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ABSTRACT

Communication is a prominent bottleneck in federated learning (FL). State-of-the-
art accuracy performance under limited uplink communications from the clients to
the federator is achieved by stochastic FL approaches. It has been recently shown
that leveraging side information in the form of a prior distribution at the federator
can drastically reduce the uplink communication cost in stochastic FL. Here, the
latest global model distribution serves as a natural prior since it can be shared with
the clients under ideal downlink communication from the federator to the clients.
Nevertheless, downlink communication is often limited in practical settings, and
bi-directional compression must be considered to reduce the overall communi-
cation cost. The extension of existing stochastic FL solutions to bi-directional
compression is non-trivial due to the lack of a globally shared common prior dis-
tribution at each iteration. In this paper, we propose BICompFL, which employs
importance sampling to send samples from the updated local models in the uplink,
and the aggregated global model in the downlink by carefully choosing common
prior distributions as side-information. We theoretically study the communication
cost by a new analysis of importance sampling that refines known results, and ex-
poses the interplay between uplink and downlink communication costs. We also
show through numerical experiments that BICompFL enables multi-fold savings
in communication cost compared to the state-of-the-art.

1 INTRODUCTION

Federated learning (FL) is a widely used and well-studied machine learning (ML) framework, where
multiple clients orchestrated by a federator collaborate to train an ML model (McMahan et al., 2017).
Communication efficiency, privacy, security, and data heterogeneity are critical challenges in FL that
have been extensively studied (Zhang et al., 2021; Wen et al., 2023). FL is a bi-directional process,
and with the increasing size of ML models, massive amounts of data are communicated between the
federator and the clients. Reducing uplink communication from clients to the federator has been the
focus of many studies, mainly within the framework of lossy gradient compression, e.g., (Seide et al.,
2014; Alistarh et al., 2017; Isik et al., 2024). However, reducing the cost of downlink transmission
to communicate the model updates from the federator to the clients has received relatively less
attention, even though it is costly and can be a major bottleneck when training over a wireless
network. An ongoing body of research aims to study the communication bottleneck in downlink
transmission, by combining tools from gradient compression, momentum, and error-feedback, cf.,
(Stich et al., 2018; Tang et al., 2019; Xie et al., 2020; Amiri et al., 2020; Philippenko & Dieuleveut,
2020; Gruntkowska et al., 2023; Tyurin & Richtárik, 2023; Dorfman et al., 2023; Gruntkowska et al.,
2024). However, these works are focused on non-stochastic (or non-Bayesian) settings, whereas the
state-of-the-art performance in limited uplink communication scenarios is achieved by stochastic
compression methods, such as QSGD Alistarh et al. (2017), QLSD Vono et al. (2022), dithered
quantization Abdi & Fekri (2019) or FedPM Isik et al. (2023), in which the clients send samples
from a local distribution, and the federator estimates the mean of clients’ distributions by averaging
these samples. In this work, we study the performance of these stochastic FL frameworks with
limited communication in both directions, and obtain state-of-the-art results.

Standard analysis of such uni- or bidirectional compression schemes involves studying the conver-
gence rates of the respective optimization task for a given communication budget. In general, the
trade-off between communication cost (or compression cost) and distortion has been extensively
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studied in information theory under the framework of rate-distortion theory (Cover & Thomas,
2006). However, in stochastic gradient-based optimization, it is difficult to analyze the effect of
finite resolution on the convergence speed. Classical rate-distortion results are not suitable for this
analysis, since they rely on the joint compression of many samples and additive distortion measures.
As a result, it is also difficult to study the fundamental trade-off between the communication load
and the convergence speed.

An alternative stochastic FL approach was proposed in Isik et al. (2024), which applies to a vari-
ety of stochastic and Bayesian FL solutions, but also covers the classical stochastic compression
mechanisms for standard gradient-based methods. Communication reduction in Isik et al. (2024) is
achieved by importance sampling, which rather than sampling locally and using lossy compression
to send these samples, directly enables the federator to sample from the updated local distribution.
This enables a direct evaluation of the communication cost when a shared common prior distribu-
tion, called side information, and sufficient common randomness is available between the federator
and the clients. When the downlink communication is assumed unlimited, the global model distri-
bution at the federator can be shared with all the clients, and serve as a natural side information, i.e.,
common prior. However, this is not possible under downlink communication constraints, leading to
new algorithmic and analysis challenges, which we address here.

Specifically, in this work, we develop and analyze stochastic FL algorithms with bi-directional com-
pression with FedPM as a notable example. The idea in FedPM Isik et al. (2023) is to collaboratively
train a probabilistic mask that determines which weights to maintain from a randomly initialized
network. The motivation stems from the lottery-ticket hypothesis (Frankle & Carbin, 2019), which
claims that randomly initialized networks contain sub-networks capable of reaching accuracy com-
parable to that of the full network. We utilize importance sampling with appropriate priors, and
accurately characterize the uplink and downlink communication costs and the estimation error. We
also explore various aspects that affect the performance, such as clients’ data heterogeneity, and
the existence of shared randomness among all clients. The basic question we address is: Can joint
uplink and downlink compression reduce communication bottlenecks in stochastic FL? We answer
this question in the affirmative, and concretely, our contributions are summarized as follows:

• We propose two algorithms for bi-directional stochastic FL, depending on the availability of
shared randomness. The first algorithm is for the case when globally shared randomness is
available, and the second is for the case when only private shared randomness between each
client and the federator exists. Both algorithms leverage carefully chosen side information
to transmit samples from the desired distribution through importance sampling.

• We experimentally validate our algorithms and show order-wise improvements in the com-
munication cost without degradation of the accuracy compared to many baselines. We
investigate the role of shared randomness and the choice of side information.

• We provide a novel dedicated theoretical analysis of importance sampling to quantify the
communication cost of stochastic FL with bi-directional compression. Our findings go
beyond the established analysis of Chatterjee & Diaconis (2018), with refinements for the
particular case of Bernoulli distributions (which can be of independent interest). Our proofs
allow a practically relevant analysis and provide techniques useful for other distributions.

2 PRELIMINARIES: STOCHASTIC FL WITH BI-DIRECTIONAL COMPRESSION

Our proposed algorithm is a stochastic FL algorithm based on FedPM and importance sampling. In
what follows, we shortly review these concepts.

Stochastic Federated Learning A set of n clients collaboratively and iteratively train a model,
e.g., a neural network, under the orchestration of a federator. Each client i ∈ [n] possesses a dataset
Di, where we define [n] := {1, . . . , n} for an integer n . We differentiate between homogeneous
data, where Di is drawn independently from the same distribution for all clients (i.i.d.), and hetero-
geneous data, where each Di may come from a different distribution (non i.i.d.). At each iteration t
of the training process, the global model at the federator is described by a probability distribution θt
with dimension d. After downlink transmission, each client i has an estimate θ̂i,t of θt, and locally
optimizes θ̂i,t, e.g., according to a loss function F (θ̂i,t,Di) by (stochastic) gradient descent, to ob-
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tain a local model qti , referred to as the posterior. Compressed versions of the clients’ posteriors are
transmitted back to the federator in the uplink, where the received posteriors are aggregated using
an aggregation rule R (·) to obtain a refined global probability distribution θt+1 = R

(
{q̂ti}i∈[n]

)
. A

simple aggregation rule R (·) is the average over all clients’ models. This process is repeated until
a certain convergence criterion is met. In many stochastic FL settings, like QSGD or FedPM (Isik
et al., 2024), the transmitted client updates q̂ti are samples from the posterior distribution qti .

FedPM As said, we adapt in this work the federated probabilistic mask training (FedPM) frame-
work introduced by Isik et al. (2023), in which the weights w of the network are randomly initialized
at the start of training, and remain fixed. The federator and clients only train a mask, which deter-
mines for each parameter whether it is activated or not, i.e., identifying an efficient subnetwork
within the given fixed network. The probabilistic masks θt are described by Bernoulli distributions,
i.e., θt ∈ [0, 1]d contains a Bernoulli parameter to be trained for each weight of the network. These
parameters determine the probability of retaining the corresponding weights. During inference, the
weights w are masked with samples xt ∈ {0, 1}d ∼ θt from the distribution θt, i.e., the inference is
conducted on a network with weights w ⊙ xt. In FedPM, clients sample from their locally trained
models, and send these samples to the federator, which, in turn, updates the global model by averag-
ing these samples. The communication cost of this scheme remains the same for all iterations, even
though the communication cost can be reduced since the KL-divergence between the global model
and the locally trained models diminishes as the training progresses.

Importance Sampling Isik et al. (2024) proposed a method, called KL minimization with side
information (KLMS), to reduce the cost of transmitting the local models qti to the federator. Conse-
quently, the communication cost depends on the KL-divergence between the desired distribution and
the common prior. This method utilizes the common side information available at both the clients
and the federator, as well as shared randomness. The idea is that instead of sampling locally and
sending the samples to the federator, the federator in the KLMS method samples from the desired
distribution through importance sampling. In a nutshell, importance sampling (Srinivasan, 2002)
makes use of a common prior to sample from a desired distribution. Consider two distributions P
and Q, where P is known to both parties, and Q is only known to the client. To make the federator
sample from Q, both parties sample nIS samples {Xi}i∈[nIS] from P . The client forms an auxiliary
distribution W (i) = Q(Xi)/P (Xi)∑nIS

i=1 Q(Xi)/P (Xi)
capturing the importance of the samples. A sample from W

is fully described by its index i, which can be transmitted with log2(nIS) bits, and approximates a
sample from Q. Chatterjee & Diaconis (2018) shown that importance sampling with posterior Q and
prior P requires nIS to be in the order of Θ(exp(DKL (Q∥P ))) , where DKL (Q∥P ) denotes the KL-
divergence between distributions Q and P . In what follows, we will also denote the KL-divergence
between two Bernoulli distributions Q and P with parameters q and p by dKL (q||p).

3 BICOMPFL: COMMUNICATION-EFFICIENT FEDERATED LEARNING

In this section, we describe our proposed scheme, termed BICOMPFL. This scheme is a bi-
directional stochastic compression strategy, which leverages side information using importance sam-
pling to reduce both the uplink and downlink communication costs. The scheme relies on the avail-
ability of shared randomness between each of the clients and the federator, which can be obtained by
a pseudo-random sequence generated from a common seed, shared by the federator and each client.
However, we will distinguish between private shared randomness (between a specific client and the
federator) and global shared common randomness, between all parties, which is more challenging
to have. We assume that all the clients and the federator share the same global model θ̂0 at initial-
ization. This does not incur any communication cost in the case of globally shared randomness, but
requires an initial round of transmitting the model from federator to clients in the absence thereof.

BICOMPFL: The General Algorithm Next, we will focus our description on probabilistic mask
training, similar to FedPM, where the models of dimension d are described by Bernoulli parameters.
However, our method serves as a general framework for other stochastic optimization procedures as
well. We start with a general description of our algorithm, which is valid for both cases of global and
private shared randomness. In iteration t = 0, the clients i ∈ [n] share with the federator the same
global model, i.e., θ̂i,0 = θ0, for all i ∈ [n]. At iteration t, each client i locally trains the model θ̂i,t in
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Algorithm 1 Local Training at Client i

Require: Model θ̂i,t
1: Map model to scores in the dual space: s(0)i,t = σ−1(θ̂i,t) = log

(
θ̂i,t

1−θ̂i,t

)
2: for Local iterations ℓ ∈ [L] do
3: s

(ℓ)
i,t = s

(0)
i,t −∇s

(ℓ−1)
i,t

F (θ̂
(ℓ−1)
i,t ,Di), where θ̂

(ℓ−1)
i,t = σ(s

(ℓ−1)
i,t )

4: end for
5: Map back to primal space: qti = σ(s

(L)
i,t )

L local iterations. To enable gradient descent, the model θ̂i,t is mapped to scores s(0)i,t in a dual space

by the inverse Sigmoid function s
(0)
i,t = σ−1(θ̂i,t) = log(θ̂i,t) − log(1 − θ̂i,t). The scores are then

trained for L local iterations ℓ ∈ [L] by computing the gradient ∇
s
(ℓ−1)
i,t

F (θ̂
(ℓ−1)
i,t ,Di), where the

straight-through estimator is used to compute the gradient of the non-differentiable Bernoulli sam-
pling operation based on the distribution θ̂

(ℓ−1)
i,t = σ(s

(ℓ−1)
i,t ), i.e., the gradient equals the Bernoulli

parameter. By mapping the model back to the primal space, each client i obtains a model update
in terms of a posterior qti = σ(s

(L)
i,t ). This process is a special instance of mirror descent, which,

in the special case of optimizing over Bernoulli distributions, employs point-wise optimization with
respect to a KL-proximity term (cf. Appendix B for a short discussion). This directly impacts the
communication cost. The client training process is summarized in Algorithm 1.

To convey the model update qti to the federator, each client employs importance sampling in B

blocks of size d/B each1 with a prior distribution pti,u, which is set to p0i,u = θ̂i,0 at iteration t = 0

(the choice of pti,u for t > 0 will be clarified later). For each block b ∈ [d/B], client i conveys
nUL samples {yti,ℓ}ℓ∈[nUL] of qti to the federator by transmitting for each block b an index Ibi,ℓ with
log2(nIS) bits, where nIS is the number of samples per block, generated from the prior distribution
pti,u at both the client and the federator using the available shared randomness. The client selects one
of these samples via importance sampling, and its index Ibi,ℓ is transmitted to the federator, which
can then reconstruct the exact sample yti,ℓ. The samples of all blocks are concatenated for each mask
ℓ. Hence, the federator obtains an estimate of client i’s posterior distribution using the empirical
average q̂ti =

1
nUL

∑nUL
ℓ=1 y

t
i,ℓ.

By averaging the estimates q̂ti for all the clients’ models, the federator updates the global model
as θt+1 = 1

n

∑n
i=1 q̂

t
i . To transmit the new model to each client i, we assume the existence of

a common prior pti,d shared by the federator and the client. With pti,d, the federator performs
importance sampling in B blocks of size d/B to make client i sample from, and thereby esti-
mate, the latest global model θt+1. The client samples nDL masks {xt

i,ℓ}ℓ∈[nDL], each incurring
a communication cost of B log2(nIS) bits. An estimate of the updated global model is obtained by
concatenating the reconstructed samples for all the blocks b ∈ [B], and averaging over all masks
θ̂i,t+1 = 1

nDL

∑nDL
ℓ=1 x

t
i,ℓ.

Since the number of clients is typically large, it often suffices to choose nUL = 1. The clients’
contributions are averaged at the federator, effectively reducing the noise due to the importance
sampling step. This allowed Isik et al. (2024) to theoretically analyze the uplink communication
cost for importance sampling-based stochastic communication of model updates. In principle, we
will follow a similar approach for downlink communication; however, the main challenge is that
downlink communication cannot benefit from the averaging effect of multiple clients, and so we
reduce the variance of the model estimate in the downlink by setting nDL = n · nUL.

The choice of the priors pti,u and pti,d for importance sampling in the uplink and downlink chan-
nels, respectively, crucially affects the performance and the communication cost of the algorithm.
As a first-order characterization, the communication cost of importance sampling is determined by
DKL(q

t
i∥pti,u) in the uplink and by DKL(θt+1∥pti,d) in the downlink.

1Assuming for simplicity that B|d.
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Algorithm 2 BICOMPFL-GR with Global Shared Randomness

Require: Both clients and federator initialize the same global model w(0) using a shared seed
Ensure: Clients set prior ∀i ∈ [n] : pti,u = pti,d = θ̂0

1: repeat
2: for Clients i ∈ [n] do
3: Local training of qti according to Algorithm 1
4: Client samples indices Ibi,ℓ, ℓ ∈ [nUL], b ∈ [B] from qti with prior pt = θ̂t
5: end for
6: Federator updates global model θt+1 = 1

n

∑n
i=1 q̂

t
i

7: Federator relays to client j the other clients’ indices {Ibi,ℓ}ℓ∈[nUL],b∈[B],i∈[n]\{j}
8: for Clients i ∈ [n] do
9: Client reconstructs from {Ibi,ℓ} the global model θt+1 = 1

n

∑n
i=1 q̂

t
i

10: end for
11: Clients and federator set prior pt = θ̂t+1

12: t← t+ 1
13: until Convergence

Global Randomness When global shared randomness is available, all clients can maintain the
same priors at each iteration t, and, thereby, obtain the same global model estimates θ̂i,t. The global
model is known to the clients and the federator from initialization, and synchronization among all
clients is ensured by choosing as prior pti,u = pti,d the latest estimate of the global model θ̂i,t. The
clients utilize the globally shared randomness to sample the exact same samples from the same
prior for uplink transmission at all iterations. Selected indices of such samples are transmitted to the
federator to convey an estimate q̂ti of the posterior qti , who reconstructs the global model θt+1. Using
the same prior in the downlink, i.e., the global model from the previous iteration, the updated model
can be transmitted to the clients through importance sampling. Leveraging the shared randomness,
all clients i ∈ [n] sample from the same prior, and thus obtain the exact same estimate of the global
model θ̂i,t+1 = θ̂t+1, for all i ∈ [n]. Hence, we have that pti,u = pti,d = θ̂t for all i ∈ [n].

In this version, the federator reconstructs the global model from estimates of the client posteri-
ors q̂ti . However, in the uplink, all clients sample from the same prior, which enables further
improvements. Naively, the federator will reconstruct the global model using the indices Ibi,ℓ for
b ∈ [B], ℓ ∈ [nUL] received by the clients i ∈ [n] through importance sampling, followed by an
additional round of importance sampling for downlink transmission. Instead, and more efficiently,
the federator can simply relay the indices to the respective other clients (i.e., client j receives Ibi,ℓ for
b ∈ [B], i ∈ [n] \ {j}, ℓ ∈ [nUL]), which reconstruct the same updated global model individually.
This avoids introducing additional noise by a second round of compression and allows better con-
vergence without additional communication costs facilitated by global randomness. We term this
approach BICOMPFL-GR and summarize the procedure in Algorithm 2.

Private Randomness Without global randomness, maintaining the same prior among all clients
is impossible without introducing additional communication. Instead, an additional round of impor-
tance sampling is needed for the downlink transmission, and each client obtains a different estimate
of the global model θ̂i,t at each iteration. Hence, the clients’ local trainings start from different
estimates of the global model. In a non-stochastic setting, such a phenomenon has only been con-
sidered by Philippenko & Dieuleveut (2021); Gruntkowska et al. (2024). This raises the questions
of the additional cost incurred due to lack of shared randomness in terms of both the convergence
speed and the communication load and the choice of the priors pti,u and pti,d.

For the uplink transmission of client i, any convex combination of θ̂i,t and q̂ti can be used as prior,
i.e., pti,u = λθ̂i,t + (1 − λ)q̂ti , for some 0 ≤ λ ≤ 1.2 This is due to the availability of both
quantities at the federator and client i. However, small λ values are not expected to reduce the
cost of communication reflected by DKL

(
qti∥pti,u

)
since the prior global model estimate is likely to

2This adds a negligible cost of communication for the transmission of λ if it is to be optimized at each
round.
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Algorithm 3 BICOMPFL-PR with Private Shared Randomness

Require: Both clients and federator initialize the same global model w(0) using a shared seed
Ensure: Clients set prior ∀i ∈ [n] : pti,u = pti,d = θ̂i,0 = θ̂0

1: repeat
2: for Clients i ∈ [n] do
3: qti ← Local training of θ̂i,t according to Algorithm 1
4: Federator importance samples nUL masks yti,ℓ ∼ qti with prior pti,u
5: Federator estimates the client’s posterior q̂ti =

1
nUL

∑nUL
ℓ=1 y

t
i,ℓ

6: end for
7: Federator updates global model θt+1 = 1

n

∑n
i=1 q̂

t
i

8: for Clients i ∈ [n] do
9: Client importance samples nDL masks xt

i,ℓ ∼ θt+1 with prior pti,d
10: Client estimates global model: θ̂i,t+1 = 1

nDL

∑nDL
ℓ=1 x

t
i,ℓ

11: Clients set prior pti,u = pti,d = θ̂i,t+1

12: end for
13: t← t+ 1
14: until Convergence

be similarly different from the posterior (in terms of the KL-divergence) than the former posterior
estimate of the federator. Indeed, our numerical experiments have shown that the savings from
choosing λ ̸= 1, i.e., priors other than θ̂i,t, are not significant. For simplicity, we thus propose
to use pti,u = pti,d = θ̂i,t. We term this approach BICOMPFL-PR and summarize the procedure
in Algorithm 3. Choosing different priors is possible and only affects line 11 in Algorithm 3. We
mention in passing that BICOMPFL-PR allows partial client participation, which is incompatible
with shared randomness and the method BICOMPFL-GR.

Block Allocation We consider three different block allocation strategies: 1) fixed block size (re-
ferred to as “Fixed” in the experiments), where each block b ∈ [B] is of the same size and constant
across all t; 2) adaptive block allocation (Adaptive) as proposed by Isik et al. (2024), where each
block size is separately optimized each iteration t; and 3) adaptive average allocation (Adaptive-
Avg), where the block sizes are equal but optimized at each iteration t according to the average
KL-divergence per block. We refer the reader to Appendix C for a detailed discussion on this.

4 NUMERICAL EXPERIMENTS

We conducted experiments to evaluate the performance of our proposed BICOMPFL-GR and
BICOMPFL-PR schemes, and compare against baseline FL strategies without compression (Fe-
dAvg or PSGD) McMahan et al. (2017) and several non-stochastic bi-directional compression
schemes that employ different combinations of compression, error-feedback, and momentum.
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Figure 1: Fashion MNIST 4CNN i.i.d.

In particular, we compare against DOUB-
LESQUEEZE (Tang et al., 2019), MEM-SGD
(Stich et al., 2018), NEOLITHIC (Huang et al.,
2022), CSER (Xie et al., 2020), and the recently
proposed LIEC (Cheng et al., 2024). SignSGD
(Seide et al., 2014) serves to compress the
transmitted gradients for all the schemes. We
further compare with M3 (Gruntkowska et al.,
2024), which partitions the model into disjoint
parts for downlink transmission and transmits
to each client a different part of the model.
While the paper was focused on RandK com-
pression for the uplink (i.e., transmitting ran-
dom K entries of the gradient), we use TopK
(Wangni et al., 2018; Shi et al., 2019), which we found to achieve much more stable results.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

10 1 100 101

Bitrate p. P.

0.990

0.991

0.992

0.993

0.994

0.995

0.996

M
ax

im
um

 Te
st

 A
cc

ur
ac

y

FedAvg
Doublesqueeze
Memsgd
Liec
Cser
Neolithic
M3

BiCompFL-GR-Adaptive
BiCompFL-GR-Adaptive-Avg
BiCompFL-GR-Fixed
BiCompFL-GR-Reconst-Fixed
BiCompFL-PR-Fixed
BiCompFL-PR-Fixed-SplitDL

(a) MNIST 4CNN i.i.d.

10 1 100 101

Bitrate p. P.

0.92

0.93

0.94

0.95

0.96

0.97

0.98

M
ax

im
um

 Te
st

 A
cc

ur
ac

y

FedAvg
Doublesqueeze
Memsgd
Liec
Cser
Neolithic
M3

BiCompFL-GR-Adaptive
BiCompFL-GR-Adaptive-Avg
BiCompFL-GR-Fixed
BiCompFL-GR-Reconst-Fixed
BiCompFL-PR-Fixed
BiCompFL-PR-Fixed-SplitDL

(b) MNIST 4CNN non-i.i.d.

10 1 100 101

Bitrate p. P.

0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800

M
ax

im
um

 Te
st

 A
cc

ur
ac

y

FedAvg
Doublesqueeze
Memsgd
Liec
Cser
Neolithic
M3

BiCompFL-GR-Adaptive
BiCompFL-GR-Adaptive-Avg
BiCompFL-GR-Fixed
BiCompFL-GR-Reconst-Fixed
BiCompFL-PR-Fixed
BiCompFL-PR-Fixed-SplitDL

(c) CIFAR-10 6CNN i.i.d.

Figure 2: Maximum test accuracy as a function of the total communication cost measured as the
bitrate per parameter.

We study the setting of n = 10 clients collaboratively training a convolutional neural network
(CNN)-based classifier for the datasets MNIST, Fashion-MNIST and CIFAR-10 under the orches-
tration of a federator. For MNIST, we use two different models, LeNet-5 (Lecun et al., 1998) and
a 4-layer convolutional neural network (4CNN) proposed by Ramanujan et al. (2020). The latter is
also used to train on Fashion MNIST. For CIFAR-10, we use a larger neural network with 6 convolu-
tional layers (6CNN). We train MNIST and Fashion-MNIST for 200 epochs and CIFAR-10 for 400
global iterations. Consistently through all experiments and datasets, we carry L = 3 local iterations
per client per global iteration. We evaluate the performance of the schemes in two different settings:
with uniform data allocation (i.i.d.) to model homogeneous systems and a non-i.i.d. setting to model
heterogeneous systems, where data allocation for each client is drawn from a Dirichlet distribution
with parameter α = 0.1. This is considered a rather challenging regime due to high-class imbalance.
Every result shows the average across three simulation runs with different seeds. Details on the sim-
ulation setup and the network architectures are deferred to Appendix D. Consistently throughout all
experiments, our proposed methods provide order-wise improvements in the communication cost
while achieving state-of-the art accuracies.

We plot in Fig. 1 the test accuracies for all the schemes as a function of the total communication cost
in bits per parameter and per epoch. While all the schemes achieve approximately the same maxi-
mum test accuracy, BICOMPFL-GR and BICOMPFL-PR require substantially less communication.
Hence, when the bandwidths of uplink and downlink transmissions are limited, both variations of
the proposed method achieve better test accuracies. Turning our focus to the different variations
of our scheme, it can be observed that, without partitioning the model for downlink compression,
BICOMPFL-PR convergences significantly slower than BICOMPFL-GR for any block allocation
method. This highlights the intuition above that the additional importance sampling step in down-
link incurs further noise, which reduces the convergence speed. However, when we partition the
model in the downlink and only send disjoint parts to each client through importance sampling
(BICOMPFL-PR-Fixed-SplitDL), the downlink communication cost reduces by a factor of n. In
the regime of Fashion MNIST with uniform data allocation, this comes without performance degra-
dation, and is hence the method of choice in this regime. We additionally simulated BICOMPFL-GR
with the suboptimal implementation (BICOMPFL-GR-Reconst-Fixed), in which the federator first
reconstructs the global model, and then performs an additional importance sampling step for down-
link transmission. This naturally reduces the convergence speed per iteration without gains in the
communication cost. Hence, justifying the choice of BICOMPFL-GR.

We plot in Fig. 2(a) the average bitrate of each scheme over the maximum test accuracy for MNIST
and 4CNN. The average bitrate is by more than a factor of 1000 less than the baseline FedAvg, and
more than a factor of 32 less than DOUBLESQUEEZE, NEOLITHIC and LIEC, which perform best
among the non-stochastic bi-directional compression methods.

We perform the same study for non-i.i.d.data allocation according to a Dirichlet distribution with
parameter α = 0.1, and show the maximum test accuracies over the average bitrate in Fig. 2(b).
It can be found that partitioning the model in BICOMPFL-PR worsens the final accuracy of the
model. While the model converges faster, it does not achieve the same accuracies as BICOMPFL-
GR and BICOMPFL-PR without partitioning. This hints towards hybrid schemes for BICOMPFL-
PR, where the training begins with partitioning on the downlink, and the scheme later switches to
full transmission.
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In Fig. 2(c), we provide the results for CIFAR-10 and uniform data allocation. BICOMPFL-GR and
BICOMPFL-PR both achieve better results with a bitrate smaller by a factor of 5 than the best
baselines. More detailed simulation results can be found in the Appendices.

The adaptive block allocation (Adaptive) of Isik et al. (2024) saves communication costs in many
settings and provides better performance than the fixed block allocation (Fixed), due to more accu-
rate importance sampling tailored to the exact divergences. The proposed low complexity adaptive
strategy based on the average KL-divergence (Adaptive-Avg) per block can additionally save in
communication (and computation) with no or little performance degradation. We refer the reader to
Appendix E for further extensive experiments.

5 THEORETICAL RESULTS

The exact dynamics of the system over time are challenging to analyze due to the round-dependent
interplay of stochastic FL with the transmission noise; we, hence, focus on a specific iteration t and
comment on the inter-round dependency later. When the latest global model estimate θ̂i,t is chosen
as a prior in importance sampling, the cost of communication on the uplink is mainly determined
by how far the model evolves during the client’s training, i.e., DKL(q

t
i∥pti,u) = DKL(q

t
i∥θ̂i,t). After

communicating samples of the posteriors, the federator obtains an estimate q̂ti for all i ∈ [n]. The
cost of communication on the downlink to client i is then determined by DKL(

1
n

∑n
i=1 q̂

t
i∥θ̂i,t).

While DKL(q
t
i∥θ̂i,t) depends on the progress during client training, the core challenge is to bound

the expected KL-divergence of each model estimate DKL(q̂
t
i∥θ̂i,t) in the presence of potentially

different priors, i.e., θ̂i,t ̸= θ̂j,t, i ̸= j. For each client i, the overall communication cost is in the
order of

nDL exp

(
DKL

(
1

n

n∑
i=1

q̂ti∥pti,d
))

+ nUL exp
(
DKL

(
qti∥pti,u

))
.

We will next quantify DKL(
1
n

∑n
i=1 q̂

t
i∥θ̂i,t) for the case pti,u = pti,d, however, the analysis can be

extended to pti,u ̸= pti,d by an additional assumption on the divergence between the two priors.

For the theoretical analysis, we focus on the scalar case for a single iteration t, where the client
i ∈ [n] has a posterior Qi (also: the client’s local model), and the federator and the client i share
a common prior Pi, both are Bernoulli distributions with parameters qi and pi, respectively. In the
context of FL, the client locally trains Pi and results with Qi. According to Chatterjee & Diaconis
(2018) and the multi-client extension of Isik et al. (2024), the communication cost in the uplink is
determined by exp(DKL (Qi∥Pi)). After uplink transmission, the federator obtains an estimate q̂i
of qi; and hence, the updated global model is given by 1

n

∑n
i=1 q̂i. The communication cost in the

downlink for client i is determined by dKL
(
1
n

∑n
i=1 q̂i||pi

)
. Our theoretical contribution is a new

high probability upper bound on this quantity, which refines previous importance sampling analysis,
for the special case of Bernoulli distributions. Let X be a Bernoulli sample obtained through impor-
tance sampling. As an initial step, we derive an upper bound on the difference between qi and the
probability Pr(X) = 1 that the samples are drawn from, which vanishes when pi = qi (and hence
dKL (qi||pi) = 0). We note that the bound of (Chatterjee & Diaconis, 2018, Theorem 1.1) does not
saitsfy this natural property. We formally state the result in Proposition 1 in Appendix A, which,
however, does not yet capture the dependency on the number of samples nIS used in importance sam-
pling to sample an index. We refine Proposition 1 with Lemma 1 (cf. Appendix A), which addition-
ally captures this dependency, and will allow us to derive an upper bound on dKL

(
1
n

∑n
i=1 q̂i||pi

)
.

Lemma 1 is of independent interest and can be seen as a refinement of the analysis by Chatterjee &
Diaconis (2018) for Bernoulli distributions. It is required to prove Theorem 1.

For the statement of the following theorem, we assume that the progress by one local client training
is bounded by |qj − pj | ≤ ρ for all j ∈ [n]. Using Pinsker’s inequality to bound |qj − pj | ≤
1
2

√
dKL (qj ||pj) /2, this is a natural assumption given from the KL-proximity term of mirror descent

(for one local iteration), and can be strictly enforced through the projection of qj onto a KL ball
around pj of fixed divergence. We further assume that the difference between the clients’ priors,
i.e., their global model estimates in our algorithms, are bounded as |pi − pj | ≤ ζ for all i, j ∈ [n].
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Theorem 1. Assume pj>ζ for all j∈ [n], for ∆j :=
qj

pj−ζ −
1−qj

1−pj+ζ and ∆′
j :=qj

(pj+ζ
qj

+
1−pj+ζ
1−qj

)
,

with probability 1− δ′, the global model divergence dKL(
1
n

∑n
j=1 q̂j ||pi) is upper bounded by

n∑
j=1

2

nmin{pi, 1− pi}

∆′
j

n2
IS
+O

(∆j +∆2
j )

√
6(pi + ζ) log (2nIS)

nIS

+

√
ln(2/δ′)

2nUL
+ρ+ζ

2

.

By Chatterjee & Diaconis (2018), this provides an immediate bound on the cost of downlink trans-
mission. The bound applies to both algorithms BICOMPFL-PR and BICOMPFL-GR. However,
when all priors pj are the same (such as in BICOMPFL-GR-Reconst), i.e., ζ = 0, the bound sim-
plifies accordingly. The explicit dependency on the factor 1/

√
nUL reflects the interplay between

uplink and downlink cost. The parameter ζ gives rise to an inter-round dependency of the communi-
cation cost. The more accurate the estimation of the global model in the previous iteration (given the
priors are chosen as θ̂i,t), the smaller ζ, and hence the lower the transmission cost in the subsequent
iteration. The proofs of Proposition 1, Lemma 1, and Theorem 1 can be found in Appendix A.

6 RELATED WORK

Followed by the introduction of FL by McMahan et al. (2017), lossy compression of gradients
or model updates has been a long studied narrative in FL, with prominent representatives such as
SignSGD, also known as 1-bit Stochastic Gradient Descent (SGD) (Seide et al., 2014), QSGD (Al-
istarh et al., 2017), TernGrad (Wen et al., 2017), SignSGD with error feedback (Karimireddy et al.,
2019), vector-quantized SGD (Gandikota et al., 2021) and natural compression (Horvóth et al.,
2022). Such methods retain satisfactory final model accuracy even with aggressive quantization.
Sparsification-based methods have also been considered as alternatives, e.g., TopK (Wangni et al.,
2018; Shi et al., 2019). The importance of bi-directional gradient compression in many settings was
outlined by Philippenko & Dieuleveut (2020). Many schemes were proposed that leverage combi-
nations of gradient compression in the uplink and downlink, error-feedback, and momentum, e.g.,
Mem-SGD (Stich et al., 2018), DoubleSqueeze (Tang et al., 2019), block-wise SignSGD with mo-
mentum (Zheng et al., 2019), communication-efficient SGD with error reset (CSER) (Xie et al.,
2020), Artemis (Philippenko & Dieuleveut, 2020), Neolithic (Huang et al., 2022), DOCOFL (Dorf-
man et al., 2023), EF21-P and friends (Gruntkowska et al., 2023), 2Direction (Tyurin & Richtárik,
2023), M3 Gruntkowska et al. (2024), and LIEC (Cheng et al., 2024). With the exception of the
methods MCM (Philippenko & Dieuleveut, 2021) and M3 (Gruntkowska et al., 2024), each client
receives the same broadcast, potentially compressed, global gradient or model update. Isik et al.
(2024) studied uplink compression for stochastic FL and showed significant communication reduc-
tion with competitive performance. Their framework, termed KLMS, applies to a variety of stochas-
tic compressors and to Bayesian FL settings, e.g., QLSD Vono et al. (2022). The compression is
based on importance sampling, thoroughly studied by Chatterjee & Diaconis (2018). Such meth-
ods, known as relative entropy coding (REC), have been used in FL in conjunction with differential
privacy, cf. DP-REC (Triastcyn et al., 2022).

Since the lottery ticket hypothesis (Frankle & Carbin, 2019) a variety of works were concerned
with finding sparse subnetworks of neural networks that achieve satisfactory accuracy. Ramanujan
et al. (2020) showed that randomly weighted networks contain suitable subnetworks of large neural
networks capable of achieving competitive performance. Isik et al. (2023) formulated a probabilistic
method of training neural network masks collaboratively in an FL context.

7 CONCLUSION

In this paper, we illuminated the problem of bi-directional compression in stochastic FL using the
specific instance of federated probabilistic mask training. By leveraging side-information through
carefully chosen prior distributions, the total communication costs can be reduced by factors be-
tween 5 and 32 compared to non-stochastic FL baselines while achieving state-of-the-art accu-
racies on classification tasks in both homogeneous and heterogeneous FL regimes. We thereby
close the gap of downlink compression for stochastic FL and complement the existing literature
on bi-directional compression for standard FL. By allowing different priors among all clients, this
work opens the door to studying compression under side-information in decentralized stochastic FL,
where a central coordinator is missing. Our theoretical results are of independent interest and may
find application in various scenarios where importance sampling is used.
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8 REPRODUCIBILITY STATEMENT

In addition to the algorithmic details and the clients’ training procedure function (cf. Algorithms 1
to 3), we provide in Section 4 the most important hyperparameters used in our experiments, such as
local and global iterations, and data allocation. Further parameter information, such as batch size,
learning rates and the choice of the optimizer can be found in Appendix E, together with details
on the neural network architectures and the hardware cluster used for running the experiments.
Particularities of the block allocation required for the operation of our schemes are described in
Appendix C. All assumptions required for the theoretical analysis are stated in Section 5. Full
proofs of all claims, including formal statements, can be found in Appendix A.
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A PROOFS AND INTERMEDIATE RESULTS

In the following, we provide the formal statements of Proposition 1 and Lemma 1 including their
proofs. Parts of the proof of Proposition 1 will be used to prove Lemma 1. We prove Theorem 1
afterward.
Proposition 1. For a sample Xℓ transmitted by importance sampling with posterior and prior
Bernoulli distributions with parameters q and p, we have

|Pr(Xℓ = 1)− q| ≤ q

(
max

{
p

q
,
1− p

1− q
,
q

p
,
1− q

1− p

}
− 1

)
.

Proof of Proposition 1. Assume a party wants to sample from a Bernoulli distribution Q with pa-
rameter q, which is held by another party. Both parties share a common prior P in the form of a
Bernoulli distribution with parameter p and have access to shared randomness. Fix any sample index
ℓ for the moment (this index will be needed for the proof of Theorem 1). Both parties sample KnIS
i.i.d. samples Xℓ,i ∼ P for i ∈ [nIS] independently and identically from P . The party holding Q
constructs an auxiliary distribution

Wℓ(i) =
Q(Xℓ,i)/P (Xℓ,i)∑nIS
i=1 Q(Xℓ,i)/P (Xℓ,i)

,

from which it samples to obtain an index Iℓ. The index is transmitted to the other party, which
reconstructs the corresponding sample Xℓ,Iℓ .

To bound the difference |Pr(Xℓ = 1) − q|, i.e., the target Bernoulli parameter compared to the
parameter which the sample is drawn from, by the independence of the samples Xℓ,Iℓ for different
ℓ, we focus on a single sample ℓ ∈ [K], for which it holds that

Pr(Xℓ,Iℓ = 1)

=

nIS∑
i=1

∑
{x1,...,xnIS :xi=i}

Pr(Xℓ,1 = x1, . . . , Xℓ,nIS = xnIS) Pr(Iℓ = i | Xℓ,1 = x1, . . . , Xℓ,nIS = xnIS)

(a)
= nIS

∑
{x2,...,xnIS}

Pr(Xℓ,1 = 1, Xℓ,2 = x2, . . . , Xℓ,nIS = xnIS)

· Pr(Iℓ = 1 | Xℓ,1 = 1, Xℓ,2 = x2, . . . , Xℓ,nIS = xnIS)

(b)
= nIS

nIS−1∑
L=0

∑
{x2,...,xnIS :

∑nIS
i=2=L}

Pr(Xℓ,1 = 1, Xℓ,2 = x2, . . . , Xℓ,nIS = xnIS)

· Pr(Iℓ = 1 | Xℓ,1 = 1, Xℓ,2 = x2, . . . , Xℓ,nIS = xnIS),

where (a) follows from symmetry, (b) follows since by permutation invariance, the inner probability
only depends on the number of ones in {x2, . . . , xnIS}.
The inner probability is given by the distribution Wℓ(i). Given that Xℓ,1 = 1 and that

∑nIS
i=2 Xℓ,ℓ =

L, it holds that
nIS∑
i=1

Q(Xℓ,i)/P (Xℓ,i) = (L + 1) · q
p
+ (nIS − L− 1) · 1− q

1− p
.

Hence,

Pr(Iℓ = 1 | Xℓ,1 = 1, Xℓ,2 = x2, . . . , Xℓ,nIS = xnIS) =

q
p

(L + 1) · qp + (nIS − L− 1) · 1−q
1−p

,

which is independent of the exact choice of {x2, . . . , xnIS} given their sum
∑nIS

i=2 Xℓ,i = L. Since
Pr(Xℓ,1 = 1, Xℓ,2 = x2, . . . , Xℓ,nIS = xnIS) = pL+1(1 − p)nIS−L−1 by the Bernoulli distribution
assumption, we have

Pr(Xℓ,Iℓ = 1) = nIS

nIS−1∑
L=0

(
nIS − 1

L

)
pL+1(1− p)nIS−L−1

q
p

(L + 1) · qp + (nIS − L− 1) · 1−q
1−p

,

13
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Defining a binary random variable M with sample space
{

q
p ,

1−q
1−p

}
, for a Bernoulli distribution

Ber
(

L+1
nIS

)
with success probability parameter L+1

nIS
, where a success refers to the outcome M = q

p ,
we can write that

Pr(Xℓ,Iℓ = 1) = q ·
nIS−1∑
L=0

(
n− 1

L

)
pL(1− p)nIS−L−1 1

L+1
nIS

q
p + nIS−L−1

nIS

1−q
1−p

= q · E

[
1

L+1
nIS

q
p + nIS−L−1

nIS

1−q
1−p

]
= qE

 1

E
Ber

(
L+1
nIS

)[M]

 (1)

(a)

≤ qE
[
E
Ber

(
L+1
nIS

) [ 1

M

]]
,

where the outer expectation is over the binomial distribution with nIS − 1 trials and success prob-
ability p, i.e., L ∼ Binomial(nIS − 1, p), and where (a) follows from Jensen’s inequality over the
inner expectation. Hence,

Pr(Xℓ,Iℓ = 1)− q = q

(
Pr(Xℓ,Iℓ = 1)

q
− 1

)
≤ q

(
E
[
E
Ber

(
L+1
nIS

) [ 1

M

]]
− 1

)
(2)

Since 1
E
Ber

(
L+1
nIS

)[M] ≥ 2− E
Ber

(
L+1
nIS

)[M], it also follows from (1) that

Pr(Xℓ,Iℓ = 1) = q · E

[
1

L+1
nIS

q
p + nIS−L−1

nIS

1−q
1−p

]
= qE

 1

E
Ber

(
L+1
nIS

)[M]


≥ qE

[
2− E

Ber
(

L+1
nIS

)[M]

]
,

from which we have

Pr(Xℓ,Iℓ = 1)− q ≥ q

(
1− E

[
E
Ber

(
L+1
nIS

) [M]

])
. (3)

Combining the upper and lower bound in (2) and (3), respectively, we derive

|Pr(Xℓ,Iℓ = 1)− q| ≤ q

(
max

{
E
[
1− E

Ber
(

L+1
nIS

) [M]

]
,E
[
E
Ber

(
L+1
nIS

) [ 1

M

]]}
− 1

)
≤ q

(
E
[
max

{
E
Ber

(
L+1
nIS

) [M] ,E
Ber

(
L+1
nIS

) [ 1

M

]}]
− 1

)
≤ q

(
E
[
E
Ber

(
L+1
nIS

) [max

{
M,

1

M

}]]
− 1

)
≤ q

(
E
[
max

{
p

q
,
1− p

1− q
,
q

p
,
1− q

1− p

}]
− 1

)
= q

(
max

{
p

q
,
1− p

1− q
,
q

p
,
1− q

1− p

}
− 1

)
.

This concludes the proof.

Lemma 1. For a sample Xℓ transmitted via importance sampling with posterior and prior being
Bernoulli distributions with parameters q and p, ∆ := q

p −
1−q
1−p and ∆′ := q

(
p
q + 1−p

1−q

)
, we have

|Pr(Xℓ = 1)− q| ≤ ∆′

n2
IS
+O

(∆ +∆2)

√
6p log (2nIS)

nIS

 .
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Proof of Lemma 1. The proof starts with the same derivations as for the proof of Proposition 1,
which we follow until (1) to get

Pr(Xℓ,Iℓ = 1) = qE

 1

E
Ber

(
L+1
nIS

)[M]


Since L is a random quantity that follows a Binomial distribution, we bound |Pr(Xℓ,Iℓ = 1) − q|
using a concentration bound on L. The relative (multiplicative) Chernoff bound states that

Pr(|L− ε(nISp)| ≥ εnISp) = Pr(L− ε(nISp) ≥ εnISp) + Pr(L− ε(nISp) ≤ −εnISp)

≤ 2 exp

(
−ε2nISp

3

)
for any ε ∈ [0, 1]. Setting ε =

√
3 log(2/δ)

nISp
implies that

|L− nISp| ≥
√

3nISp log(2/δ)

with probability at most δ. Setting δ = 1
n2

IS
, we obtain for a concentration parameter3 ηδ :=√

6p log(2nIS)
nIS

that

E := {|L− nISp| ≥ nISηδ}

with probability Pr(E) ≤ 1
n2

IS
.

Then, we can write

Pr(Xℓ,Iℓ = 1) = qE

 1

E
Ber

(
L+1
nIS

)[M]


= qE

 1

E
Ber

(
L+1
nIS

)[M]
· 1{Ec}

+ qE

 1

E
Ber

(
L+1
nIS

)[M]
· 1{E}

 (4)

Assume for now that q < p (we will later proof the opposite event), then 1
E
Ber

(
L+1
nIS

)[M] is strictly

non-increasing in L since q
p < 1−q

1−p , and hence, when Ec holds and hence L concentration around
the average that

1

E
Ber

(
L+1
nIS

)[M]
≤ 1

E
Ber

(
(L+1)·(p−ηδ)

nIS

)[M]

=
1

(nIS−1)(p−ηδ)+1
nIS

q
p + nIS−1−(nIS−1)(p−ηδ)

nIS

1−q
1−p

=
1(

p− p
nIS

+ ηδ

nIS
− ηδ +

1
nIS

)
q
p +

(
1− p− 1

nIS
+ p

nIS
+ ηδ − ηδ

nIS

)
1−q
1−p

=
1

1 +
(

q
p −

1−q
1−p

)(
1−p+ηδ−nηδ

nIS

)
= 1 +

∞∑
κ=1

(−1)κ
(
q

p
− 1− q

1− p

)κ(
1− p+ ηδ − nηδ

nIS

)κ

,

3Note that we can assume p+ηδ ≤ 1 and p−ηδ ≥ 0, otherwise the concentration can be trivially bounded.
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where the last step is by Taylor expansion. Using (4) and the monotonicity of 1
E
Ber

(
L+1
nIS

)[M] , we

write

Pr(Xℓ,Iℓ = 1) = qE

 1

E
Ber

(
L+1
nIS

)[M]


≤ q

(
1 +

∞∑
κ=1

(−1)κ
(
q

p
− 1− q

1− p

)κ(
1− p+ ηδ − nηδ

nIS

)κ
)

+ qδ
p

q
,

and hence

Pr(Xℓ,Iℓ = 1)− q ≤ δp+ (1− δ)

∞∑
κ=1

(−1)κ
(
q

p
− 1− q

1− p

)κ(
1− p+ ηδ − nηδ

nIS

)κ

Similarly, we get by bounding 1
E
Ber

(
L+1
nIS

)[M] ≥
1

E
Ber

(
(L+1)·(p+ηδ)

nIS

)[M] and using (4) that

Pr(Xℓ,Iℓ = 1)− q ≥ δq
1− p

1− q
+ (1− δ)

∞∑
κ=1

(−1)κ
(
q

p
− 1− q

1− p

)κ(
1− p− ηδ + nηδ

nIS

)κ

⇔

q − Pr(Xℓ,Iℓ = 1) ≤ −δq 1− p

1− q
+ (1− δ)

∞∑
κ=1

(−1)κ+1

(
q

p
− 1− q

1− p

)κ(
1− p− ηδ + nηδ

nIS

)κ

.

When p ≤ q, then 1
E
Ber

(
L+1
nIS

)[M] is strictly non-decreasing, hence, under E , we have

1

E
Ber

(
L+1
nIS

)[M]
≤ 1

E
Ber

(
(L+1)·(p+ηδ)

nIS

)[M]
= 1+

∞∑
κ=1

(−1)κ
(
q

p
− 1− q

1− p

)κ(
1− p− ηδ + nηδ

nIS

)κ

,

and thus from (4) that

Pr(Xℓ,Iℓ = 1)− q ≤ qδ
1− p

1− q
+ (1− δ)

∞∑
κ=1

(−1)κ
(
q

p
− 1− q

1− p

)κ(
1− p− ηδ + nηδ

nIS

)κ

.

Similarly, we bound 1
E
Ber

(
L+1
nIS

)[M] ≤
1

E
Ber

(
(L+1)·(p+ηδ)

nIS

)[M] to obtain

Pr(Xℓ,Iℓ = 1)− q ≥ qδ
p

q
+ (1− δ)

∞∑
κ=1

(−1)κ
(
q

p
− 1− q

1− p

)κ(
1− p+ ηδ − nηδ

nIS

)κ

⇔

q − Pr(Xℓ,Iℓ = 1) ≤ −qδ p
q
+ (1− δ)

∞∑
κ=1

(−1)κ+1

(
q

p
− 1− q

1− p

)κ(
1− p+ ηδ − nηδ

nIS

)κ

Since 0 ≤ p+ ηδ ≤ 1 and 1 ≥ p− ηδ ≥ 0 by an appropriate choice of the concentration intervals,
we have by approximations up to second order terms that

|Pr(Xℓ,Iℓ = 1)− q| ≤ qδmax

{
p

q
,
1− p

1− q

}
+ ηδ

(
q

p
− 1− q

1− p

)
+

(
q

p
− 1− q

1− p

)2

O
(

1

n2
IS

+ η2δ

)

=
q

n2
IS

(
p

q
+

1− p

1− q

)
+O

[(q

p
− 1− q

1− p

)
+

(
q

p
− 1− q

1− p

)2
]√

6p log (2nIS)

nIS

.
This concludes the proof.

Proof of Theorem 1. Assume a party estimates the Bernoulli distributions Qj with parameters qj
held by parties j ∈ [n]. The estimating party shares with each of the other parties a common prior Pj

in the form of a Bernoulli distribution with parameter pj and access to unlimited shared randomness.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

To help estimate Qj , the j-th party sends K samples to the estimator through importance sampling.
Therefore, both parties sample KnIS i.i.d. samples Xℓ,i ∼ Pj for ℓ ∈ [K], i ∈ [nIS], independently
and identically from Pj . The party holding Qj constructs for each ℓ ∈ [K] an auxiliary distribution

Wℓ(i) =
Qj(Xℓ,i)/Pj(Xℓ,i)∑nIS
i=1 Qj(Xℓ,i)/Pj(Xℓ,i)

,

from which it samples to obtain an index Iℓ. The index is transmitted to the estimating party,
which reconstructs the corresponding sample Xℓ,Iℓ . Averaging the samples for all ℓ ∈ [K] gives an
estimate q̂j of qj , i.e., q̂j = 1

K

∑K
ℓ=1 Xℓ,Iℓ . This process is repeated for all j ∈ [n].

We assume that |qj−pj | ≤ ρ for all i, j ∈ [n], and that the difference between the priors, is bounded

as |pi − pj | ≤ ζ for all i, j ∈ [n]. The goal is to bound dKL

(
1
n

∑n
j=1 q̂j ||pi

)
from above for any

i ∈ [n].

By the convexity of KL-divergence, we have

dKL

 1

n

n∑
j=1

q̂j ||pi

 ≤ 1

n

n∑
i=1

dKL (q̂j ||pi) .

To bound dKL (q̂j ||pi) for any i, j ∈ [n], by the triangle inequality, we can write

|q̂j − pi| ≤ |q̂j − Pr(Xℓ = 1)|+ |Pr(Xℓ = 1)− qj |+ |qj − pj |+ |pj − pi|,
where |q̂j − Pr(Xℓ = 1)| is bounded by Lemma 1. By Hoeffding’s inequality, we have with
probability at least 1− δ′ that

|q̂ − Pr(Xℓ = 1)| ≤

√
− ln(δ′/2)

2nIS
.

Thus, with probability at least 1 − δ′, since pj ≤ pi + ζ, we have with ∆ :=
qj

pj−ζ −
1−qj

1−pj+ζ and

∆′
j := qj

(
pj+ζ
qj

+
1−pj+ζ
1−qj

)
that

|q̂j − pi| ≤
∆′

j

n2
IS

+O

(∆j +∆2
j )

√
6(pi + ζ) log (2nIS)

nIS

+

√
− ln(δ′/2)

2nIS
+ ρ+ ζ.

This holds under the assumption that pj > ζ for all j ∈ [n]. By the reversed Pinsker’s inequality,
we obtain

DKL (q̂j∥pi) ≤
2

min{pi, 1− pi}

∆′
j

n2
IS

+O

(∆j +∆2
j )

√
6(pi + ζ) log (2nIS)

nIS


+

√
− ln(δ′/2)

2nIS
+ ρ+ ζ

2

.

The statement of the theorem follows by the convexity of KL-divergence.

B GRADIENT DESCENT WITH A KL-PROXIMITY

Mirror descent employs point-wise optimization in the form of a first-order approximation of
F (θ̂t,Di) with proximity term DF (p, q), where DF is the Bregman divergence associated with
function F (·). When F (x) = ∥x∥2, and hence the Bregman divergence is the Euclidean distance,
this is known as gradient descent. Let now p and q be vectors with the entries corresponding to
independent Bernoulli parameters. When we choose F (x) = x log(x) + (1 − x) log(1 − x), the
Bregman divergence becomes DF (p, q) =

∑d
k=1 DKL (pk∥qk). Hence, we are optimizing with re-

spect to a KL-proximity constraint. The mapping between dual and primal spaces is then given by
∇F (x) = log(x) − log(1 − x) and (∇F (x))

−1
= 1

e−x+1 , respectively; also known as the inverse
sigmoid and the sigmoid functions.
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C BLOCK ALLOCATION

The simplest yet effective strategy for block allocation is to partition the model into equally-sized
blocks of size d/B for importance sampling (Fixed). The partitioning into blocks is required to make
importance sampling practically feasible in this setting. It is known that for vanishing importance
sampling error, the number of samples nIS from a block pti,u,b of the prior is supposed to be in the

order of exp
(
DKL

(
qti,b∥pti,u,b

))
, where qti,b is the b-th block of posterior qti . It was observed by

Isik et al. (2024) that the KL-divergence decreases as the training progresses with the global model
used as a prior, which is intuitive since the local training will change the posterior less and less
as training converges. To adapt the block size according to the divergence from the posterior with
respect to the prior, Isik et al. (2024) proposed an adaptive block allocation strategy (Adaptive),
where upon realizing a large deviation from the target KL-divergence per block, clients partition
their model into blocks with equal sums of parameter-wise KL-divergences and transmit the block
intervals to the federator. The federator aggregates the indices of all the clients, and broadcasts the
updated block allocation. We propose in this work a low complexity solution that adapts the block
size according to the average KL-divergence per block (Adaptive-Avg). This alleviates the cost of
computing and transmitting the exact block partitions, where the transmission of each block size
requires log2(bmax) bits, with bmax the maximum pre-defined block size. Instead, the transmission
of one size is enough in our solution. If the average KL per block DKL

(
qti,b∥pti,u,b

)
deviates more

than a given factor, the clients request to update the blocks. In the next iteration, each client proposes
a block size, and the federator averages and broadcasts an updated size.

D ADDITIONAL EXPERIMENTAL DETAILS

We use the cross-entropy loss and a batch size of 128 in all our experiments. We use Adam (Kingma
& Ba, 2015) as an optimizer with learning rate η = 0.0003 for all non-stochastic methods, and
η = 0.1 for probabilistic mask training. For non-stochastic FL, we use a federator (server) learning
rate of 0.1, i.e., the clients’ gradients are averaged, and the federator updates the global model with
learning rate 0.1. Solely for M3, we use a federator learning rate of 0.02 to obtain reliable results.
For LIEC and CSER, we use an average period of 50 global iterations (cf. (Cheng et al., 2024; Xie
et al., 2020)). For M3, we use TopK with K = ⌊d/n⌋. To run the simulations, we use a cluster of
different architectures, which we list in the following table.

CPU(s) RAM GPU(s) VRAM
2x Intel Xeon Platinum 8176 (56 cores) 256 GB 2x NVIDIA GeForce GTX 1080 Ti 11 GB
2x AMD EPYC 7282 (32 cores) 512 GB NVIDIA GeForce RTX 4090 24 GB
2x AMD EPYC 7282 (32 cores) 640 GB NVIDIA GeForce RTX 4090 24 GB
2x AMD EPYC 7282 (32 cores) 448 GB NVIDIA GeForce RTX 4080 16 GB
2x AMD EPYC 7282 (32 cores) 256 GB NVIDIA GeForce RTX 4080 16 GB
HGX-A100 (96 cores) 1 TB 4x NVIDIA A100 80 GB
DGX-A100 (252 cores) 2 TB 8x NVIDIA Tesla A100 80 GB
DGX-1-V100 (76 cores) 512 GB 8x NVIDIA Tesla V100 16 GB
DGX-1-P100 (76 cores) 512 GB 8x NVIDIA Tesla P100 16 GB
HPE-P100 (28 cores) 256 GB 4x NVIDIA Tesla P100 16 GB

Table 1: System specifications of our simulation cluster.

The details of the CNN architectures used in our experiments are summarized in the following. The
parameter count is 61706 for LeNet5, 1933258 for 4CNN, and 2262602 for 6CNN.
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Table 2: LeNet5 Architecture Overview

Layer Specification Activation
5x5 Conv 6 filters, stride 1 ReLU, AvgPool (2x2)
5x5 Conv 16 filters, stride 1 ReLU, AvgPool (2x2)
Linear 120 units ReLU
Linear 84 units ReLU
Linear 10 units Softmax

Table 3: 4-layer CNN (4CNN) Architecture Overview

Layer Specification Activation
3x3 Conv 64 filters, stride 1 ReLU
3x3 Conv 64 filters, stride 1 ReLU, MaxPool (2x2)
3x3 Conv 128 filters, stride 1 ReLU
3x3 Conv 128 filters, stride 1 ReLU, MaxPool (2x2)
Linear 256 units ReLU
Linear 256 units ReLU
Linear 10 units Softmax

Table 4: 6-layer CNN (6CNN) Architecture Overview

Layer Specification Activation
3x3 Conv 64 filters, stride 1 ReLU
3x3 Conv 64 filters, stride 1 ReLU, MaxPool (2x2)
3x3 Conv 128 filters, stride 1 ReLU
3x3 Conv 128 filters, stride 1 ReLU, MaxPool (2x2)
3x3 Conv 256 filters, stride 1 ReLU
3x3 Conv 256 filters, stride 1 ReLU, MaxPool (2x2)
Linear 256 units ReLU
Linear 256 units ReLU
Linear 10 units Softmax

For the sake of clarity, in the paper we restrict the analysis to a fixed number of importance samples
nIS, block sizes B, and choice of priors pti,u, p

t
i,d. Our experiments have shown that, while increasing

nIS beyond the ones used in our algorithms slightly improves the convergence over the number of
epochs, the convergence with respect to the communication cost did not significantly improve. The
block size is mainly limited by the system resources at hand, and one would choose the largest
possible for best efficiency while complying with memory resources. We investigated many different
prior choices and found the former global model to be reasonably good in almost all cases. With
high heterogeneity, it might be beneficial to use different convex combinations as priors, which
mix the former global model with the latest posterior estimate of a certain client, but the gains we
experienced were minor. Hence, we settled on the former global estimate for simplicity in presenting
the algorithm.

E ADDITIONAL EXPERIMENTS

We provide in the following experiments for both uniform (i.i.d.) and heterogeneous (non-i.i.d.)
data distributions for training LeNet5 and a 4-layer CNN on MNIST, a 4-layer CNN on Fashion
MNIST, and a 6-layer CNN on CIFAR-10. The details of the neural networks can be found in
Tables 2 to 4. For each setting and method depicted, we show the average of three simulation runs
with different seeds. We plot for each setting the test accuracies over the communication cost in
bits, and the maximum test accuracy over the bitrate. We provide tables summarizing the maximum
test accuracies with their standard deviation over multiple runs, the total bitrates and the bitrates
split into uplink and downlink. The overall bitrates per parameter (bpp) are computed assuming
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point-to-point links between all participants, i.e., uplink and downlink costs have equal weight. For
the case when a broadcast (BC) link between the federator and the clients is available, the bitrate
per parameter for all baseline schemes reduces by a factor of n. BICOMPFL-GRprofits similarly
from the broadcast link, but BICOMPFL-PRcannot profit due to the absence of shared randomness,
giving the same overall bitrate compared to the point-to-point link scenario. We highlight for each of
the measures the scheme with the best result. Consistently throughout all experiments, BICOMPFL
achieves order-wise savings in the bitrates per parameter while reaching state-of-the-art accuracies
in the classification task. While the sampling can introduce an additional computational overhead
depending on the implementation, the storage cost is similar to the baselines. Since we leverage as
priors the former global model, the additional storage cost incurred is limited to storing until the
next iteration the estimate of the former global model at each client, i.e., where the training started,
which is usually not a bottleneck. This can be cheaper than some baselines, which require storing
data for momentum and error-feedback.
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(b) Test Accuracy over Bitrate

Figure 3: MNIST LeNet i.i.d.

For LeNet5 on MNIST, it can be observed that all our proposed methods converge significantly
faster to satisfying accuracies with respect to the communication cost, while achieving higher max-
imum accuracies after 200 epochs than the non-stochastic baselines. Partitioning the model on the
downlink can help to further reduce the communication cost with only a minor loss in performance,
especially in the i.i.d. setting. For non-i.i.d. data distribution, the loss in performance is larger than
for i.i.d. distribution. However, at the beginning of the training, the model improves faster with
respect to the communication cost than all other schemes. The bitrates are comparable for all our
methods, with the exception of BICOMPFL-PR-Fixed-SplitDL. Further, BICOMPFL-GR-Reconst-
Fixed does not suffer notable performance degradation from employing an additional importance
sampling step (especially for i.i.d. data allocation).

Table 5: MNIST LeNet i.i.d.

Method Acc (mean ± std) bpp bpp (BC) Uplink Downlink

FedAvg 0.978 ± 0.1 64.0 35.0 32.0 32.0
Doublesqueeze 0.981 ± 0.1 2.0 1.1 1.0 1.0
Memsgd 0.977 ± 0.1 33.0 4.2 1.0 32.0
Liec 0.983 ± 0.1 4.5 2.5 2.3 2.3
Cser 0.982 ± 0.09 34.0 4.3 1.0 33.0
Neolithic 0.982 ± 0.1 4.0 2.2 2.0 2.0
M3 0.925 ± 0.2 15.0 2.2 8.0 7.1
BiCompFL-GR-Adaptive 0.992 ± 0.0006 0.36 0.068 0.036 0.32
BiCompFL-GR-Adaptive-Avg 0.992 ± 0.0003 0.29 0.055 0.029 0.26
BiCompFL-GR-Fixed 0.992 ± 0.0002 0.31 0.059 0.031 0.28
BiCompFL-GR-Reconst-Fixed 0.99 ± 0.0002 0.34 0.063 0.031 0.31
BiCompFL-PR-Fixed 0.99 ± 0.0004 0.34 0.34 0.031 0.31
BiCompFL-PR-Fixed-SplitDL 0.988 ± 0.0009 0.063 0.063 0.031 0.031
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(b) Test Accuracy over Bitrate

Figure 4: MNIST LeNet non-i.i.d.

Table 6: MNIST LeNet non-i.i.d.

Method Acc (mean ± std) bpp bpp (BC) Uplink Downlink

FedAvg 0.911 ± 0.2 64.0 35.0 32.0 32.0
Doublesqueeze 0.899 ± 0.2 2.0 1.1 1.0 1.0
Memsgd 0.906 ± 0.2 33.0 4.2 1.0 32.0
Liec 0.866 ± 0.2 4.5 2.5 2.3 2.3
Cser 0.744 ± 0.2 34.0 4.3 1.0 33.0
Neolithic 0.904 ± 0.2 4.0 2.2 2.0 2.0
M3 0.697 ± 0.2 15.0 2.2 7.3 7.2
BiCompFL-GR-Adaptive 0.965 ± 0.02 0.42 0.079 0.042 0.37
BiCompFL-GR-Adaptive-Avg 0.966 ± 0.02 0.29 0.056 0.029 0.26
BiCompFL-GR-Fixed 0.96 ± 0.03 0.31 0.059 0.031 0.28
BiCompFL-GR-Reconst-Fixed 0.949 ± 0.03 0.34 0.063 0.031 0.31
BiCompFL-PR-Fixed 0.966 ± 0.02 0.34 0.34 0.031 0.31
BiCompFL-PR-Fixed-SplitDL 0.926 ± 0.04 0.063 0.063 0.031 0.031

For 4CNN trained on MNIST, the differences between the proposed approaches become more vis-
ible. In the i.i.d. setting, we can observe that the adaptive block allocations (both Adaptive and
Adaptive-Avg) can drastically reduce the average bitrate in BICOMPFL-GR. Partitioning the model
in the downlink (BICOMPFL-PR-Fixed-SplitDL) improves the accuracy over bitrate significantly
compared to BICOMPFL-PR-Fixed.

106 107 108 109 1010 1011

Communication Cost in Bits

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

FedAvg
Doublesqueeze
Memsgd
Liec
Cser
Neolithic
M3

BiCompFL-GR-Adaptive
BiCompFL-GR-Adaptive-Avg
BiCompFL-GR-Fixed
BiCompFL-GR-Reconst-Fixed
BiCompFL-PR-Fixed
BiCompFL-PR-Fixed-SplitDL

(a) Test Accuracy over Communication

10 1 100 101

Bitrate p. P.

0.990

0.991

0.992

0.993

0.994

0.995

0.996

M
ax

im
um

 Te
st

 A
cc

ur
ac

y

FedAvg
Doublesqueeze
Memsgd
Liec
Cser
Neolithic
M3

BiCompFL-GR-Adaptive
BiCompFL-GR-Adaptive-Avg
BiCompFL-GR-Fixed
BiCompFL-GR-Reconst-Fixed
BiCompFL-PR-Fixed
BiCompFL-PR-Fixed-SplitDL

(b) Test Accuracy over Bitrate

Figure 5: MNIST 4CNN i.i.d.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 7: MNIST 4CNN i.i.d.

Method Acc (mean ± std) bpp bpp (BC) Uplink Downlink

FedAvg 0.994 ± 0.06 64.0 35.0 32.0 32.0
Doublesqueeze 0.994 ± 0.1 2.0 1.1 1.0 1.0
Memsgd 0.994 ± 0.08 33.0 4.2 1.0 32.0
Liec 0.993 ± 0.07 3.7 2.0 1.8 1.8
Cser 0.993 ± 0.06 33.0 4.3 1.0 32.0
Neolithic 0.994 ± 0.08 4.0 2.2 2.0 2.0
M3 0.989 ± 0.2 16.0 2.2 8.4 7.4
BiCompFL-GR-Adaptive 0.996 ± 0.0001 0.18 0.034 0.018 0.16
BiCompFL-GR-Adaptive-Avg 0.995 ± 0.0001 0.15 0.029 0.015 0.14
BiCompFL-GR-Fixed 0.995 ± 0.0002 0.31 0.059 0.031 0.28
BiCompFL-GR-Reconst-Fixed 0.995 ± 0.0001 0.34 0.062 0.031 0.31
BiCompFL-PR-Fixed 0.995 ± 0.0002 0.34 0.34 0.031 0.31
BiCompFL-PR-Fixed-SplitDL 0.995 ± 0.0002 0.062 0.062 0.031 0.031
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Figure 6: MNIST 4CNN non-i.i.d.

In the non-i.i.d. case of 4CNN on MNIST, the adaptive average allocation strategy provides a sig-
nificant reduction in the bitrate for BICOMPFL-GR, with similar loss in the accuracy as SplitDL
for BICOMPFL-PR. In this setting, it is also apparent that the reconstruction in BICOMPFL-GR
degrades the performance without gains in the bitrate compared to the proposed Algorithm 2.

Table 8: MNIST 4CNN non-i.i.d.

Method Acc (mean ± std) bpp bpp (BC) Uplink Downlink

FedAvg 0.983 ± 0.1 64.0 35.0 32.0 32.0
Doublesqueeze 0.982 ± 0.2 2.0 1.1 1.0 1.0
Memsgd 0.982 ± 0.2 33.0 4.2 1.0 32.0
Liec 0.963 ± 0.2 4.5 2.5 2.3 2.3
Cser 0.915 ± 0.1 34.0 4.3 1.0 33.0
Neolithic 0.983 ± 0.2 4.0 2.2 2.0 2.0
M3 0.929 ± 0.3 15.0 2.2 7.8 7.1
BiCompFL-GR-Adaptive 0.984 ± 0.009 0.27 0.051 0.026 0.24
BiCompFL-GR-Adaptive-Avg 0.974 ± 0.02 0.067 0.013 0.0068 0.061
BiCompFL-GR-Fixed 0.985 ± 0.008 0.31 0.059 0.031 0.28
BiCompFL-GR-Reconst-Fixed 0.977 ± 0.01 0.34 0.062 0.031 0.31
BiCompFL-PR-Fixed 0.984 ± 0.009 0.34 0.34 0.031 0.31
BiCompFL-PR-Fixed-SplitDL 0.971 ± 0.02 0.062 0.062 0.031 0.031
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Figure 7: Fashion MNIST 4CNN i.i.d.

Table 9: Fashion MNIST 4CNN i.i.d.

Method Acc (mean ± std) bpp bpp (BC) Uplink Downlink

FedAvg 0.927 ± 0.07 64.0 35.0 32.0 32.0
Doublesqueeze 0.928 ± 0.1 2.0 1.1 1.0 1.0
Memsgd 0.928 ± 0.09 33.0 4.2 1.0 32.0
Liec 0.923 ± 0.08 4.5 2.5 2.3 2.3
Cser 0.92 ± 0.08 34.0 4.3 1.0 33.0
Neolithic 0.928 ± 0.09 4.0 2.2 2.0 2.0
M3 0.892 ± 0.2 16.0 2.2 8.3 7.6
BiCompFL-GR-Adaptive 0.925 ± 0.001 0.31 0.059 0.031 0.28
BiCompFL-GR-Adaptive-Avg 0.927 ± 0.0007 0.31 0.059 0.031 0.28
BiCompFL-GR-Fixed 0.925 ± 0.0007 0.31 0.059 0.031 0.28
BiCompFL-GR-Reconst-Fixed 0.922 ± 0.001 0.34 0.062 0.031 0.31
BiCompFL-PR-Fixed 0.924 ± 0.002 0.34 0.34 0.031 0.31
BiCompFL-PR-Fixed-SplitDL 0.921 ± 0.002 0.062 0.062 0.031 0.031
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Figure 8: Fashion MNIST 4CNN non-i.i.d.

The results for Fashion MNIST are similar compared to the MNIST case. However, it becomes clear
that BICOMPFL-PR can significantly suffer from the unavailability of shared randomness in terms
of the achieved accuracy when data is highly heterogeneous.
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Table 10: Fashion MNIST 4CNN non-i.i.d.

Method Acc (mean ± std) bpp bpp (BC) Uplink Downlink

FedAvg 0.867 ± 0.1 64.0 35.0 32.0 32.0
Doublesqueeze 0.861 ± 0.2 2.0 1.1 1.0 1.0
Memsgd 0.863 ± 0.2 33.0 4.2 1.0 32.0
Liec 0.853 ± 0.1 4.5 2.5 2.3 2.3
Cser 0.781 ± 0.1 34.0 4.3 1.0 33.0
Neolithic 0.864 ± 0.2 4.0 2.2 2.0 2.0
M3 0.782 ± 0.2 15.0 2.2 8.0 6.9
BiCompFL-GR-Adaptive 0.866 ± 0.03 0.21 0.04 0.021 0.19
BiCompFL-GR-Adaptive-Avg 0.853 ± 0.04 0.11 0.021 0.011 0.1
BiCompFL-GR-Fixed 0.868 ± 0.03 0.31 0.059 0.031 0.28
BiCompFL-GR-Reconst-Fixed 0.86 ± 0.02 0.34 0.062 0.031 0.31
BiCompFL-PR-Fixed 0.869 ± 0.03 0.34 0.34 0.031 0.31
BiCompFL-PR-Fixed-SplitDL 0.831 ± 0.03 0.062 0.062 0.031 0.031

For 6CNN trained on CIFAR-10, the negative effects of missing global shared randomness and
reconstructing in the case of BICOMPFL-GR are prominent. For non-i.i.d. data distributions, the
adaptive average allocation shows improvements over the fixed or the average block allocation.
Partitioning the model is not a viable option in this setting, especially under non-i.i.d. data.
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Figure 9: CIFAR-10 6CNN i.i.d.

Table 11: CIFAR-10 6CNN i.i.d.

Method Acc (mean ± std) bpp bpp (BC) Uplink Downlink

FedAvg 0.742 ± 0.1 64.0 35.0 32.0 32.0
Doublesqueeze 0.723 ± 0.1 2.0 1.1 1.0 1.0
Memsgd 0.727 ± 0.1 33.0 4.2 1.0 32.0
Liec 0.684 ± 0.09 4.5 2.5 2.3 2.3
Cser 0.663 ± 0.08 34.0 4.3 1.0 33.0
Neolithic 0.73 ± 0.1 4.0 2.2 2.0 2.0
M3 0.614 ± 0.1 16.0 2.2 8.3 7.5
BiCompFL-GR-Adaptive 0.793 ± 0.002 0.3 0.057 0.03 0.27
BiCompFL-GR-Adaptive-Avg 0.793 ± 0.002 0.32 0.061 0.032 0.29
BiCompFL-GR-Fixed 0.793 ± 0.004 0.31 0.059 0.031 0.28
BiCompFL-GR-Reconst-Fixed 0.777 ± 0.002 0.34 0.062 0.031 0.31
BiCompFL-PR-Fixed 0.751 ± 0.003 0.34 0.34 0.031 0.31
BiCompFL-PR-Fixed-SplitDL 0.732 ± 0.02 0.062 0.062 0.031 0.031
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Figure 10: CIFAR-10 6CNN non-i.i.d.

Table 12: CIFAR-10 6CNN non-i.i.d.

Method Acc (mean ± std) bpp bpp (BC) Uplink Downlink

FedAvg 0.599 ± 0.1 64.0 35.0 32.0 32.0
Doublesqueeze 0.575 ± 0.1 2.0 1.1 1.0 1.0
Memsgd 0.589 ± 0.1 33.0 4.2 1.0 32.0
Liec 0.589 ± 0.2 4.5 2.5 2.3 2.3
Cser 0.419 ± 0.09 34.0 4.3 1.0 33.0
Neolithic 0.587 ± 0.1 4.0 2.2 2.0 2.0
M3 0.385 ± 0.1 15.0 2.2 8.3 6.7
BiCompFL-GR-Adaptive 0.655 ± 0.04 0.18 0.034 0.018 0.16
BiCompFL-GR-Adaptive-Avg 0.636 ± 0.05 0.15 0.028 0.015 0.13
BiCompFL-GR-Fixed 0.665 ± 0.03 0.31 0.059 0.031 0.28
BiCompFL-GR-Reconst-Fixed 0.606 ± 0.05 0.34 0.062 0.031 0.31
BiCompFL-PR-Fixed 0.626 ± 0.03 0.34 0.34 0.031 0.31
BiCompFL-PR-Fixed-SplitDL 0.47 ± 0.07 0.062 0.062 0.031 0.031

For completeness, we present in what follows the test accuracies over the number of trained epochs
for all scenarios considered above. The setting of interest to this work is that of limited communi-
cation cost, and in particular, which performance is achievable given a fixed communication budget.
Nonetheless, we can find that our proposed methods are not inferior in convergence speed over
epochs compared to the baselines.
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(a) MNIST LeNet i.i.d.
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(b) MNIST LeNet non-i.i.d.
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(c) MNIST 4CNN i.i.d.
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(d) MNIST 4CNN non-i.i.d.
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(e) Fashion MNIST 4CNN i.i.d.
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(f) Fashion MNIST 4CNN non-i.i.d.

100 101 102

Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 A
cc

ur
ac

y

FedAvg
Doublesqueeze
Memsgd
Liec
Cser
Neolithic
M3

BiCompFL-GR-Adaptive
BiCompFL-GR-Adaptive-Avg
BiCompFL-GR-Fixed
BiCompFL-GR-Reconst-Fixed
BiCompFL-PR-Fixed
BiCompFL-PR-Fixed-SplitDL

(g) Cifar-10 6CNN i.i.d.

100 101 102

Epochs

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 A
cc

ur
ac

y

FedAvg
Doublesqueeze
Memsgd
Liec
Cser
Neolithic
M3

BiCompFL-GR-Adaptive
BiCompFL-GR-Adaptive-Avg
BiCompFL-GR-Fixed
BiCompFL-GR-Reconst-Fixed
BiCompFL-PR-Fixed
BiCompFL-PR-Fixed-SplitDL

(h) Cifar-10 6CNN non-i.i.d.

Figure 11: Test Accuracy over Epochs
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