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Abstract

Adversarial attacks have threatened modern deep learning
systems by crafting adversarial examples with small pertur-
bations to fool the convolutional neural networks (CNNs).
Ensemble training methods are promising to facilitate bet-
ter adversarial robustness by diversifying the vulnerabilities
among the sub-models, simultaneously maintaining compa-
rable accuracy as standard training. Previous practices also
demonstrate that enlarging the ensemble can improve the ro-
bustness. However, existing ensemble methods are with poor
scalability, owing to the rapid complexity increase when in-
cluding more sub-models in the ensemble. Moreover, it is
usually infeasible to train or deploy an ensemble with sub-
stantial sub-models, owing to the tight hardware resource
budget and latency requirement. In this work, we propose
Ensemble-in-One (EIO), a simple but effective method to en-
large the ensemble within a random gated network (RGN).
EIO augments the original model by replacing the parame-
terized layers with multi-path random gated blocks (RGBs)
to construct an RGN. By diversifying the vulnerability of the
numerous paths through the super-net, it provides high scal-
ability because the paths within an RGN exponentially in-
crease with the network depth. Our experiments demonstrate
that EIO consistently outperforms previous ensemble train-
ing methods with even less computational overhead, simulta-
neously achieving better accuracy-robustness trade-offs than
adversarial training.

Introduction
With the convolutional neural networks (CNNs) becoming
ubiquitous, the security and robustness of neural networks
is attracting increasing interests. Recent studies find that
CNN models are inherently vulnerable to adversarial attacks
(Goodfellow, Shlens, and Szegedy 2014), which craft imper-
ceptible perturbations on the images, referred to as adversar-
ial examples, to mislead the neural network models. Even
without accessing the target model, an adversary can still
generate adversarial examples from other surrogate models
to attack the target model by exploiting the adversarial trans-
ferability among them.

Such vulnerability of CNN models has spurred extensive
researches on improving the robustness against adversarial
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attacks. One stream of approaches targets on learning robust
features for an individual model (Madry et al. 2017; Bren-
del et al. 2020). Informally, robust features are defined as
the features that are less sensitive to the adversarial pertur-
bations added on the inputs. A representative approach, re-
ferred to as adversarial training (Madry et al. 2017), on-line
generates adversarial examples on which the model mini-
mizes the training loss. As a result, adversarial training en-
courages the model to learn the features that are less sen-
sitive to the adversarial perturbations, thereby alleviating
the model’s vulnerability. However, such adversarial train-
ing methods often have to sacrifice the clean accuracy for
enhanced robustness (Zhang et al. 2019), since they exclude
the non-robust features and become less distinguishable for
the examples with high similarity in the feature space.

Besides empowering improved robustness for an individ-
ual model, another stream of researches focuses on form-
ing strong ensembles to improve the robustness (Yang et al.
2020; Bagnall, Bunescu, and Stewart 2017; Pang et al. 2019;
Kariyappa and Qureshi 2019). Generally speaking, an en-
semble is constructed by aggregating multiple sub-models.
Intuitively, an ensemble is promising to facilitate better ro-
bustness than an individual model because a successful at-
tack needs to mislead the majority of the sub-models rather
than just one. While the robustness of an ensemble highly
relies on the diversity of the sub-models, recent study finds
that CNN models trained independently on the same dataset
are with highly-overlapped adversarial subspaces (Tramèr
et al. 2017). Therefore, many studies propose ensemble
training methods to diversify the sub-models. For example,
DVERGE (Yang et al. 2020) proposes to distill non-robust
features corresponding to each sub-model’s vulnerability,
then isolates the vulnerabilities of the sub-models by mutual
learning such that impeding the adversarial transferability
among them.

There is another learned insight that the ensembles com-
posed by more sub-models tend to capture greater robust-
ness improvement. Table 1 shows the robustness trend of the
ensembles trained with various ensemble training methods.
Robustness improvement can be obtained by including more
sub-models within the ensemble. This drives us to further
explore whether the trend will continue when keeping en-
larging the ensemble. However, existing ensemble construc-
tion methods are with poor scalability because of the rapidly



#sub-model Baseline ADP GAL DVERGE
3 0.0%/1.5% 0.0%/9.6% 39.7%/11.4% 53.2%/40.0%
5 0.0%/2.1% 0.0%/11.8% 32.4%/31.7% 57.2%/48.9%
8 0.0%/3.2% 0.0%/12.0% 22.4%/37.0% 63.6%/57.9%

Table 1: Adversarial accuracy of the ensembles trained by different methods, with 3, 5, and 8 sub-models respectively (Yang
et al. 2020). The numbers before and after the slash mean black-box adversarial accuracy under perturbation strength 0.03
(around 8/255) and white-box adversarial accuracy under perturbation strength 0.01.

increasing overhead, especially with mutual learning which
trains the sub-models in a round-robin manner, the complex-
ity will rise at a speed of O(n2).

We propose Ensemble-in-One, a novel approach that can
improve the scalability of ensemble training and introduce
randomness mechanism for enhanced generalization, simul-
taneously obtaining better robustness and higher efficiency.
For a dedicated CNN model, we conduct a Random Gated
Network (RGN) by substituting each parameterized layer
with a Random Gated Block (RGB) on top of the neu-
ral architecture. Through this, the network can instanti-
ate numerous sub-models by controlling the gates in each
block. Ensemble-in-One substantially reduces the complex-
ity when scaling up the ensemble. In summary, the contribu-
tions of this work are listed as below:
• Ensemble-in-One is a simple but effective method that

learns adversarially robust ensembles within one over-
parametrized random gated network. The EIO enables us
to employ ensemble learning techniques to learn more ro-
bust individual models with minimal computational over-
heads and no extra inference overhead.

• Extensive experiments demonstrate the effectiveness of
EIO. It consistently outperforms the previous ensemble
training methods with even less computational overhead.
Moreover, EIO also achieves better accuracy-robustness
trade-offs than adversarial training method.

Related Work
Adversarial attacks and countermeasures.
The inherent vulnerability of CNN models poses challenges
on the security of deep learning systems. An adversary can
apply an additive perturbation on an original input to gener-
ate an adversarial example that induces wrong prediction in
CNN models (Goodfellow, Shlens, and Szegedy 2014). De-
noting an input as x, the goal of adversarial attacks is to find
a perturbation δ s.t. xadv = x + δ can mislead the model,
where ||δ||p satisfies the intensity constraint ||δ||p ≤ ϵ. To
formulate that, the adversarial attack aims at maximizing the
loss L for the model with parameters θ on the input-label
pair (x, y), i.e. δ = argmaxδLθ(x + δ, y), under the con-
straint that the ℓp norm of the perturbation should not exceed
the bound ϵ. Usually, we use ℓ∞ norm (Goodfellow, Shlens,
and Szegedy 2014; Madry et al. 2017) of the perturbations to
measure the attack’s effectiveness or model’s robustness. An
attack that requires smaller perturbation to successfully de-
ceive the model is regarded to be stronger. Correspondingly,
a defense that enforces the attacks to enlarge perturbation
intensity is regarded to be more robust.

Various adversarial attack methods have been investigated
to strengthen the attack effectiveness. The fast gradient sign
method (FGSM) (Goodfellow, Shlens, and Szegedy 2014)
exploits the gradient descent method to generate adversarial
examples. As an improvement, many studies further show
the attack can be strengthened through multi-step projected
gradient descent (PGD) (Madry et al. 2017) generation,
random-starting strategy, and momentum mechanism (Dong
et al. 2017). Then SGM (Wu et al. 2020) further finds that
adding weight to the gradients going through the skip con-
nections can make the attacks more effective. Other preva-
lent attack approaches include C&W losses (Carlini and
Wagner 2017b) , M-DI2-FGSM (Xie et al. 2019), etc. These
attacks provide strong and effective ways to generate adver-
sarial examples, rendering a huge threat to real-world deep
learning systems.

To improve the robustness of CNN systems, there are also
extensive countermeasures for adversarial attacks. One ac-
tive research direction targets improving the robustness of
individual models. Adversarial training (Madry et al. 2017)
optimizes the model on the adversarial examples generated
in every step of the training stage. Therefore, the optimized
model will tend to drop non-robust features to converge bet-
ter on the adversarial data. However, adversarial training en-
courages the model to fit the adversarial examples, thereby
reducing the generalization on the clean data and causing
significant degradation of the clean accuracy.

Test-time randomness for adversarial defense
Besides the aforementioned training techniques, there exist
studies that introduce test-time randomness to improve the
robustness. Feinman et. al. (Feinman et al. 2017) utilize the
uncertainty measure in dropout networks to detect adversar-
ial examples. Dhillon et. al. (Dhillon et al. 2018) and Xie et.
al. (Xie et al. 2017) incorporate layer-wise weighted dropout
and random input transformations during test time to im-
prove the robustness. Test-time randomness is found to be
effective in increasing the required distortion on the model,
since test-time randomness makes generating white-box ad-
versarial examples almost as difficult as generating transfer-
able black-box ones (Carlini and Wagner 2017a). Neverthe-
less, test-time randomness increases the inference cost and
can be circumvented to some extent with the expectation-
over-transformation technique (Athalye, Carlini, and Wag-
ner 2018).

Ensemble training for adversarial defense.
Besides improving the robustness of individual models, an-
other recent research direction is to investigate the robust-
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Figure 1: Normal ensemble training of multiple sub-models
(Left) and the proposed ensemble-in-one training within a
random gated network (Right). By selecting the paths along
augmented layers, the ensemble-in-one network can instan-
tiate nL sub-models, where n represents the augmentation
factor of the multi-gated block for each augmented layer and
L represents the number of augmented layers in the network.

ness of model ensembles in which multiple sub-models
work together. The basic idea is that multiple sub-models
can provide diverse decisions. Ensemble methods can com-
bine multiple weak models to jointly make decisions,
thereby assembling as a stronger entirety. However, it is
demonstrated that independent training of multiple models
tends to capture similar features, which would not provide
diversities among them (Kariyappa and Qureshi 2019).

Therefore, several studies propose ensemble training
methods to fully diversify the sub-models to improve the
ensemble robustness. For example, Pang et. al. treat the dis-
tribution of output predictions as a diversity measurement
and they propose an adaptive diversity promoting (ADP)
regularizer (Pang et al. 2019) to diversify the non-max pre-
dictions of sub-models. Sanjay et. al. regard the gradients
w.r.t. the inputs as a discrimination of different models, thus
they propose a gradient alignment loss (GAL) (Kariyappa
and Qureshi 2019) which takes the cosine similarity of
the gradients as a criterion to train the sub-models. The
very recent work DVERGE (Yang et al. 2020) claims that
the similar non-robust features captured by the sub-models
cause high adversarial transferability among them. There-
fore, the authors exploit non-robust feature distillation and
adopt mutual learning to diversify and isolate the vulnerabil-
ities among the sub-models, such that the within-ensemble
transferability is highly impeded. However, as mentioned
before, such ensemble methods are overwhelmed by the
fast-increasing overhead when scaling up the ensemble. For
example, DVERGE takes 11 hours to train an ensemble with
three sub-models while needs approximately 50 hours when
the sub-model count increases to eight. Therefore, a more
efficient ensemble construction method is highly demanded
to tackle the scaling problem.

Ensemble-in-One
Basic Motivation
The conventional way to construct ensembles is to simply
aggregate multiple sub-models by averaging their predic-
tions, which is inefficient and hard to scale up. An intuitive
way to enhance the scalability of the ensemble construc-

tion is to introduce an ensemble for each layer in the net-
work. As shown in Fig.1, we can augment a dynamic net-
work by augmenting each parameterized layer with an n-
path gated block. Then by selecting the paths along the aug-
mented layer, the dynamic network can instantiate nL varied
sub-models ideally. Taking ResNet-20 as an example, by re-
placing each convolution layer (ignoring the skip connection
branch) with a two-path gated module, the overall path count
will approach 219 = 524288. Such augmentation way pro-
vides an approximation to training a very large ensemble of
sub-models. Then through vulnerability diversification mu-
tual learning, each path tends to capture better robustness.
Following this idea, we propose Ensemble-in-One to further
improve the robustness of both individual models and en-
sembles.

Construction of the Random Gated Network

Denote a candidate neural network as N (o1, o2, ..., om),
where oi represents an operator in the network. To transform
the original network into a random gated network (RGN),
we first extract the neural architecture to obtain the connec-
tion topology and layer types. On top of that, we replace
each parameterized layer (mainly convolutional layer, op-
tionally followed by a batch normalization layer) with a ran-
dom gated block (RGB). As shown in Fig. 2, each RGB sim-
ply repeats the original layer by n times, and leverages bi-
nary gates with uniform probabilities to control the open or
mutation of corresponding sub-layers. These repeated sub-
layers are with different weight parameters. We denote the
RGN as N (d1, d2, ..., dm), where di = (oi1, ..., oin). Let
gi be the gate information in the ith RGB, then a spe-
cific path derived from the RGN can be expressed as P =
(g1 · d1, g2 · d2, ..., gm · dm).

For each RGB, when performing the computation, only
one of the n gates is opened at a time, and the others will be
temporarily muted. Thus by, only one path of activation is
active in memory during training, which reduces the mem-
ory occupation of training an RGN to the same level of train-
ing an individual model. Moreover, to ensure that all paths
can be equally sampled and trained, each gate in a RGB is
chosen with identical probability, i.e. 1/n if each RGB con-
sists of n sub-operators. Therefore, the binary gate function
can be expressed as:

gi =


[1, 0, ..., 0] with probability 1/n,

[0, 1, ..., 0] with probability 1/n,

...
[0, 0, ..., 1] with probability 1/n.

(1)

An RGN is analogous to the super network in parameter-
sharing neural architecture search, and the forward process
of an RGN is similar to evaluating a sub-architecture (Pham
et al. 2018; Cai, Zhu, and Han 2018). Compared to conven-
tional ensemble training methods, our method is easier to
scale up the ensemble. It only incurs n× memory occupation
for the weight storage, while still keeping the same memory
requirement for activation as an individual model.
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Figure 2: The construction of random gated network based on random gated blocks. The forward propagation will select one
path to allow the input pass. Correspondingly, the gradients will also propagate backward along the same path.

Learning Ensemble-in-One
The goal of learning ensemble-in-one is to encourage the
vulnerabilities diversity of all the paths within the RGN by
mutually learning from each other. Let Pi and Pj be two
different paths, where we define two paths as different when
at least one of their gates is different. To diversify the vul-
nerabilities, we need first distill the non-robust features of
the paths so that the optimization process can isolate them.
We adopt the same non-robust feature distillation strategy
as previous work (Ilyas et al. 2019; Yang et al. 2020). Con-
sider two randomly-sampled independent input-label pairs
(xt, yt) and (xs, ys) from the training dataset, the distilled
feature of xt corresponding to xs by the lth layer of path Pi

can be achieved by:

x′
Pl

i
(xt, xs) = argminz||f l

Pi
(z)− f l

Pi
(xt)||2, (2)

which s.t.||z − xs||∞ ≤ ϵd. Such feature distillation aims
to construct a sample x′

Pl
i

by adding perturbations on xs so
that the response in lth layer of Pi of x′

Pl
i

is similar as that of
xt, while the two inputs xt and xs are completely different
and independent. This exposes the vulnerability of path Pi

on classifying xs. Therefore, for another different path Pj ,
it can learn on the distilled data to correctly classify them to
circumvent the vulnerability. The optimization objective for
path Pj is to minimize:

E(xt,yt),(xs,ys),lLfPj
(x′

Pl
i
(xt, xs), ys). (3)

As it is desired that each path can learn from the vulnera-
bilities of all the other paths, the objective of training the
ensemble-in-one RGN is to minimize:∑
∀Pj∈N

E(xt,yt),(xs,ys),l

∑
∀Pi∈N ,i̸=j

LfPj
(x′

Pl
i
(xt, xs), ys),

(4)
where N is the set of all paths in the RGN. While it is ob-
viously impossible to involve all the paths in a training it-
eration, we randomly sample a certain number of paths by
stochastically set the binary gates according to Eq.1. We de-
note the number of paths sampled in each iteration as p.
Then the selected paths can temporarily combine as a subset

Algorithm 1: Training process for learning Ensemble-in-One

Require: Path samples per ietration p
Require: Random Gated NetworkN with L parameterized layers
Require: Pre-training epoch Ew, training epoch E, and data batch

Bd

Require: Optimization loss L, learning rate lr
Ensure: Trained Ensemble-in-One model
1: # pre-training ofN
2: for e = 1, 2, ..., Ew do
3: for b = 1, 2, ..., Bd do
4: Random Sample Path Pi fromN
5: Train Pi in batched data
6: end for
7: end for
8: # learning vulnerability diversity forN
9: for e = 1, 2, ..., E do

10: for b = 1, 2, ..., Bd) do
11: Random sample l ∈ [1, L]
12: # randomly sample p paths
13: S=[P1, P2, ..., Pp], s.t. ∀i, j,∃k ∈ [1, l], s.t. Pi[k] ̸=
Pj [k]

14: Get data (Xt, Yt), (Xs, Ys)←D
15: # Get distilled data
16: for i = 1, 2, ..., p do
17: X ′

i = x′
Pl

i
(Xt, Xs)

18: end for
19: ∇N ← 0
20: for i = 1, 2, ..., p do
21: ∇Pi = ∇(

∑
j ̸=i LfPi

(fPi(X
′
j), Ys))

22: ∇N = ∇N +∇Pi

23: end for
24: N = N − lr ∗ ∇N
25: end for
26: end for

of the RGN, referred to as S. The paths in the set S keep
changing throughout the whole training process, such that
all paths will have equal opportunities to be trained.

The training process of the RGN is summarized by the
pseudo-code in Algorithm 1. Before starting vulnerability
diversification training, we pre-train the RGN based on stan-
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Figure 3: Investigation on the hyper-parameters involved in the Ensemble-in-One construction and training. All these experi-
ments are implemented on ResNet-20 over CIFAR-10 dataset. Left: The black-box adversarial accuracy under different sample
count p per iteration; Middle: The black-box adversarial accuracy under different distillation perturbation ϵd; and Right: the
adversarial accuracy under different augmentation factor n.

dard training settings to help the RGN obtain basic capabil-
ities. The process is simple, where a random path will be
sampled in each iteration and trained on clean data. Then
for each batched data, the process of vulnerability diversifi-
cation contains three basic steps. First, randomly sample p
paths to be involved in the iteration. Note that the sampled
paths should be varied, i.e. if the distilling layer is set to l,
for any Pi, Pj in S, there must be at least one different gate
among the top l gates, i.e. ∃k ∈ [1, l], s.t. Pi[k] ̸= Pj [k].
Second, distilling the vulnerable features of the sampled
paths according to Eq. 2. The distillation process is the same
as proposed in DVERGE, by applying a PGD scheme for ap-
proximating the optimal perturbations. Third, mutually train
each path with the distilled data from the other paths in a
round-robin manner. Because the paths unavoidably share a
proportion of weights owing to the weight sharing mecha-
nism in super-net, the gradients of the weights will not be
updated until all sampled paths are included.

Model Derivation and Deployment
Once the training of RGN is finished, we can then derive and
deploy the model in two ways. One way is to deploy the en-
tire RGN, then in inference stage, the gates throughout the
network will be randomly selected to process an input. The
advantage is that the computation is randomized, which may
beneficial for improving the robustness under white-box at-
tacks, because the transferability among different paths was
impeded during diversity training. However, the disadvan-
tage is that the accuracy is unstable owing to the dynamic
choice of inference path, where the fluctuation reaches 1-2
percentage.

Another way is to derive individual models from the
RGN. By sampling a random path and eliminating the other
redundant modules, an individual model can be rolled out.
We can also sample multiple paths and derive multiple mod-
els to combine as an ensemble. Deploying models in this
way ensures the stability of the prediction as the randomness
is eliminated. In addition, the derived models can be slightly
finetuned with small learning rate for a few epochs to com-
pensate for the under-convergence, as the training process of

RGN cannot fully train all paths as the probability of each
specific path being sampled is relatively low. In our imple-
mentation, we exploit the latter method to derive an individ-
ual model for deployment.

Experimental Results
Experiment Settings
Benchmark. The experiments are constructed on the
ResNet-20 (He et al. 2016) and VGG-16 networks with the
CIFAR dataset (Krizhevsky, Hinton et al. 2009). Specifi-
cally, we construct the ResNet-20 and VGG-16 based RGNs
by substituting each convolution layer to a n-path RGB
(in default n = 2). Overall, there are 19 RGBs (contain-
ing 19 convolution layers in the straight-through branch)
for ResNet-20, and 14 RGBs for VGG-16 (containing the
14 convolution layers). To evaluate the effectiveness of our
method, we compare Ensemble-in-One with multiple coun-
terparts, including the Baseline which trains the models in
a standard way and three previous ensemble training meth-
ods: ADP (Pang et al. 2019), GAL (Kariyappa and Qureshi
2019), and DVERGE (Yang et al. 2020). Meanwhile, we also
add the adversarial training (AdvT) method into the compar-
ison.

Training Details. The trained ensemble models of Base-
line, ADP, GAL, and DVERGE are referred to the imple-
mentation which is publicly released in (Yang et al. 2020) *.
We train the Ensemble-in-One networks for 200 epochs us-
ing SGD with momentum 0.9 and weight decay 0.0001. The
initial learning rate is 0.1, and decayed by 10x at the 100-th
and the 150-th epochs respectively. When deriving the in-
dividual models, we fine-tune the derived models for 0-20
epochs using SGD with learning rate 0.001, momentum 0.9
and weight decay 0.0001. Note that the fine-tuning process
is optional and can adjust the epochs for a dedicated model.
In default, for an RGN training, we sample 3 paths to con-
struct temporary sub-ensemble per iteration. The augmenta-
tion factor n for each RGB is set to 2, and the PGD-based

*https://github.com/zjysteven/DVERGE
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Figure 4: Contrasting the robustness of Ensemble-in-One with previous ensemble training methods. Left: adversarial accuracy
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The distillation perturbation strength of VGG-16-based EIO is set as ϵd = 0.03.

perturbation strength ϵd for feature distillation is set to 0.07
with 10 iterative steps and each step size of ϵd/10.

Attack Models. We categorize the adversarial attacks as
black-box transfer attacks and white-box attacks. The white-
box attack assumes the adversary has full knowledge of the
model parameters and architectures, and the black-box at-
tack assumes the adversary cannot access the target model
and can only generate adversarial examples from surrogate
models to launch the attacks. For fair comparison, we adopt
exactly the same attack methodologies and the same sur-
rogate models as DVERGE to evaluate the robustness. For
black-box transfer attacks, the involved attack methods in-
clude: (1) PGD with momentum and with three random
starts (Madry et al. 2017); (2) M-DI2-FGSM (Xie et al.
2019); and (3) SGM (Wu et al. 2020). The attacks are with
different perturbation strength and the iterative steps are set
to 100 with the step size of ϵ/5. Besides the cross-entropy
loss, we also apply the C&W loss to incorporate with the at-
tacks. Therefore, there will be 3 (surrogate models) × 5 (at-
tack methods, PGD with three random starts, M-DI2-FGSM,
and SGM) × 2 (losses) = 30 adversarial versions. For white-
box attacks, we apply 50-step PGD with the step size of ϵ/5
with five random starts. Both the black-box and white-box
adversarial accuracy is reported in an all-or-nothing fash-
ion: a sample is judged to be correctly classified only if its
30 (for black-box attack) or 5 (for white-box attack) adver-
sarial versions are all corrected classified by the model. In
default, we randomly sample 1000 instances from the test
dataset for evaluation. We believe the attacks are powerful
and can identify the robustness of the various models.

Robustness Evaluation
Hyper-parameter Exploration. Recall that three impor-
tant hyper-parameters are involved in the training procedure.
One is the count of sampled paths p to participate in each
training iteration, one is the strength of feature distillation
perturbation ϵd as illustrated in Eq.2, and the other is the
augmentation factor n for constructing the RGN, i.e. how
many times will an operator be repeated to build a RGB. We
make experiments to investigate the impact of these hyper-
parameters on the clean accuracy and the adversarial robust-
ness.

Fig.3 (Left) shows the curves of black-box adversarial ac-
curacy under different sampled path count p per training iter-
ation. As is observed, when the sampled paths increase, the
robustness of the derived individual model also improves.
The underlying reason is that more samples of paths partic-
ipating in each iteration allows more paths to be mutually
trained, thereby each path is expected to learn from more
diverse vulnerabilities. However, the clean accuracy drops
with the increasing of path sample count, because a single
operator has to adapt to diverse paths simultaneously. More-
over, the training time will also increase as the training com-
plexity satisfies O(p2).

Fig.3 (Middle) shows the curves of black-box adversar-
ial accuracy under different feature distillation ϵd. We find
similar conclusions as presented in DVERGE. A larger ϵd
can push the distilled data x′

Pl
i
(xt, xs) share more similar

internal representation as xt. While the objective is to re-
duce the loss of Pj on classifying x′

Pl
i
, the larger loss will

boost the effectiveness of learning the vulnerability, thereby
achieving better robustness. However, we also find the clean
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Figure 5: Contrasting the robustness of Ensemble-in-One and AdvT with different adversarial perturbation settings. The ex-
periments are implemented on ResNet-20 over CIFAR-10. The “ft-epoch” means the fine-tuning epoch of the derived model.
When aligning the clean accuracy, EIO achieves better robustness than AdvT.

Method Baseline AdvT DVERGE/3 DVERGE/5 DVERGE/8 Ensemble-in-One
Training Time 0.5h 4.2h 13.5h 26.6h 49.3h 10.9h

Table 2: The time cost of training ResNet-20 on CIFAR-10 with different methods and different ensemble scales.

accuracy drops with the increase of ϵd. And there exists a
switching point where it will stop obtaining robustness im-
provement from continually increasing ϵd. The experimental
results suggest ϵd = 0.07 to achieve higher robustness and
clean accuracy simultaneously.

Fig.3 (Right) shows the comparison of adversarial ac-
curacy when applying different augmentation factor n for
constructing the RGN. Observe that increasing the factor n
brings no benefit on either the clean accuracy or adversar-
ial accuracy. It stands to reason that augmenting 2× oper-
ators for each RGB has already provided sufficient candi-
date paths. Moreover, increasing the n leads to more severe
under-convergence of training because each path has a de-
creased probability of being sampled. Therefore, we suggest
the augmentation factor as n=2 for each convolution layer.

Comparison with Ensemble Methods. Fig.4 shows the
overall adversarial accuracy of the models trained by dif-
ferent methods with a wide range of attack perturbation
strength. ResNet-20 and VGG-16 are selected as the ba-
sic network to construct the ensembles and the EIO super-
networks. The results show that through our Ensemble-in-
One method, an individual model derived from the RGN
can significantly outperform the heavy ensembles trained by
previous ensemble training methods with higher adversar-
ial accuracy under both black-box and white-box attacks, si-
multaneously achieving comparable clean accuracy. These
results demonstrate that we successfully train an ensemble
within one RGN network and improves the robustness of an
individual model to outperform the ensembles such that the
deployment overhead can be substantially reduced.

Comparison with Adversarial Training. AdvT has been
demonstrated as a promising approach on enhancing the ro-
bustness. Prior work attributes the enhancement to the ex-
clusion of non-robust features during AdvT. However, these
non-robust features might be useful to the classification ac-
curacy, resulting in trade-offs between the clean accuracy
and the robustness. One can adjust the perturbation strength

in the AdvT to acquire different combinations of clean accu-
racy and adversarial robustness, as shown in Fig.5. It can be
figured out that EIO significantly outperforms AdvT when
aligning their clean accuracy (AdvT w/ ϵ = 0.005), which
suggests that EIO learns more useful, robust features while
excluding more useless, non-robust features than AdvT.

Training Cost. We summarize the training time cost of
different methods in Fig.2. Because a PGD-based data distil-
lation is applied for training and sample 3 paths per training
iteration, the training time cost of an EIO network is approx-
imately 2.5× than AdvT. While the training time is substan-
tially reduced compared to the DVERGE when scaling up
the ensemble.

Discussion & Future Work
There are also several points that are worthy further explo-
ration while we leave to future work. First, current imple-
mentation of augmenting the RGN is simple, by repeating
the convolution layers for multiple times. Nevertheless, as
observed in Fig.3 (Right), enlarging the augmentation factor
brings no benefit on improving the robustness. Hence, there
might be better ways of constructing RGNs that can com-
pose stronger randomized network, e.g. subtracting some of
the unnecessary RGBs or augmenting by diverse operators
instead of simply repeating. Second, although black-box at-
tacks are more prevalent in real world, defending against
white-box attacks is still in demand because recent research
warns the high risks of exposing the private models to the
adversary (Hua, Zhang, and Suh 2018; Hu et al. 2020). Ran-
domized multi-path network can provide promising solu-
tions to alleviating the white-box threats. If the adversarial
transferability among the different paths can be impeded, the
adversarial example generated from one path will be inef-
fective for another path. Hence, it will make the white-box
attacks as difficult as black-box transfer attacks. We believe
it is a valuable direction to explore defensive method based
on randomized multi-path network.



Conclusions
In this work, we propose Ensemble-in-One, a novel ap-
proach that constructs random gated network (RGN) and
learns adversarially robust ensembles within the network.
The method is inherently scalable, which can ideally in-
stantiate numerous sub-models by sampling different paths
within the RGN. By diversifying the vulnerabilities of differ-
ent paths, the Ensemble-in-One method can efficiently ob-
tain models with higher robustness, simultaneously reducing
the overhead of model training and deployment. The individ-
ual model derived from the RGN shows much better robust-
ness than previous ensemble training methods and achieves
better trade-offs than adversarial training.
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