally, we investigated the effect of model
size by comparing ‘klue-roberta-small‘ and ‘klue-

Table 1: Experimental Results(Average for 5 time cv)

Model Acc(%) MAE
Ours 72.74 0.356
Baseline(Full) 72.03  0.3752
Baseline_Gen(Full) 71.76 0.379
Not Simultaneous (21) 67.25 N/A

roberta-base‘ models. The results showed that in-
creasing the model size led to improved perfor-
mance, highlighting the benefits of using larger
models for capturing more complex patterns in the
data.

Table 2: Impact of Model Size on Performance

Embedding param Avg Acc(%)
klue-roberta-small 68.1M 72.74
klue-roberta-base 111M 73.10

Table 2 shows the impact of model size on
performance. The use of larger models, such as
klue-roberta-base, also contributed to better per-
formance, indicating the advantage of increased
model capacity in our method.

5 Conclusion

This study proposed a novel method for text aug-
mentation and contrastive learning using ordinal
labels to improve the performance of NLP mod-
els in downstream tasks. The method leverages
large language models (LLMs) for text generation
and incorporates ordinal labels to generate diverse
datasets. By integrating simultaneous contrastive
learning and classification learning, the method ef-
fectively captures the nuanced differences between
texts with different ordinal labels, leading to en-
hanced model performance. The proposed scheme
provides a robust framework for leveraging ordinal
labels in text augmentation and simultaneous con-
trastive learning, offering significant potential for
advancing NLP downstream task performance in
diverse applications.

Limitation

Limitation of our study is that we did not perform
downstream task experiments on additional ordinal
datasets. Our experiments were conducted using a
dataset. Future work should include testing the pro-
posed model across multiple languages and diverse



datasets to validate its robustness. Furthermore, a
direction for future work is to develop and integrate
methods for embedding data more finely in the la-
tent space based on differences in ordinal labels.
This could potentially enhance the model’s ability
to capture subtle differences between data points
with similar texts with ordinal labels.
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The study was conducted in accordance with the
ACL Ethics Policy.
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