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ABSTRACT

Dynamic graph learning methods typically capture local structural information
and short-range temporal dependencies at each time step. In this work, we in-
troduce a dynamic graph learning architecture that generates time-step embed-
dings capturing both local structural context and progression-trajectory patterns
for each node across an entire longitudinal sequence. Unlike existing approaches,
our framework clusters fused embeddings that integrate (i) the global temporal
trajectory of each node and (ii) its local spatial context at every graph snapshot
to discover meaningful temporal patterns in longitudinal datasets. We evaluate
the proposed model in the context of Parkinson’s disease (PD) progression us-
ing six years of longitudinal cerebrospinal fluid (CSF) profiles from 24 patients.
Visit-based graphs were constructed by representing patients as nodes enriched
with peptide-abundance features, and by connecting patients with similar features
profiles. A Graph Convolutional Network (GCN) captures visit-specific spatial
relationships, while a sequential model learns global temporal representations. A
fusion module integrates both sources of information to produce enriched node
embeddings that reflect inter- and intra-patient molecular dynamics. Clustering
the learned embeddings reveals four distinct PD progression stages, supported
by strong validity indices (Davies–Bouldin: 0.169; Calinski–Harabasz: 1264.24).
Significant differences in motor severity (UPDRS 2 and UPDRS 3; p < 0.05)
were observed across clusters, whereas non-motor scores showed a more diffuse
pattern (p = 0.11). Compared with PCA, autoencoders, GCN, T-GCN, and GC-
LSTM, the proposed architecture yields more clinically discriminative representa-
tions of disease severity. These findings demonstrate the potential of the proposed
dynamic graph learning for data-driven disease staging and offer a generalizable
framework for uncovering latent temporal patterns in longitudinal datasets.

1 INTRODUCTION

Graph Neural Networks (GNNs) have emerged as powerful tools for learning from graph-structured
data by capturing nodes’ local and global dependencies. Unlike traditional deep learning models,
GNNs are not restricted to grid-like or strictly sequential input limits. This makes them well-suited
for tasks involving complex and time-variant relationships among nodes features - dependencies
that are often overlooked by conventional deep learning models such as Long Short-Term Mem-
ory (LSTM) networks and Convolutional Neural Networks (CNNs) de Jong et al. (2019); Çağatay
Berke Erdaş et al. (2021); Gan et al. (2021); Li et al. (2021). For example, Dynamic Graph Neural
Networks (DGNNs) have been developed to model every node’s spatial and temporal variants in a
sequence of graphs Wu et al. (2024); Zheng et al. (2024).

However, these generated embeddings often capture either local node relationships, such as em-
beddings learned by a Graph Convolutional Network (GCN), and/or short-term historical temporal
patterns, like hidden state representations learned commonly by models like Temporal GCNs (T-
GCN) and Graph Convolution Embedded LSTM networks (GC-LSTM). Although these approaches
have shown effectiveness in supervised tasks such as node classification, feature prediction, and
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edge inference, they have been underexplored in unsupervised representation learning tasks, and
fall short particularly when modeling long-range spatio-temporal dependencies is required Zheng
et al. (2024). While existing graph learning models are capable of capturing feature relationships
within individual nodes, across nodes, and over time, a key limitation remains: their inability to
include generalized temporal dynamics alongside local structural patterns to create comprehensive
embeddings for each node at every graph snapshot.

Bridging this gap is critical for advancing unsupervised representation learning in longitudinal data,
particularly for uncovering temporal progression patterns in abnormally evolving processes or con-
ditions. Motivated by the GCN’s ability to capture local spatial patterns within a single graph snap-
shot and the strength of sequential models in capturing temporal dependencies, this study proposes
a dynamic graph learning architecture for modeling longitudinal records. Specifically, the model is
designed to identify distinct temporal disease stages in the context of Parkinson’s Disease (PD) pro-
gression case study. PD is the second most common progressive neurodegenerative disorder, with
an estimated 11.77 million people worldwide in 2021 living with PD, and this number is projected
to rise to 25.2 million by 2050 Luo et al. (2025); Su et al. (2025). PD abnormally evolves by time
and manifests by motor symptoms and non-motor symptoms (such as mood changes), with an av-
erage survival of approximately nine years following symptom onset Ryu et al. (2023); Kouli et al.
(2018). The exact cause and clinical trajectory of PD remain unclear and vary significantly between
individuals due to the disease’s inherent heterogeneity Balestrino & Schapira (2020); Abu Zohair
et al. (2025).

Static graph models were increasingly applied to model data involving biomolecules, drugs, or
patient-related features, such as clinical measurements or medication records Liu et al. (2025);
Shang et al. (2019); Abu Zohair et al. (2025). While they have shown promise, they are inherently
limited in capturing the temporal changes inherent in longitudinal data. In contrast, dynamic graph
representation algorithms offer the ability to model evolving relationships over time and have been
explored with some explainability efforts Wu et al. (2024); Zheng et al. (2024). However, to date, no
prior work has effectively leveraged dynamic graph-based learning models to analyze longitudinal
clinical features for understanding neural disorder diseases such as PD Zheng et al. (2024).

To uncover PD temporal disease stages, we constructed visit-based graphs representing yearly clin-
ical visits of patients based on their cerebrospinal fluid (CSF) peptide profiles. The goal of the
proposed architecture is to generate a meaningful representation for each clinical visit, allowing
these representations to be clustered and revealing distinct disease stages. We hypothesize that this
is feasible if the learned embeddings emphasize local structure while also capturing each patient’s
disease trajectory over time. To achieve this, the model employs a single-layer GCN to extract spa-
tial representations for each patient at a given visit month. These representations are then passed
through a sequential model, such as a Gated Recurrent Unit (GRU), to learn generalized spatio-
temporal patterns across time. The resulting temporal patterns are concatenated with month-specific
spatial embeddings, and the combined representation is passed through fusion layers to produce
node embeddings at each time step that capture both local structural dependencies and temporal
progression.

The quality of the learned node representations by the proposed approach was evaluated by compar-
ing the clustering performance of embeddings against several baseline methods, including standard
graph representation learning models (such as GCN, T-GCN, and GC-LSTM) and conventional fea-
ture representation techniques, such as dimensionality reduction methods and dense autoencoders.

The main contribution of this study demonstrates that the proposed dynamic graph learning ap-
proach outperforms existing feature representation methods in modeling longitudinal clinical data.
This means that incorporating the general temporal progression of the nodes emphasized by their
local spatial embeddings enabled the discovery of meaningful stages of disease progression. To the
best of our knowledge, this is the first graph-based model to generate such comprehensive spatio-
temporal representations for unsupervised learning in this context. Furthermore, this work presents
the first application of dynamic graph learning models to uncover meaningful stages of neural dis-
order disease, specifically in PD.
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2 RELATED WORK

Existing graph learning models like GCN Kipf & Welling (2017) are designed for static graphs
and cannot capture evolving structures over time. However, temporal extensions in dynamic graph
models such as T-GCN Zhao et al. (2020) and GC-LSTM Chen et al. (2022) integrate temporal se-
quences with learned structural patterns but remain limited to capturing only short-term historical
temporal dependencies when modeling current graph nodes. Moreover, the Temporal Graph Net-
work (TGN) Rossi et al. (2020) generates node embeddings through temporal message passing with
memory modules. However, in its common edge-based implementation, TGN does not utilise node
features in the embedding process, nor does it compute node embeddings at each graph snapshot or
capture long-range temporal dynamics in all its existing implementations. Models like EvolveGCN
Pareja et al. (2019) and DyGCN Gu et al. (2024) update weights or node states over time, yet fail to
jointly model local spatial features and generalized node trajectories across snapshots. To the best
of the authors’ knowledge, none of the existing approaches are designed for unsupervised represen-
tation learning in visit-based or longitudinal graphs, where each node evolves over time and must be
embedded accordingly. The architecture is designed to explicitly capture both spatial structure and
generalized temporal patterns per node, enabling more meaningful representations for downstream
unsupervised tasks like disease stages discovery. This contribution remains largely unexplored in
the current literature.

From a healthcare perspective, GNNs are not new and have been primarily employed for represen-
tation learning, graph pooling, and entities generations (like molecules represented as graph nodes
or edges), for applications dominated by structural and semantic relationships understanding among
biological entities like molecular interactions, protein functions, tissue-specific gene regulation, and
predict disease- phenotype-disease associations Li et al. (2022). For example, subgraph neural net-
works (SubGNNs), portions of a larger graph, have been applied to model diseases as phenotype
subgraphs derived from the Human Phenotype Ontology (HPO) knowledge base, for disease classi-
fication tasks Li et al. (2022). Additionally, researchers in Abu Zohair et al. (2025) structured each
patient’s CSF longitudinal records into a single graph and applied GCNs to model disease trajecto-
ries. However, an LSTM autoencoder was shown to outperform this approach. This approach and
the aforementioned applications were based on static graph structures and lacked the employment
of temporal modeling in a dataset of longitudinal nature. Also, in critical care and infection con-
trol, models like MSTD-GNN and STM-GNN have used temporal attention and memory to model
irregular ICU records and hospital-acquired infection dynamics, respectively, but remain largely
prediction-focused and rely on learning historical temporal patterns Geissbuhler et al. (2025); Liu
et al. (2025). Researchers also integrates dynamic attention into CTDGs by fusing global medical
ontologies with patient-specific knowledge graphs, adjusting by the graph edge weights in real time
to improve disease diagnosis Chen et al. (2025).

Despite these advancements, notable gaps persist. Subgraph-based disease models in prior work do
not account for dynamic symptoms evolution. Very few studies explore dynamic graph modeling,
but not in the context of learning representation for unsupervised tasks. Discrete and continuous-
time dynamic graph models were employed. However, their efficiency in handling incomplete lon-
gitudinal records has not yet been addressed. Finally, the potential of dynamic graph models in mod-
eling longitudinal records for understanding disease dynamics progression in rare or neurodegener-
ative diseases has yet to be explored. This research contribution directly addresses these limitations
by introducing a fused GCN-GRU architecture that models the influence of local structural patterns
in every graph snapshot node while learning every node’s temporal progression dynamics, enabling
the unsupervised grouping of distinct disease stages across various progression trajectories. Finally,
this work pioneers the first dynamic graph approach for modeling Parkinson’s disease longitudinal
records, offering insights into disease states that have never been captured in prior literature.

3 METHOD

3.1 DATASET

The dataset utilized in this study comprises longitudinal protein and peptide abundance profiles ex-
tracted from CSF samples collected from 24 patients, and was sourced from Kaggle Kirsch et al.
(2023).It is acknowledged that the dataset is small and limits the generalisability of the findings,
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however, it was readily accessible for demonstrating the proof of concept. In addition to CSF-
derived peptide abundance data, another dataset that contains longitudinal clinical scores was uti-
lized. From this dataset, we used UPDRS Parts 1, 2, and 3, which represent mood and cognitive
symptoms, abilities for daily living, and motor complications before and after medication, respec-
tively. Kirsch et al. (2023). Together, the CSF and UPDRS datasets support temporal analyses of
Parkinson’s disease progression, enabling the development of computational models to infer disease
states, trace patient trajectories, and characterize patient-specific or disease-specific features within
each identified stage.

3.2 METHODS AND PROCEDURES

3.2.1 CONVENTIONAL FEATURE REPRESENTATION METHODS

K-PCA and t-distributed stochastic neighbor (t-SNE), non-linear dimensionality reduction or latent
representations of peptide types were selected as feature reduction techniques. This decision was
made after preliminary analysis of data normality using the Shapiro–Wilk and Q-Q plots. In paral-
lel, dense autoencoders were commonly outperformed for learning representations of patient records
Sushil et al. (2018); Alkhayrat et al. (2020); Abu Zohair et al. (2025). In this project, a single-layer
dense autoencoder was employed to learn the latent representation of patients’ clinical visits. Fol-
lowing this, multiple graph representation learning models were explored. For example, a static
GCN with a single convolution layer was applied to patient records structured in temporal clini-
cal visit-based graphs, capturing only node structural patterns within a single graph. In addition,
standard dynamic graph models, such as the T-GCN, extend the structural patterns (relationships
among patient features within each clinical visit) learned by the GCN by incorporating connections
to historical temporal patterns. In this work, a simplified implementation of T-GCN is presented,
combining a single-layer GCN with a sequential model based on GRU. This design choice aims to
avoid over-smoothing effects caused by aggregating higher-order adjacency neighbors, which can
lead to homogenized node representations and the loss of node-specific local patterns. The follow-
ing subsection presents the formal graph definitions and describes the novel architecture, which will
be compared with the previously introduced approaches.

3.2.2 GRAPH STRUCTURE AND DEFINITIONS

To utilize graph learning representation models, the tabular representation of the dataset was tran-
sitioned into a graph-based structure. Inspired primarily by Kazemi et al. (2020), an undirected
graph was constructed at each clinical visit in the longitudinal dataset (based on the visit month
feature), as illustrated in Figure 1. This graph is annotated by G=(V , E), where:

• V be the set of vertices (nodes), representing patients, indexed by the patient id feature.
• Peptide types and their abundances for each patient are stored as node features and rep-

resented in a matrix X ∈ Rn×d, where n is the number of patients (nodes), and d is the
number of clinical features associated with each node.

• E be the set of edges added between nodes. An edge is added when the distance (measured
by Euclidean distance) between two patients’ features is below a specified threshold. This
graph structure is represented by an adjacency matrix A ∈ Rn×n, defined as:

Aij =

{
1, if the distance between patients i and j features ≤ threshold
0, otherwise

The threshold corresponds to the 5th percentile of the pairwise Euclidean distance distribution be-
tween node features. It was aimed to retain only the strongest and most meaningful connections,
while reducing noise from weaker or less informative similarities. The final threshold was deter-
mined by averaging the 5th percentile of Euclidean distance distribution scores across all graphs.

The implemented architecture, illustrated in Figure 2, employs GCN to generate spatial node embed-
dings (eS) at each graph snapshot, which are then fed into a GRU model to capture general spatial
dependencies (within and across patients’ features) and temporal dynamics (across visits), includ-
ing current, historical, and future patterns (et). Finally, the learned spatio-temporal pattern for each
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Figure 1: Temporal graph construction across clinical visits in the longitudinal dataset. Each node
represents a patient’s record at a specific clinical visit (based on the visit month feature), with edges
capturing the euclidean distance between the features of two patients’ nodes.

node is concatenated with its spatial embedding at every clinical visit and passed through fusion
layers to generate node representations (et+S), which are then used in an unsupervised clustering
algorithm to identify disease states. It is worth noting that a multi-model implementation is also a
valid approach, as the components chosen to capture structural-temporal embeddings versus struc-
tural embeddings may differ. In the current implementation, these components are integrated into
a single model (GCN + GRU generate output, then the fusion of GCN and that generated output).
However, this framework is flexible, and it would be possible to explore alternative architectures -
one model for spatio-temporal representations and a different one for structural representations.

To define, the implemented models’ architecture creates latent node embeddings for nodes at each
visit month using a single layer of GCN encoder (GCNConv layer- graph convolution layer pro-
vided by PyTorch Geometric) from the standard implementation of static GCN Kipf & Welling
(2017), Jiang et al. (2019). These embeddings are created by simply convolving over a node’s direct
neighbors, as defined by Equation 1.

Ht = σ(ÂtXtW ), (1)

where: Ht are the node embeddings of graph at clinical visit t, Ât is the normalized adjacency
matrix at clinical visit t , Wt is the learnable weight matrix at clinical visit t, and σ is the activation
function (ReLU) that combines the graph structure and node features X to compute the updated
node embeddings.

After that, the spatial embeddings (es) created for each node at each time-step (’visit month’) were
fed to a single GRU layer to create a single spatio-temporal embedding for the dynamics of each
patient’s features. It is worth noting that this implementation of T-GCN is slightly modified from
its standard implementation by Zhao et al. (2020), with a reduced number of GCN layers used to
compute the spatial nodes’ embeddings. Additionally, the node embedding from each GRU hidden
state for each node at each visit month (which accounts for both current and historical temporal
patterns) was also extracted to assess its representativeness in discovering the disease state compared
to the proposed one. By definitions, for each patient (node n), the spatial embeddings over time form
this sequence Hn0, Hn1, . . . ,Hnt, where t denotes clinical visit time. The spatial embeddings for
each node are then fed into a GRU and produce a sequence of hidden states Zn0, Zn1, . . . , Znt where
Znt is the GRU’s hidden state for node n at clinical visit t. This is defined in Equation 2;

Znt = GRU(Hn0, Hn1, Hn2, . . . ,Hnt) (2)

The spatial-general temporal embedding, annotated by et in Figure 2, created for each patient (n)
at last clinical visit (t) defined as Zn = Z1t, Z2t, Z3t, . . . , Znt. This will be used to create the final
node embedding, es+t in Figure 2, for each node n at each time step (t) by fusing it with the spatial
nodes’ embeddings created at each clinical visit month (Hnt) by Equation 3.

Fnt = Fusion([Hnt ∥ Znt]), (3)

where: ∥ denotes concatenation, and Fnt ∈ RN×d is the proposed model embedding for all nodes
at every visit month t. Fusion corresponds to the fusion layers (illustrated in Figure 2), which
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apply a fully connected layer to the concatenated embeddings Hnt and Znt, projecting them into
a fixed fusion dimension (fusion dim). A ReLU activation is applied to the output to introduce
non-linearity and help capture complex relationships. Then, it is finally passed through a normal-
ization layer (LayerNorm) to stabilize training and improve convergence. The used Fusion layers
were frequently employed when combining embeddings of features from multiple models or data
modalities resources in the literature Liu et al. (2020), Li et al. (2017). The selection of these layers
was done progressively, while assessing model training loss simultaneously, resulting with the final
configuration chosen based on achieving the lowest model loss. The explained model components

Figure 2: Overview of the Proposed Dynamic Graph Model Architecture. G1−t represents the
graphs constructed at each unique visit month in the longitudinal clinical visits’ dataset. Each node
color represents a unique patient who attended a clinical visit at the corresponding month. Missing
nodes indicate time points where patients did not attend a clinical visit. The letter x to denote
original features, e for features’ embeddings, where superscript S refers to the spatial embeddings
and superscript t denotes the temporal embeddings generated for each patient

were trained (surrounded by dotted rectangles with flame icon in Figure 2) to reconstruct the graph
structure using a binary cross-entropy loss over the predicted adjacency matrices Kipf & Welling
(2016). Once trained, node embeddings were computed by the model for each node at each visit
graph; illustrated by the graphs with a pink background in Figure 2. These embeddings, as well
as the T-GCN hidden state embeddings (Znt), which capture both current and historical temporal
patterns in addition to structural information, were passed to the clustering phase. Clustering perfor-
mance will determine the representativeness of the generated embeddings compared to conventional
embedding learning approaches or direct feature clustering in discovering distinct groups of patterns
that correspond to different but meaningful PD disease states.

3.2.3 EXPERIMENTAL DESIGN

The analysis started with visualizations and descriptive statistics to understand feature characteris-
tics, including general temporal trends in peptide counts, UPDRS score progression patterns, and
available patients clinical records per visit. Patients with richer longitudinal data were filtered and se-
lected to better capture peptide trends over disease progression. Dataset pre-processing techniques,
including zero imputation of empty peptide abundance, label encoding, and features’ normalization
using RobustScaler (known for better outliers handling Izonin et al. (2022)), ensured the data was
normalized and suitable for both classical and deep learning models.
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To further examine and validate the underlying structure and distribution of the data before selecting
appropriate dimensionality reduction techniques and suitable statistical analysis methods, a series
of statistical tests was conducted. Shapiro–Wilk and visualization of Q-Q plots were used to as-
sess the data normality. Therefore, kernel principal component analysis (K-PCA) and t-distributed
stochastic neighbor (t-SNE), non-linear dimensionality reduction or latent representations of peptide
types, were selected as feature reduction techniques. It is worth noting that t-SNE is not a standard
embedding method. However, we used t-SNE to assess cluster separability of discovered nonlin-
ear patterns and as an exploratory baseline. Additionally, the normality test results in choosing the
Kruskal–Wallis test to evaluate the significant differences in the distribution of UPDRS 1, 2, and 3
across the discovered disease states. Dunn’s test was then applied to identify which cluster exactly
differed significantly from each other in terms of UPDRS score. The formulated null hypothesis
states that there is no significant differentiation among the discovered disease stages and UPDRS
scores distribution, and a p-value threshold of 0.05 was set to reject it. Collectively, these statistical
evaluations provided a robust foundation for selecting both classical feature reduction methods and
assessing the significance of the discovered temporal pattern groups.

The proposed model architecture was implemented and was trained transductively on our limited
dataset, meaning that all graphs were used to learn embeddings during training. Training was per-
formed iteratively while performing a grid search to identify the best hyperparameters, including the
latent dimensions for the GCN, GRU, and fusion layers, using the average adjacency reconstruction
loss across visit graphs as the objective. After training, the model was switched to evaluation mode,
and embeddings for each visit graph were extracted.

KMeans++ clustering algorithm was used, known to provide statistical assurance on the quality
of the clustering Li et al. (2023). The quality of the clusters decides the optimal representation
model performance, and is evaluated using 1) clustering metrics: Silhouette Score, Davies–Bouldin
Index, and Calinski–Harabasz Score, and 2) the aforementioned significant test in the formulated
hypothesis. The best number of clusters was selected based on the grid search k value that results in
the best Silhouette score.

4 RESULTS AND DISCUSSIONS

A total of 24 patients with up to 6 years of clinical visits and 968 unique peptide types were selected
for the analysis. Initially, the original peptide values were directly clustered. Then, dimensionality
reduction and embedding methods were employed to better capture the underlying structure of pep-
tides progression patterns. Specifically, t-SNE, K-PCA, and dense autoencoders, with 2-dimensional
embeddings that consistently achieved the highest clustering scores across evaluation metrics. In
addition, graph- and sequence-based neural models were applied to capture more complex patterns
within a single patient’s peptides, across patients in a single visit, and the progression of peptide
expression over time. These included GCN, T-GCN, GS-LSTM, and the new architecture. Across
all graph representation learning models, the optimal hyperparameters were commonly found to be
a GCN embedding dimension of 8 and a GRU hidden dimension of 4, which yielded low training
loss and strong clustering performance.

According to Figure 3, both the proposed model architecture and GCN architectures achieved the
highest clustering scores, but the proposed consistently converged to 4 clusters, indicating a stable
temporal disease state representation. Instead, the GCN lack stability in clustering performance
across various seeds. The seed was initially set with a fixed random value to ensure that all sources
of randomness, especially those caused by model weight initialization, behave deterministically
across processing. This guarantees that the graph model’s training, evaluation, and inference are
fully reproducible, which was critical for fair comparisons.

However, model stability was a critical factor in evaluating the reliability of learned representations
for disease stage discovery. The variability in clustering results was assessed across 10 different
seeds for both the GCN and evaluated architecture. As shown in Table 1, the variability analysis
based on standard deviation indicates that, although the clustering performance remained relatively
stable, the GCN model’s estimated number of clusters (K) fluctuated between 3 and 9. This was
accompanied by substantial variation in the corresponding Calinski-Harabasz (CH) score. In con-
trast, the proposed architecture demonstrated markedly greater stability—consistently producing 4
clusters and yielding relatively stable clustering scores across all seeds (see Table A1).
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Figure 3: Clustering performance metrics results of peptides structural and/or temporal representa-
tions created by multiple feature representation Methods, including the new graph architecture.

Table 1: Standard deviation of clustering metrics across 10 different seeds for GCN and the new
proposed model architecture. Lower values indicate higher stability.

Metric/Clusters GCN (SD) Proposed Dynamic Graph Architecture (SD)

Silhouette Score (SS) 0.02 0.04
Davies-Bouldin (DB) 0.08 0.14
Calinski-Harabasz (CH) 57,110.58 323.84
Number of Clusters (K) 1.79 0.46

To explain the disease stages from clinical perspectives, patients peptides dataset, including the
discovered cluster, was merged with the UPDRS scores dataset - both originating from the same
data source - using patient id and visit month as keys. Then, clusters formed by the new model
architecture, which demonstrated strong internal validity as indicated by its Davies-Bouldin (0.169)
and Calinski-Harabasz indexes (1264.24), were analyzed. To facilitate this and unlock the severity
of disease stages based on these scores, a box plot of the distribution of UPDRS scores across the
discovered clusters was generated (see Figure 4).

Figure 4: Box plot for the distribution of UPDRS 1, 2, & 3 scores across the discovered clusters.

It is important to note that one cluster appears missing in this figure. This was due to the exclusion
of patients without corresponding UPDRS scores during the dataset merging process. As a result,
(cluster 4) are not represented in the final UPDRS-based analysis. Kruskal-Wallis test revealed sta-
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tistically significant differences (p ≤ 0.05) in both UPDRS Part 2 (motor experiences of daily living)
and Part 3 (motor examination) scores across the plotted clusters. These differences are illustrated in
Figure 4. A post-hoc Dunn’s test was conducted to determine pairwise differences between clusters.
This analysis, with 5, reveals that UPDRS Part 2 scores showed a significant difference between
clusters 1 and 2 (p = 0.0306), with cluster 1 represent more sever UPDRS 2 symptoms compared
to 2. For UPDRS Part 3, the differences were more pronounced, with cluster 2 exhibiting distinctly
lower motor scores compared to clusters 0 and 1. In contrast, UPDRS Part 1 (non-motor experi-
ences) was more evenly distributed across three clusters, but did not reach statistical significance (p
= 0.11). This indicates that while the clustering effectively defines disease stages based on motor

Figure 5: Mean UPDRS scores (Parts 1, 2, and 3) across discovered clusters, visualized with con-
nected lines. Standard deviations are represented by shaded areas. This plot illustrates the variability
in scores between the discovered clusters.

symptoms, it may be less sensitive to non-motor symptoms. These findings suggest that Cluster 1
reflects significant severe impairment in motor function and daily living activities for PD patients,
while Cluster 2 groups those with mild symptoms of the disease. Despite the limited size of the
dataset, the identified clusters capture clinically meaningful variation in motor symptom severity.

This work focuses on evaluating a generic model for grouping dynamic patterns in longitudinal
records, rather than providing immediate clinical insights or patient-level interpretation. As a result,
the clinical applicability of the findings is limited at this stage. Besides, the approach has not yet
been validated on larger or external clinical cohorts, and we did not conduct a detailed error anal-
ysis to investigate misclustered cases and their underlying characteristics. These aspects represent
important directions for future work and will yield more reliable group patterns, with statistical tests
that provide more reliable and robust evidence. Future work will aim also further optimize the pro-
posed architecture and by incorporating sequential models such as LSTM. In addition, comparisons
between multiple linear perceptrons (MLPs) in place of GCN will be explored. This enables us to
evaluate the actual contribution of the graph structure (adjacency matrix) to the learning process.
Since MLPs do not use connectivity information, they serve as a strong baseline to evaluate whether
leveraging structural relationships in GCN causes a performance gain or if it is largely due to node
features. Additionally, alternative distance and similarity measures for edge construction, such as
cosine similarity, will be explored. Furthermore, we plan to further assess the contribution of the
fusion layers through additional ablation studies. Also, inductive model training with and external
validation to more rigorously assess generalizability and avoid overfitting will be worth investigat-
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ing. This proposed approach has demonstrated efficiency as a proof of concept, and future research
will investigate its applicability to other neurodegenerative diseases as well as non-healthcare longi-
tudinal datasets.
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Table A1: Clustering scores across 10 different seeds for GCN and the new model’s architecture.
SS: Silhouette Score, DB: Davies-Bouldin, CH: Calinski-Harabasz, K: Number of clusters.

GCN

Seed SS DB CH K

0 0.9508 0.2548 2,458.85 7
12 0.9640 0.2675 8,622.10 6
22 0.9708 0.1234 13,888.18 5
32 0.9843 0.0278 189,078.22 4
42 0.9682 0.2481 6,095.28 6
52 0.9491 0.2777 4,819.29 8
62 0.9576 0.3202 1,422.66 4
72 0.9282 0.2829 915.69 5
82 0.9877 0.0790 4,690.02 3
92 0.9264 0.3313 1,716.94 9

New Graph Architecture

Seed SS DB CH K

0 0.8491 0.2606 467.83 3
12 0.8494 0.3491 695.68 4
22 0.7854 0.6502 252.38 3
32 0.8465 0.2366 322.02 4
42 0.8958 0.1694 1,264.24 4
52 0.9056 0.3463 645.35 4
62 0.7975 0.4103 406.15 4
72 0.9040 0.3430 843.84 4
82 0.8635 0.4895 307.84 4
92 0.7684 0.6719 205.83 4
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