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Abstract

Diffusion policies, widely adopted in decision-making scenarios such as robotics,
gaming and autonomous driving, are capable of learning diverse skills from demon-
stration data due to their high representation power. However, the sub-optimal and
limited coverage of demonstration data could lead to diffusion policies that gener-
ate sub-optimal trajectories and even catastrophic failures. While reinforcement
learning (RL)-based fine-tuning has emerged as a promising solution to address
these limitations, existing approaches struggle to effectively adapt Proximal Policy
Optimization (PPO) to diffusion models. This challenge stems from the computa-
tional intractability of action likelihood estimation during the denoising process,
which leads to complicated optimization objectives. In our experiments starting
from randomly initialized policies, we find that online tuning of Diffusion Policies
demonstrates much lower sample efficiency compared to directly applying PPO on
MLP policies (MLP+PPO). To address these challenges, we introduce NCDPO, a
novel framework that reformulates Diffusion Policy as a noise-conditioned deter-
ministic policy. By treating each denoising step as a differentiable transformation
conditioned on pre-sampled noise, NCDPO enables tractable likelihood evaluation
and gradient backpropagation through all diffusion timesteps. Our experiments
demonstrate that NCDPO achieves sample efficiency comparable to MLP+PPO
when training from scratch, outperforming existing methods in both sample ef-
ficiency and final performance across diverse benchmarks, including continuous
robot control and multi-agent game scenarios. Furthermore, our experimental
results show that our method is robust to the number denoising timesteps.

1 Introduction

Recently, diffusion models have been widely adopted as policy classes in decision-making scenarios
such as robotics [} 21} 12} 33}127,[15], gaming [15}[34], and autonomous driving [13}30]. Although
Diffusion Policies have shown remarkable capabilities in learning diverse behaviors from demonstra-
tion data [3]], Diffusion Policy could show sub-optimal performance when the demonstration data is
sub-optimal or only covers a limited set of environment states. To further optimize the performance
of pretrained policies, Reinforcement Learning (RL) is adopted as a natural choice for fine-tuning
pre-trained Diffusion Policies through interaction with the environment.

Currently, the most effective approach, DPPO (Diffusion Policy Policy Optimization) [20] employs
Policy Gradient (PG) approaches to enhance the performance of pre-trained Diffusion Policy in
continuous control tasks. By treating the denoising process of Diffusion Policy as a low-level Markov
Decision Process, DPPO optimizes the Gaussian likelihood of all denoising steps. However, through
our extensive experiments, we find fine-tuning Diffusion Policies with RL faces a challenge of sample
efficiency. Specifically, in our RL experiments starting from randomly initialized policies, we find
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that training Diffusion Policy with DPPO could lead to worse sample efficiency and final performance
than training an MLP policy with standard RL. We hypothesize that the training efficiency gap occurs
since DPPO uses a much larger action space for RL training, which impedes the sample efficiency of
RL training. Therefore, a question becomes particularly important: Can we design a more effective
fine-tuning approach for Diffusion Policy that avoids enlarging the action space during RL training?

In this work, we present Noise-Conditioned Diffusion Policy Optimization (NCDPO), a sample-
efficient RL algorithm for fine-tuning Diffusion Policies. NCDPO formulates the denoising process
of Diffusion Policy as a noise-conditioned inference process, ensuring the RL objective only contain
the likelihood of the interactive actions, i.e. actions generated by Diffusion Policy to interact with
the environment. In the policy update phase, the gradients with respect to the policy parameters are
computed with Backpropagation through Diffusion Timesteps (BPDT). When performing RL training
on randomly initialized policies, we show that training Diffusion Policy with NCDPO achieves
comparable sample efficiency with training an MLP policy with RL.

In summary, our main contribution is NCDPO, a novel framework which is applicable to both
continuous and discrete environments, to fine-tune Diffusion Policies, by formulating denoising steps
as deterministic generation process and apply PPO. We also evaluate NCDPO on a set of environments,
ranging from continuous robot control and multi-agent coordination tasks. We demonstrate that
NCDPO obtains higher sample efficiency and stronger final performance than baseline methods
across all evaluated environments. Finally, our ablation study reveals that that NCDPO is robust to
the number of diffusion timesteps and remains highly sample efficient when the number of diffusion
timesteps is large.

2 Related Work

Diffusion Models and Diffusion Policies. Diffusion-based generative models have demonstrated
remarkable effectiveness in the domains of visual content generation [23| 26} [19].One central
capability of Diffusion Models is the denoising process that iteratively refines sampled noises
into clean datapoints. [9, 24, [25]. Beyond their success in content generation, diffusion models
have increasingly been adapted for decision-making tasks across a range of domains, including
robotics [5) 21} 12} 133, 27, [15]], autonomous driving [13} 30], and gaming [[15} 34]]. In robotics, most
existing work trains Diffusion Policies through imitation learning. For instance, Reuss et al. [21]]
predict future action chunks using goal-conditioned imitation learning, while [33]] integrate Diffusion
Policies with compact 3D representations extracted from point clouds. To further enhance the quality
of generated behaviors, return signal or goal conditioning is applied to encourage the generation of
high-value actions [10} 1} [12].

Fine-tuning Diffusion Policy with Reinforcement Learning. Recent works have aimed to enhance
learned Diffusion Policy through fine-tuning with Reinforcement Learning approaches. A line
of work has been focusing on integrating Diffusion Policies with Q-learning using offline data
[4) 1111 2281 7, 1221 135, [18]]. In addition to offline reinforcement learning, recent advancements have
explored fine-tuning Diffusion Policies with online RL algorithms, for example, aligning the score
function with the action gradient [31], or employing the diffusion model as a policy extraction
mechanism within implicit Q-learning [8]]. Most recently, [20] formulates the denoising process of
Diffusion Policy as a "Diffusion MDP", enabling the application of RL algorithms to optimize all
denoising steps with online feedback. In this work, we investigate an alternative representation for
the denoising process that enables sample efficient fine-tuning of Diffusion Policy.

3 Preliminary

Markov Decision Process. A Markov Decision Process (MDP) is defined as a tuple M =
(S, A, Py, P, R,~) where S denotes the state space, A is the action space, P is the distribution of
initial states, P is the transition function, R is the reward function and + is the discount factor. At
timestep ¢, a policy 7 generates an action a; € A at state s;. The goal is to find a policy 7 that
maximizes the objective of expected discounted return,

J(7) = Esy 0, > 7' Rist, ar)] 8

t>0
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Proximal Policy Optimization (PPQO). PPO is a reinforcement learning approach that optimizes the
policy by estimating the policy gradient. In each iteration, given the last iteration policy 7, , PPO
maximizes the clipped objective,

9|9k lz mln( Uy at‘st) A0 (St)at)7

3 at|st)
(2)
- To(a|st)
lip( ————=,1 —¢,1 AT
Clp(ﬂ_ek(a”st)a €, +E) k(8t7a’t)>‘|

where A™ (s, a;) is the estimated advantage for action a, at state s;.

Diffusion Policy. Diffusion Policy 7y is a diffusion model that generates actions a by conditioning
on states s. In Diffusion Policy training, the forward process gradually adds Gaussian noise to the
training data to obtain a chain of noisy datapoints a®, a', ..., a’,

g(a'*a’) Hq (a*la®7h),  q(a®|aTh) == N(as /1 — Bra® T, i) 3)

Diffusion Policy could generate actions with a reverse process or denoising process that gradually
denoises a Gaussian noise a®* ~ N (a’€; 0, I') with learned Gaussian transitions,

o(a”s) Hﬂe "a", ), mo(a" " a", s) := N'(a* o (a®, K, 5),080)  (4)

where o is a fixed noise schedule for action generation, 5 denotes the forward process variances and
is held as constant, and 6 is the parameter of Diffusion Policy. To avoid ambiguity, we use inferactive
actions to denote the action a" that is used for interacting with the environment and latent actions to
denote actions a', - - - ,a’¢ that are generated during the denoising process. For more training details
on diffusion models, please refer to [9].

Diffusion Policy Policy Optimization (DPPO). Note that the action likelihood 74 (a?|s;) of Diffusion
Policy 7y is intractable,

We(aﬂst) :/1 KIP[G’?7"' >af(|3t>7r0]'da%"'daf(
a a

£asay

The intractability of the action likelihood makes it impossible to directly fine-tune Diffusion Policy
with PPO since the RL loss (Eq.|2) requires computing the exact action likelihood. To address this
challenge, DPPO [20] proposes to formulate the denoising process as a low-level "Diffusion MDP"
Mbpigr. In Mlef, a state is defined as a combination of the environment state and a latent action
3% = (s4,a¥). For k = K, --- , 1, the transition from ¥ to 4! represents the denoising process

and takes no actual change on the env1r0nment state. For a denoising step k € [1, K], the state

88 = (sy,aF) transits to 5°71 = (s,,a"!). After the denoising process is finished at k& = 0, the

interactive action a? is used to interact with the environment and triggers the environment transition,
i.e. the next state would be §/% | = (s¢41,af" ;) where s;41 ~ P(s¢,a?) and afs; ~ N(0,I) is a

newly generated Gaussian noise.

4 Sample Efficiency Challenge for Diffusion Policy Fine-Tuning

In this section, we aim to investigate the sample efficiency of fine-tuning Diffusion Policy with RL.
Specifically, we compare the sample efficiency of training Diffusion Policy using DPPO and training
an MLP policy using standard PPO. Since our study only focuses on the RL process, both the MLP
policy and Diffusion Policy are randomly initialized before RL training without performing any
additional behavior cloning. For conciseness, we denote training Diffusion Policy with DPPO as
DP+DPPO and training an MLP policy with PPO as MLP+PPO.

Our investigations are carried out on two OpenAl Gym locomotion tasks, Walker2D and Halfcheetah.
The training curves of MLP+PPO and DP+DPPO are shown in Fig. [I] Although Diffusion Policy has
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more powerful representation power than MLP policy [5]], our results here surprisingly show that
DP+DPPO is less sample efficient than MLP+PPO and could only achieves sub-optimal performance.

Why does this efficiency gap occur? We hypothesize that the underlying reason is that, by employing a
two-level MDP formulation, DPPO actually significantly lengthens the MDP horizons in RL training
to contain both the interactive actions and latent actions. This lengthened MDP horizon then results
in difficulty in proper credit assignment. This insight raises a critical question: Can we design an
alternative RL algorithm for Diffusion Policy fine-tuning that avoids enlarging the action space?

00 walker2d halfcheetah
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& 2000 Q2000
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00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40
Step le6 Step le6
—— MLP+PPO —— DP+DPPO —— DP+NCDPO (Ours)

Figure 1: RL training from randomly initialized policy on Walker2D and HalfCheetah. Results are
averaged over three seeds. Training curves indicate that DP+DPPO is less sample efficient than
MLP+PPO and only achieves sub-optimal performance. Our approach, NCDPO, could fine-tune
Diffusion Policy with high sample efficiency.

5 Noise-Conditioned Diffusion Policy Optimization

As discussed in Sec.[d] fine-tuning Diffusion Policy with a two-level MDP formulation could lead
to sub-optimal sample efficiency and final performance. In this section, we present a novel sample-
efficient RL training method for Diffusion Policy, Noise-Conditioned Diffusion Policy Optimization
(NCDPO). In Sec.[5.1] we show that NCDPO formulates the denoising process of Diffusion Policy
as a noise-conditioned inference process. In Sec. we show that NCDPO ensures PPO training
operates on the same action space as the environment, without relying on optimizing action likelihood
of latent actions.

5.1 Denoising Process as a Noise-Conditioned Inference Process

Noise-conditioned Action Generation. We decouple the stochastic and deterministic components
of the denoising process. The stochastic component encompasses all the random noises sampled
during the denoising process. The deterministic component further operates on these sampled noises
with the model pg.

Formally, Eq. 4|can be equivalently represented as,

aF ! = pg(a®, k,s) + oy - 2F where 2 ~ N(0,1) ©)

A straitforward indication of Eq. [3]is that, in each denoising step, the only stochastic component
is the Gaussian noise z*, while the computation of y9(a*, k, s) and addition between py(a”, k, s)
and oy, - 2" are both deterministic. Therefore, the whole denoising process can be split into a noise
sampling phase and a deterministic inference phase.

In the noise sampling phase, we generate a sequence of standard Gaussian noises z', - - - , 2,
VN0, fork=K K-—1,...,1 (6)
a ~ N(0,1) )
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(a) DPPO (b) NCDPO (ours)

Figure 2: DPPO adopts a two-layer MDP design by combining the environment state with latent
actions to form augmented states. In contrast, in each step, NCDPO first samples a group of random
noises and computes the action based on the noises, resulting in a deterministic generation process
(Eq. E[) Blue arrows in the figure indicate MDP transitions.

In the deterministic inference phase, given noises z!,--- , 2, uy is be used to compute the latent
actions a” one by one. Fork = K, K —1,...,1, a*~! is a linear combination of ji4(a", k, s) and
2",
k—1 k k
a = up(a®, k,8) + oy 2 )

Consequently, the generated action a” can be computed by recursively applying Eq.

aO = MQ(M@(:U/Q CLK,K,S) "'7278) +o2- 22u178) +o1- Zl
= fo(s,a™,21") ©)

MDP with Noise-augmented States. As derived in Eq. [§| and Eq. 0] the denoising process
can be partitioned into a noise sampling phase and a policy inference phase. We can incorpo-
rate the sampled noises into the MDP as part of the environment state. Formally, for the origi-
nal environment MDP M = (S, A, Py, P, R,~) we introduce MDP with noise-augmented states
M poise = (Snoises A, Poy Proises B, Y). In M,pise, €ach state Sy0ise consists of a environment
state s € S and Gaussian noises a*, 21, - -+ | 25, M,,0ise Shares the same action space and reward
function as the original MDP M. In each decision-making step, the environment state transits to a
new one, and the noises are all re-sampled.

Denoising Process as a Noise-Conditioned Policy. Given a noise-augmented state S,y;se =
K 1K), the deterministic inference phase of the denoising process can be represented as a

(s,a™, z
Noise-Conditioned Policy w)'C that generates the action a° using Eq.[9]

Note that this noise-conditoned policy is a deterministic policy and could not be directly trained with
PPO since the policy loss (Eq.[2) relies on a stochastic policy. Therefore, we introduce an additional
operation to transform this deterministic policy into a stochastic one. Specifically, for continuous
action space, we sample the final action a” near f(a, z¥) from a Gaussian distribution with a
learnable standard variation o,

my O (121, ", 5) = N(fo(s,a™, 215), 05y) (10)

act

K l:K)

For discrete action space, we use softmax to sample the final action by treating fy(s, a™ , 2

logits,

as

mp O (a® =iz 0" s) oc exp (fy(s, ", 21/ T) (11)

where 1 is the action index. T is the temperature that allows the policy network to produce sharper
action distributions.
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5.2 Finetuning Noised-Conditioned Policy with PPO

Under the formulation of NCDPO, at each denoising timestep ¢, Gaussian noise 2! is first sampled,
and the action is then generated via Eq. [I0]or Eq. This way, we can apply PPO objective in Eq[I2]
, which utilizes a clipped objective to regularize updated policy from original policy, to optimize
interactive action probabilities:

0, 1:K K
Z a; , St NC
L(O10k) = B mpre (15 ok s, [Eimm( o, “QK’ L5 4 (6]sy),
t

(12)
NC (40

) T IZl:K,CLK,St) NC
chp( ?Vc(é e ),1—6,1+5>A o (a?ls)

UM Pzt aft sy

As illustrated in Figure[T] in policy rollout process, each step begins by sampling a sequence of noises,
which are then used by the Diffusion Policy to generate the corresponding action. These sampled
noises are stored in the buffer. During training phase, the stored noises are reused to recompute the
actions, enabling gradient backpropagation through the entire denoising process. This allows PPO to
directly update all denoising steps of the diffusion policy.

Algorithm 1 NCDPO

Require: Noise-conditinoed policy ﬂ'év ¢ noise scheduler &
1: Parameters: v € [0,1), € € (0,1), Nepisodess Npro
2: fore =1,2,..., Nepisodes dO
3:  buffer + 0

4: fort—0,1,2 T—1do

5: all, pK 1\)

6: Sample ao from alNO( | a | sy)

7: logmN¢ (—7TNC( |z afﬂsﬁ

8: Execute a;, observe Tty St41

9: buffer < buffer U {s;, a<, r¢,log my, 21K}
10:  end for

11:  forepoch=1,2,..., Nppo do

12: for mini-batchb = 1,2,... do

13: Calculate PPO loss L(6|0y) in Eq. backpropagate gradients through diffusion

timesteps and update parameter 6

14: end for

15:  end for

16: end for

As Fig2]shows, N CDPO models the denoising process as deterministic generation conditioned on
pre-sampled noise z; . During inference, interactive actions are obtained through recursive model
inference in Eq.[9] and applying the action sampling step in Eq.[I0]and Eq. [T}

6 Experiments

In this section, we provide a comprehensive evaluation of NCDPO across a variety of challenging
environments. We begin by detailing the experimental setup in Sec. [6.1] followed by results on
continuous robot control tasks in Sec. [6.2] and discrete multi-agent coordination tasks in Secl6.3]
Finally, we conduct ablation studies in Sec. [6.4]to assess the robustness and of NCDPO.

6.1 Environmental Setup

Environments: OpenAl Gym locomotion. Our first set of experiments involves testing NCDPO
on a series of well-established locomotion benchmarks from OpenAl Gym [3]], namely: Hopper-v2,
Walker2D-v2, and HalfCheetah-v2. The pre-trained Diffusion Policies used in these experiments
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are trained from the D4RL "medium" dataset [6], which contains a diverse range of pre-recorded
trajectories. For the fine-tuning process, we use dense reward.

Environments: Robomimic. We further evaluate the performance of NCDPO on robotic manipu-
lation tasks within Robomimic benchmarks [14]]. The specific scenarios we consider include Lift,
Can, Square, and Transport, varying in difficulty. To ensure temporal consistency in actions, we
employ action chunking with size 4 for Lift, Can, and Square, and size 8 for Transport, following
the setting in [20]]. All tasks are fine-tuned using sparse rewards, which provide feedback only in the
form of success or failure signals.

Environments: Google Research Football. To evaluate NCDPO’s capability in large discrete action
spaces, we test on three Google Research Football scenarios requiring multi-agent coordination:
3 vs 1 with Keeper, Counterattack Hard, and Corner. Here we adopt a centralized control
strategy, where actions for all agents are generated simultaneously using a single Diffusion Policy.
The base Diffusion Policies are pre-trained to output one-hot vectors corresponding to ground-truth
actions. To construct the pre-training dataset, we aggregate trajectories from multiple MLP-based
policies with varying success rates.

6.2 Evaluation on Continuous Robot Control Tasks

We first evaluate NCDPO on continuous control tasks across two benchmarks: OpenAl Gym loco-
motion and Robomimic. In these environments, we compare NCDPO with DPPO [20]; DRWR
and DAWR [20], based on reward-weighted regression [[17]] and advantage-weighted regression
respectively [[16]; DIPO [31]], which employs action gradients as the score function for denoising
steps; and Q-learning-based methods such as IDQL [8]] and DQL [28]].

From the experimental results shown in Fig. 3] and Fig.[d] we observe that NCDPO consistently
achieves the strongest performance and exhibits robustness across all tasks. While DPPO, which is the
best among the baseline methods, performs comparably to NCDPO in the Robomimic benchmark[]_l
it lags behind in the OpenAl Gym locomotion environments. Other baselines generally underperform
relative to DPPO. Notably, IDQL demonstrates strong performance on the first three Robomimic
tasks but fails in the final one. In contrast, DQL suffers from instability across all scenarios. We
additionally conducted experiments on Square using vision-based inputs, with results provided in
the appendix. The results demonstrate consistent improvements in Diffusion Policy performance
when fine-tuned with NCDPO.

hopper walker2d halfcheetah
80001
3500 ) AN
3000 N s ——= 4000 PO s manct = - 6000] s
£ 2500 [ - o —— 03000, \/ — == ° s ™ - .
| / % FZ 4000{ *
g 2000 / Y £ 2000 y s
1500 K 2= & & 2000
1000 1000
500 0 ol
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Step 1e7 Step 1e7 Step 1e7
— NCDPO —— DPPO  —— AWR —— RWR DIPO —— IDQL DQL

Figure 3: Performance comparison on OpenAl Gym locomotion tasks. Results are averaged over
three seeds. NCDPO (ours) achieves the strongest performance.

"Note that we tested performance using the latest version of DPPO (v0.8), which is about 2.5x sample
efficient in Transport task as reported in the original paper.
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Figure 4: Performance comparison on Robomimic tasks. Results are averaged over three seeds.
NCDPO (ours) achieves the strongest performance.

Scenario NCDPO (Ours)  DPPO AWR IDQL DQL RWR DIPO
Hopper-Medium 126.4 (1.8) 98.4(2.0) 44.8(1.2) 113.8(02) 1227(12) 1009 (3.6) 94.4(4.9)
Hopper-Medium-Replay 1282 (2.8)  1146(3.3) 82.1(7.0) 117.9(L.1) 121.1(3.6) 1042(3.1) 108.6 (1.0)
Hopper-Medium-Expert 1352(2.0)  1024(52) 407(0.5) 131.9(0.4) 1209(28.1) 113.6(47) 127.5(1.3)
Walker2d-Medium 1184 (3.8)  1012(1.6) 93.5(83) 110.7(0.5) 949(36.9) 902(3.3)  99.8 (2.0)
Walker2d-Medium-Replay 126.6 (45) 1051 (4.3) 75.8(23) 121.9(2.6) 1072(37.8) 69.2(6.0) 88.6(11.0)
Walker2d-Medium-Expert 141.0 2.3)  137.5(2.0) 1242(54) 1355(27) 67.3(47.6) 106.8(6.8) 138.8(1.4)
HalfCheetah-Medium 1220 (11.0)  82.3(0.7) 655(29) 793(0.8) 77.1(54) 479(54) 73.9(0.6)

HalfCheetah-Medium-Expert 1397 (6.8) 80.6 (1.6) 64.4(2.3) 77.8(1.0) 72.1(8.0) 38429 71.4(02)
HalfCheetah-Medium-Replay ~ 121.0 (2.0) 723(04)  60.5(0.7) 74309 73.0(3.1)  307(1.8) 58.1(0.9)

Lift 100.0 (0.0) 99.7(0.2)  933(L7)  992(0.1) 99.8(0.3) 975(0.5) 97.3(0.8)
Can 99.3(1.2) 99.0(1.0) 338(32) 945(3.1) 03(0.6)  90.7(0.8) 52.8(5.1)
Square 87.3(4.5) 87.0(23) 403(85) 80.0(5.0) 0.0(0.0) 748(25) 253 (4.5)
Transport 96.7 (2.31) 913(29) 11235  0.5(0.8) 0.0 (0.0) 0.0(0.0)  0.2(0.3)

Table 1: Mean and standard deviation of performance over continuous robot control scenarios.
Each result is evaluated on three different seeds. NCDPO (ours) exhibits the strongest performance.
Performance on OpenAl Gym locomotion tasks are normalized according to scores of MLP policies
trained from scratch using PPO with 1M samples reported in Tianshou [29] . Original scores are
listed in Table[3]

6.3 Evaluation on Discrete Multi-agent Coordination Tasks

Following our evaluation on continuous control tasks, we next examine NCDPO on Google Research
Football, a benchmark for cooperative multi-agent control. To facilitate more effective coordination
among agents, we adopt a centralized multi-agent control strategy in which actions for all agents are
generated simultaneously. This formulation leverages the high representational capacity of diffusion
models to model complex inter-agent dependencies. However, it also gives rise to a high-dimensional
joint action space (i.e., num_agents X actions), presenting substantial challenges for reinforcement
learning fine-tuning.

We compare NCDPO with MLP policies trained using Multi-Agent Proximal Policy Optimization
(MAPPO) [32]]. This baseline is initialized through behavior cloning using a Cross-Entropy loss
function. As no public dataset exists for Google Research Football, a custom dataset is constructed to
pre-train Diffusion Policies by training multiple MAPPO agents [32] with different random seeds
and early-stopping them at various stages. These agents exhibit varying winning rates and employ
diverse tactical behaviors.

As Fig. [5|demonstrates, NCDPO outperforms the MLP baseline across all three evaluated scenarios.
This outcome not only highlights the superiority of Diffusion Policy in handling complex and diverse
demonstration data over simple MLP policy, but also confirms the effectiveness of the DP+NCDPO
during the fine-tuning phase.

Scenario NCDPO (Ours) MAPPO
3 vs 1 with Keeper  87.4(2.7) 75.1(12.3)
Counterattack Hard  87.0(2.5) 80.0(2.0)
Corner 78.3(4.5) 74.9(3.0)

Table 2: Average evaluation success rate and standard deviation (over three seeds) on Google Research
Football scenarios. The base Diffusion Policy and MLP policy are pre-trained on the same dataset.
MLP policy is trained using Cross-Entropy loss.
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Counterattack Hard 3 vs 1 with Keeper Corner
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NCDPO MAPPO

Figure 5: Performance comparison in Google Research Football. Results are averaged over at least
three seeds. NCDPO (ours) exhibits strong performance and stability.

6.4 NCDPO is Robust to the Number of Denoising Steps

We further conduct an ablation study to investigate the impact of varying the number of denoising steps
in the diffusion model. The experimental results shown in Fig.|/|indicate that NCDPO demonstrates
strong robustness to the choice of denoising steps.

hopper walker2d halfcheetah
4500 9000
3000 4000 8000
3500
el ke ke
2500
‘;F §3000 gmoo
@ 2000 Q 2500 @ 6000
< € 2000 <
1500 1500 5000
1000 4000
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Figure 6: Ablation Study on Denoising Steps in OpenAl Gym locomotion tasks.

square transport

3 3 i 5 00 02 04 06 08 10 12 14
Step 166 Step 167

—— Step=5 —— Step = 20

Figure 7: Ablation Study on Denoising Steps in Robomimic tasks.

We hypothesize that the robustness of NCDPO arises from the way gradients are propagated through
time during the diffusion process. This gradient flow leads to more accurate gradient estimates.

7 Conclusion and Limitations

We present NCDPO, a novel approach for fine-tuning Diffusion Policies through Proximal Policy
Optimization that exhibits strong performance across continuous and discrete control domains. Our
key innovation lies in reformulating the diffusion denoising process as a noise-conditioned stochastic
policy that enables effective gradient backpropagation through diffusion timesteps. Through extensive
experiments across locomotion, manipulation, and multi-agent cooperation scenarios, we demonstrate
that NCDPO achieves superior sample efficiency and final performance compared to existing diffusion
RL approaches. NCDPO’s ability to handle both continuous and discrete action spaces suggests its
potential as a general-purpose policy optimization framework.

Our study focuses on the algorithmic development and evaluation of NCDPO in simulated settings.
Consequently, we have not yet explored sim-to-real transfer on physical robots. These choices reflect
our emphasis on fine-tuning methodology. Extending NCDPO to real-world deployment remains to
be implemented in future work.



258

259
260

261
262
263

264

265
266

267
268
269

270
271

272
273

274
275
276

277
278

279
280

281
282

284
285

286
287
288

289

291

292
293
294

295

297
298
299

300
301

303
304

References

[1] Ajay, A., Du, Y., Gupta, A., Tenenbaum, J., Jaakkola, T., and Agrawal, P. Is conditional
generative modeling all you need for decision-making? arXiv preprint arXiv:2211.15657, 2022.

[2] Ankile, L., Simeonov, A., Shenfeld, 1., and Agrawal, P. Juicer: Data-efficient imitation learning
for robotic assembly. In 2024 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 5096-5103. IEEE, 2024.

[3] Brockman, G. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[4] Chen, H., Lu, C., Ying, C., Su, H., and Zhu, J. Offline reinforcement learning via high-fidelity
generative behavior modeling. arXiv preprint arXiv:2209.14548, 2022.

[5] Chi, C., Xu, Z., Feng, S., Cousineau, E., Du, Y., Burchfiel, B., Tedrake, R., and Song, S.
Diffusion policy: Visuomotor policy learning via action diffusion. The International Journal of
Robotics Research, pp. 02783649241273668.

[6] Fu,J., Kumar, A., Nachum, O., Tucker, G., and Levine, S. D4rl: Datasets for deep data-driven
reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

[7] Goo, W. and Niekum, S. Know your boundaries: The necessity of explicit behavioral cloning in
offline rl. arXiv preprint arXiv:2206.00695, 2022.

[8] Hansen-Estruch, P., Kostrikov, 1., Janner, M., Kuba, J. G., and Levine, S. Idql: Implicit g-
learning as an actor-critic method with diffusion policies. arXiv preprint arXiv:2304.10573,
2023.

[9] Ho, J., Jain, A., and Abbeel, P. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840-6851, 2020.

[10] Janner, M., Du, Y., Tenenbaum, J. B., and Levine, S. Planning with diffusion for flexible
behavior synthesis. arXiv preprint arXiv:2205.09991, 2022.

[11] Kang, B., Ma, X., Du, C., Pang, T., and Yan, S. Efficient diffusion policies for offline
reinforcement learning. Advances in Neural Information Processing Systems, 36:67195-67212,
2023.

[12] Liang, Z., Mu, Y., Ding, M., Ni, F,, Tomizuka, M., and Luo, P. Adaptdiffuser: Diffusion models
as adaptive self-evolving planners. arXiv preprint arXiv:2302.01877, 2023.

[13] Liao, B., Chen, S., Yin, H., Jiang, B., Wang, C., Yan, S., Zhang, X., Li, X., Zhang, Y., Zhang, Q.,
and Wang, X. Diffusiondrive: Truncated diffusion model for end-to-end autonomous driving.
arXiv preprint arXiv:2411.15139, 2024.

[14] Mandlekar, A., Xu, D., Wong, J., Nasiriany, S., Wang, C., Kulkarni, R., Fei-Fei, L., Savarese,
S., Zhu, Y., and Martin-Martin, R. What matters in learning from offline human demonstrations
for robot manipulation. In arXiv preprint arXiv:2108.03298, 2021.

[15] Pearce, T., Rashid, T., Kanervisto, A., Bignell, D., Sun, M., Georgescu, R., Macua, S. V., Tan,
S. Z., Momennejad, 1., Hofmann, K., et al. Imitating human behaviour with diffusion models.
arXiv preprint arXiv:2301.10677, 2023.

[16] Peng, X. B., Kumar, A., Zhang, G., and Levine, S. Advantage-weighted regression: Simple and
scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

[17] Peters, J. and Schaal, S. Reinforcement learning by reward-weighted regression for operational
space control. In Proceedings of the 24th international conference on Machine learning, pp.
745-750, 2007.

[18] Psenka, M., Escontrela, A., Abbeel, P., and Ma, Y. Learning a diffusion model policy from
rewards via g-score matching. arXiv preprint arXiv:2312.11752, 2023.

[19] Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., Chen, M., and Sutskever,
I. Zero-shot text-to-image generation. In International conference on machine learning, pp.
8821-8831. Pmlr, 2021.

10



305
306
307

308
309

311

312
313
314

315
316
317

318
319

320
321
322

323
324

325
326

327
328
329
330

331
332
333

334
335
336

337
338
339

340
341
342

343
344
345

346
347

[20] Ren, A.Z., Lidard, J., Ankile, L. L., Simeonov, A., Agrawal, P., Majumdar, A., Burchfiel, B., Dai,
H., and Simchowitz, M. Diffusion policy policy optimization. arXiv preprint arXiv:2409.00588,
2024.

[21] Reuss, M., Li, M., Jia, X., and Lioutikov, R. Goal-conditioned imitation learning using
score-based diffusion policies. arXiv preprint arXiv:2304.02532, 2023.

[22] Rigter, M., Yamada, J., and Posner, I. World models via policy-guided trajectory diffusion.
arXiv preprint arXiv:2312.08533, 2023.

[23] Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and Ommer, B. High-resolution image
synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 10684—10695, 2022.

[24] Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and Ganguli, S. Deep unsupervised learning
using nonequilibrium thermodynamics. In International conference on machine learning, pp.
2256-2265. PMLR, 2015.

[25] Song, Y. and Ermon, S. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

[26] Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., and Poole, B. Score-based
generative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456,
2020.

[27] Wang, L., Zhao, J., Du, Y., Adelson, E. H., and Tedrake, R. Poco: Policy composition from and
for heterogeneous robot learning. arXiv preprint arXiv:2402.02511, 2024.

[28] Wang, Z., Hunt, J. J., and Zhou, M. Diffusion policies as an expressive policy class for offline
reinforcement learning. arXiv preprint arXiv:2208.06193, 2022.

[29] Weng, J., Chen, H., Yan, D., You, K., Duburcq, A., Zhang, M., Su, Y., Su, H., and Zhu, J.
Tianshou: A highly modularized deep reinforcement learning library. Journal of Machine
Learning Research, 23(267):1-6, 2022. URL http://jmlr.org/papers/v23/21-1127,
htmll

[30] Yang, B., Su, H., Gkanatsios, N., Ke, T.-W., Jain, A., Schneider, J., and Fragkiadaki, K.
Diffusion-es: Gradient-free planning with diffusion for autonomous driving and zero-shot
instruction following. arXiv preprint arXiv:2402.06559, 2024.

[31] Yang, L., Huang, Z., Lei, F., Zhong, Y., Yang, Y., Fang, C., Wen, S., Zhou, B., and Lin, Z.
Policy representation via diffusion probability model for reinforcement learning. arXiv preprint
arXiv:2305.13122, 2023.

[32] Yu, C., Velu, A., Vinitsky, E., Gao, J., Wang, Y., Bayen, A., and Wu, Y. The surprising effec-
tiveness of ppo in cooperative multi-agent games. Advances in neural information processing
systems, 35:24611-24624, 2022.

[33] Ze, Y., Zhang, G., Zhang, K., Hu, C., Wang, M., and Xu, H. 3d diffusion policy: Generalizable
visuomotor policy learning via simple 3d representations. arXiv preprint arXiv:2403.03954,
2024.

[34] Zhang, R., Luo, Z., Sjolund, J., Mattsson, P., Gisslén, L., and Sestini, A. Real-time diffu-
sion policies for games: Enhancing consistency policies with gq-ensembles. arXiv preprint
arXiv:2503.16978, 2025.

[35] Zhu, Z., Liu, M., Mao, L., Kang, B., Xu, M., Yu, Y., Ermon, S., and Zhang, W. Madiff: Offline
multi-agent learning with diffusion models. arXiv preprint arXiv:2305.17330, 2023.

11


http://jmlr.org/papers/v23/21-1127.html
http://jmlr.org/papers/v23/21-1127.html
http://jmlr.org/papers/v23/21-1127.html

348

349
350
351
352
353
354
355

356

357

358

359
360

361

362
363

365
366

A Self-Imitation Regularizer

When directly fine-tuning Diffusion Policies using policy gradient methods, we observe a structure
collapse issue—namely, the Diffusion Policy fails to maintain consistency between the forward
and reverse processes. To preserve the structural integrity of the diffusion model, we introduce
self-imitation regularization. Specifically, we perform behavior cloning on the trajectories generated
in the previous episode. Empirically, we find that this regularization significantly reduces the behavior
cloning loss. In contrast, without it, this behavior cloning loss will keep increasing, indicating
structural degradation in the Diffusion Policy.

B Additional experimental results

B.1 Original Scores on OpenAl Gym locomotion tasks

Scenario NCDPO (Ours) DPPO AWR IDQL DQL RWR DIPO ‘ PPO

Hopper-Medium 3297.3 (47.8) 2566.6 (51.1) 1168.9 (30.5) 2970.2 (5.2) 3200.7 (30.1) 2633.6 (94.0) 2463.1(127.6) | 2609.3
Hopper-Medium-Replay 3345.64 (71.88)  2988.97 (86.90)  2142.30 (183.82) 3076.91(29.82)  3159.72 (94.85) 2718.27 (79.86)  2834.07 (25.00) | 2609.3
Hopper-Medium-Expert 3528.74 (51.89)  2672.64 (135.15)  1062.47 (13.15)  3440.50 (10.79)  3153.66 (733.36)  2964.11 (121.35)  3326.99 (32.73) | 2609.3
‘Walker2d-Medium 4248.8 (137.6) 3632.1(55.9) 3353.9 (296.9) 3972.8 (17.3) 3405.2 (1322.7) 3238.3(116.8) 3581.6 (70.3) 3588.5
‘Walker2d-Medium-Replay ~ 4544.59 (162.98) 3770.52 (154.50)  2719.04 (83.84)  4373.89 (91.66) 3846.26 (1357.97) 2483.04 (215.70) 3180.80 (396.27) | 3588.5
Walker2d-Medium-Expert ~ 5060.92 (82.87) ~ 4935.57 (73.28)  4458.68 (195.26) 4863.91 (95.34) 2416.68 (1708.34) 3831.65(243.76)  4979.96 (50.22) | 3588.5

HalfCheetah 7058.8 (635.1) 4758.3 (41.8) 3788.7 (166.5) 4584.4 (45.3) 4459.1 (309.5) 2773.1(310.0) 4272.4 (33.2) 5783.9
HalfCheetah-Expert 8079.30 (392.21)  4663.23 (92.62)  3723.21 (131.37) 4499.39 (57.61)  4171.97 (465.25)  2218.39 (168.36)  4126.96 (12.14) | 5783.9
HalfCheetah-Replay 7000.14 (113.88)  4181.57 (24.59)  3501.08 (40.34)  4295.81 (53.02)  4223.07(177.28)  1775.98 (101.28)  3362.48 (49.47) | 57839

Table 3: Mean and standard deviation of original scores across continuous robot control scenarios.

B.2 Experiments with Vision Inputs

We performed evaluation on Square task in robomimic with vision as input. Results demonstrate the
effectiveness of NCDPO.

square-vision

0.9
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©
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Figure 8: Experimental results for vision inputs.

B.3 Ablation Study

We observe that setting the action chunk size to one significantly improves performance in Gym
environments. We hypothesize that this is due to the nature of these tasks, where agents must
respond promptly to rapid and continuous changes in the environment. Smaller chunk sizes allow the
policy to adapt its actions more frequently, which is crucial for achieving fine-grained control. The
corresponding results are presented in Figure 9]
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Figure 9: Ablation study on action chunk size in OpenAl Gym locomotion tasks.

additionally, in discrete action environments, modifying the noise scheduler to increase Gaussian
noise during the denoising steps improves exploration without degrading overall performance, as
shown in Figure[I0} In discrete settings, the absolute values of the logits are less important than their
relative magnitudes, which allows increased noise to encourage exploration while preserving policy
effectiveness. To achieve this, we adjust the noise scheduler using parameters 7 and Spase, increasing
the noise level via the transformation:
n
Bllg = Bbase (Bk)

ﬁbase

where 3, corresponds to the original noise schedule defined in Equation 3] In our implementation,
we set Bbase =0.7.
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Figure 10: Ablation study on different values of 1 in Google Research Football.

We further find that increasing the initial noise scale o, in the acting layer enhances exploration. An
ablation study conducted on Robomimic supports this finding:
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Figure 11: Ablation study of different choices of initial log o, in Robomimic tasks.

B.4 Further Experiments in OpenAl Gym locomotion tasks.

We evaluated different training methods using datasets of varying quality for pretraining the base
policy. The "medium-replay" dataset consists of replay buffer samples collected before early stop-
ping, while the "medium-expert" dataset contains equal proportions of expert demonstrations and
suboptimal rollouts [6].

Regardless of dataset quality, NCDPO consistently outperforms all baselines, as shown in Figures [I2]

and[13]
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Figure 13: Pretraining with replay datasets.

B.5 Google Research Football Data Curation

For each scenario, we collected 200K environment steps per model. The win rates of the agents used
for dataset generation are summarized in Table 4]

Scenario Win Rates

3 vs 1 with Keeper | 0.93,0.90, 0.70, 0.55

Corner 0.76, 0.75, 0.50, 0.50, 0.41
Counterattack Hard | 0.90, 0.78, 0.70, 0.61, 0.56, 0.56

Table 4: Win rates of trained agents used for dataset collection in Google Research Football. Each
model contributes 200,000 steps.

C Implementation Details and Hyperparameters

For NCDPO, we apply Adam optimizer for actor and AdamW optimizer for critic. For all other
baselines, AdamW optimizer is adopted.

For fair comparison, we adopt the same network architecture as DPPO [20]] and directly utilize their
implementation for model structure. Our overall training framework is built upon a modified codebase
of MAPPO [32].

Task - | Action Acior Crific _Acor Critic Actor , TmGaINoie " Denoising Clone Clone Episode Minibatch Emvironment — Parallel
Y Chunk LR LR MLPSize MLPSize MLP Layers Log Std Step  Epochs LR Length  Number  MaxSteps  Environments

Hopper 0995 0985 4 35 1e3 1024 256 7 0 2 5 8 le3 256 1 1000 2

Walker2d 0995 0985 4 35 le3 1024 256 7 [} 2 5 8 le3 500 1 1000 3

HalfCheetah 099 0985 4 3¢5 le3 1024 256 7 0 2 5 3 led 500 1 1000 32

lift 0999 0.99 4 3e-5 le-3 1024 256 7 0 =23 5 2 le-3 300 4 300 200

can 0999 099 4 3e5 13 1024 256 7 0 23 - 5 60 3ed 300 4 300 200

square 0999 099 4 3¢5 le3 1024 256 7 0 23 - 5 200 24 400 4 400 200

square-vision 0999 099 4 3es  Sed 1024 256 7 0 23 5 200 24 400 4 400 200

transport 099 099 8 3e5 13 1024 256 7 0 23 - 5 320 84 800 4 800 200

3vs LwithKeeper 099 095 1 3¢5 le3 1024 256 7 0.03 - 20 5 10 le3 200 1 - 50

Corner 0.99 0.95 1 3e-5 le-3 1024 256 7 0.03 - 20 5 10 le-3 500 1 50

Counterattack Hard_ 0.99  0.95 1 3e5 13 1024 256 7 0.03 - 20 5 10 1e3 500 1 50

Table 5: Hyperparameter settings for different tasks of NCDPO.
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Action Actor Critic Actor Critic Actor Denoising Episode Mini-batch Environment Parallel

Task 7 Chunk LR LR  MLPSize MLP Size MLP Layers Step Length Size Max Steps  Environments
Hopper 0.99 095 4 le-4 le-3 512 256 3 20 2000 50000 1000 40
Walker2d 099 095 4 le-4 le-3 512 256 3 20 2000 50000 1000 40
HalfCheetah  0.99  0.95 4 le-4 le-3 512 256 3 20 2000 50000 1000 40
lift 0.999 0.95 4 le-4  Se-4 512 256 3 20 1200 7500 300 50
can 0.999 0.95 4 le-4  Se-4 512 256 3 20 1200 7500 300 50
square 0.999 095 4 le-4 Se-4 512 256 3 20 1600 10000 400 50
transport 0.999 0.95 8 le-4  5e-4 512 256 3 20 3200 10000 800 50

Table 6: Hyperparameter settings for Baselines in robot control. Experiment is executed using
DPPO [20] implementation and hyperparameters. Batch size for all baselines other than DPPO is
1000. For further details, please refer to DPPO paper [20]].

Task 5 Action Actor Critic Actm: Critig Actor . Initial Noise T Denoising  Clone  Clone
Chunk LR LR  MLPSize MLP Size MLP Layers Log Std Step Epochs LR
3 vs 1 with Keeper 099 0.95 1 Se-4 Se-4 256 256 - - - 20 5 8 le-3
Corner 0.99 0.95 1 Se-4  Se-4 256 256 - - - 20 5 8 le-3
Counterattack Hard  0.99  0.95 1 Se-4 Se-4 256 256 - - - 20 5 8 le-3

Table 7: Hyperparameter of MLP on football. Experiment is run on MAPPO codebase and MLP
architecture remains same as MAPPO, and does not use residual connection, thus rendering parameter
MLP layers unusable.

Task ~ A Action Actor Critic Actm: Criti§ Actor " Initial / Denoising
Chunk LR LR MLP Size MLP Size MLP Layers Log Std Step

Walker2d-NCDPO 0.995 0.985 1 le-4 le-3 256 256 3 0 -0.8 - 5
HalfCheetah-NCDPO 0.99  0.985 1 le-4 le-3 256 256 3 0 -0.8 - 5
Walker2d-MLP+PPO 0.995 0.985 1 le-4 le-3 256 256 3 -0.8 - -
HalfCheetah-MLP+PPO  0.99  0.985 1 le-4 le-3 256 256 3 - -0.8 - -
Walker2d-DPPO 0.99  0.985 1 le-4 le-3 512 256 3 - - - 10
HalfCheetah-DPPO 0.99 0985 1 le-4 le-3 512 256 3 - - - 10

Table 8: Hyperparameters for training from scratch. In this experiment, MLP+PPO has exatcly the
same architecture with MLP in diffusion’s denoising process. Numbers of mini-batches and parallel
environments are the same as Table ﬁ}

Task ~ \ Action Actor Critic Actm: Critig Actor " Initial T Denoising  Clone  Clone
Chunk LR LR  MLPSize MLP Size MLP Layers Log Std Step Epochs LR
Hopper 0.995 0.985 4 3e-5 le-3 1024 256 7 0 -2 - 5/10/20 8 le-3
Walker2d 0.995 0.985 4 3e-5 le-3 1024 256 7 0 -2 - 5/10/20 8 le-3
HalfCheetah  0.99  0.985 4 3e-5 le-3 1024 256 7 0 -2 - 5/10/20 8 le-3
square 0.995 0.985 4 3e-5 Se-4 1024 256 7 0 -2.3 - 5/20 8 Se-4
transport 0.99 0.985 8 3e-5 Se-4 1024 256 7 0 -2.3 - 5/20 8 Se-4
Table 9: Hyperparameter of Ablation on Denoising Steps.
Task 5 A Action Actor Critic Actor Criti? Actor 0 Initial T Denoising  Clone Clone
Chunk LR LR  MLPSize MLP Size MLP Layers Log Std Step Epochs LR
Ifit 0.999 0.99 4 3e-5 le-3 1024 256 7 0 -2.3/-27 - 5 2 le-3
can 0.999 0.99 4 3e-5 le-3 1024 256 7 0 -2.3/-2.7 - 5 60 3e-4
square 0.999 0.99 4 3e-5 le-3 1024 256 7 0 -2.3/-27 - 5 200 2e-4/5e-4
transport  0.999  0.99 8 3e-5 le-3 1024 256 7 0 -23/-27 - 5 321 8e-4/5e-4

Table 10: Hyperparameter of Ablation on Initial Noise.

Action Actor Critic Actor Critic Actor Initial Denoising  Clone  Clone

Task 7 * Chumk LR LR MLPSize MLPSize MLP Layers n LogStd 1/ Step  Epochs LR
3 vs 1 with Keeper 099 0.95 1 3e-5 le-3 1024 256 7 0.03/0.1/0.3/1 - 20 5 8 le-3
Corer 099 095 1 35 le3 1024 256 7 00301031 - 20 5 8 le3
Counterattack Hard 099 095 1 3¢5  le3 1024 256 7 00301031 - 20 5 8 le3

Table 11: Hyperparameter of Ablation on 7. 7 = 1 indicates using original scheduler.
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7 D Computational Resources

sss  Each run could be done in 6 hours with 1 AMD Ryzen 3990X 64-Core Processor and 1 NVIDIA
389 3090 GPU.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our main contribution, a novel framework for Diffusion Policy fine-tuning is
properly described in the abstract and introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Limitations are mentioned in the conclusion.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: We do not have theory included.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have clearly described the algorithm in the main text and listed all necessary
details in the appendix.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We have included the details and will release code and datasets soon.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We have listed details in appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We averaged results over at least 3 different seeds and reports mean and
standard deviation. Meanwhile, the performance advantage is significant enough.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We have provided compute resources in appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Yes, we followed the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our paper focus on designing a novel training framework, and no societal
impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper has no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Datasets are cited in main text, code is cited in Appendix[C]
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We have included our code and dataset in supplementary materials.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLM is only used for paper language refinement and code auto-completion.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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