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Abstract

Unsupervised object-centric learning from videos is a promising approach towards
learning compositional representations that can be applied to various downstream
tasks, such as prediction and reasoning. Recently, it was shown that pretrained
Vision Transformers (ViTs) can be useful to learn object-centric representations on
real-world video datasets. However, while these approaches succeed at extracting
objects from the scenes, the slot-based representations fail to maintain temporal
consistency across consecutive frames in a video, i.e. the mapping of objects to slots
changes across the video. To address this, we introduce Conditional Autoregressive
Slot Attention (CA-SA), a framework that enhances the temporal consistency of
extracted object-centric representations in video-centric vision tasks. Leveraging
an autoregressive prior network to condition representations on previous timesteps
and a novel consistency loss function, CA-SA predicts future slot representations
and imposes consistency across frames. We present qualitative and quantitative
results showing that our proposed method outperforms the considered baselines on
downstream tasks, such as video prediction and visual question-answering tasks.

1 Introduction

The main goal of object-centric (OC) representation learning is to represent each object in an image
as a set of separate fixed-size vector representations called “slots” [1, 8, 10, 12, 37]. This slot-
based representation serves to represent natural scenes as a composition of objects [12, 24, 37].
Due to this compositional nature of scenes [26], object-centric representations can enhance out-of-
distribution generalization [12], and handle complex tasks such as reasoning [1, 39, 53, 54, 55],
planning [40, 50], control [6, 38, 59], and reinforcement learning [10, 19, 58, 59]. Moreover, object-
centric representation learning is in line with studies on the characterization of human perception and
reasoning [29], making it a very appealing direction in terms of explainability [41] as well.

Although recent OC pipelines succeeds at accurately extracting objects from frames in a video [30,
54, 60], a persistent problem when applying object-centric models developed for images [37, 43, 44]
to videos is temporal consistency. Although learning temporal consistent representations has been a
central problem for many years [4, 14, 18, 20, 22, 23, 60], learning temporal consistent object-centric
representations is particularly difficult as the representations are permutation-equivariant. Prior works
utilize various architectural biases to achieve temporal consistency. Some approaches have explored
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employing prior networks to model temporal consistency expicitly [33, 45, 53, 54]. Other models
have directly conditioned the slot representations on previous timesteps [21, 22, 45]. However, we
argue that architectural biases may not always be enough to achieve temporal consistency. Another
approach is to add an auxiliary loss in the representation space [60]. Contrary to Zadaianchuk et al.
[60], we argue that adding such a loss directly on the slots encourages the representations to be too
similar between timesteps, which may hinder the model’s ability to generalize to longer sequences.

To mitigate the problem of temporal consistency, we propose Conditional Autoregressive Slot
Attention (CA-SA), a model-agnostic module that consists of: (1) An autoregressive network that
predicts the initial slot representations of the current timestep from the previous timestep, to condition
the current slot extraction on prior timesteps, and (2) A temporal consistency loss between the feature-
to-slots attention maps of two consecutive frames, to impose the same slot to attend to spatially
similar area of the image. Through ablations, we show that the combination of the two is the key
to learning a more temporally consistent representations. We present qualitative and quantitative
evaluations of the proposed approach on the CLEVRER [57] and Physion [3] datasets, showing how
objects’ temporal consistency improve in terms of downstream task performance.

2 Related Works
The problem of temporal inconsistency has been studied for many years [5]. Whenever various image
processing algorithms are applied as precursors to video processing, certain temporal inconsistencies
can be introduced in the consecutive frames of the video. For example, certain noise reduction
algorithms may cause flickering due to slight variations in noise patterns of consecutive frames. To
deal with such inconsistencies, previous works have introduced various objectives and priors. Lai
et al. [34] introduces a perceptual loss to encourage temporal consistency. Eilertsen et al. [15],
introduce two regularization terms that force a frame and its affine transformation to have similar
representations. A range of approaches also rely on predicting optical flow or motion information for
achieving temporal consistency [7, 13, 35, 56]. While these works consider general computer-vision
problems, the importance of temporal consistency also applies to video-based object-centric models
as well. To ensure temporal consistency various approaches replace the sampling operation, which
introduces the permutation equivariance property of slots [37], by conditioning slots on previous
ones [22, 33, 45, 53]. In this work, besides introducing a novel architectural bias, we introduce an
auxiliary loss which enforces consistency by optimizing for consecutive attention maps to be similar.

Related works on object discovery and video downstream tasks are summarized in Appendix B.

3 Method
When it comes to modelling sequences with an autoregressive model (e.g., RNN [16], autoregressive
transformer [49]), ensuring objects-to-slot consistency is necessary to learn meaningful objects
dynamics [22, 23, 24]. In contrast to most existing methods, which either enforce an architectural
bias [17, 33, 45, 53] or a regularizer to enhance temporally consistent object slots [10, 60], our
method proposes to use both. Table 6 shows a comparison of our proposed method with existing
approaches which try to mitigate permutation equivariance property of object-centric representations.

In this section, we present the two main contributions of our proposed approach, namely, (1) CA-
SA (Conditional Autoregressive Slot Attention), an autoregressive network that predicts the initial
slot representations of the consecutive next timestep and conditions the current slot extraction on
prior timesteps, and (2) OPC (Objects Permutation Consistency Loss), an auxiliary loss between
two consecutive attention score matrices of the feature-to-slots attention mechanisms, to impose
objects permutation temporal consistency between different timesteps. Our proposed objective and
architecture are shown in Figure 1. As our method is architecture-agnostic, this makes it suitable for
any SA-based model for videos.

The overall pipeline, frame generation procedure, and preliminaries about Slot Attention [37] can be
found in Appendix A.

3.1 CA-SA: Conditional Autoregressive Slot Attention

Conditional Autoregressive Prior. Given an input video consisting of T frames x1:T , each input
image is first individually encoded via a feature extractor to latent features z1:T . Then, features are
fed into the Slot Attention architecture to infer slot representations s1:K1:T . Since our goal is to model
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Figure 1: Left: Overall CA-SA architecture is represented. The Prior GRU network takes the
slots from the previous timestep and condition the initialization of the new slots. The vanilla SA
is represented within the dashed box. Right: Visualization of the OPC loss. Two consecutive
attention maps At, At+1 are used to compute a cosine similarity distance, whose diagonal elements
are optimized to match an identity matrix to impose slots’ temporal consistency.

an object-centric dynamics of the environment using slot representations, we need to ensure that the
same slots are used to represent the same objects in the scene along the whole video trajectory. In
this work, we empirically find that updating individual slots via a Gated Recurrent unit (GRU) based
prior network yields the best results:

s̃kt , ht = GRUprior(s
k
t−1, ht−1) , k = [1, 2, · · · ,K], (1)

where st, s̃t, ht are the slots, initial slots, and the hidden state of the GRUprior, respectively. t denotes
the timestep. Unlike previous conditioning approaches, which allow for inter-slot interaction using
MLP or Transformer, the GRU prior network imposes a structure that prevents representation mixing
and preserves the object identity.

OPC: Objects Permutation Consistency Loss. To define a meaningful consistency loss, we draw
inspiration from Spelke [46]’s findings of how human infants perceive objects using several properties,
one of which being their spatiotemporal continuity. For Slot Attention, this principle can be translated
into the notion that attention maps generated at consecutive timesteps should exhibit consistency,
reflecting the assumption that the same object would persist in spatially proximate pixels across
successive frames [9]. However, when defining such consistency within slots, the imposed inductive
bias results to be too strong. Indeed, as the loss is backpropagated backward in time through the prior
network of slot representations, the cumulative effect of minor alterations in the representations can
lead to their deterioration [40].

To solve this issue, we focus on the attention map that is computed within the Slot Attention
architecture per timestep. Using attention maps allows us to define a weaker regularization, which
does not compromise the slot representation while ensuring slot permutation consistency. Formally,
let the attention map at timestep t as At ∈ RK×H′W ′

. Given attention maps at consecutive timesteps,
At, At+1, to encourage the attention maps for the same slot to be consistent over different timesteps,
we define OPC as:

LOPC =
1

TK

T∑
t=1

K∑
i=1

∥(ϕt − IK)ii∥2 , ϕt =
AtA

T
t+1

∥At∥∥At+1∥
, (2)

where ϕt is the attention-wise cosine similarity between consecutive attention maps and IK ∈ RK×K

is an identity matrix. Overall, the proposed method is model-agnostic to any slot-based object-centric
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Figure 2: Generation results and predicted masks on CLEVRER (above) and Physion (below). Red
square indicate slots which temporal consistency is improved by adding CA-SA.

Table 1: Evaluation of video prediction task on CLEVRER dataset. ∗ indicates reproduced results.
Best results are indicated in bold.

Model Visual quality Object dynamics
PSNR (↑) SSIM (↑) LPIPS (↓) AR % (↑) ARI % (↑) FG-ARI %(↑) FG-mIoU % (↑)

SAVi-dyn 29.77 0.89 0.19 8.94 8.64 64.32 18.25
SAVi + SlotFormer∗ 29.22 0.87 0.15 44.19 58.49 65.96 27.90

SAVi + SlotFormer + CA-SA(Ours) 29.47 0.88 0.14 46.50 60.52 67.25 28.60

learning approach for videos. To incorporate our method, we add the object permutation consistency
objective to the original loss function of the method that we wish to apply to. In our case, we optimize
the OC feature extractor with a spatial broadcast decoder (SBD) [37, 51] to reconstruct the images
from slots. The model is trained using an image reconstruction loss as in [33] together with our
proposed objective:

LOC-feature extractor = Limage + λLOPC , Limage = MSE(x1:T , x̂1:T ) (3)

where λ is a hyperparameter. In our experiments, we set the value to λ = 0.1 for all datasets.

4 Experiments
We conduct experiments to evaluate CA-SA by exploring the following question: Do temporally
consistent object-centric representations improve their downstream usefulness on video-related tasks?
To answer this question, we validate the proposed model on video prediction (VP) and visual question
answering (VQA) using CLEVRER [57] and Physion [3] datasets. We also conduct ablational
experiments in subsection 4.3. We provide further details on the datasets and experimental setup in
Appendix C and Appendix D, respectively.

4.1 Video Prediction Task
Table 1 and Table 2 show the results of the video prediction task for CLEVRER and Physion dataset,
respectively. Figure 2 shows examples of generated slots for both datasets. On CLEVRER dataset,
as the table shows, CA-SA outperforms other baseline models both in terms of visual quality and
object-level segmentation. Our model is competitive in terms of visual quality, as the image encoder
is the same as in the baseline model. We see that adding temporal consistency improves object-level
segmentation for all metrics. On Physion dataset, according to Table 2 the proposed model performs

Table 2: Evaluation of video prediction task on Physion dataset. ∗ indicates reproduced results. Best
results are indicated in bold.

Model MSE (↓) LPIPS (↓) FVD (↓)

STEVE + SlotFormer 832.0 0.43 930.6
SlotDiffusion + SlotFormer∗ 489.5 0.27 737.8

SlotDiffusion + SlotFormer + CA-SA(Ours) 502.6 0.27 759.0
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Table 3: VQA task on CLEVRER [57], reporting
per-option (per opt.) and per-question (per ques.)
accuracy. SF stands for SlotFormer. Both models
use Aloe to perform the VQA task. ∗ indicates
reproduced results, best ones are in bold.

Model per opt. (%) per ques. (%)

SF + Aloe∗ 90.72 80.22

SF + Aloe + CA-SA (Ours) 92.69 84.88

Table 4: VQA task on Physion [3], reporting ac-
curacy on burn-in (Obs.) and burn-in plus rollout
frames (Dyn.). SD and SF stand for SlotDiffusion
and SlotFormer, respectively. ∗ indicates repro-
duced results, best ones are in bold.

Model Obs. (%) Dyn. (%)

SD + SF∗ 63.8 63.9

SD + SF + CA-SA (Ours) 64.1 64.7

Table 5: Ablation study on video object discovery task of CLEVRER dataset.

Model Prior Aux. Loss Visual quality Object dynamics
PSNR (↑) SSIM (↑) LPIPS (↓) AR (↑) ARI (↑) FG-ARI (↑) FG-mIoU (↑)

CA-SA " (GRU) " 40.67 0.98 0.07 78.98 79.19 93.94 40.71
CA-SA w/o prior % " 39.32 0.97 0.08 76.28 79.15 93.83 39.54

CA-SA w/o aux. loss " (GRU) % 38.92 0.97 0.08 38.12 61.28 93.60 35.32

StoSAVi " (MLP) % 39.81 0.97 0.08 80.47 79.44 93.91 40.51

slightly worse than SlotDiffusion + SlotFormer for MSE and FVD, while tying for LPIPS with a
value of 0.27.

The performance disparity among datasets can be attributed to their distinct characteristics. Most
object-centric models are trained with a surplus of slots compared to the total number of objects in the
scene [12, 37]. As CLEVRER dataset exhibits a simpler background than Physion, this potentially
results in disentanglement with multiple “empty” slots, i.e. slots which attend to neither the fore-
ground objects nor the background [53]. Consequently, models trained on CLEVRER show greater
performance enhancements over baseline models due to the possibility of temporal inconsistencies
arising from empty slots, whereas achieving temporal consistency is more straightforward on Physion.

4.2 Video Question Answering Task
Table 3 and Table 4 summarize the results on CLEVRER and Physion VQA tasks, respectively. On
CLEVER dataset, adding our proposed method improves the VQA accuracy by 1.9% and 4.6% for
accuracy per-option and per-question, respectively. On Physion dataset, our model slightly improves
accuracy of both metrics. The detailed results of both datasets are in Appendix F. Again, we observe
that the performance gain is larger for CLEVRER dataset, as our model is able to reduce the temporal
inconsistency caused by empty slots.

4.3 Ablation Study
In this section, we provide ablation results on model architecture of CA-SA. We report visual quality
and object dynamics in video object discovery task of CLEVRER dataset in Table 5. As the result
shows, the combination of using a GRU prior and the proposed auxiliary loss improves over vanilla
stochastic SAVi in all metrics except for ARI.

5 Conclusion
In this paper, we proposed CA-SA, a model-agnostic module consisting an autoregressive network and
OPC, an auxiliary loss aimed to improve object-to-slot temporal consistency of video object-centric
models. We experimented on two types of downstream tasks, VP and VQA, and showed that adding
our proposed method on top of state-of-the-art baselines improve their performances. Particularly,
while we observed a marginal improvement in the video prediction task, CA-SA enhanced the VQA
downstream performance across all metrics. We justified such difference considering that, while the
VP task relies on the image space, VQA task uses the extracted slots as input space, clearly showing
the importance of having temporal consistent slots. As in Slotformer [53], we observed that the
two-stage training strategy harms the model’s performance at the early rollout steps. Exploring joint
training of the base object-centric model and the Transformer dynamics module could potentially
benefit the performance of both models. We also leave investigation of combining our method with
other video object-centric models and applying our method on wider variation of downstream tasks
as future works.
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A Overall Pipeline
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Figure 3: Proposed pipeline: Images xt are first encoded into features, which are used to extract
slots st. Slots video trajectory is generated using an autoregressive transformer and decoded into the
predicted video using a Spatial Broadcast Decoder.

This section presents the overall pipeline, slot attention preliminaries, and frame generation procedure.
Figure 3 shows the overall pipeline of CA-SA, where CA-SA is used to extract temporal consistent
slots from the frames, and the autoregressive transformer is used to generate future slots.

A.1 Preliminaries

Slot Attention (SA). Slot Attention is an architecture proposed for unsupervised object-centric
representation learning from images. An input image x ∈ R3×H×W is processed through a Convo-
lutional Neural Network (CNN) encoder (feature extractor) to extract features z ∈ RDenc×H′×W ′

.
Here, Denc is the feature dimension, and H,W and H ′,W ′ are the height and width of the input
and encoded image, respectively. The features are then combined with positional embeddings and
flattened spatially. Then, the model initializes K, Dslot-dimensional object-centric representations,
s̃1:K ∈ RK×Dslot , from some distribution. Using the slots as query and the features as key and
value, Scaled Dot-Product Attention [49] is calculated for M iterations to update slot representations,
s1:K = fSA(s̃

1:K ,M), where fSA is the SA function. Unsupervised scene decomposition into
individual objects is encouraged through the calculation of iterative self-attention by motivating the
slots compete against each other to attend to different parts of the image. The slots are then fed to a
spatial broadcast decoder (SBD) [51] to reconstruct the input image. The entire architecture is trained
using image reconstruction loss only.

A.2 Frame Generation using Slot Representations

Given slot representations s1:K1:T , we wish to generate a sequence of future slots of length L, ŝ1:KT+1:T+L.
To do so, we follow the approach proposed by SlotFormer [53] and employ an autoregressive trans-
former T [49] architecture to perform sequence modelling of the extracted slots. The autoregressive
transformer input space is defined using a Multi-Layer Perceptron (MLP) layer, MLPin which maps
slots to embeddings, and positional encodings that are summed to the transformer embeddings to
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Table 6: This table serves to highlight the differences of our models with prior works. The column
Temporal-Consistency Prior indicates the approach taken by each model to ensure temporally consis-
tent slot representations across frames in a video.

Method Temporal-Consistency Prior Tasks
Conditioning of slots Auxiliary loss Use RGB inputs only Reconstruction Prediction VQA

SCOFF [21] previous slots % " " " "

NPS [22] previous slots % " " " %

STEVE [45] previous slots % " " " %

SAVi [33] Transformer prior % % " " %

VideoSAUR [60] % " " " % %

SlotFormer [53] MLP/Transformer prior % " " " "

SlotDiffusion [54] Transformer prior % " " " "

Ours GRU prior " " " " "

impose a temporal structure. A MLP head MLPout is used to map the transformer outputs back to
the slot space. Overall, the sequence modelling can be formally expressed as,

u1:K
1:T = MLPin(s

1:K
1:T ) , v1:K1:T = T (ũ1:K

1:T ) , ŝ1:K2:T+1 = MLPout(v
1:K
1:T ), (4)

where ũ1:K
1:T = u1:K

1:T + pt, pt are the positional encodings [49] and each slot representation is used
to predict the same slot at the next timestep. To generate a full trajectory, each slot is generated
autoregressively following the approach defined by Wu et al. [53]. The autoregressive transformer T
is optimized using the following autoregressive objective:

LDyn = MSE(s1:K2:T , ŝ1:K1:T−1) + MSE(x1:K
2:T , x̂1:K

1:T−1), (5)

We use the SBD that was trained in section 3.1 to decode the predicted slots to image space. While
training the autoregressive transformer, the weights of the SBD are kept frozen.

B Extended Related Works

Object-centric learning has been gathering attention as a promising direction towards learning efficient
and compositional representations of complex scenes without supervision [10, 25, 27, 37, 44, 52].
While recent works have succeeded in applying this approach to real-world scenes [30, 43, 54, 60],
their evaluation is limited to mask-based metrics. Contrary to this, this work focuses on evaluating the
quality of the object-centric representations themselves by applying the representations to downstream
tasks. Specifically, we focus on two types of downstream tasks - video prediction and visual question
answering. While relatively few, there have been some works that have tackled problems similar
to the ones we consider here [22, 31, 32, 50, 53, 54]. All of these works, except [53, 54], employ
a factored representation coupled with a recurrent dynamics module for video prediction or world
modelling. Wu et al. [53] and Wu et al. [54] adopt a transformer-based dynamics module. Out of this,
[22, 53, 54] consider Slot Attention [37] as the base model to extract slots from the model. These
models rely on architectural priors to impose temporally consistency between slots from neighbouring
timesteps. Contrary to these methods, our approach introduces an objective that explicitly optimizes
for temporal consistency. Moreover, our approach can be integrated into any of the above three
approaches. Table 6 further highlights the differences between the proposed and existing approaches.

C Dataset Details

We validate the proposed model on the Video Prediction and Visual Question Answering downstream
tasks on CLEVRER and Physion datasets. In this section, we provide further details on the dataset
and preprocessing of the data.

CLEVRER. CLEVRER [57] consists of realistically rendered sequences with multiple 3D objects
moving in the scene. The objects differ in shape, color, and texture. The size of each object are kept
identical so that no vertical bouncing occurs during collision. The dataset, similar to CLEVR [28]
and OBJ3D [36], features smaller objects and more diverse interactions of objects, making it a more
challenging task. The attributes of the objects are randomly sampled under the constraint that none of
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the objects in the scene have the identical attributes. Objects’ positions are randomly initialized for
each sequence. For each sequence, some objects are randomly chosen such that they cause a collision
with each other. The dataset is accompanied by a VQA task with four types of questions: descriptive,
explanatory, predictive, and counterfactual. Descriptive questions focus on understanding the video’s
dynamic content and temporal relations, asking about objects’ attributes in an open-ended format.
Explanatory questions explore causal relationships, asking which objects or events are responsible for
other events. Predictive questions test the ability to predict future events. Counterfactual questions
evaluate the understanding of hypothetical scenarios by asking what would or would not happen under
altered conditions. Descriptive questions are open-ended questions, while the other three questions
are in multiple-choice format with more than one possible answer.

Physion. Physion [3] consists of eight video categories, each showing a different physical phe-
nomenon, such as rigid- and soft-body collisions, falling, rolling, and sliding motions. Each video
category presents foreground objects, which vary in categories, textures, colors, and sizes, and diverse
background scenes environment showed from randomized camera poses.

The Physion dataset consists of three set: Training, Readout Fitting, and Testing. Following Slot-
Diffusion [54], we sub-sample the frames by a factor of 3 for training the dynamics module and
truncated by 150 frames, since that is the threshold within most of interactions happen. To validate
models performances we adopt the official evaluation protocol. First, the dynamics models are trained
on videos from the Training set. Then, conditioned by the first 45 frames of Readout Fitting and
Test videos, they perform rollout to generate future scene representations. A linear readout model
is trained on observed and rollout scene representations from the Readout Fitting set to classify
whether an “agent” object (colored in red) contact with the “patient” object (colored in yellow) as
the scene unfolds. The classification accuracy of the trained readout model on the Testing set scene
representations is reported. For detailed descriptions of the VQA evaluation, refer to their paper [3].

D Implementation Details

D.1 Baselines

We build our model on SlotFormer [53] and SlotDiffusion [54] for CLEVRER and Physion dataset,
respectively. Their implementations are available online.12

Stochastic SAVi (StoSAVi). As described by Wu et al. [53], vanilla SAVi [33] occasionally fails
to capture objects newly entering the scene. Wu et al. [53] explains that this is caused by the more
than one “empty” slots competing against each other to attend to the newly entered object, resulting
in multiple slots representing the same object. To solve this problem, Wu et al. [53] proposes a
stochastic version of SAVi, in which slots are initialized conditioned on previous timesteps added
with a sampling procedure.

Specifically, the output of the prior network is processed through a two-layer MLP with Layer
Normalization [2] to predict the mean and log variance of the initial slots at the next timestep:

s̃kt ∼ N (µk
t , {log σ2

t }k) , (µk
t , {log σ2

t }k) = MLP(fprior(s
k
t−1)) (6)

where fprior is some network used to condition slots on previous timesteps.

The model is optimized by adding a KL divergence loss on the predicted distribution to the image
reconstruction loss. The loss only penalizes the log variance with a prior value σ̂:

LKL =
1

TK

T∑
t=1

K∑
k=1

DKL(N (µk
t , {log σ2

t }k)∥N (µk
t , {log σ̂2}k)) (7)

We set σ̂ = 0.1 for all datasets. The coefficient of this loss is set to 1× 10−4. We follow the same
model architecture as implemented in [53].

1https://github.com/pairlab/SlotFormer
2https://github.com/Wuziyi616/SlotDiffusion
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SlotDiffusion. The model is trained in two-stage manner, by first pretraining a VQVAE [48] to
convert images to tokenized patches, and then train the encoder and Slot Attention architecture. We
follow the same model architecture and training settings as [54], where the encoder is a modified
ResNet18 encoder [33] and the decoder is LDM-based [42] trained to predict the noise ϵ added to the
features z obtained by the pretrained VQVAE.

SlotFormer. After training an arbitrary object-centric model, the slots are extracted for all videos
and saved offline. Then, SlotFormer is trained to predict slots at future timesteps, conditioned on
burnin frames. The architecture and training strategy are kept unchanged from [53].

D.2 Proposed Approach: CA-SA

We implement our prior network using a GRU network. As we implement our method on top of
StoSAVi, the initial slots at timestep t are sampled using the predicted mean and log variance which
are computed as,

s̃kt ∼ N (µk
t , {log σ2

t }k) , (µk
t , {log σ2

t }k) = MLP(GRUprior(s
k
t−1)). (8)

We omit the hidden states ht for simplicity. Following StoSAVi, the KL divergence loss is added to
the total loss.

As described in section 3.1, the consistency loss is calculated per slot at each timestep and averaged
over them. The coefficient of the loss term is set to λ = 0.1. To use image reconstruction loss when
training the autoregressive transformer and to visualize the predicted slots, we train a CNN-based
spatial broadcast decoder separately. This decoder is trained using reconstruction loss in image space,
and the loss is not backpropagated to the encoder.

We follow Slotformer [53] approach to evaluate VP and VQA downstream tasks. Specifically, we
first train CA-SA, then train the autoregressive Transformer as described in subsection A.2 using the
inferred slots from the model. We validate both downstream tasks on CLEVRER [57] and Physion
[3] datasets.

For CLEVRER dataset, we apply CA-SA on top of SlotFormer [53], while for Physion we use
SlotDiffusion [54] as backbone model, as they are the state-of-the-art models on respective datasets.
To have a fair comparison we adopt the spatial broadcast decoder used by Slotformer [53] and the
conditional latent diffusion model used by SlotDiffusion [54], respectively.

To perform the VQA task, we train an auxiliary model using the slot representations generated
by the autoregressive Transformer as inputs. On CLEVRER VQA task, we employ Aloe [11], a
Transformer-based architecture that uses slot representations from input frames and text tokens of the
question to predict the answer. For predictive questions, we use the trained Transformer to predict
slots at future timesteps, and feed them to Aloe. For other questions, we follow the implementation of
Aloe. On Physion VQA task, we follow the official protocol by training a readout model on generated
slots, as there is no language involved in the task. Following [53], we implement a readout model
which consists of a MLP applied on every two slots to extract relations between slots and a max-pool
operation which is invariant to input permutations.

On CLEVRER, the training of CA-SA using CNN encoder takes 8 hours to train on 4 V100 GPUs.
The training of the autoregressive transformer takes approximately 2 days with the same GPU setup.
The training of VQA model takes 3 hours. On Physion, the initial training of VQVAE takes 20 hours.
The training of SlotDiffusion requires 30 hours of training on 8 A100 GPUs. The training of the
autoregressive transformer takes approximately 15 hours on 4 V100s. The training of the readout
model finishes in less than 5 minutes.

Table 7 and Table 8 describes the hyperparameters used in our the experiments.

D.3 Experimental Setup

Video Prediction Task. We compare CA-SA with three state-of-the-art, OC models, SAVi-dyn,
SAVi + SlotFormer, and SlotDiffusion + SlotFormer. SAVi-dyn uses SAVi [33] as the encoder and
combines with a Transformer-LSTM to generate future slots. SAVi + SlotFormer and SlotDiffusion +
SlotFormer combine respective models. For CLEVRER, the stochastic verison of SAVi was used in
order to accomodate to new objects entering the scene during rollout.
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Table 7: Hyperparameters used to train different encoders on each dataset.

Dataset CLEVRER Physion

Image encoder ResNet18 ResNet18
Image resolution (H,W ) (64, 64) (128, 128)

Length of sequence T 6 3
# of features H ′W ′ 4096 1024

Feature dimension Denc 128 192
# of slots K 7 8

# of slot attention iteration M 3 2
Slot dimension Dslot 128 192

Batch size 64 48
Training epochs 12 10

Table 8: Hyperparameters used to train autoregressive transformer on each dataset.

Dataset CLEVRER Physion

Burnin frames T 6 10
Rollout frames L 15 10

Batch size 64 128
Training epochs 80 25

# of layers 4 12
# of heads 8 8
Dimension 256 256

FFN dimension 1024 1024

For CLEVRER, we use PSNR, SSIM, and LPIPS to evaluate the visual quality of the frames generated
by each model, and ARI, FG-ARI, FG-mIoU, and AR for evaluation of object-level segmentation
quality. For Physion, following [54], we report visual quality metrics only, MSE, LPIPS, and
FVD [47].

We follow [53, 54] with the evaluation protocol for both datasets. On CLEVRER, we use 6 burn-in
timesteps to condition the model and then perform a rollout to predict the next slots for 10 steps. On
Physion, the model was trained using 15 burn-in and 10 rollout timesteps. The predicted slots were
decoded to images using the SBD and compared with the ground truth ones.

Video Question Answering Task. For both datasets, we apply CA-SA on top of their respective
state-of-the-art model. On CLEVRER, we compare against SlotFormer + Aloe (denoted as SF +
Aloe) [53]. SF + Aloe first trains StoSAVi as the feature extractor, followed by SlotFormer. Then, the
predicted slots from SlotFormer and text tokens of the question are used to train Aloe, a Transformer-
based VQA model. For Physion, we select SlotDiffusion + SlotFormer as the baseline model (SD +
SF) [54]. This model first trains SlotDiffusion as the feature extractor, followed by SlotFormer, and
finally a readout model using the predicted slots.

We report two types of average accuracy on CLEVRER VQA task, per-option (per opt.) and
per-question (per ques.), as the VQA task includes multiple choice questions with more than one
possible answers. The per option accuracy assesses the model’s overall correctness in selecting
individual options across all questions. Conversely, the per question accuracy measures correctness
on a question-by-question basis, necessitating the accurate selection of all answer choices for each
question. For Physion VQA task, we report the accuracy when using only burn-in frames (denoted as
Obs.) and using burn-in frames and rollout frames (Dyn.).

We follow the implementation of Wu et al. [53] for evaluation on both datasets. On CLEVRER, we
train Aloe [11] using the predicted slots by SlotFormer, generated by the procedure described in
subsection A.2. The slots are concatenated with the text tokens of the questions and then fed to Aloe.
On Physion, we train a readout model which receives every two predicted slots at each timestep as

14



Figure 4: More generation results and predicted masks on CLEVRER. Red square indicate slots
which temporal consistency is improved by adding CA-SA.

inputs. The outputs of the readout model are max-pooled over all pairs of slots and time to predict
the answer.

E Rollout Visualizations

We provide further qualitative results of generated results and predicted attention maps on CLEVRER
and Physion datasets in Figure 4 and Figure 5, respectively.

F Additional Results on VQA Task

We provide the accuracy per type of questions of CLEVRER in Table 9. We report the per-scenario
accuracy on Physion for the model trained with rollouts in Table 10.
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Figure 5: More generation results and predicted masks on Physion. Red square indicate slots which
temporal consistency is improved by adding CA-SA.

Table 9: Detailed evaluation of video question answering task on CLEVRER dataset.

Model Descriptive Explanatory Predictive Counterfactual
per opt. (%) per ques. (%) per opt. (%) per ques. (%) per opt. (%) per ques. (%)

Aloe + SlotFormer∗ 93.67 95.10 86.44 93.26 83.25 83.79 57.52

Aloe + SlotFormer + CA-SA(Ours) 94.10 96.56 90.65 94.85 90.28 86.65 64.47

Table 10: Detailed evaluation of video question answering task on Physion dataset.

Model Collide Contain Dominoes Drape Drop Link Roll Support Avg.

SlotDiffusion + SlotFormer∗ 75.3 63.3 49.2 51.3 65.3 59.3 68.0 70.0 63.9

SlotDiffusion + SlotFormer + CA-SA(Ours) 68.7 64.0 51.6 66.0 60.0 64.7 62.7 72.7 64.7
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