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ABSTRACT

Deep models, such as convolutional neural networks (CNNs)
and vision transformer (ViT), demonstrate remarkable perfor-
mance in image classification. However, those deep models
require large data to fine-tune, which is impractical in the
medical domain due to the data privacy issue. Furthermore,
despite the feasible performance of contrastive language
image pre-training (CLIP) in the natural domain, the poten-
tial of CLIP has not been fully investigated in the medical
field. To face these challenges, we considered three sce-
narios: 1) we introduce a novel CLIP variant using four
CNNs and eight ViTs as image encoders for the classifica-
tion of brain cancer and skin cancer, 2) we combine 12 deep
models with two federated learning techniques to protect
data privacy, and 3) we involve traditional machine learn-
ing (ML) methods to improve the generalization ability of
those deep models in unseen domain data. The experimen-
tal results indicate that maxvit shows the highest averaged
(AVG) test metrics (AVG = 87.03%) in HAM10000 dataset
with multimodal learning, while convnext l demonstrates
remarkable test with an F1-score of 83.98% compared to
swin b with 81.33% in FL model. Furthermore, the use of
support vector machine (SVM) can improve the overall test
metrics with AVG of ∼ 2% for swin transformer series in
ISIC2018. Our codes are available at https://github.
com/AIPMLab/SkinCancerSimulation.

Index Terms— Federated learning, Foundation models,
Medical imaging.

1. INTRODUCTION

In recent years, deep learning models (DLMs) have signif-
icantly advanced medical imaging by using powerful ar-
chitectures like convnext series, vision transformer (ViT)
and maxvit for efficient deployment in realistic scenarios
[1]. These models have shown a remarkable ability to learn
complex visual patterns and have outperformed traditional
machine learning techniques in both accuracy and scalability.

However, advanced DLMs require large amounts of
source data to fine-tune, which is impractical in the field

of healthcare due to data privacy concerns [2, 3]. It can
be challenging to collect and centralize the data required to
effectively train algorithms since medical data is sensitive.
Federated learning (FL), as a distributed learning framework
that collaboratively trains a robust global model with multi-
ple clients without sharing raw data, focuses on solving this
challenge [2]. For example, federated averaging (FedAVG)
can simply aggregate each client model with equal weights to
produce the global model, demonstrating remarkable perfor-
mance in many tasks [4]. Furthermore, with the development
of CLIP, multi-modal (e.g., image with text) demonstrates
competitive performance in natural image classification [5].
However, a comprehensive evaluation using recent CNN or
ViT models in the classification of skin cancer is still lacking.
In addition, the authors in [6] also claimed that natural foun-
dation models such as CLIP show poor testing recall in the
ISIC2019 data set.

Motivated by previous challenges, we introduce two FL
approaches to solve the data privacy leakage issue. Further-
more, we propose a CLIP variant (i.e., replace the image en-
coder with CNN or ViT) to evaluate the generalization ability
of those deep models in medical imaging. This approach al-
lows the model to learn comprehensive representations from
both images and text, improving its ability to accurately clas-
sify skin cancer. Specifically, we perform extensive exper-
iments using three common benchmark data sets including
two modalities with 12 deep models (four CNNs, eight ViTs)
to provide a comprehensive analysis. We summarize the key
contributions of this approach as follows:

1. We propose a novel CLIP-based approach that considers
CNN and ViT architectures with CLIP text encoders for
multimodal training, effectively integrating image and text
data.

2. We introduce two FL approaches (FedAVG and FedProx)
into skin cancer classification to solve data privacy leak-
age.

3. To improve the generalization ability of deep models, we
combine traditional ML with deep models. Specifically,
we use ML techniques as classifiers while using deep
models as feature extractors.
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Fig. 1: Flowchart of the proposed framework. 1) Data ac-
quisition: Image data are preprocessed. 2) Proposed mod-
els: This involves three key components: multimodal learn-
ing, federated learning, and the combination of traditional ML
and deep learning models. 3) Evaluation: we evaluate those
models performance using standard classification metrics.

2. METHODOLOGY

Figure 1 illustrates the flowchart of the proposed model.
Specifically, we propose a CLIP variant based on CNN and
VIT to extract the image feature and then combine it with the
text encoder in CLIP to perform training and inference. In
addition, we introduce two FL techniques with four CNNs
and eight ViTs as network backbones to solve data privacy
issue. Furthermore, we combine ML approaches with deep
models to enhance the generalizability of deep classifiers.
Multimodal learning The key idea of CLIP is to max-

imize the similarities between paired image and text (e.g.,
class label) features while minimize the similarities between
unpaired image and text features. However, a comprehen-
sive analysis of using CLIP based deep models in skin can-
cer classification is still lacking. Motivated by this challenge,
we propose to use these deep models to extract image fea-
tures while using transformer to obtain text features to per-
form CLIP. Let eI(·) be the image encoder while eT (·) be
the text encoder. For a training example xj , we denote Ij =
eI(xj) ∈ RD as the D-dimensional vector of image features.
For text features, we use the standard prompt “a picture
of a {class}” as input to the text encoder to obtain fea-
tures Tj = eT (xj) ∈ RD. We calculate cosine similarity
between the image and text features to measure the probabil-
ity that xj belongs to a specific class c as follows.

p(Y=c |xj) =
exp(sj,c/τ)∑K

c′=1 exp(sj,c′/τ)
, with sj,c =

⟨I∗j ,Tc⟩
∥I∗j∥·∥Tc∥

(1)

Following [5], the contrastive loss is used in to train the
image encoder. Furthermore, we freeze the text encoder,
only optimizing the image encoder. Let B be the batch
size, we compute the contrastive loss over batches of size
B. Let S be the B ×B matrix where sj,j′ is the cosine
similarity between the image features I∗j and Tj′ as mea-
sured in Eq (1). We compute an image probability matrix
P = softmax (S/τ) ∈ [0, 1]B×B and a text probability ma-
trix Q = softmax (ST/τ) ∈ [0, 1]B×B . The contrastive loss
is then formulated as follows:

Lcontr = −
1

B

B∑
j=1

1

2

(
log pj,j + log qj,j

)
. (2)

where pj,j (qj,j) is the vector in matrix P (Q).
Federated learning In this study, we use two common FL

techniques, FedAVG [4] and FedProx [7]. FedAVG is a FL
methodology that using averaging aggregation to obtain the
global model. FedProx adds a small proximal term to mea-
sure the discrepancy between the local and global model to
enhance the generalizability of local models. After each lo-
cal epoch, the clients will send the local models parameters
(i.e., weights) ωt

i to the global server, while the global server
will aggregate those weights by the aggregation techniques
defined as follows.

ωt
glo =

1

M

M∑
i=1

ωt
i (3)

where M is the number of clients.
Let fθ be the global model, our goal is to train a robust

global model that can perform well on each client test data,
i.e.,

min
f

1

N

N∑
i=1

1

ntest
i

ntest
i∑

j=1

L(fθ(xtest
i,j ), ytesti,j ), (4)

where L is a given loss function, xtest
i,j is the j-th test input

from client i, and ytest
i,j is the corresponding label.

Deep models with traditional machine learning Deep
models have remarkable ability of feature extraction, thereby
using a simple linear layer can produce feasible performance
in classification tasks. However, this may omit the merits of
advanced traditional ML techniques such as Random Forest
(RF). Inspired by [8], we use traditional ML techniques as
the classifier while using deep models as the feature extractor.
These classifier models take the features extracted by deep
models without the last classifier layer as inputs and predict
based on these image features.

Table 1: Summary of hyper-parameter settings in optimizer.
LR WD Betas

SGD 0.01 0.0005 -
Adam 0.001 0.02 (0.9,0.98)

AdamW 0.001 0.02 (0.9,0.98)
Adagrad 0.001 0.0005 -
Adadelta 0.001 0.0005 -

3. EXPERIMENTS

3.1. Datasets

Federated HAM10000 (FHAM). We modified the HAM10000
dataset to build the FL dataset [9]. We split the original train-
ing set of HAM10000 into three clients with randomly se-
lected samples, while the original testing set is used for global
evaluation. In each client, the data are randomly partitioned
into three non-overlapping parts, namely a training set (60%),
a validation set (20%) and a testing set (20%).
ISIC2018. ISIC2018 is a medium scale skin cancer dataset

(∼ 10000 images) with seven classes [9, 10]. For this dataset,



Fig. 2: Test metrics on ISIC2018 dataset using deep models (Left), deep models with KNN (Middle) and deep models with
SVM (Right).

we only considered its test set (1512 images) for the analysis
of generalizability.
BraTS2019. We use a public kaggle dataset [11] with

pre-divided data (7:1:2 for train, validation and test). It has
two classes, namely high grade glioblastoma (HGG) and low
grade glioma (LGG). The training set has 231 patients (178
HGG and 53 LGG), the validation set contains 32 patients
(25 HGG and 7 LGG), while the test set holds 68 patients (52
HGG and 16 LGG).

3.2. Tasks

1. Multimodal learning. HAM10000 and BraTS2019 datasets
are used to perform multimodal learning using 12 deep
models (four CNNs and eight ViTs) with CLIP text en-
coders pretrained by three image encoders (i.e., ViT-L/14,
ResNet50x16 and ResNet50x64). The Adagrad optimizer
is considered for optimization.

2. Federated skin cancer classification. We use FHAM
dataset as an example to evaluate the usefulness of 12
deep models using two FL techniques (FedAVG and Fed-
Prox) with five optimizers.

3. Generalization analysis. The ISIC2018 test set is used to
demonstrate the generalizability of four CNNs and eight
ViTs using k-nearest neighbours (KNN) and support vec-
tor machine (SVM) [12]. Note that the deep models are
pretrained on HAM10000 training set using SGD opti-
mizer (no overlap with ISIC2018 test set).

3.3. Implementation details

We used convnext b, convnext l, convnext s, convnext t,
maxvit t, swin b, swin s, swin t, swin v2 b, swin v2 s,
swin v2 t and vit l 16 as the deep network backbones for
classification tasks [13, 14]. We choose SGD, Adam, AdamW,
Adagrad, and Adadelta optimizers for simulations [15]. Table
1 reports a detailed hyper-parameter settings for those opti-
mizers. The training epoch is set to 50. For Task 1, the batch-
size is set to 16, while for Task 2, the batchsize is set to 32 for
HAM10000 and 16 for BraTS2019. The batchsize of Task
3 is set to 32. The experiment environment is based on the
Windows 11 operating system and features an Intel 13900KF

CPU with 128 GB of RAM and an RTX 4090 GPU. We use
Pytorch 1.13.1 and Python 3.8. For classification metrics,
this study considered accuracy (ACC), balanced accuracy
(BACC), weighted-precision (PRE), weighted-recall (REC),
weighted-F1 score and AVG (i.e., unweighted mean value of
ACC, BACC, PRE, REC and F1).

Task 1 Figure 3 shows the test metrics in the HAM10000
and BraTS datasets. As illustrated, for Adagrad optimizer,
maxvit t demonstrates the best overall testing metrics (87.03%
with ViT-L/14, 87.58% with ResNet50x16) while convnext-
large shows the highest overall testing metrics (87.36% with
ResNet50x64). This suggests that maxvit is more suitable
to perform multimodal in skin cancer classification. Fur-
thermore, unlike HAM10000, maxvit t fits well with the
text encoder pretrained by ViT-L/14 (e.g., 79.6% AVG)
while performs poorly with the text encoder pretrained by
ResNet50x64 (69.41% AVG).

Fig. 3: Spider-plot of multimodal test metrics (%) for 12
deep models in HAM10000 and BraTS2019 using text en-
coder pretrained by three CLIP image encoders (ViT-L/14,
ResNet50x16 and ResNet50x64).

Task 2 Figure 4 shows the test metrics in HAM10000.
As illustrated, convnext l demonstrates remarkable overall
testing metrics (81.66% using FedAVG and 82.72 using Fed-
Prox) with the SGD optimizer. Similarly, deep models with
Adagrad optimizer indicate better performance compared to
Adam, AdamW and Adadelta-based models. These findings
suggest that the use of CLIP can achieve feasible perfor-
mance, however, it introduces large communication costs in
the FL context as suggested in [16]. In future work, we will
explore efficient training techniques such as Adapter [3].



Fig. 4: Spider-plot of global test metrics (%) for 12 deep mod-
els in HAM10000 using FedAVG (First and third row) and
FedProx (Second and third Row).

Task 3 Figure 2 shows the metrics in the ISIC2018 test
set. We observe that 1) introducing ML techniques such as
KNN and SVM can improve the overall testing metrics of
maxvit t ∼ 15%. 2) Similarly, the use of SVM indicates
the best overall results compared to the original deep models.
Those findings suggest that using ML techniques can further
improve the performance of deep models in unseen domain.

4. CONCLUSION

This study proposed three models covering multimodal, FL
and traditional ML with deep models in medical image clas-
sification tasks. The findings suggest that maxvit t shows po-
tential for multimodal, convnext l indicates remarkable over-
all test metrics using FedAVG and FedProx with SGD op-
timizer, while introducing SVM and KNN can improve the
overall performance of maxvit t, vit l 16, convnext b, con-
vnext l and swin transformer series in unseen domain. In fu-
ture work, we will introduce domain adaptation [17] to min-
imize the data distribution shifts among different datasets to
further improve deep models performance.

5. COMPLIANCE WITH ETHICAL STANDARDS

This is a numerical simulation study for which no ethical ap-
proval was required.

6. ACKNOWLEDGEMENTS

This research was funded by the National Natural Sci-
ence Foundation of China #82260360, the Guilin Innova-
tion Platform and Talent Program #20222C264164, and the
Guangxi Science and Technology Base and Talent Project
(#2022AC18004 and #2022AC21040).

7. REFERENCES

[1] I. Pacal, “Maxcervixt: A novel lightweight vision transformer-based
approach for precise cervical cancer detection,” Knowledge-Based Sys-
tems, vol. 289, p. 111482, 2024.

[2] A. Chaddad, Y. Wu, and C. Desrosiers, “Federated learning for health-
care applications,” IEEE Internet of Things Journal, 2023.

[3] Y. Wu, C. Desrosiers, and A. Chaddad, “Facmic: Federated adaptative
clip model for medical image classification,” in International Confer-
ence on Medical Image Computing and Computer-Assisted Interven-
tion, pp. 531–541, Springer, 2024.

[4] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Ar-
cas, “Communication-efficient learning of deep networks from decen-
tralized data,” in Artificial intelligence and statistics, pp. 1273–1282,
PMLR, 2017.

[5] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark, et al., “Learning transferable
visual models from natural language supervision,” in International con-
ference on machine learning, pp. 8748–8763, PMLR, 2021.

[6] J. P. Huix, A. R. Ganeshan, J. F. Haslum, M. Söderberg, C. Matsoukas,
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