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ABSTRACT

Existing dynamic graph learning methods typically encode node features at each
time step by leveraging local (spatial/ structural) and/or short-range temporal de-
pendencies. In contrast, we propose a novel multi-model framework that generates
a representation for each node at every graph snapshot, where each representation
encodes the node’s temporal trajectory across the full sequence while preserving
its spatial context within that specific time step. When clustered, these represen-
tations reveal meaningful temporal pattern groups in longitudinal datasets. This
approach was evaluated in the context of Parkinson’s disease (PD), a degenerative
disorder that progresses in distinct clinical stages. To demonstrate this, we struc-
tured six years of longitudinal cerebrospinal fluid (CSF) records from 24 patients
with PD into age-based graphs, where clinical visit records corresponding to pa-
tients with the same age are hosted on the graph for that age. In these graphs, nodes
represent individual patients indexed by unique identifiers and are enriched with
CSF peptide abundance features. Edges are established between patient nodes
based on the similarity of their peptide expression patterns. For each patient’s
node, a one-layer Graph Convolutional Network (GCN) was employed to encode
inter-patient relationships within each age-specific graph. The resulting spatial
representations across all time points for each node were then fed into a sequential
model to learn a unified spatial-temporal features representation for every patient.
To represent patients’ features at each age, the unified embedding was combined
with the age-specific GCN representation through a fusion block - composed of
linear transformations, nonlinear activations, and normalization layers - producing
rich, locally informed spatial embeddings that are further enhanced by the global
context of inter- and intra-related node patterns. K-means++ clustering of the
multi-model representations identified four distinct disease stages, supported by
strong cluster validity metrics (Davies-Bouldin Index = 0.169, Calinski-Harabasz
Index = 1264.24). When statistically analyzed, the Kruskal-Wallis test revealed
significant differences in motor scores (UPDRS_2 and UPDRS _3; p<0.05) across
clusters, with Dunn’s test further identifying which clusters differed significantly.
Unlike the motor scores, which appeared to cluster most patient profiles into two
groups, the non-motor scores (UPDRS_1) were distributed across three clusters
but did not show significant differences (p = 0.11). The learned embeddings re-
vealed well-separated clinical motor profiles, outperforming PCA, autoencoders,
GCN, T-GCN, and GC-LSTM representations in capturing clinically relevant di-
mensions of disease severity. With further optimization and validation, this frame-
work could aid in staging and understanding neurodegenerative diseases and gen-
eralizes to other longitudinal pattern discovery tasks.
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1 INTRODUCTION

Graph Neural Networks (GNNs) have emerged as powerful tools for learning from graph-structured
data by capturing nodes’ local and global dependencies. Unlike traditional deep learning models,
GNNs are not restricted to grid-like or strictly sequential input limits. This makes them well-suited
for tasks involving complex and time-variant relationships among nodes features - dependencies
that are often overlooked by conventional deep learning models such as Long Short-Term Mem-
ory (LSTM) networks and Convolutional Neural Networks (CNNs) de Jong et al.| (2019); (Cagatay
Berke Erdas et al.|(2021)); |Gan et al.|(2021)); L1 et al.| (2021). For example, Dynamic Graph Neural
Networks (DGNN5s) have been developed to model every node’s spatial and temporal variants in a
sequence of graphs|Wu et al.[(2024);|Zheng et al.| (2024)).

However, these generated embeddings often capture either local node relationships, such as em-
beddings learned by a Graph Convolutional Network (GCN), and/or short-term historical temporal
patterns, like hidden state representations learned commonly by models like Temporal GCNs (T-
GCN) and Graph Convolution Embedded LSTM networks (GC-LSTM). Although these approaches
have shown effectiveness in supervised tasks such as node classification, feature prediction, and
edge inference, they have been underexplored in unsupervised representation learning tasks, and
fall short particularly when modeling long-range spatio-temporal dependencies is required [Zheng
et al.| (2024). While existing graph learning models are capable of capturing feature relationships
within individual nodes, across nodes, and over time, a key limitation remains: their inability to
include generalized temporal dynamics alongside local structural patterns to create comprehensive
embeddings for each node at every graph snapshot.

Bridging this gap is critical for advancing unsupervised representation learning in longitudinal data,
particularly for uncovering temporal progression patterns in abnormally evolving processes or con-
ditions. Motivated by the GCN’s ability to capture local spatial patterns within a single graph snap-
shot and the strength of sequential models in capturing temporal dependencies, this study proposes
a multi-model dynamic graph learning algorithm for modeling longitudinal records. Specifically,
the model is designed to identify distinct temporal disease stages in the context of Parkinson’s
Disease (PD) progression case study. PD is the second most common progressive neurodegener-
ative disorder, with an estimated 11.77 million people worldwide in 2021 living with PD, and this
number is projected to rise to 25.2 million by 2050 [Luo et al.| (2025); Su et al.[(2025). PD abnor-
mally evolves by time and manifests by motor symptoms and non-motor symptoms (such as mood
changes), with an average survival of approximately nine years following symptom onset Ryu et al.
(2023)); [Kouli et al.| (2018). The exact cause and clinical trajectory of PD remain unclear and vary
significantly between individuals due to the disease’s inherent heterogeneity Balestrino & Schapira
(2020); |/Abu Zohair et al.| (2025)).

Static graph models were increasingly applied to model data involving biomolecules, drugs, or
patient-related features, such as clinical measurements or medication records |Liu et al.| (2025);
Shang et al.|(2019); |Abu Zohair et al.| (2025). While they have shown promise, they are inherently
limited in capturing the temporal changes inherent in longitudinal data. In contrast, dynamic graph
representation algorithms offer the ability to model evolving relationships over time and have been
explored with some explainability efforts[Wu et al.|(2024); Zheng et al.|(2024). However, to date, no
prior work has effectively leveraged dynamic graph-based learning models to analyze longitudinal
clinical features for understanding neural disorder diseases such as PD Zheng et al.|(2024).

To uncover PD temporal disease stages, we constructed age-based graphs representing yearly clini-
cal visits of patients based on their cerebrospinal fluid (CSF) peptide profiles. The goal of the pro-
posed architecture is to generate a meaningful representation for each clinical visit, allowing these
representations to be clustered and revealing distinct disease stages. We hypothesize that this is fea-
sible if the learned embeddings emphasize local structure while also capturing each patient’s disease
trajectory over time. To achieve this, the model employs a single-layer GCN to extract spatial repre-
sentations for each patient at a given age. These representations are then passed through a sequential
model, such as a Gated Recurrent Unit (GRU), to learn generalized spatio-temporal patterns across
time. The resulting temporal patterns are concatenated with age-specific spatial embeddings, and
the combined representation is passed through fusion layers to produce node embeddings at each
time step that capture both local structural dependencies and temporal progression.
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The quality of the learned node representations by the multi-model was evaluated by comparing the
clustering performance of embeddings against several baseline methods, including standard graph
representation learning models (such as GCN, T-GCN, and GC-LSTM) and conventional feature
representation techniques, such as dimensionality reduction methods and dense autoencoders.

The main contribution of this study demonstrates that the proposed multi-model graph learning ap-
proach outperforms existing feature representation methods in modeling longitudinal clinical data.
This means that incorporating the general temporal progression of the nodes emphasized by their
local spatial embeddings enabled the discovery of meaningful stages of disease progression. To the
best of our knowledge, this is the first graph-based model to generate such comprehensive spatio-
temporal representations for unsupervised learning in this context. Furthermore, this work presents
the first application of dynamic graph learning models to uncover meaningful stages of neural dis-
order disease, specifically in PD.

2 RELATED WORK

Existing graph learning models like GCN [Kipf & Welling| (2017) are designed for static graphs
and cannot capture evolving structures over time. However, temporal extensions in dynamic graph
models such as T-GCN |[Zhao et al.| (2020) and GC-LSTM |Chen et al.| (2022) integrate temporal se-
quences with learned structural patterns but remain limited to capturing only short-term historical
temporal dependencies when modeling current graph nodes. Moreover, the Temporal Graph Net-
work (TGN) Rossi et al.|(2020) generates node embeddings through temporal message passing with
memory modules. However, in its common edge-based implementation, TGN does not utilise node
features in the embedding process, nor does it compute node embeddings at each graph snapshot or
capture long-range temporal dynamics in all its existing implementations. Models like EvolveGCN
Pareja et al|(2019) and DyGCN |Gu et al.|(2024)) update weights or node states over time, yet fail to
jointly model local spatial features and generalized node trajectories across snapshots. To the best
of the authors’ knowledge, none of the existing approaches are designed for unsupervised represen-
tation learning in age-based or longitudinal graphs, where each node evolves over time and must be
embedded accordingly. The multi-model is designed to explicitly capture both spatial structure and
generalized temporal patterns per node, enabling more meaningful representations for downstream
unsupervised tasks like disease stages discovery. This contribution remains largely unexplored in
the current literature.

From a healthcare perspective, GNNs are not new and have been primarily employed for represen-
tation learning, graph pooling, and entities generations (like molecules represented as graph nodes
or edges), for applications dominated by structural and semantic relationships understanding among
biological entities like molecular interactions, protein functions, tissue-specific gene regulation, and
predict disease- phenotype-disease associations |Li et al.| (2022). For example, subgraph neural net-
works (SubGNNs), portions of a larger graph, have been applied to model diseases as phenotype
subgraphs derived from the Human Phenotype Ontology (HPO) knowledge base, for disease classi-
fication tasks |Li et al.| (2022). Additionally, researchers in|Abu Zohair et al.| (2025) structured each
patient’s CSF longitudinal records into a single graph and applied GCNs to model disease trajecto-
ries. However, an LSTM autoencoder was shown to outperform this approach. This approach and
the aforementioned applications were based on static graph structures and lacked the employment
of temporal modeling in a dataset of longitudinal nature. Also, in critical care and infection con-
trol, models like MSTD-GNN and STM-GNN have used temporal attention and memory to model
irregular ICU records and hospital-acquired infection dynamics, respectively, but remain largely
prediction-focused and rely on learning historical temporal patterns |Geissbuhler et al.| (2025); [Liu
et al.| (2025). Researchers also integrates dynamic attention into CTDGs by fusing global medical
ontologies with patient-specific knowledge graphs, adjusting by the graph edge weights in real time
to improve disease diagnosis|Chen et al.|(2025).

Despite these advancements, notable gaps persist. Subgraph-based disease models in prior work do
not account for dynamic symptoms evolution. Very few studies explore dynamic graph modeling,
but not in the context of learning representation for unsupervised tasks. Discrete and continuous-
time dynamic graph models were employed. However, their efficiency in handling incomplete lon-
gitudinal records has not yet been addressed. Finally, the potential of dynamic graph models in
modelling longitudinal records for understanding disease dynamics progression in rare or neurode-



Under review as a conference paper at ICLR 2026

generative diseases has yet to be explored. This research contribution directly addresses these lim-
itations by introducing a fused GCN-GRU architecture that models the influence of local structural
patterns in every graph snapshot node while learning every node’s temporal progression dynamics,
enabling the unsupervised grouping of distinct disease stages across various progression trajectories.
Finally, this work pioneers the first dynamic graph approach for modeling Huntington’s disease, of-
fering insights into disease states that have never been captured in prior literature.

3 METHOD

3.1 DATASET

The dataset utilized in this study comprises longitudinal protein and peptide abundance profiles ex-
tracted from CSF samples collected from 248 patients, and was sourced from Kaggle Kirsch et al.
(2023). In addition to CSF-derived peptide abundance data, the dataset also contains longitudinal
clinical scores, specifically the UPDRS parts 1, 2, and 3, capturing mood and cognitive symptoms,
abilities for daily living activities, and motor complications before and after medication, respectively
Kirsch et al.| (2023). Both datasets enable the temporal analysis of disease progression in PD, facil-
itating the development of computational models to infer disease states and patient trajectories, and
understand some disease/patients characteristics in each discovered stage.

3.2 METHODS AND PROCEDURES
3.2.1 CONVENTIONAL FEATURE REPRESENTATION METHODS

K-PCA and t-distributed stochastic neighbor (t-SNE), non-linear dimensionality reduction or latent
representations of peptide types were selected as feature reduction techniques. This decision was
made after preliminary analysis of data normality using the Shapiro—Wilk and Q-Q plots. In paral-
lel, dense autoencoders were commonly outperformed for learning representations of patient records
Sushil et al.| (2018); |Alkhayrat et al.| (2020); |Abu Zohair et al.|(2025)). In this project, a single-layer
dense autoencoder was employed to learn the latent representation of patients’ clinical visits. Fol-
lowing this, multiple graph representation learning models were explored. For example, a static
GCN with a single convolution layer was applied to patient records structured in temporal clini-
cal visit-based graphs, capturing only node structural patterns within a single graph. In addition,
standard dynamic graph models, such as the T-GCN, extend the structural patterns (relationships
among patient features within each clinical visit) learned by the GCN by incorporating connections
to historical temporal patterns. In this work, a simplified implementation of T-GCN is presented,
combining a single-layer GCN with a sequential model based on GRU. This design choice aims to
avoid over-smoothing effects caused by aggregating higher-order adjacency neighbors, which can
lead to homogenized node representations and the loss of node-specific local patterns. The following
subsection presents the formal graph definitions and describes the architecture of the multi-model,
which will be compared with the previously introduced approaches.

3.2.2 GRAPH STRUCTURE AND MULTI-MODEL DEFINITIONS

To utilize graph learning representation models, the tabular representation of the dataset was tran-
sitioned into a graph-based structure. Inspired primarily by Kazemi et al,| (2020), an undirected
graph was constructed at each clinical visit in the longitudinal dataset (based on the visit _month
feature), as illustrated in Figure[I] This graph is annotated by G=(V, &), where:

* V be the set of vertices (nodes), representing patients, indexed by the pat ient _id feature.

* Peptide types and their abundances for each patient are stored as node features and rep-
resented in a matrix X € R™*? where n is the number of patients (nodes), and d is the
number of clinical features associated with each node.

* & be the set of edges added between nodes. An edge is added when the similarity (measured
by Euclidean distance) between two patients’ features is below a specified threshold. This
graph structure is represented by an adjacency matrix A € R™*", defined as:
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A 1, if similarity between patients ¢ and j features < threshold
710, otherwise

The threshold corresponds to the 5th percentile of the pairwise Euclidean distance distribution be-
tween node features. It was aimed to retain only the strongest and most meaningful connections,
while reducing noise from weaker or less informative similarities. The final threshold was deter-
mined by averaging the 5th percentile of Euclidean similarity distribution scores across all graphs.

G G G
1 2 t Time
t, 1ty t3 » (Clinical Visits
Months)

Figure 1: Temporal graph construction across clinical visits in the longitudinal dataset. Each node
represents a patient’s record at a specific clinical visit (based on the visit_month feature), with edges
capturing the similarity between the features of two patients’ nodes.

The implemented multi-model architecture, illustrated in Figure[2] employs GCN to generate spatial
node embeddings (eg) at each graph snapshot, which are then fed into a GRU model to capture
general spatial dependencies (within and across patients’ features) and temporal dynamics (across
visits), including current, historical, and future patterns (e;). Finally, the learned spatio-temporal
pattern for each node is concatenated with its spatial embedding at every clinical visit and passed
through fusion layers to generate node representations (e;4s), which are then used in an unsuper-
vised clustering algorithm to identify disease states.

By definition, the multi-model creates latent node embeddings for nodes at each age using a single
layer of GCN encoder (GCNConv layer- graph convolution layer provided by PyTorch Geomet-
ric) from the standard implementation of static GCN [Kipf & Welling| (2017), Jiang et al.| (2019).
These embeddings are created by simply convolving over a node’s direct neighbors, as defined by
Equation[T]

Ht = O'(14t)(tv‘/)7 (])

where: H, are the node embeddings of graph at clinical visit %, A, is the normalized adjacency
matrix at clinical visit ¢ , W; is the learnable weight matrix at clinical visit £, and ¢ is the activation
function (ReLU) that combines the graph structure and node features X to compute the updated
node embeddings.

After that, the spatial embeddings (e®) created for each node at each time-step (age) were fed to a
single GRU layer to create a single spatio-temporal embedding for the dynamics of each patient’s
features. It is worth noting that this implementation of T-GCN is slightly modified from its standard
implementation by |Zhao et al.| (2020), with a reduced number of GCN layers used to compute the
spatial nodes’ embeddings. Additionally, the node embedding from each GRU hidden state for
each node at each age (which accounts for both current and historical temporal patterns) was also
extracted to assess its representativeness in discovering the disease state compared to the proposed
one. By definitions, for each patient (node n), the spatial embeddings over time form this sequence
H,o,Hp,1,...,Hy, where t denotes clinical visit time. The spatial embeddings for each node are
then fed into a GRU and produce a sequence of hidden states Z,o, Zp1,. .., Znt Where Z,; is the
GRU’s hidden state for node n at clinical visit ¢. This is defined in Equation 2}

Znt = GRU(Hn07 th Hn27 s 7Hnt) (2)
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The spatial-general temporal embedding, annotated by e’ in Figure [2| created for each patient (n)
at last clinical visit (t) defined as Z,, = Z14, Zot, Z3¢, . . ., Zpnt. This will be used to create the final
node embedding, et in Figure for each node n at each time step (¢) by fusing it with the spatial
nodes’ embeddings created at each age (H,,;) by Equation [3]

F,; = Fusion([H: || Znt]), (3

where: || denotes concatenation, and F,; € RV* is the proposed model embedding for all nodes
at every age t. Fusion corresponds to the fusion layers (illustrated in Figure [I)), which apply a
fully connected layer to the concatenated embeddings H,; and Z,,;, projecting them into a fixed
fusion dimension (fusion_dim). A ReLU activation is applied to the output to introduce non-
linearity and help capture complex relationships. Then, it is finally passed through a normalization
layer (LayerNorm) to stabilize training and improve convergence. The used Fusion layers were fre-
quently employed when combining embeddings of features from multiple models or data modalities
resources in the literature |Liu et al.| (2020), [L1 et al.| (2017). The selection of these layers was done
progressively, while assessing model training loss simultaneously, resulting with the final config-
uration chosen based on achieving the lowest model loss. The explained model components were
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Figure 2: Overview of the Proposed Dynamic Graph Model Architecture. G;_, represents the
graphs constructed at each unique age in the longitudinal clinical visits’ dataset. Each node color
represents a unique patient who attended a clinical visit at the corresponding age. Missing nodes
indicate time points where patients did not attend a clinical visit. The letter = to denote original
features, e for features’ embeddings, where superscript S refers to the spatial embeddings and su-
perscript ¢ denotes the temporal embeddings generated for each patient

trained (surrounded by dotted rectangles with flame icon in Figure[2)) to reconstruct the graph struc-
ture using a binary cross-entropy loss over the predicted adjacency matrices Kipf & Welling|(2016).
Once trained, node embeddings were computed by the model for each node at each age graph; illus-
trated by the graphs with a pink background in Figure[I] These embeddings, as well as the T-GCN
hidden state embeddings (Z,,;), which capture both current and historical temporal patterns in ad-
dition to structural information, were passed to the clustering phase. Clustering performance will
determine the representativeness of multi-model embeddings compared to conventional embedding
learning approaches or direct feature clustering in discovering distinct groups of patterns that corre-
spond to different but meaningful PD disease states. Models’ hyperparameters and latent dimensions
of the learned representations in all employed models were selected through a grid search, with the
optimal dimension chosen based on the one that produced the lowest training loss after 250 epochs,
after which the loss curve stabilized.
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3.2.3 EXPERIMENTAL DESIGN

The analysis started with visualizations and descriptive statistics to understand feature characteris-
tics, including general temporal trends in peptide counts, UPDRS score progression patterns, and
available patients clinical records per visit. Patients with richer longitudinal data were filtered and se-
lected to better capture peptide trends over disease progression. Dataset pre-processing techniques,
including zero imputation of empty peptide abundance, label encoding, and features’ normalization
using RobustScaler (known for better outliers handling [Izonin et al.| (2022)), ensured the data was
normalized and suitable for both classical and deep learning models.

To further examine and validate the underlying structure and distribution of the data before selecting
appropriate dimensionality reduction techniques and suitable statistical analysis methods, a series of
statistical tests was conducted. Shapiro—Wilk and visualization of Q-Q plots were used to assess the
data normality. Therefore, kernel principal component analysis (K-PCA) and t-distributed stochastic
neighbor (t-SNE), non-linear dimensionality reduction or latent representations of peptide types,
were selected as feature reduction techniques. Additionally, the normality test results in choosing
the Kruskal-Wallis test to evaluate the significant differences in the distribution of UPDRS 1, 2, and
3 across the discovered disease states. Dunn’s test was then applied to identify which cluster exactly
differed significantly from each other in terms of UPDRS score. The formulated null hypothesis
states that there is no significant differentiation among the discovered disease stages and UPDRS
scores distribution, and a p-value threshold of 0.05 was set to reject it. Collectively, these statistical
evaluations provided a robust foundation for selecting both classical feature reduction methods and
assessing the significance of the discovered temporal pattern groups.

K Means + + clustering algorithm was used, known to provide statistical assurance on the quality
of the clustering |Li et al.| (2023). The quality of the clusters decides the optimal representation
model performance, and is evaluated using 1) clustering metrics: Silhouette Score, Davies—Bouldin
Index, and Calinski—-Harabasz Score, and 2) the aforementioned significant test in the formulated
hypothesis. The best number of clusters was selected based on the grid search k value that results in
the best Silhouette score.

4 RESULTS AND DISCUSSIONS

A total of 24 patients with up to 6 years of clinical visits and 968 unique peptide types were selected
for the analysis. Initially, the original peptide values were directly clustered. Then, dimensionality
reduction and embedding methods were employed to better capture the underlying structure of pep-
tides progression patterns. Specifically, t-SNE, K-PCA, and dense autoencoders, with 2-dimensional
embeddings that consistently achieved the highest clustering scores across evaluation metrics. In
addition, graph- and sequence-based neural models were applied to capture more complex patterns
within a single patient’s peptides, across patients in a single visit, and the progression of peptide
expression over time. These included GCN, T-GCN, GS-LSTM, and the new Multi-Model architec-
ture. Across all graph representation learning models, the optimal hyperparameters were commonly
found to be a GCN embedding dimension of 8§ and a GRU hidden dimension of 4, which yielded
low training loss and strong clustering performance.

According to Figure 3] both the Multi-Model and GCN architectures achieved the highest clustering
scores, but the Multi-Model consistently converged to 4 clusters, indicating a stable temporal dis-
ease state representation. Instead, the GCN lack stability in clustering performance across various
seeds. The seed was initially set with a fixed random value to ensure that all sources of randomness,
especially those caused by model weight initialization, behave deterministically across processing.
This guarantees that the graph model’s training, evaluation, and inference are fully reproducible,
which was critical for fair comparisons.

However, model stability was a critical factor in evaluating the reliability of learned representations
for disease stage discovery. The variability in clustering results was assessed across 10 different
seeds for both the GCN and Multi-Model architectures. As shown in Table[l} the variability analysis
based on standard deviation indicates that, although the clustering performance remained relatively
stable, the GCN model’s estimated number of clusters (K) fluctuated between 3 and 9. This was
accompanied by substantial variation in the corresponding Calinski-Harabasz (CH) score. In con-
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Figure 3: Clustering performance metrics results of peptides structural and/or temporal representa-
tions created by multiple feature representation Methods, including the new graph Multi-Model.

Table 1: Standard deviation of clustering metrics across 10 different seeds for GCN and Multi-
Model. Lower values indicate higher stability.

Metric/Clusters GCN (SD) Multi-Model (SD)

Silhouette Score (SS) 0.02 0.04
Davies-Bouldin (DB) 0.08 0.14
Calinski-Harabasz (CH)  57,110.58 323.84
Number of Clusters (K) 1.79 0.46

trast, the Multi-Model architecture demonstrated markedly greater stability—consistently producing
4 clusters and yielding relatively stable clustering scores across all seeds (see Table [AT).

To explain the disease stages from clinical perspectives, patients peptides dataset, including the
discovered cluster, was merged with the UPDRS scores dataset - both originating from the same
data source - using patient_id and visit_month as keys. Then, clusters formed by the Multi-Model,
which demonstrated strong internal validity as indicated by its Davies-Bouldin (0.169) and Calinski-
Harabasz indexes (1264.24), were analyzed. To facilitate this and unlock the severity of disease
stages based on these scores, a box plot of the distribution of UPDRS scores across the discovered
clusters was generated (see Figure ).

UPDRS1 Distribution per State UPDRS?2 Distribution per State UPDRS3 Distribution per State
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Figure 4: Box plot for the distribution of UPDRS 1, 2, & 3 scores across the discovered clusters.
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It is important to note that one cluster appears missing in this figure. This was due to the exclusion
of patients without corresponding UPDRS scores during the dataset merging process. As a result,
(cluster 4) are not represented in the final UPDRS-based analysis. Kruskal-Wallis test revealed sta-
tistically significant differences (p < 0.05) in both UPDRS Part 2 (motor experiences of daily living)
and Part 3 (motor examination) scores across the plotted clusters. These differences are illustrated in
Figure 4. A post-hoc Dunn’s test was conducted to determine pairwise differences between clusters.
This analysis, with [5] reveals that UPDRS Part 2 scores showed a significant difference between
clusters 1 and 2 (p = 0.0306), with cluster 1 represent more sever UPDRS 2 symptoms compared
to 2. For UPDRS Part 3, the differences were more pronounced, with cluster 2 exhibiting distinctly
lower motor scores compared to clusters 0 and 1. In contrast, UPDRS Part 1 (non-motor experi-
ences) was more evenly distributed across three clusters, but did not reach statistical significance (p
= 0.11). This indicates that while the clustering effectively defines disease stages based on motor

UPDRS Scores by Cluster with 95% Cl

UPDRS SCores

20 1 == updrs_1
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—e= updrs_3
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[ ]
@
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o 1 2
Cluster

Figure 5: Mean UPDRS scores (Parts 1, 2, and 3) across discovered clusters, visualized with con-
nected lines. Standard deviations are represented by shaded areas. This plot illustrates the variability
in scores between the discovered clusters.

symptoms, it may be less sensitive to non-motor symptoms. These findings suggest that Cluster 1
reflects significant severe impairment in motor function and daily living activities for PD patients,
while Cluster 2 groups those with mild symptoms of the disease. Despite the limited size of the
dataset, the identified clusters capture clinically meaningful variation in motor symptom severity.

Future work will aim to reproduce these assessments in larger populations and further optimize the
multi-model architecture by incorporating sequential models such as LSTM. Additionally, compar-
isons between multiple linear perceptrons (MLPs) in place of GCN will be explored. This enables us
to evaluate the actual contribution of the graph structure (adjacency matrix) to the learning process.
Since MLPs do not use connectivity information, they serve as a strong baseline to evaluate whether
leveraging structural relationships in GCN causes a performance gain or if it is largely due to node
features. Additionally, experimenting with alternative distance and similarity measures for edge
construction, such as cosine similarity, will be explored. This proposed multi-model approach has
demonstrated efficiency as a proof of concept, and future research will investigate its applicability
to other neurodegenerative diseases as well as non-healthcare longitudinal datasets.
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Table Al: Clustering scores across 10 different seeds for GCN and Multi-Model. SS: Silhouette
Score, DB: Davies-Bouldin, CH: Calinski-Harabasz, K: Number of clusters.

GCN
Seed SS DB CH K
0 0.9508 0.2548 2,458.85 7
12 0.9640 0.2675 8,622.10 6
22 09708 0.1234 13,888.18 5
32 0.9843 0.0278 189,078.22 4
42 0.9682 0.2481 6,095.28 6
52 0.9491 0.2777 4,819.29 8
62 0.9576 0.3202 1,422.66 4
72 0.9282 0.2829 915.69 5
82 0.9877 0.0790 4,690.02 3
92 0.9264 0.3313 1,716.94 9
Multi-Model
Seed SS DB CH K
0 0.8491 0.2606  467.83 3
12 0.8494 0.3491 695.68 4
22 0.7854 0.6502  252.38 3
32 0.8465 0.2366  322.02 4
42 0.8958 0.1694 1,264.24 4
52 0.9056 0.3463  645.35 4
62 0.7975 0.4103 406.15 4
72 0.9040 0.3430 843.84 4
82 0.8635 0.4895 307.84 4
92 0.7684 0.6719  205.83 4

13



	Introduction
	Related work
	Method
	Dataset
	Methods and Procedures
	Conventional Feature Representation Methods
	Graph Structure and Multi-model definitions
	Experimental Design


	Results and Discussions
	Appendix

