
Fine-tuning Diffusion Policies with Backpropagation
Through Diffusion Timesteps

Anonymous Author(s)
Affiliation
Address
email

Abstract

Diffusion policies, widely adopted in decision-making scenarios such as robotics,1

gaming and autonomous driving, are capable of learning diverse skills from demon-2

stration data due to their high representation power. However, the sub-optimal and3

limited coverage of demonstration data could lead to diffusion policies that gener-4

ate sub-optimal trajectories and even catastrophic failures. While reinforcement5

learning (RL)-based fine-tuning has emerged as a promising solution to address6

these limitations, existing approaches struggle to effectively adapt Proximal Policy7

Optimization (PPO) to diffusion models. This challenge stems from the computa-8

tional intractability of action likelihood estimation during the denoising process,9

which leads to complicated optimization objectives. In our experiments starting10

from randomly initialized policies, we find that online tuning of Diffusion Policies11

demonstrates much lower sample efficiency compared to directly applying PPO on12

MLP policies (MLP+PPO). To address these challenges, we introduce NCDPO, a13

novel framework that reformulates Diffusion Policy as a noise-conditioned deter-14

ministic policy. By treating each denoising step as a differentiable transformation15

conditioned on pre-sampled noise, NCDPO enables tractable likelihood evaluation16

and gradient backpropagation through all diffusion timesteps. Our experiments17

demonstrate that NCDPO achieves sample efficiency comparable to MLP+PPO18

when training from scratch, outperforming existing methods in both sample ef-19

ficiency and final performance across diverse benchmarks, including continuous20

robot control and multi-agent game scenarios. Furthermore, our experimental21

results show that our method is robust to the number denoising timesteps.22

1 Introduction23

Recently, diffusion models have been widely adopted as policy classes in decision-making scenarios24

such as robotics [5, 21, 2, 33, 27, 15], gaming [15, 34], and autonomous driving [13, 30]. Although25

Diffusion Policies have shown remarkable capabilities in learning diverse behaviors from demonstra-26

tion data [5], Diffusion Policy could show sub-optimal performance when the demonstration data is27

sub-optimal or only covers a limited set of environment states. To further optimize the performance28

of pretrained policies, Reinforcement Learning (RL) is adopted as a natural choice for fine-tuning29

pre-trained Diffusion Policies through interaction with the environment.30

Currently, the most effective approach, DPPO (Diffusion Policy Policy Optimization) [20] employs31

Policy Gradient (PG) approaches to enhance the performance of pre-trained Diffusion Policy in32

continuous control tasks. By treating the denoising process of Diffusion Policy as a low-level Markov33

Decision Process, DPPO optimizes the Gaussian likelihood of all denoising steps. However, through34

our extensive experiments, we find fine-tuning Diffusion Policies with RL faces a challenge of sample35

efficiency. Specifically, in our RL experiments starting from randomly initialized policies, we find36
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that training Diffusion Policy with DPPO could lead to worse sample efficiency and final performance37

than training an MLP policy with standard RL. We hypothesize that the training efficiency gap occurs38

since DPPO uses a much larger action space for RL training, which impedes the sample efficiency of39

RL training. Therefore, a question becomes particularly important: Can we design a more effective40

fine-tuning approach for Diffusion Policy that avoids enlarging the action space during RL training?41

In this work, we present Noise-Conditioned Diffusion Policy Optimization (NCDPO), a sample-42

efficient RL algorithm for fine-tuning Diffusion Policies. NCDPO formulates the denoising process43

of Diffusion Policy as a noise-conditioned inference process, ensuring the RL objective only contain44

the likelihood of the interactive actions, i.e. actions generated by Diffusion Policy to interact with45

the environment. In the policy update phase, the gradients with respect to the policy parameters are46

computed with Backpropagation through Diffusion Timesteps (BPDT). When performing RL training47

on randomly initialized policies, we show that training Diffusion Policy with NCDPO achieves48

comparable sample efficiency with training an MLP policy with RL.49

In summary, our main contribution is NCDPO, a novel framework which is applicable to both50

continuous and discrete environments, to fine-tune Diffusion Policies, by formulating denoising steps51

as deterministic generation process and apply PPO. We also evaluate NCDPO on a set of environments,52

ranging from continuous robot control and multi-agent coordination tasks. We demonstrate that53

NCDPO obtains higher sample efficiency and stronger final performance than baseline methods54

across all evaluated environments. Finally, our ablation study reveals that that NCDPO is robust to55

the number of diffusion timesteps and remains highly sample efficient when the number of diffusion56

timesteps is large.57

2 Related Work58

Diffusion Models and Diffusion Policies. Diffusion-based generative models have demonstrated59

remarkable effectiveness in the domains of visual content generation [23, 26, 19].One central60

capability of Diffusion Models is the denoising process that iteratively refines sampled noises61

into clean datapoints. [9, 24, 25]. Beyond their success in content generation, diffusion models62

have increasingly been adapted for decision-making tasks across a range of domains, including63

robotics [5, 21, 2, 33, 27, 15], autonomous driving [13, 30], and gaming [15, 34]. In robotics, most64

existing work trains Diffusion Policies through imitation learning. For instance, Reuss et al. [21]65

predict future action chunks using goal-conditioned imitation learning, while [33] integrate Diffusion66

Policies with compact 3D representations extracted from point clouds. To further enhance the quality67

of generated behaviors, return signal or goal conditioning is applied to encourage the generation of68

high-value actions [10, 1, 12].69

Fine-tuning Diffusion Policy with Reinforcement Learning. Recent works have aimed to enhance70

learned Diffusion Policy through fine-tuning with Reinforcement Learning approaches. A line71

of work has been focusing on integrating Diffusion Policies with Q-learning using offline data72

[4, 11, 28, 7, 22, 35, 18]. In addition to offline reinforcement learning, recent advancements have73

explored fine-tuning Diffusion Policies with online RL algorithms, for example, aligning the score74

function with the action gradient [31], or employing the diffusion model as a policy extraction75

mechanism within implicit Q-learning [8]. Most recently, [20] formulates the denoising process of76

Diffusion Policy as a "Diffusion MDP", enabling the application of RL algorithms to optimize all77

denoising steps with online feedback. In this work, we investigate an alternative representation for78

the denoising process that enables sample efficient fine-tuning of Diffusion Policy.79

3 Preliminary80

Markov Decision Process. A Markov Decision Process (MDP) is defined as a tuple M =81

⟨S,A, P0, P,R, γ⟩ where S denotes the state space, A is the action space, P0 is the distribution of82

initial states, P is the transition function, R is the reward function and γ is the discount factor. At83

timestep t, a policy π generates an action at ∈ A at state st. The goal is to find a policy π that84

maximizes the objective of expected discounted return,85

J(π) = Est,at
[
∑
t≥0

γtR(st, at)] (1)
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Proximal Policy Optimization (PPO). PPO is a reinforcement learning approach that optimizes the86

policy by estimating the policy gradient. In each iteration, given the last iteration policy πθk , PPO87

maximizes the clipped objective,88

L(θ|θk) = Eτ

[∑
t

min

(
πθ(at|st)
πθk(at|st)

Aπθk (st, at),

clip
( πθ(at|st)
πθk(at|st)

, 1− ϵ, 1 + ϵ
)
Aπθk (st, at)

)] (2)

where Aπθk (st, at) is the estimated advantage for action at at state st.89

Diffusion Policy. Diffusion Policy πθ is a diffusion model that generates actions a by conditioning90

on states s. In Diffusion Policy training, the forward process gradually adds Gaussian noise to the91

training data to obtain a chain of noisy datapoints a0, a1, . . . , aK ,92

q(a1:K |a0) :=
K∏

k=1

q(ak|ak−1), q(ak|ak−1) := N (ak;
√

1− βka
k−1, βkI) (3)

Diffusion Policy could generate actions with a reverse process or denoising process that gradually93

denoises a Gaussian noise aK ∼ N (aK ; 0, I) with learned Gaussian transitions,94

πθ(a
0:K |s) :=

K∏
k=1

πθ(a
k−1|ak, s), πθ(a

k−1|ak, s) := N (ak−1|µθ(a
k, k, s), σ2

kI) (4)

where σ is a fixed noise schedule for action generation, β denotes the forward process variances and95

is held as constant, and θ is the parameter of Diffusion Policy. To avoid ambiguity, we use interactive96

actions to denote the action a0 that is used for interacting with the environment and latent actions to97

denote actions a1, · · · , aK that are generated during the denoising process. For more training details98

on diffusion models, please refer to [9].99

Diffusion Policy Policy Optimization (DPPO). Note that the action likelihood πθ(a
0
t |st) of Diffusion

Policy πθ is intractable,

πθ(a
0
t |st) =

∫
a1
t ,··· ,aK

t

P[a0t , · · · , aKt |st, πθ] · da1t · · · daKt

The intractability of the action likelihood makes it impossible to directly fine-tune Diffusion Policy100

with PPO since the RL loss (Eq. 2) requires computing the exact action likelihood. To address this101

challenge, DPPO [20] proposes to formulate the denoising process as a low-level "Diffusion MDP"102

MDiff. InMDiff, a state is defined as a combination of the environment state and a latent action103

ŝkt = (st, a
k
t ). For k = K, · · · , 1, the transition from ŝkt to ŝk−1

t represents the denoising process104

and takes no actual change on the environment state. For a denoising step k ∈ [1,K], the state105

ŝkt = (st, a
k
t ) transits to ŝk−1

t = (st, a
k−1
t ). After the denoising process is finished at k = 0, the106

interactive action a0t is used to interact with the environment and triggers the environment transition,107

i.e. the next state would be ŝKt+1 = (st+1, a
K
t+1) where st+1 ∼ P (st, a

0
t ) and aKt+1 ∼ N(0, I) is a108

newly generated Gaussian noise.109

4 Sample Efficiency Challenge for Diffusion Policy Fine-Tuning110

In this section, we aim to investigate the sample efficiency of fine-tuning Diffusion Policy with RL.111

Specifically, we compare the sample efficiency of training Diffusion Policy using DPPO and training112

an MLP policy using standard PPO. Since our study only focuses on the RL process, both the MLP113

policy and Diffusion Policy are randomly initialized before RL training without performing any114

additional behavior cloning. For conciseness, we denote training Diffusion Policy with DPPO as115

DP+DPPO and training an MLP policy with PPO as MLP+PPO.116

Our investigations are carried out on two OpenAI Gym locomotion tasks, Walker2D and Halfcheetah.117

The training curves of MLP+PPO and DP+DPPO are shown in Fig. 1. Although Diffusion Policy has118
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more powerful representation power than MLP policy [5], our results here surprisingly show that119

DP+DPPO is less sample efficient than MLP+PPO and could only achieves sub-optimal performance.120

Why does this efficiency gap occur? We hypothesize that the underlying reason is that, by employing a121

two-level MDP formulation, DPPO actually significantly lengthens the MDP horizons in RL training122

to contain both the interactive actions and latent actions. This lengthened MDP horizon then results123

in difficulty in proper credit assignment. This insight raises a critical question: Can we design an124

alternative RL algorithm for Diffusion Policy fine-tuning that avoids enlarging the action space?125

Figure 1: RL training from randomly initialized policy on Walker2D and HalfCheetah. Results are
averaged over three seeds. Training curves indicate that DP+DPPO is less sample efficient than
MLP+PPO and only achieves sub-optimal performance. Our approach, NCDPO, could fine-tune
Diffusion Policy with high sample efficiency.

5 Noise-Conditioned Diffusion Policy Optimization126

As discussed in Sec. 4, fine-tuning Diffusion Policy with a two-level MDP formulation could lead127

to sub-optimal sample efficiency and final performance. In this section, we present a novel sample-128

efficient RL training method for Diffusion Policy, Noise-Conditioned Diffusion Policy Optimization129

(NCDPO). In Sec. 5.1, we show that NCDPO formulates the denoising process of Diffusion Policy130

as a noise-conditioned inference process. In Sec. 5.2, we show that NCDPO ensures PPO training131

operates on the same action space as the environment, without relying on optimizing action likelihood132

of latent actions.133

5.1 Denoising Process as a Noise-Conditioned Inference Process134

Noise-conditioned Action Generation. We decouple the stochastic and deterministic components135

of the denoising process. The stochastic component encompasses all the random noises sampled136

during the denoising process. The deterministic component further operates on these sampled noises137

with the model µθ.138

Formally, Eq. 4 can be equivalently represented as,139

ak−1 = µθ(a
k, k, s) + σk · zk where zk ∼ N (0, I) (5)

A straitforward indication of Eq. 5 is that, in each denoising step, the only stochastic component140

is the Gaussian noise zk, while the computation of µθ(a
k, k, s) and addition between µθ(a

k, k, s)141

and σk · zk are both deterministic. Therefore, the whole denoising process can be split into a noise142

sampling phase and a deterministic inference phase.143

In the noise sampling phase, we generate a sequence of standard Gaussian noises z1, · · · , zK ,144

zk ∼ N (0, I) for k = K,K − 1, . . . , 1 (6)

aK ∼ N (0, I) (7)
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(a) DPPO (b) NCDPO (ours)

Figure 2: DPPO adopts a two-layer MDP design by combining the environment state with latent
actions to form augmented states. In contrast, in each step, NCDPO first samples a group of random
noises and computes the action based on the noises, resulting in a deterministic generation process
(Eq. 9). Blue arrows in the figure indicate MDP transitions.

In the deterministic inference phase, given noises z1, · · · , zK , µθ is be used to compute the latent145

actions ak one by one. For k = K,K − 1, . . . , 1, ak−1 is a linear combination of µθ(a
k, k, s) and146

zk,147

ak−1 = µθ(a
k, k, s) + σk · zk (8)

Consequently, the generated action a0 can be computed by recursively applying Eq. 8,148

a0 = µθ(µθ(. . . µθ(a
K ,K, s) . . . , 2, s) + σ2 · z2, 1, s) + σ1 · z1

= fθ(s, a
K , z1:K) (9)

MDP with Noise-augmented States. As derived in Eq. 8 and Eq. 9, the denoising process149

can be partitioned into a noise sampling phase and a policy inference phase. We can incorpo-150

rate the sampled noises into the MDP as part of the environment state. Formally, for the origi-151

nal environment MDPM = ⟨S,A, P0, P,R, γ⟩ we introduce MDP with noise-augmented states152

Mnoise = ⟨Snoise,A, P0, Pnoise, R, γ⟩. In Mnoise, each state snoise consists of a environment153

state s ∈ S and Gaussian noises aK , z1, · · · , zK .Mnoise shares the same action space and reward154

function as the original MDPM. In each decision-making step, the environment state transits to a155

new one, and the noises are all re-sampled.156

Denoising Process as a Noise-Conditioned Policy. Given a noise-augmented state snoise =157

(s, aK , z1:K), the deterministic inference phase of the denoising process can be represented as a158

Noise-Conditioned Policy πNC
θ that generates the action a0 using Eq. 9159

Note that this noise-conditoned policy is a deterministic policy and could not be directly trained with160

PPO since the policy loss (Eq. 2) relies on a stochastic policy. Therefore, we introduce an additional161

operation to transform this deterministic policy into a stochastic one. Specifically, for continuous162

action space, we sample the final action a0 near f(aK , z1:K) from a Gaussian distribution with a163

learnable standard variation σact,164

πNC
θ (·|z1:K , aK , s) = N (fθ(s, a

K , z1:K), σ2
act) (10)

For discrete action space, we use softmax to sample the final action by treating fθ(s, a
K , z1:K) as165

logits,166

πNC
θ (a0 = i|z1:K , aK , s) ∝ exp (fθ(s, a

K , z1:K)i/T ) (11)

where i is the action index. T is the temperature that allows the policy network to produce sharper167

action distributions.168
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5.2 Finetuning Noised-Conditioned Policy with PPO169

Under the formulation of NCDPO, at each denoising timestep t, Gaussian noise zt is first sampled,170

and the action is then generated via Eq. 10 or Eq. 11. This way, we can apply PPO objective in Eq.12171

, which utilizes a clipped objective to regularize updated policy from original policy, to optimize172

interactive action probabilities:173

L(θ|θk) = Ea0
t∼πNC

θk
(z1:K

t ,aK
t ,st)

[∑
t

min

(
πNC
θ (a0t |z1:Kt , aKt , st)

πNC
θk

(a0t |z1:Kt , aKt , st)
AπNC

θk (a0t |st),

clip
(πNC

θ (a0t |z1:Kt , aKt , st)

πNC
θk

(a0t |z1:Kt , aKt , st)
, 1− ϵ, 1 + ϵ

)
AπNC

θk (a0t |st)

)] (12)

As illustrated in Figure 1, in policy rollout process, each step begins by sampling a sequence of noises,174

which are then used by the Diffusion Policy to generate the corresponding action. These sampled175

noises are stored in the buffer. During training phase, the stored noises are reused to recompute the176

actions, enabling gradient backpropagation through the entire denoising process. This allows PPO to177

directly update all denoising steps of the diffusion policy.178

Algorithm 1 NCDPO

Require: Noise-conditinoed policy πNC
θ , noise scheduler σ

1: Parameters: γ ∈ [0, 1), ε ∈ (0, 1), Nepisodes, NPPO
2: for e = 1, 2, . . . , Nepisodes do
3: buffer← ∅
4: for t = 0, 1, 2, . . . , T − 1 do
5: aKt , z1:Kt ∼ N (0, I)
6: Sample a0t from πNC(·|z1:Kt , aKt , st)
7: log πNC

t ← πNC(a0t |z1:Kt , aKt , st)
8: Execute at, observe rt, st+1

9: buffer← buffer ∪ {st, aKt , rt, log πt, z
1:K
t }

10: end for
11: for epoch = 1, 2, . . . , NPPO do
12: for mini-batch b = 1, 2, . . . do
13: Calculate PPO loss L(θ|θk) in Eq. 12, backpropagate gradients through diffusion

timesteps and update parameter θ
14: end for
15: end for
16: end for

As Fig.2 shows, NCDPO models the denoising process as deterministic generation conditioned on179

pre-sampled noise z1:Kt . During inference, interactive actions are obtained through recursive model180

inference in Eq. 9 and applying the action sampling step in Eq. 10 and Eq. 11.181

6 Experiments182

In this section, we provide a comprehensive evaluation of NCDPO across a variety of challenging183

environments. We begin by detailing the experimental setup in Sec. 6.1, followed by results on184

continuous robot control tasks in Sec. 6.2 and discrete multi-agent coordination tasks in Sec.6.3.185

Finally, we conduct ablation studies in Sec. 6.4 to assess the robustness and of NCDPO.186

6.1 Environmental Setup187

Environments: OpenAI Gym locomotion. Our first set of experiments involves testing NCDPO188

on a series of well-established locomotion benchmarks from OpenAI Gym [3], namely: Hopper-v2,189

Walker2D-v2, and HalfCheetah-v2. The pre-trained Diffusion Policies used in these experiments190
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are trained from the D4RL "medium" dataset [6], which contains a diverse range of pre-recorded191

trajectories. For the fine-tuning process, we use dense reward.192

Environments: Robomimic. We further evaluate the performance of NCDPO on robotic manipu-193

lation tasks within Robomimic benchmarks [14]. The specific scenarios we consider include Lift,194

Can, Square, and Transport, varying in difficulty. To ensure temporal consistency in actions, we195

employ action chunking with size 4 for Lift, Can, and Square, and size 8 for Transport, following196

the setting in [20]. All tasks are fine-tuned using sparse rewards, which provide feedback only in the197

form of success or failure signals.198

Environments: Google Research Football. To evaluate NCDPO’s capability in large discrete action199

spaces, we test on three Google Research Football scenarios requiring multi-agent coordination:200

3 vs 1 with Keeper, Counterattack Hard, and Corner. Here we adopt a centralized control201

strategy, where actions for all agents are generated simultaneously using a single Diffusion Policy.202

The base Diffusion Policies are pre-trained to output one-hot vectors corresponding to ground-truth203

actions. To construct the pre-training dataset, we aggregate trajectories from multiple MLP-based204

policies with varying success rates.205

6.2 Evaluation on Continuous Robot Control Tasks206

We first evaluate NCDPO on continuous control tasks across two benchmarks: OpenAI Gym loco-207

motion and Robomimic. In these environments, we compare NCDPO with DPPO [20]; DRWR208

and DAWR [20], based on reward-weighted regression [17] and advantage-weighted regression209

respectively [16]; DIPO [31], which employs action gradients as the score function for denoising210

steps; and Q-learning-based methods such as IDQL [8] and DQL [28].211

From the experimental results shown in Fig. 3 and Fig. 4, we observe that NCDPO consistently212

achieves the strongest performance and exhibits robustness across all tasks. While DPPO, which is the213

best among the baseline methods, performs comparably to NCDPO in the Robomimic benchmark 1,214

it lags behind in the OpenAI Gym locomotion environments. Other baselines generally underperform215

relative to DPPO. Notably, IDQL demonstrates strong performance on the first three Robomimic216

tasks but fails in the final one. In contrast, DQL suffers from instability across all scenarios. We217

additionally conducted experiments on Square using vision-based inputs, with results provided in218

the appendix. The results demonstrate consistent improvements in Diffusion Policy performance219

when fine-tuned with NCDPO.220

Figure 3: Performance comparison on OpenAI Gym locomotion tasks. Results are averaged over
three seeds. NCDPO (ours) achieves the strongest performance.

1Note that we tested performance using the latest version of DPPO (v0.8), which is about 2.5x sample
efficient in Transport task as reported in the original paper.
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Figure 4: Performance comparison on Robomimic tasks. Results are averaged over three seeds.
NCDPO (ours) achieves the strongest performance.

Scenario NCDPO (Ours) DPPO AWR IDQL DQL RWR DIPO

Hopper-Medium 126.4 (1.8) 98.4 (2.0) 44.8 (1.2) 113.8 (0.2) 122.7 (1.2) 100.9 (3.6) 94.4 (4.9)
Hopper-Medium-Replay 128.2 (2.8) 114.6 (3.3) 82.1 (7.0) 117.9 (1.1) 121.1 (3.6) 104.2 (3.1) 108.6 (1.0)
Hopper-Medium-Expert 135.2 (2.0) 102.4 (5.2) 40.7 (0.5) 131.9 (0.4) 120.9 (28.1) 113.6 (4.7) 127.5 (1.3)
Walker2d-Medium 118.4 (3.8) 101.2 (1.6) 93.5 (8.3) 110.7 (0.5) 94.9 (36.9) 90.2 (3.3) 99.8 (2.0)
Walker2d-Medium-Replay 126.6 (4.5) 105.1 (4.3) 75.8 (2.3) 121.9 (2.6) 107.2 (37.8) 69.2 (6.0) 88.6 (11.0)
Walker2d-Medium-Expert 141.0 (2.3) 137.5 (2.0) 124.2 (5.4) 135.5 (2.7) 67.3 (47.6) 106.8 (6.8) 138.8 (1.4)
HalfCheetah-Medium 122.0 (11.0) 82.3 (0.7) 65.5 (2.9) 79.3 (0.8) 77.1 (5.4) 47.9 (5.4) 73.9 (0.6)
HalfCheetah-Medium-Expert 139.7 (6.8) 80.6 (1.6) 64.4 (2.3) 77.8 (1.0) 72.1 (8.0) 38.4 (2.9) 71.4 (0.2)
HalfCheetah-Medium-Replay 121.0 (2.0) 72.3 (0.4) 60.5 (0.7) 74.3 (0.9) 73.0 (3.1) 30.7 (1.8) 58.1 (0.9)

Lift 100.0 (0.0) 99.7 (0.2) 93.3 (1.7) 99.2 (0.1) 99.8 (0.3) 97.5 (0.5) 97.3 (0.8)
Can 99.3 (1.2) 99.0 (1.0) 33.8 (3.2) 94.5 (3.1) 0.3 (0.6) 90.7 (0.8) 52.8 (5.1)
Square 87.3 (4.5) 87.0 (2.3) 40.3 (8.5) 80.0 (5.0) 0.0 (0.0) 74.8 (2.5) 25.3 (4.5)
Transport 96.7 (2.31) 91.3 (2.9) 11.2 (3.5) 0.5 (0.8) 0.0 (0.0) 0.0 (0.0) 0.2 (0.3)

Table 1: Mean and standard deviation of performance over continuous robot control scenarios.
Each result is evaluated on three different seeds. NCDPO (ours) exhibits the strongest performance.
Performance on OpenAI Gym locomotion tasks are normalized according to scores of MLP policies
trained from scratch using PPO with 1M samples reported in Tianshou [29] . Original scores are
listed in Table 3.

6.3 Evaluation on Discrete Multi-agent Coordination Tasks221

Following our evaluation on continuous control tasks, we next examine NCDPO on Google Research222

Football, a benchmark for cooperative multi-agent control. To facilitate more effective coordination223

among agents, we adopt a centralized multi-agent control strategy in which actions for all agents are224

generated simultaneously. This formulation leverages the high representational capacity of diffusion225

models to model complex inter-agent dependencies. However, it also gives rise to a high-dimensional226

joint action space (i.e., num_agents× actions), presenting substantial challenges for reinforcement227

learning fine-tuning.228

We compare NCDPO with MLP policies trained using Multi-Agent Proximal Policy Optimization229

(MAPPO) [32]. This baseline is initialized through behavior cloning using a Cross-Entropy loss230

function. As no public dataset exists for Google Research Football, a custom dataset is constructed to231

pre-train Diffusion Policies by training multiple MAPPO agents [32] with different random seeds232

and early-stopping them at various stages. These agents exhibit varying winning rates and employ233

diverse tactical behaviors.234

As Fig. 5 demonstrates, NCDPO outperforms the MLP baseline across all three evaluated scenarios.235

This outcome not only highlights the superiority of Diffusion Policy in handling complex and diverse236

demonstration data over simple MLP policy, but also confirms the effectiveness of the DP+NCDPO237

during the fine-tuning phase.238

Scenario NCDPO (Ours) MAPPO

3 vs 1 with Keeper 87.4(2.7) 75.1(12.3)
Counterattack Hard 87.0(2.5) 80.0(2.0)
Corner 78.3(4.5) 74.9(3.0)

Table 2: Average evaluation success rate and standard deviation (over three seeds) on Google Research
Football scenarios. The base Diffusion Policy and MLP policy are pre-trained on the same dataset.
MLP policy is trained using Cross-Entropy loss.
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Figure 5: Performance comparison in Google Research Football. Results are averaged over at least
three seeds. NCDPO (ours) exhibits strong performance and stability.

6.4 NCDPO is Robust to the Number of Denoising Steps239

We further conduct an ablation study to investigate the impact of varying the number of denoising steps240

in the diffusion model. The experimental results shown in Fig. 7 indicate that NCDPO demonstrates241

strong robustness to the choice of denoising steps.242

Figure 6: Ablation Study on Denoising Steps in OpenAI Gym locomotion tasks.

Figure 7: Ablation Study on Denoising Steps in Robomimic tasks.

We hypothesize that the robustness of NCDPO arises from the way gradients are propagated through243

time during the diffusion process. This gradient flow leads to more accurate gradient estimates.244

7 Conclusion and Limitations245

We present NCDPO, a novel approach for fine-tuning Diffusion Policies through Proximal Policy246

Optimization that exhibits strong performance across continuous and discrete control domains. Our247

key innovation lies in reformulating the diffusion denoising process as a noise-conditioned stochastic248

policy that enables effective gradient backpropagation through diffusion timesteps. Through extensive249

experiments across locomotion, manipulation, and multi-agent cooperation scenarios, we demonstrate250

that NCDPO achieves superior sample efficiency and final performance compared to existing diffusion251

RL approaches. NCDPO’s ability to handle both continuous and discrete action spaces suggests its252

potential as a general-purpose policy optimization framework.253

Our study focuses on the algorithmic development and evaluation of NCDPO in simulated settings.254

Consequently, we have not yet explored sim-to-real transfer on physical robots. These choices reflect255

our emphasis on fine-tuning methodology. Extending NCDPO to real-world deployment remains to256

be implemented in future work.257
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A Self-Imitation Regularizer348

When directly fine-tuning Diffusion Policies using policy gradient methods, we observe a structure349

collapse issue—namely, the Diffusion Policy fails to maintain consistency between the forward350

and reverse processes. To preserve the structural integrity of the diffusion model, we introduce351

self-imitation regularization. Specifically, we perform behavior cloning on the trajectories generated352

in the previous episode. Empirically, we find that this regularization significantly reduces the behavior353

cloning loss. In contrast, without it, this behavior cloning loss will keep increasing, indicating354

structural degradation in the Diffusion Policy.355

B Additional experimental results356

B.1 Original Scores on OpenAI Gym locomotion tasks357

Scenario NCDPO (Ours) DPPO AWR IDQL DQL RWR DIPO PPO

Hopper-Medium 3297.3 (47.8) 2566.6 (51.1) 1168.9 (30.5) 2970.2 (5.2) 3200.7 (30.1) 2633.6 (94.0) 2463.1 (127.6) 2609.3
Hopper-Medium-Replay 3345.64 (71.88) 2988.97 (86.90) 2142.30 (183.82) 3076.91 (29.82) 3159.72 (94.85) 2718.27 (79.86) 2834.07 (25.00) 2609.3
Hopper-Medium-Expert 3528.74 (51.89) 2672.64 (135.15) 1062.47 (13.15) 3440.50 (10.79) 3153.66 (733.36) 2964.11 (121.35) 3326.99 (32.73) 2609.3
Walker2d-Medium 4248.8 (137.6) 3632.1 (55.9) 3353.9 (296.9) 3972.8 (17.3) 3405.2 (1322.7) 3238.3 (116.8) 3581.6 (70.3) 3588.5
Walker2d-Medium-Replay 4544.59 (162.98) 3770.52 (154.50) 2719.04 (83.84) 4373.89 (91.66) 3846.26 (1357.97) 2483.04 (215.70) 3180.80 (396.27) 3588.5
Walker2d-Medium-Expert 5060.92 (82.87) 4935.57 (73.28) 4458.68 (195.26) 4863.91 (95.34) 2416.68 (1708.34) 3831.65 (243.76) 4979.96 (50.22) 3588.5
HalfCheetah 7058.8 (635.1) 4758.3 (41.8) 3788.7 (166.5) 4584.4 (45.3) 4459.1 (309.5) 2773.1 (310.0) 4272.4 (33.2) 5783.9
HalfCheetah-Expert 8079.30 (392.21) 4663.23 (92.62) 3723.21 (131.37) 4499.39 (57.61) 4171.97 (465.25) 2218.39 (168.36) 4126.96 (12.14) 5783.9
HalfCheetah-Replay 7000.14 (113.88) 4181.57 (24.59) 3501.08 (40.34) 4295.81 (53.02) 4223.07 (177.28) 1775.98 (101.28) 3362.48 (49.47) 5783.9

Table 3: Mean and standard deviation of original scores across continuous robot control scenarios.

B.2 Experiments with Vision Inputs358

We performed evaluation on Square task in robomimic with vision as input. Results demonstrate the359

effectiveness of NCDPO.360

Figure 8: Experimental results for vision inputs.

B.3 Ablation Study361

We observe that setting the action chunk size to one significantly improves performance in Gym362

environments. We hypothesize that this is due to the nature of these tasks, where agents must363

respond promptly to rapid and continuous changes in the environment. Smaller chunk sizes allow the364

policy to adapt its actions more frequently, which is crucial for achieving fine-grained control. The365

corresponding results are presented in Figure 9.366
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Figure 9: Ablation study on action chunk size in OpenAI Gym locomotion tasks.

additionally, in discrete action environments, modifying the noise scheduler to increase Gaussian
noise during the denoising steps improves exploration without degrading overall performance, as
shown in Figure 10. In discrete settings, the absolute values of the logits are less important than their
relative magnitudes, which allows increased noise to encourage exploration while preserving policy
effectiveness. To achieve this, we adjust the noise scheduler using parameters η and βbase, increasing
the noise level via the transformation:

β′
k = βbase

(
βk

βbase

)η

where βk corresponds to the original noise schedule defined in Equation 3. In our implementation,367

we set βbase = 0.7.368

Figure 10: Ablation study on different values of η in Google Research Football.

We further find that increasing the initial noise scale σa in the acting layer enhances exploration. An369

ablation study conducted on Robomimic supports this finding:370

Figure 11: Ablation study of different choices of initial log σa in Robomimic tasks.

B.4 Further Experiments in OpenAI Gym locomotion tasks.371

We evaluated different training methods using datasets of varying quality for pretraining the base372

policy. The "medium-replay" dataset consists of replay buffer samples collected before early stop-373

ping, while the "medium-expert" dataset contains equal proportions of expert demonstrations and374

suboptimal rollouts [6].375

Regardless of dataset quality, NCDPO consistently outperforms all baselines, as shown in Figures 12376

and 13.377
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Figure 12: Pretraining with expert datasets.

Figure 13: Pretraining with replay datasets.

B.5 Google Research Football Data Curation378

For each scenario, we collected 200K environment steps per model. The win rates of the agents used379

for dataset generation are summarized in Table 4.380

Scenario Win Rates
3 vs 1 with Keeper 0.93, 0.90, 0.70, 0.55
Corner 0.76, 0.75, 0.50, 0.50, 0.41
Counterattack Hard 0.90, 0.78, 0.70, 0.61, 0.56, 0.56

Table 4: Win rates of trained agents used for dataset collection in Google Research Football. Each
model contributes 200,000 steps.

C Implementation Details and Hyperparameters381

For NCDPO, we apply Adam optimizer for actor and AdamW optimizer for critic. For all other382

baselines, AdamW optimizer is adopted.383

For fair comparison, we adopt the same network architecture as DPPO [20] and directly utilize their384

implementation for model structure. Our overall training framework is built upon a modified codebase385

of MAPPO [32].386

Task γ λ
Action
Chunk

Actor
LR

Critic
LR

Actor
MLP Size

Critic
MLP Size

Actor
MLP Layers η

Initial Noise
Log Std 1/T

Denoising
Step

Clone
Epochs

Clone
LR

Episode
Length

Mini-batch
Number

Environment
Max Steps

Parallel
Environments

Hopper 0.995 0.985 4 3e-5 1e-3 1024 256 7 0 -2 - 5 8 1e-3 256 1 1000 32
Walker2d 0.995 0.985 4 3e-5 1e-3 1024 256 7 0 -2 - 5 8 1e-3 500 1 1000 32
HalfCheetah 0.99 0.985 4 3e-5 1e-3 1024 256 7 0 -2 - 5 3 1e-4 500 1 1000 32
lift 0.999 0.99 4 3e-5 1e-3 1024 256 7 0 -2.3 - 5 2 1e-3 300 4 300 200
can 0.999 0.99 4 3e-5 1e-3 1024 256 7 0 -2.3 - 5 60 3e-4 300 4 300 200
square 0.999 0.99 4 3e-5 1e-3 1024 256 7 0 -2.3 - 5 200 2e-4 400 4 400 200
square-vision 0.999 0.99 4 3e-5 5e-4 1024 256 7 0 -2.3 - 5 200 2e-4 400 4 400 200
transport 0.999 0.99 8 3e-5 1e-3 1024 256 7 0 -2.3 - 5 321 8e-4 800 4 800 200
3 vs 1 with Keeper 0.99 0.95 1 3e-5 1e-3 1024 256 7 0.03 - 20 5 10 1e-3 200 1 - 50
Corner 0.99 0.95 1 3e-5 1e-3 1024 256 7 0.03 - 20 5 10 1e-3 500 1 - 50
Counterattack Hard 0.99 0.95 1 3e-5 1e-3 1024 256 7 0.03 - 20 5 10 1e-3 500 1 - 50

Table 5: Hyperparameter settings for different tasks of NCDPO.
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Task γ λ
Action
Chunk

Actor
LR

Critic
LR

Actor
MLP Size

Critic
MLP Size

Actor
MLP Layers

Denoising
Step

Episode
Length

Mini-batch
Size

Environment
Max Steps

Parallel
Environments

Hopper 0.99 0.95 4 1e-4 1e-3 512 256 3 20 2000 50000 1000 40
Walker2d 0.99 0.95 4 1e-4 1e-3 512 256 3 20 2000 50000 1000 40
HalfCheetah 0.99 0.95 4 1e-4 1e-3 512 256 3 20 2000 50000 1000 40
lift 0.999 0.95 4 1e-4 5e-4 512 256 3 20 1200 7500 300 50
can 0.999 0.95 4 1e-4 5e-4 512 256 3 20 1200 7500 300 50
square 0.999 0.95 4 1e-4 5e-4 512 256 3 20 1600 10000 400 50
transport 0.999 0.95 8 1e-4 5e-4 512 256 3 20 3200 10000 800 50

Table 6: Hyperparameter settings for Baselines in robot control. Experiment is executed using
DPPO [20] implementation and hyperparameters. Batch size for all baselines other than DPPO is
1000. For further details, please refer to DPPO paper [20].

Task γ λ
Action
Chunk

Actor
LR

Critic
LR

Actor
MLP Size

Critic
MLP Size

Actor
MLP Layers η

Initial Noise
Log Std 1/T

Denoising
Step

Clone
Epochs

Clone
LR

3 vs 1 with Keeper 0.99 0.95 1 5e-4 5e-4 256 256 - - - 20 5 8 1e-3
Corner 0.99 0.95 1 5e-4 5e-4 256 256 - - - 20 5 8 1e-3
Counterattack Hard 0.99 0.95 1 5e-4 5e-4 256 256 - - - 20 5 8 1e-3

Table 7: Hyperparameter of MLP on football. Experiment is run on MAPPO codebase and MLP
architecture remains same as MAPPO, and does not use residual connection, thus rendering parameter
MLP layers unusable.

Task γ λ
Action
Chunk

Actor
LR

Critic
LR

Actor
MLP Size

Critic
MLP Size

Actor
MLP Layers η

Initial
Log Std 1/T

Denoising
Step

Walker2d-NCDPO 0.995 0.985 1 1e-4 1e-3 256 256 3 0 -0.8 - 5
HalfCheetah-NCDPO 0.99 0.985 1 1e-4 1e-3 256 256 3 0 -0.8 - 5
Walker2d-MLP+PPO 0.995 0.985 1 1e-4 1e-3 256 256 3 - -0.8 - -
HalfCheetah-MLP+PPO 0.99 0.985 1 1e-4 1e-3 256 256 3 - -0.8 - -
Walker2d-DPPO 0.99 0.985 1 1e-4 1e-3 512 256 3 - - - 10
HalfCheetah-DPPO 0.99 0.985 1 1e-4 1e-3 512 256 3 - - - 10

Table 8: Hyperparameters for training from scratch. In this experiment, MLP+PPO has exatcly the
same architecture with MLP in diffusion’s denoising process. Numbers of mini-batches and parallel
environments are the same as Table 5.

Task γ λ
Action
Chunk

Actor
LR

Critic
LR

Actor
MLP Size

Critic
MLP Size

Actor
MLP Layers η

Initial
Log Std 1/T

Denoising
Step

Clone
Epochs

Clone
LR

Hopper 0.995 0.985 4 3e-5 1e-3 1024 256 7 0 -2 - 5/10/20 8 1e-3
Walker2d 0.995 0.985 4 3e-5 1e-3 1024 256 7 0 -2 - 5/10/20 8 1e-3
HalfCheetah 0.99 0.985 4 3e-5 1e-3 1024 256 7 0 -2 - 5/10/20 8 1e-3
square 0.995 0.985 4 3e-5 5e-4 1024 256 7 0 -2.3 - 5/20 8 5e-4
transport 0.99 0.985 8 3e-5 5e-4 1024 256 7 0 -2.3 - 5/20 8 5e-4

Table 9: Hyperparameter of Ablation on Denoising Steps.

Task γ λ
Action
Chunk

Actor
LR

Critic
LR

Actor
MLP Size

Critic
MLP Size

Actor
MLP Layers η

Initial
Log Std 1/T

Denoising
Step

Clone
Epochs

Clone
LR

lfit 0.999 0.99 4 3e-5 1e-3 1024 256 7 0 -2.3/-2.7 - 5 2 1e-3
can 0.999 0.99 4 3e-5 1e-3 1024 256 7 0 -2.3/-2.7 - 5 60 3e-4
square 0.999 0.99 4 3e-5 1e-3 1024 256 7 0 -2.3/-2.7 - 5 200 2e-4/5e-4
transport 0.999 0.99 8 3e-5 1e-3 1024 256 7 0 -2.3/-2.7 - 5 321 8e-4/5e-4

Table 10: Hyperparameter of Ablation on Initial Noise.

Task γ λ
Action
Chunk

Actor
LR

Critic
LR

Actor
MLP Size

Critic
MLP Size

Actor
MLP Layers η

Initial
Log Std 1/T

Denoising
Step

Clone
Epochs

Clone
LR

3 vs 1 with Keeper 0.99 0.95 1 3e-5 1e-3 1024 256 7 0.03/0.1/0.3/1 - 20 5 8 1e-3
Corner 0.99 0.95 1 3e-5 1e-3 1024 256 7 0.03/0.1/0.3/1 - 20 5 8 1e-3
Counterattack Hard 0.99 0.95 1 3e-5 1e-3 1024 256 7 0.03/0.1/0.3/1 - 20 5 8 1e-3

Table 11: Hyperparameter of Ablation on η. η = 1 indicates using original scheduler.
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D Computational Resources387

Each run could be done in 6 hours with 1 AMD Ryzen 3990X 64-Core Processor and 1 NVIDIA388

3090 GPU.389

16



NeurIPS Paper Checklist390

1. Claims391

Question: Do the main claims made in the abstract and introduction accurately reflect the392

paper’s contributions and scope?393

Answer: [Yes]394

Justification: Our main contribution, a novel framework for Diffusion Policy fine-tuning is395

properly described in the abstract and introduction.396

Guidelines:397

• The answer NA means that the abstract and introduction do not include the claims398

made in the paper.399

• The abstract and/or introduction should clearly state the claims made, including the400

contributions made in the paper and important assumptions and limitations. A No or401

NA answer to this question will not be perceived well by the reviewers.402

• The claims made should match theoretical and experimental results, and reflect how403

much the results can be expected to generalize to other settings.404

• It is fine to include aspirational goals as motivation as long as it is clear that these goals405

are not attained by the paper.406

2. Limitations407

Question: Does the paper discuss the limitations of the work performed by the authors?408

Answer: [Yes]409

Justification: Limitations are mentioned in the conclusion.410

Guidelines:411

• The answer NA means that the paper has no limitation while the answer No means that412

the paper has limitations, but those are not discussed in the paper.413

• The authors are encouraged to create a separate "Limitations" section in their paper.414

• The paper should point out any strong assumptions and how robust the results are to415

violations of these assumptions (e.g., independence assumptions, noiseless settings,416

model well-specification, asymptotic approximations only holding locally). The authors417

should reflect on how these assumptions might be violated in practice and what the418

implications would be.419

• The authors should reflect on the scope of the claims made, e.g., if the approach was420

only tested on a few datasets or with a few runs. In general, empirical results often421

depend on implicit assumptions, which should be articulated.422

• The authors should reflect on the factors that influence the performance of the approach.423

For example, a facial recognition algorithm may perform poorly when image resolution424

is low or images are taken in low lighting. Or a speech-to-text system might not be425

used reliably to provide closed captions for online lectures because it fails to handle426

technical jargon.427

• The authors should discuss the computational efficiency of the proposed algorithms428

and how they scale with dataset size.429

• If applicable, the authors should discuss possible limitations of their approach to430

address problems of privacy and fairness.431

• While the authors might fear that complete honesty about limitations might be used by432

reviewers as grounds for rejection, a worse outcome might be that reviewers discover433

limitations that aren’t acknowledged in the paper. The authors should use their best434

judgment and recognize that individual actions in favor of transparency play an impor-435

tant role in developing norms that preserve the integrity of the community. Reviewers436

will be specifically instructed to not penalize honesty concerning limitations.437

3. Theory assumptions and proofs438

Question: For each theoretical result, does the paper provide the full set of assumptions and439

a complete (and correct) proof?440

Answer: [NA]441
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Justification: We do not have theory included.442

Guidelines:443

• The answer NA means that the paper does not include theoretical results.444

• All the theorems, formulas, and proofs in the paper should be numbered and cross-445

referenced.446

• All assumptions should be clearly stated or referenced in the statement of any theorems.447

• The proofs can either appear in the main paper or the supplemental material, but if448

they appear in the supplemental material, the authors are encouraged to provide a short449

proof sketch to provide intuition.450

• Inversely, any informal proof provided in the core of the paper should be complemented451

by formal proofs provided in appendix or supplemental material.452

• Theorems and Lemmas that the proof relies upon should be properly referenced.453

4. Experimental result reproducibility454

Question: Does the paper fully disclose all the information needed to reproduce the main ex-455

perimental results of the paper to the extent that it affects the main claims and/or conclusions456

of the paper (regardless of whether the code and data are provided or not)?457

Answer: [Yes]458

Justification: We have clearly described the algorithm in the main text and listed all necessary459

details in the appendix.460

Guidelines:461

• The answer NA means that the paper does not include experiments.462

• If the paper includes experiments, a No answer to this question will not be perceived463

well by the reviewers: Making the paper reproducible is important, regardless of464

whether the code and data are provided or not.465

• If the contribution is a dataset and/or model, the authors should describe the steps taken466

to make their results reproducible or verifiable.467

• Depending on the contribution, reproducibility can be accomplished in various ways.468

For example, if the contribution is a novel architecture, describing the architecture fully469

might suffice, or if the contribution is a specific model and empirical evaluation, it may470

be necessary to either make it possible for others to replicate the model with the same471

dataset, or provide access to the model. In general. releasing code and data is often472

one good way to accomplish this, but reproducibility can also be provided via detailed473

instructions for how to replicate the results, access to a hosted model (e.g., in the case474

of a large language model), releasing of a model checkpoint, or other means that are475

appropriate to the research performed.476

• While NeurIPS does not require releasing code, the conference does require all submis-477

sions to provide some reasonable avenue for reproducibility, which may depend on the478

nature of the contribution. For example479

(a) If the contribution is primarily a new algorithm, the paper should make it clear how480

to reproduce that algorithm.481

(b) If the contribution is primarily a new model architecture, the paper should describe482

the architecture clearly and fully.483

(c) If the contribution is a new model (e.g., a large language model), then there should484

either be a way to access this model for reproducing the results or a way to reproduce485

the model (e.g., with an open-source dataset or instructions for how to construct486

the dataset).487

(d) We recognize that reproducibility may be tricky in some cases, in which case488

authors are welcome to describe the particular way they provide for reproducibility.489

In the case of closed-source models, it may be that access to the model is limited in490

some way (e.g., to registered users), but it should be possible for other researchers491

to have some path to reproducing or verifying the results.492

5. Open access to data and code493

Question: Does the paper provide open access to the data and code, with sufficient instruc-494

tions to faithfully reproduce the main experimental results, as described in supplemental495

material?496
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Answer: [Yes]497

Justification: We have included the details and will release code and datasets soon.498

Guidelines:499

• The answer NA means that paper does not include experiments requiring code.500

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/501

public/guides/CodeSubmissionPolicy) for more details.502

• While we encourage the release of code and data, we understand that this might not be503

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not504

including code, unless this is central to the contribution (e.g., for a new open-source505

benchmark).506

• The instructions should contain the exact command and environment needed to run to507

reproduce the results. See the NeurIPS code and data submission guidelines (https:508

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.509

• The authors should provide instructions on data access and preparation, including how510

to access the raw data, preprocessed data, intermediate data, and generated data, etc.511

• The authors should provide scripts to reproduce all experimental results for the new512

proposed method and baselines. If only a subset of experiments are reproducible, they513

should state which ones are omitted from the script and why.514

• At submission time, to preserve anonymity, the authors should release anonymized515

versions (if applicable).516

• Providing as much information as possible in supplemental material (appended to the517

paper) is recommended, but including URLs to data and code is permitted.518

6. Experimental setting/details519

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-520

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the521

results?522

Answer: [Yes]523

Justification: We have listed details in appendix.524

Guidelines:525

• The answer NA means that the paper does not include experiments.526

• The experimental setting should be presented in the core of the paper to a level of detail527

that is necessary to appreciate the results and make sense of them.528

• The full details can be provided either with the code, in appendix, or as supplemental529

material.530

7. Experiment statistical significance531

Question: Does the paper report error bars suitably and correctly defined or other appropriate532

information about the statistical significance of the experiments?533

Answer: [Yes]534

Justification: We averaged results over at least 3 different seeds and reports mean and535

standard deviation. Meanwhile, the performance advantage is significant enough.536

Guidelines:537

• The answer NA means that the paper does not include experiments.538

• The authors should answer "Yes" if the results are accompanied by error bars, confi-539

dence intervals, or statistical significance tests, at least for the experiments that support540

the main claims of the paper.541

• The factors of variability that the error bars are capturing should be clearly stated (for542

example, train/test split, initialization, random drawing of some parameter, or overall543

run with given experimental conditions).544

• The method for calculating the error bars should be explained (closed form formula,545

call to a library function, bootstrap, etc.)546

• The assumptions made should be given (e.g., Normally distributed errors).547
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• It should be clear whether the error bar is the standard deviation or the standard error548

of the mean.549

• It is OK to report 1-sigma error bars, but one should state it. The authors should550

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis551

of Normality of errors is not verified.552

• For asymmetric distributions, the authors should be careful not to show in tables or553

figures symmetric error bars that would yield results that are out of range (e.g. negative554

error rates).555

• If error bars are reported in tables or plots, The authors should explain in the text how556

they were calculated and reference the corresponding figures or tables in the text.557

8. Experiments compute resources558

Question: For each experiment, does the paper provide sufficient information on the com-559

puter resources (type of compute workers, memory, time of execution) needed to reproduce560

the experiments?561

Answer: [Yes]562

Justification: We have provided compute resources in appendix.563

Guidelines:564

• The answer NA means that the paper does not include experiments.565

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,566

or cloud provider, including relevant memory and storage.567

• The paper should provide the amount of compute required for each of the individual568

experimental runs as well as estimate the total compute.569

• The paper should disclose whether the full research project required more compute570

than the experiments reported in the paper (e.g., preliminary or failed experiments that571

didn’t make it into the paper).572

9. Code of ethics573

Question: Does the research conducted in the paper conform, in every respect, with the574

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?575

Answer: [Yes]576

Justification: Yes, we followed the NeurIPS Code of Ethics.577

Guidelines:578

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.579

• If the authors answer No, they should explain the special circumstances that require a580

deviation from the Code of Ethics.581

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-582

eration due to laws or regulations in their jurisdiction).583

10. Broader impacts584

Question: Does the paper discuss both potential positive societal impacts and negative585

societal impacts of the work performed?586

Answer: [NA]587

Justification: Our paper focus on designing a novel training framework, and no societal588

impact.589

Guidelines:590

• The answer NA means that there is no societal impact of the work performed.591

• If the authors answer NA or No, they should explain why their work has no societal592

impact or why the paper does not address societal impact.593

• Examples of negative societal impacts include potential malicious or unintended uses594

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations595

(e.g., deployment of technologies that could make decisions that unfairly impact specific596

groups), privacy considerations, and security considerations.597
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• The conference expects that many papers will be foundational research and not tied598

to particular applications, let alone deployments. However, if there is a direct path to599

any negative applications, the authors should point it out. For example, it is legitimate600

to point out that an improvement in the quality of generative models could be used to601

generate deepfakes for disinformation. On the other hand, it is not needed to point out602

that a generic algorithm for optimizing neural networks could enable people to train603

models that generate Deepfakes faster.604

• The authors should consider possible harms that could arise when the technology is605

being used as intended and functioning correctly, harms that could arise when the606

technology is being used as intended but gives incorrect results, and harms following607

from (intentional or unintentional) misuse of the technology.608

• If there are negative societal impacts, the authors could also discuss possible mitigation609

strategies (e.g., gated release of models, providing defenses in addition to attacks,610

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from611

feedback over time, improving the efficiency and accessibility of ML).612

11. Safeguards613

Question: Does the paper describe safeguards that have been put in place for responsible614

release of data or models that have a high risk for misuse (e.g., pretrained language models,615

image generators, or scraped datasets)?616

Answer: [NA]617

Justification: Our paper has no such risks.618

Guidelines:619

• The answer NA means that the paper poses no such risks.620

• Released models that have a high risk for misuse or dual-use should be released with621

necessary safeguards to allow for controlled use of the model, for example by requiring622

that users adhere to usage guidelines or restrictions to access the model or implementing623

safety filters.624

• Datasets that have been scraped from the Internet could pose safety risks. The authors625

should describe how they avoided releasing unsafe images.626

• We recognize that providing effective safeguards is challenging, and many papers do627

not require this, but we encourage authors to take this into account and make a best628

faith effort.629

12. Licenses for existing assets630

Question: Are the creators or original owners of assets (e.g., code, data, models), used in631

the paper, properly credited and are the license and terms of use explicitly mentioned and632

properly respected?633

Answer: [Yes]634

Justification: Datasets are cited in main text, code is cited in Appendix C635

Guidelines:636

• The answer NA means that the paper does not use existing assets.637

• The authors should cite the original paper that produced the code package or dataset.638

• The authors should state which version of the asset is used and, if possible, include a639

URL.640

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.641

• For scraped data from a particular source (e.g., website), the copyright and terms of642

service of that source should be provided.643

• If assets are released, the license, copyright information, and terms of use in the644

package should be provided. For popular datasets, paperswithcode.com/datasets645

has curated licenses for some datasets. Their licensing guide can help determine the646

license of a dataset.647

• For existing datasets that are re-packaged, both the original license and the license of648

the derived asset (if it has changed) should be provided.649
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• If this information is not available online, the authors are encouraged to reach out to650

the asset’s creators.651

13. New assets652

Question: Are new assets introduced in the paper well documented and is the documentation653

provided alongside the assets?654

Answer: [Yes]655

Justification: We have included our code and dataset in supplementary materials.656

Guidelines:657

• The answer NA means that the paper does not release new assets.658

• Researchers should communicate the details of the dataset/code/model as part of their659

submissions via structured templates. This includes details about training, license,660

limitations, etc.661

• The paper should discuss whether and how consent was obtained from people whose662

asset is used.663

• At submission time, remember to anonymize your assets (if applicable). You can either664

create an anonymized URL or include an anonymized zip file.665

14. Crowdsourcing and research with human subjects666

Question: For crowdsourcing experiments and research with human subjects, does the paper667

include the full text of instructions given to participants and screenshots, if applicable, as668

well as details about compensation (if any)?669

Answer: [NA]670

Justification: This paper does not involve crowdsourcing nor research with human subjects.671

Guidelines:672

• The answer NA means that the paper does not involve crowdsourcing nor research with673

human subjects.674

• Including this information in the supplemental material is fine, but if the main contribu-675

tion of the paper involves human subjects, then as much detail as possible should be676

included in the main paper.677

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,678

or other labor should be paid at least the minimum wage in the country of the data679

collector.680

15. Institutional review board (IRB) approvals or equivalent for research with human681

subjects682

Question: Does the paper describe potential risks incurred by study participants, whether683

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)684

approvals (or an equivalent approval/review based on the requirements of your country or685

institution) were obtained?686

Answer: [NA]687

Justification: This paper does not involve crowdsourcing nor research with human subjects.688

Guidelines:689

• The answer NA means that the paper does not involve crowdsourcing nor research with690

human subjects.691

• Depending on the country in which research is conducted, IRB approval (or equivalent)692

may be required for any human subjects research. If you obtained IRB approval, you693

should clearly state this in the paper.694

• We recognize that the procedures for this may vary significantly between institutions695

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the696

guidelines for their institution.697

• For initial submissions, do not include any information that would break anonymity (if698

applicable), such as the institution conducting the review.699

16. Declaration of LLM usage700
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Question: Does the paper describe the usage of LLMs if it is an important, original, or701

non-standard component of the core methods in this research? Note that if the LLM is used702

only for writing, editing, or formatting purposes and does not impact the core methodology,703

scientific rigorousness, or originality of the research, declaration is not required.704

Answer: [NA]705

Justification: LLM is only used for paper language refinement and code auto-completion.706

Guidelines:707

• The answer NA means that the core method development in this research does not708

involve LLMs as any important, original, or non-standard components.709

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)710

for what should or should not be described.711
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