
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SELF-SPECULATIVE MASKED DIFFUSIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present self-speculative masked diffusions, a new class of masked diffusion gen-
erative models for discrete data that require significantly fewer function evaluations
to generate samples. Standard masked diffusion models predict factorized logits
over currently masked positions. A number of masked positions are then sampled,
however, the factorization approximation means that sampling too many positions
in one go leads to poor sample quality. As a result, many simulation steps and
therefore neural network function evaluations are required to generate high-quality
data. We reduce the computational burden by generating non-factorized predictions
over masked positions. This is achieved by modifying the final transformer atten-
tion mask from non-causal to causal, enabling draft token generation and parallel
validation via a novel, model-integrated speculative sampling mechanism. This
results in a non-factorized predictive distribution over masked positions in a single
forward pass. We apply our method to GPT2 scale text modelling and protein
sequences generation, finding that we can achieve a∼ 2× reduction in the required
number of network forward passes relative to standard masked diffusion models.

1 INTRODUCTION

Generative models for discrete data are at the core of a wide range of modern deep learning systems
from chatbots (Gemini Team, 2023; OpenAI Team, 2023; Anthropic, 2024) to biological foundation
models (Hayes et al., 2025; Wang et al., 2025; Madani et al., 2023). These models generate data
through an iterative process, each step revealing only a small portion of the final tokens. Autoregres-
sive (AR) models (Sutskever et al., 2014; Brown et al., 2020) reveal a single token in each generation
step, doing so in a left-to-right ordering. Alternatively, masked diffusions models (MDMs) and
any-order AR models (Hoogeboom et al., 2022; Shih et al., 2022; Sahoo et al., 2024; Shi et al.,
2024; Ou et al., 2025) reveal multiple tokens at each step and can operate using any given generation
ordering. The ordering flexibility is beneficial for applications without an inherent left-to-right
structure such as protein sequences (Alamdari et al., 2023; Gruver et al., 2024; Wang et al., 2024).

During an update, standard MDMs use a neural network to output a factorized predictive distribution
over currently masked positions. Revealing more than one token from this distribution incurs
approximation error, as data distributions typically do not factorize that way; see e.g. (Zheng et al.,
2025). This imposes an upper limit on how many tokens can be revealed per step without loss of
quality, meaning a large number of network forward passes are required to generate a full datapoint.

Our objective is to reveal multiple masked tokens concurrently using a non-factorized predictive
distribution. Inspired by self-speculative sampling (Zhang et al., 2024; Elhoushi et al., 2024; Liu
et al., 2024), we propose generating a draft sequence using a network subset, then validating it in
parallel with the full transformer. By employing speculative sampling (Leviathan et al., 2023; Chen
et al., 2023), we ensure the accepted token sequence is distributed according to a non-factorized
target distribution defined by the full capacity network.

Using self-speculative sampling for MDMs provides a non-factorized predictive distribution that
can be sampled efficiently, but requires solving two key challenges. Firstly, speculative verification
requires a causal transformer but standard MDMs use a non-causal transformer. We solve this with
a novel hybrid non-causal and permutation informed causal architecture (Pannatier et al., 2024),
designing the information flow so that the causal target distribution is a strict improvement over the
non-causal draft distribution. Second, in contrast to standard speculative sampling (Leviathan et al.,
2023), the non-causal layers create a target distribution which depends on the speculative sampling

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

accept/reject sequence. We theoretically characterize this dependence by deriving a log-likelihood
lower bound for this model class.

We demonstrate our method on GPT2-scale text modelling and protein sequence generation. On
the OpenWebText and UniRef50 datasets, we achieve a ∼ 2× reduction in the number of function
evaluations (NFE) required for a given sample quality relative to standard MDMs.

2 BACKGROUND

2.1 MASKED DIFFUSIONS AS ANY-ORDER AUTOREGRESSIVE MODELS

We assume our data x = (x1, ...,xD) has D dimensions and S possible categories, i.e. x ∈
{1, . . . , S}D. Given the values of x on some subset of these dimensions, masking style generative
models train a neural network to predict the remaining unobserved dimensions. This can be expressed
mathematically in two ways. The first, MDMs, define a continuous-time discrete-valued Markov
chain (x1:D

t)t∈[0,1] on the state-space {1, . . . , S, S + 1}D, where an additional mask token M ,
M := S + 1, is introduced; see e.g. (Ou et al., 2025; Sahoo et al., 2024; Shi et al., 2024) for details.
This Markov chain, initialized at xd

0 = xd, is such that

p(xd
t |xd) = αtδ{xd

t = xd}+ (1− αt)δ{xd
t = M}, (1)

for a non-increasing noising schedule αt ∈ [0, 1] such that α0 = 1, α1 = 0. The time-reversal
of this noising process defines a generative model consisting of D random events spaced between
t = 0 and t = 1, with each event revealing a single masked token. Individually simulating these D
events is computationally prohibitive when D is large. Hence, many inference techniques instead
reveal multiple masked tokens simultaneously using a factorized predictive distribution over the
masked dimensions given the current partially masked context x1:D

t . This is parameterized by a
neural network with parameters θ as,

pθ(x
1:D|x1:D

t) =
∏

d:xd
t=M

pθ(x
d|x1:D

t)
∏

d:xd
t ̸=M

δ{xd = xd
t }. (2)

As shown by Austin et al. (2021); Hoogeboom et al. (2022); Ou et al. (2025), MDMs are closely
related to any-order AR models which directly consider the unmasking events, doing away with the
time variable t. Let σ be a permutation of the numbers {1, . . . , D}, with σ(i : j) = (σ(i), σ(i +
1), ..., σ(j)) representing the i-th to the j-th element of this permutation. This permutation is usually
picked uniformly at random. Given some subset of the dimensions of x, any-order AR models predict
the remaining dimensions by parameterizing the predictive distribution pθ(x

σ(i+1:D)|xσ(1:i)). AR
diffusion models (Hoogeboom et al., 2022) use a factorized parameterization of this distribution
similar to MDMs

↔
p θ(x

σ(i+1:D)|xσ(1:i)) =
∏D

d=i+1

↔
p θ(x

σ(d)|xσ(1:i)), (3)

where the
↔
p notation signifies

↔
p θ(x

σ(i+1:D)|xσ(1:i)) is parameterized with a transformer using a
non-causal (↔) any-to-any attention mask. Conditioning on only the xσ(1:i) dimensions is achieved
by masking out the xσ(i+1:D) dimensions at the input to the transformer. The distribution is factorized
over the components of xσ(i+1:D). We refer to

↔
p as a non-causal distribution.

An alternative approach is to parameterize the predictive distribution autoregressively, using a network
architecture that can operate over a given input ordering (Yang et al., 2019; Pannatier et al., 2024), i.e.

→
p ϕ(x

σ(i+1:D)|xσ(1:i)) =
∏D

d=i+1

→
p ϕ(x

σ(d)|xσ(1:d−1)), (4)

where the
→
p notation signifies that

→
p ϕ(x

σ(i+1:D)|xσ(1:i)) is parameterized with a transformer using
a causal (→) attention mask to ensure it only attends to xσ(1:d−1). We provide an overview on
attention masks in Appendix A. The distribution is autoregressive over the components of xσ(i+1:D).
We refer to

→
p as a causal distribution.

Mask generative models with non-causal
↔
p θ are sampled using the multi-step process in Algorithm 1.

Firstly, a generation ordering σ is drawn from p(σ). This step is explicit for any-order AR models

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Algorithm 1 Mask Generative Model Sampling With Non-Causal
↔
p θ

i← 0 Number of tokens currently revealed
σ ∼ p(σ) Draw the generation ordering
while i < D do
k ∼ p(k|i) Number of tokens to reveal, k ≥ 1

xσ(i+1:i+k) ∼ ↔
p θ(x

σ(i+1:i+k)|xσ(1:i))
i← i+ k

end while

whereas for standard MDMs σ is implicitly picked uniformly at random. Then, within each update
step, a number of tokens k are revealed in the ordering specified by σ. Any-order AR models typically
set k to be some constant number of reveals per step, whereas standard MDMs reveal a random
number of tokens per step. The number of reveals, k, is drawn from some distribution p(k|i) that can
be derived from the noise schedule αt and depends on the current number of revealed tokens, i.

2.2 SPECULATIVE SAMPLING

Speculative sampling is a method developed to accelerate inference for large language models (LLMs)
(Chen et al., 2023; Leviathan et al., 2023). The total cost of LLM inference is memory-bound, i.e.,
dominated by the cost of moving the model weights from high-bandwidth memory to the accelerator
cache. Since cost is dominated by memory operations, applying the transformer to a sequence
has similar latency to a single token, despite increased arithmetic computations in the former case.
Speculative sampling exploits this by creating a draft sequence using a smaller model, which is then
efficiently verified in parallel with a single forward pass of the larger target LLM. Verification results
in the acceptance of a subset of the draft tokens, such that the accepted sequence is still distributed
according to the probability distribution defined by the target model.

Formally, let the draft model be p(xd|x1:d−1) and the target model be q(xd|x1:d−1). We aim to draw
samples from q by first sampling a sequence of tokens from p and accepting some number of them.
We let the context of already generated tokens be x1:i and let W ≥ 1 be some window size. To
sample new tokens, we first draw the draft sequence, x̂i+1:i+W ∼

∏i+W
d=i+1 p(x̂

d|x1:i, x̂i+1:d−1).
We then, in parallel, obtain the probabilities that the target model assigns to the draft tokens
x̂i+1:i+W , {q(x̂d|x1:i, x̂i+1:d−1)}i+W

d=i+1 . Starting from the (i + 1)-th token, we accept each
token with probability min

(
1, q(x̂d|x1:i, x̂i+1:d−1)/p(x̂d|x1:i, x̂i+1:d−1)

)
. Let the first position

we reject be j. We then resample x̂j from the adjusted distribution r(x̂j |x1:i, x̂i+1:j−1) ∝
max

(
0, q(x̂j |x1:i, x̂i+1:j−1)− p(x̂j |x1:i, x̂i+1:j−1)

)
. One can prove that the resulting sequence

x̂i+1:j is distributed according to the target distribution q(x̂i+1:j |x1:i) (Leviathan et al., 2023).

3 SELF-SPECULATIVE MASKED DIFFUSIONS

To sample from MDMs efficiently, we want to reveal many tokens k per update step (Algorithm
1). The standard approach computes the factorized distribution

↔
p θ(x

σ(i+1:D)|xσ(1:i)) (Equation
3) using one single forward pass and samples k tokens from it. If k is large, sample quality
degrades due to the conditional independence approximation. Ideally, we would sample from the
non-factorized distribution

→
p ϕ(x

σ(i+1:D)|xσ(1:i)) (Equation 4). However, naively sampling k tokens
autoregressively from

→
p ϕ requires k forward passes, negating any computational savings.

To circumvent this, we use speculative sampling to efficiently sample from
→
p ϕ(x

σ(i+1:D)|xσ(1:i)),
using the non-causal model as the draft and the causal model as the target. To avoid needing two
models, Section 3.1 describes a novel hybrid transformer with both non-causal and causal layers,
enabling drafting and verification in one forward pass. We then describe our training objective
(Section 3.2) and sampling algorithm (Section 3.3). This combined architecture induces a shifting
speculative sampling target, which we characterize theoretically in Section 3.4, and discuss practical
sampling improvements in Section 3.5.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

σ(1)=6

e1 p1

e2 p2

e3 p3

e4 p4

e5 p5

e6 p6

Speculation

is

like

hazarding

a

guess

<mask>

is

<mask>

<mask>

a

guess

h1

h2

h3

h4

h5

h6

h4

h6

h5

h2

h3

h3

h5

h2

h4

h1

e4

e6

e5

e2

e3

like

hazarding

Non-Causal Transformer

Permutation

p6

p5

p2

p4

p3

p5

p2

p4

p3

p1

h5

h2

h4

h3

h1

h5+

h2+

h4+

h3+

h1+

Concatenation

p Position Encoding e Input Embedding (real token)

h Non-Causal Hidden Statese Input Embedding (mask token)σ Ordering

h Causal Hidden States+ Addition

Causal Transformer
σ(2)=5 σ(3)=2 σ(4)=4 σ(5)=3 σ(6)=1

Current Position and Next
Position Information

Non-causal & Causal Hidden
State Residual Connection

“hazarding”

“like”

“Speculation”

guess a is hazarding like Speculation

Figure 1: Hybrid non-causal/causal transformer during training on the sentence “Speculation is like
hazarding a guess” which is partially corrupted in the ordering given by σ(1 : 6) = [6, 5, 2, 4, 3, 1].
We always mask the final elements in the sequence, here the final 3 elements in the sequence, [4, 3, 1].
At inference time, the causal transformer uses draft tokens rather than real tokens. Empty circles
represent concatenation whilst circles with a plus represent addition.

3.1 ARCHITECTURE

We need to parameterize both a non-causal factorized distribution
↔
p θ(x

σ(i+1:D)|xσ(1:i)) and a causal
AR distribution

→
p ϕ(x

σ(i+1:D)|xσ(1:i)) for any permutation σ. We propose a hybrid architecture that
starts with a set of non-causal blocks parameterizing

↔
p θ similar to standard MDMs. We then use a set

of causal blocks operating on the hidden states from the previous layers to parameterize
→
p ϕ. These

causal blocks follow the σ-GPT architecture (Pannatier et al., 2024), which models any ordering σ by
operating on the permuted sequence with additional positional encodings. Our full architecture is
given in Figure 1, we now detail each component.

Non-Causal Blocks. These layers follow the standard MDM architecture: masked/unmasked tokens
and positional encodings are passed into any-to-any attention layers. The factorized distribution
↔
p θ(x

σ(i+1:D)|θ(xσ(1:i))) is computed from the output hidden states; the track corresponding to σ(j)

predicting the token in position σ(j) for j > i. For example, in Figure 1,
↔
p θ(x

σ(5)|θ(xσ(1:3))) is
computed from the hidden state on the track corresponding to the fifth position in the ordering (h3
in this case since σ(5) = 3). The notation θ(xσ(1:i)) denotes that tokens xσ(1:i) were revealed as a
conditioning signal that was subsequently processed by the non-causal layers with parameters θ.

Causal Blocks. We parameterize the causal distribution via the σ-GPT architecture: left-to-right
attention masked causal blocks applied to the permuted sequence. Unlike non-causal blocks, the track
corresponding to position σ(j) predicts the token for the next position in the sequence, σ(j+1). This
is standard for causally masked transformers; since the full unmasked sequence is input, predicting
the token σ(j) from track σ(j) would be trivial. Because we operate on any ordering σ, each track
needs information on both its own position, σ(j), and the next position σ(j + 1), provided via
positional encodings (Pannatier et al., 2024). For example, in Figure 1, the σ(5) track uses positional
encodings for σ(5) = 3 and σ(6) = 1 to predict the token “Speculation” in position σ(6) = 1

In our architecture, we also input the non-causal hidden states corresponding to the current and next
position, following the same reasoning as for the positional encodings. For the first position, σ(1),
we set the causal distribution equal to the non-causal distribution as no extra information is available.
Finally, during training, we also input the true permuted token sequence into the causal block and
rely on the causal attention to induce the correct conditional independencies. This is in contrast to the
non-causal blocks where we input both real tokens and mask tokens with the mask tokens inducing
the conditional independence. During sampling, the real tokens provided as input to the causal blocks
are draft tokens generated by the non-causal blocks.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Output. At the causal output, for the prediction of token in position σ(j + 1), we use a residual
connection adding the non-causal hidden state for position σ(j+1) e.g. h1 for the token “Speculation”
in Figure 1. This ensures the causal target strictly improves over the non-causal distribution. It also
aligns the draft and target distributions, increasing the speculative acceptance rate. The causal output
from our hybrid architecture depends on both the parameters of the non-causal blocks (θ) and the
causal blocks (ϕ). We write this as

→
p θ,ϕ(x

σ(d)|θ(xσ(1:i)), ϕ(xσ(i+1:d−1))) specifying that tokens
xσ(1:i) were processed by θ in the non-causal blocks, whilst future tokens ϕ(xσ(i+1:d−1)) were input
only into the causal blocks.

In Appendix E we carry out a FLOP analysis for the extra overhead in our architecture versus a
standard transformer, finding only a 1.1% increase in FLOPs for standard settings.

3.2 TRAINING OBJECTIVE

When the revealed context to the non-causal blocks is xσ(1:i), our architecture parameterizes both the
non-causal distribution our architecture parameterizes both the non-causal distribution

↔
p θ(x

σ(i+1:D)|θ(xσ(1:i))) =
∏D

d=i+1

↔
p θ(x

σ(d)|θ(xσ(1:i))), (5)

and the causal distribution
→
p θ,ϕ(x

σ(i+1:D)|θ(xσ(1:i)), ϕ) =
∏D

d=i+1

→
p θ,ϕ(x

σ(d)|θ(xσ(1:i)), ϕ(xσ(i+1:d−1))). (6)

We would like both the non-causal and causal distributions to approximate the corresponding true
conditional distributions of the data distribution

↔
p θ(x

σ(d)|θ(xσ(1:i))) ≈ pdata(x
σ(d)|xσ(1:i)) (7)

→
p θ,ϕ(x

σ(d)|θ(xσ(1:i)), ϕ(xσ(i+1:d−1))) ≈ pdata(x
σ(d)|xσ(1:d−1)). (8)

We note that in Equation 8, there are multiple causal distributions that approximate the same true
conditional pdata(xσ(d)|xσ(1:d−1)) for different values of i which specifies the computation path
taken to parameterize

→
p θ,ϕ. We discuss this further in Section 3.3. We train θ and ϕ by jointly by

maximizing the standard cross entropy loss with a weighting D
D−i that normalizes by the number of

masked positions D − i (Hoogeboom et al., 2022)

L = E
[

D

D − i

(
log

↔
p θ(x

σ(i+1:D)|θ(xσ(1:i))) + log
→
p θ,ϕ(x

σ(i+1:D)|θ(xσ(1:i)), ϕ)
)]

, (9)

where the expectation is taken over pdata(x)p(σ)p(i) with σ sampled uniformly and p(i) following
a noising schedule similar to MDMs. The first part of the loss is mathematically equivalent to the
MDM loss (Shi et al., 2024; Sahoo et al., 2024), as shown by Ou et al. (2025). The second part of
the loss can be seen as a standard AR cross-entropy loss computed over the masked tokens under a
random order (Uria et al., 2014). We highlight that evaluating both

↔
p θ and

→
p θ,ϕ for the objective

takes only one single forward pass of the hybrid network. Training curves (Section 5.1) show that
the causal distribution

→
p θ,ϕ achieves a lower loss than the non-causal draft distribution

↔
p θ, as it can

model missing tokens with a non-factorized distribution. We note that our architecture is compatible
with both fine-tuning and full-training. In fine-tuning we can freeze the non-causal backbone to a
pretrained masked diffusion model and train only the causal blocks on top.

3.3 SAMPLING PROCEDURE

We sample our hybrid architecture using Algorithm 2. The general procedure follows Algorithm
1, revealing tokens in update steps until the sequence is complete. In a given update step (with
i tokens revealed), the non-causal blocks first generate draft tokens for all unknown positions,
x̂σ(i+1:D) ∼ ↔

p θ(x̂
σ(i+1:D)|θ(xσ(1:i))). The causal blocks then give target probabilities for the

drafted tokens {→p θ,ϕ(x̂
σ(d)|θ(xσ(1:i)), ϕ(x̂σ(i+1:d−1))}Dd=i+1. Finally, a speculative sampling inner

loop accepts some of the drafted tokens. Appendix B details a more general windowed procedure.

Our procedure bears some similarity to self-speculative (Zhang et al., 2024; Elhoushi et al., 2024;
Liu et al., 2024) and Medusa (Cai et al., 2024) style approaches where an initial subset of the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 2 Self-Speculative Masked Diffusion Sampling

i← 0 Number of tokens currently revealed
σ ∼ p(σ) Draw the generation ordering
while i < D do
x̂σ(i+1:D) ∼ ↔

p θ(x̂
σ(i+1:D)|θ(xσ(1:i))) Sample draft tokens

Compute {→p θ,ϕ(x̂
σ(d)|θ(xσ(1:i)), ϕ(x̂σ(i+1:d−1)))}Dd=i+1

for d = i+ 1 to D do
U ∼ U(0, 1)
if U < min

(
1,

→
p θ,ϕ(x̂

σ(d)|θ(xσ(1:i)), ϕ(x̂σ(i+1:d−1)))/
↔
p θ(x̂

σ(d)|θ(xσ(1:i)))
)

then

Accept draft token xσ(d) ← x̂σ(d)

else
Reject x̂σ(d) and resample, x̂σ(d) ∼ p̃(x̂σ(d)) where
p̃(x̂σ(d)) ∝ max

(
0,

→
p θ,ϕ(x̂

σ(d)|θ(xσ(1:i)), ϕ(x̂σ(i+1:d−1)))−↔
p θ(x̂

σ(d)|θ(xσ(1:i)))
)

Exit for loop and set xσ(d) ← x̂σ(d)

end if
end for
i← d Update the current number of tokens revealed

end while

network is used to parameterize a draft distribution which is then verified by the full transformer.
However, using self-speculation for MDMs causes additional complexity because the target dis-
tribution given by Equation 6 changes depending on the number of revealed tokens. Consider
the targets

→
p θ,ϕ(x

σ(i+1:D)|θ(xσ(1:i)), ϕ) and
→
p θ,ϕ(x

σ(j+1:D)|θ(xσ(1:j)), ϕ) for j > i. The fac-
tors for a fixed d differ; i.e., importantly, we have

→
p θ,ϕ(x

σ(d)|θ(xσ(1:i)), ϕ(xσ(i+1:d−1))) ̸=
→
p θ,ϕ(x

σ(d)|θ(xσ(1:j)), ϕ(xσ(j+1:d−1))). This is because the non-causal blocks operate on different
inputs (one sequence with i revealed tokens, the other with j). So the hidden states passed to
the causal blocks differ, causing the target distribution for position σ(d) to change throughout the
generation trajectory. This is not an issue for existing self-speculative models restricted to a single
left-to-right ordering. All transformer blocks are causal in this case and never observe future tokens,
meaning the target remains unchanged during generation.

3.4 THEORETICAL RESULTS

It is important to understand how our learned predictive distributions
↔
p θ and

→
p θ,ϕ influence the

distribution of samples generated by Algorithm 2. For standard any-order autoregressive models, the
log-likelihood of the output can be bounded simply by log pθ(x) ≥ Eσ

[∑D
d=1 log

↔
p θ(x

d|x1:d−1)
]
.

Our case is not as simple however because both
↔
p θ and

→
p θ,ϕ influence pθ,ϕ(x) through the self-

speculative procedure. We here characterize the distribution of samples generated by Algorithm 2
for a given ordering, pθ,ϕ(xσ(1:D)). The target of the inner speculative sampling loop, Equation
6, depends on the current number of revealed tokens, i. This therefore implies the need for a
combinatorial sum over all possible numbers of tokens revealed during each inner loop. Instead, we
show in Proposition 3.1 that pθ,ϕ(xσ(1:D)|σ) can be tractably calculated with D forward passes and
O(D2) operations using a recursive decomposition. The proof is provided in Appendix C.1.

Proposition 3.1. Consider the sampling scheme defined by Algorithm 2. For a given ordering σ, let
Aσ(d) denote the event that the token in position σ(d) was accepted and let Rσ(d) denote the event
it was rejected and resampled. The distribution of samples output by Algorithm 2, pθ,ϕ(xσ(1:D)|σ),
then admits the following decomposition

pθ,ϕ(x
σ(1:D)|σ) =pθ,ϕ(x

σ(1:D), Aσ(1:D))

+
∑D

d=1
pθ,ϕ(x

σ(1:d), Rσ(d))pθ,ϕ(x
σ(d+1:D), Aσ(d+1:D)|xσ(1:d), Rσ(d)),

(10)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

where pθ,ϕ(x
σ(1:d), Rσ(d)) =

∑d

k=1
pθ,ϕ(x

σ(1:k−1), Rσ(k−1))

× pθ,ϕ(x
σ(k:d), Aσ(k:d−1), Rσ(d)|xσ(1:k−1), Rσ(k−1)). (11)

pθ,ϕ(x
σ(d+1:D), Aσ(d+1:D)|xσ(1:d), Rσ(d)) and pθ,ϕ(x

σ(k:d), Aσ(k:d−1), Rσ(d)|xσ(1:k−1), Rσ(k−1))
correspond to the likelihood associated with a single inner loop speculative sampling procedure. Their
directly calculable forms in terms of

↔
p θ and

→
p θ,ϕ are given in Appendix C.1. Further, pθ,ϕ(xσ(1:D)|σ)

can be computed with D neural network forward passes and O(D2) operations.

Proposition 3.1 can be understood as a dynamic programming recursion where the total likelihood
pθ,ϕ(x

σ(1:D)|σ) is split up into smaller sub-chunks using the simpler object pθ,ϕ(xσ(1:d), Rσ(d))

which can be written as a recursion on its previous values pθ,ϕ(xσ(1:k−1), Rσ(k−1)) for k = 1 to d.
We can now obtain an Evidence Lower BOund (ELBO) on log pθ,ϕ(x),

log pθ,ϕ(x) ≥ Ep(σ)

[
log pθ,ϕ(x

σ(1:D)|σ)
]
. (12)

We could use this ELBO as a training objective but favored instead the objective in (9) which is
simpler and computationally much cheaper. Another quantity of theoretical interest is the number of
inner loops of Algorithm 2 (each corresponding to one network forward pass) required to generate a
sample, which defines the expected computational cost to generate a given datapoint. This requires
knowing the total rejection count, ND, which can be found again through a recursive decomposition
of the model likelihood. In Appendix C.2 we derive an expression for pθ,ϕ(ND|xσ(1:D), σ) for a
given generation and ordering.

3.5 SAMPLING IMPROVEMENTS

Algorithm 2 assumes each sampling inner loop corresponds to one forward pass of the non-
causal blocks and a single verification pass through the remaining causal blocks. We can vary
the sample quality-efficiency trade-off by running the speculative inner loop multiple times per
single forward pass of the non-causal blocks. The non-causal forward pass first creates a draft
↔
p θ(x

σ(i+1:D)|θ(xσ(1:i))) distribution. Draft tokens are then sampled and we compute the target
probabilities on these draft tokens using the causal layers. One speculative sampling loop is run
to accept a number of these draft tokens finishing with a rejection and a resampling of a token. In
the next speculative sampling inner loop we re-use the non-causal hidden states but recompute the
target probabilities on the remaining draft tokens, noting the resampling operation will change the
target probabilities for subsequent tokens compared to the first speculative sampling inner loop.
This procedure is repeated for a user specified number of inner loops, the full algorithm is de-
scribed in Appendix B. In our experiments, the vast majority of the network is non-causal, so this
procedure greatly increases efficiency. To know when to stop generating tokens with the same
draft

↔
p θ(x

σ(i+1:D)|θ(xσ(1:i))), we use windows (Leviathan et al., 2023; Chen et al., 2023) to set a
maximum number of tokens we can reveal. We discuss window choices in Appendix D.

4 RELATED WORK

Several speculative sampling works have explored using a single network for both the draft model
and target model (Zhang et al., 2024; Elhoushi et al., 2024; Liu et al., 2024), termed self-speculative
decoding. These differ from our work by using causal draft and target layers in a strict left-to-right
setting. In the same setting, non-causal factorized predictions were explored by Cai et al. (2024)
using a mostly causal stack with single-layer factorized prediction heads to draft tokens. We flip this:
our network is mostly non-causal with a small final causal layer. Finally, a non-causal draft model
and entirely separate causal target model was explored for audio generation in Ziv et al. (2024). We
combine these two into a single architecture reducing deployment complexity.

Causal models for any-order AR training were explored by Yang et al. (2019), who introduced
XLNet, a specialized two-stream architecture enforcing correct causal dependencies for different
orderings. Further architectures used a standard single stream causal architecture and input ordering
information through double positional encodings (Pannatier et al., 2024) or extra position tokens
(Pang et al., 2025). Pannatier et al. (2024) describe a speculative sampling procedure but its validity

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

103 104 105 106

Training Steps

1.5
2.0
2.5
3.0
3.5
4.0

Lo
ss

causal
noncausal

Figure 2: Causal (
→
p θ,ϕ) and non-causal (

↔
p θ)

training losses on the text8 dataset.

10 20 30 40 50 70 100
NFE

0.70

0.75

0.80

0.85

0.90

Sp
el

lin
g

Ac
cu

ra
cy

Speculative
Mask Diffusion

Figure 3: Spelling accuracy versus number of
function evaluations (NFE) on the Text8 dataset
for our speculative approach and mask diffusion.

is not established and the draft model is not described. An any-order causal transformer baseline
reported by Hoogeboom et al. (2022) performed poorly in the MDMs context. We improve on the
pure any-order causal model by letting it re-use computations from a powerful non-causal transformer.

Guo and Ermon (2025) perform self-speculative decoding within an any-subset AR model, which,
given an arbitrarily located prompt, in-fills missing tokens in a left-to-right fashion. In contrast, our
model can condition on an arbitrarily located prompt and in-fill using any ordering too, more akin
to standard MDMs. They rely on the XLNet architecture which faces optimization difficulties for
generation tasks with short prompts and large numbers of missing tokens requiring optimization
tuning such as a masking schedule warm-up (Yang et al., 2019). Our architecture does not require
any mask schedule warm-up and can operate in the fully masked regime with no prompt.

In the MDMs context, previous works have also aimed at speeding up sampling. Similar to our work,
some aim to introduce dependencies between the newly sampled tokens via an energy-based model
(Xu et al., 2025) or a latent variable mixture model (Hayakawa et al., 2025). We instead opt for
speculative sampling to sample from a non-factorized target in one shot. Liu et al. (2025) use an AR
model to derive a target, however, their predictive distribution must be sampled autoregressively for
each denoising step. Deschenaux and Gulcehre (2025) use distillation to speed up sampling, however,
their student model remains factorized, limiting potential speedups.

5 EXPERIMENTS

5.1 TEXT8

We first validate our method on the small-scale text8 dataset (100M chars, 27-token vocabulary).
We trained a 150M parameter semi-causal transformer (11 non-causal blocks, 1 causal block) using
the objective given in Equation 9. In Figure 2 we show the training losses split by the non-causal,
log

↔
p θ(x

σ(i+1:D)|θ(xσ(1:i))), and causal, log
→
p θ,ϕ(x

σ(i+1:D)|θ(xσ(1:i)), ϕ) components. The total
loss is the sum of these two components. We see that in the initial stage of training the non-causal
and causal loss exactly track each other, attributable to our use of a residual connection to the causal
output in our architecture. After around 104 steps, the causal block then learns to make use of the
additional context available to it and dramatically reduces its training loss. This exemplifies the
extra capacity a causal distribution has to fit the training data distribution due to it moving beyond
the factorization assumption. With our speculative sampling procedure, we can efficiently produce
samples from this more powerful causal distribution.

We now investigate our model’s efficiency-sample quality trade-off. We compute the NFE during
sampling by defining 1 NFE as a full 12-block forward pass. A standard speculative step (11 non-
causal + 1 causal pass) counts as 1 NFE. Running the causal block multiple times increases this
fractionally (e.g., 1 non-causal + 7 causal passes = 18/12=1.5 NFE). For MDMs, an update is 1 NFE
unless no tokens change value in which case the update step could have been skipped and this is
counted as 0 NFE. We used this best case analysis for MDM to provide a strong baseline.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: GPT2 NLLs (in nats per dim) and unigram token entropy (nats). For each method a metric-
NFE tradeoff curve is created by varying sampling parameters. Values at each NFE are read off by
linearly interpolating between the two nearest points. For comparison we include results for mask
diffusion and Self Distillation Through Time (SDTT) (Deschenaux and Gulcehre, 2025). We also
include ablations, removing the residual output connection and a 10 non-causal 2 causal block model.

Method GPT2 NLL (↓) Entropy
32 NFE 64 NFE 128 NFE 256 NFE 32 NFE 64 NFE 128 NFE 256 NFE

Masked Diffusion 5.50 5.27 5.13 5.05 5.72 5.70 5.68 5.67
Speculative (ours) 5.28 5.12 5.05 5.02 5.72 5.70 5.68 5.66

SDTT 3.70 3.46 3.30 3.18 5.31 5.25 5.18 5.11

No output residual 5.36 5.16 5.10 5.05 5.74 5.70 5.68 5.67
10nc-2c layers 5.34 5.16 5.06 5.03 5.71 5.68 5.67 5.66

To measure sample quality we calculate spelling accuracy by generating D = 256 characters and
then computing the proportion of words within the sample that also appear in the training dataset; a
word being defined as any number of lowercase characters between two whitespace characters. To
create the accuracy-NFE tradeoff, we vary the window size and number of draft-verify steps (each
requiring one forward pass of the causal block) undertaken per pass of the non-causal blocks. We
utilize a cosine shaped window (similar to the cosine discretization grid proposed in Shi et al. 2024)
with varying time step parameter, the derivation of which is given in Appendix D.

We compare against MDM using the implementation from Shi et al. (2024) with a varying number
of timesteps used to simulate the generative process. We plot our results in Figure 3. We see that
our approach is able to achieve higher spelling accuracy at lower NFE versus standard MDMs. For
example in the low NFE range, our approach is able to achieve greater than 2× reduction in NFE.

5.2 OPENWEBTEXT

We demonstrate our method on OpenWebText using a GPT2-scale, 150M parameter, 12-layer
transformer with RoPE positional encodings (Shi et al., 2024), setting the first 11 layers as non-causal
and the final layer as causal. We use generative perplexity (measured by GPT2) as our metric,
supplementing it with unigram token entropy to ensure sample diversity (as generative perplexity can
be cheated by low-temperature sampling). Compared to an MDM baseline (Shi et al., 2024) with an
identical architecture, our method (Table 1) achieves the same generative perplexity with half the
NFE, while maintaining similar sample entropy for all NFE levels.

We also compare with Self-Distillation Through Time (SDTT) (Deschenaux and Gulcehre, 2025),
where a student model is trained on a coarse time grid to match a teacher MDM sampled on a fine time
grid. SDTT achieves very low GPT2 NLLs, far below the teacher MDM model using much larger
NFE. Investigating the entropy of the produced samples reveals that SDTT samples are lower entropy
than other methods. This mode-seeking is likely caused by truncation errors in the SDTT teacher
model sampling (Zheng et al., 2025). In contrast, our approach reduces NFE while maintaining
sample diversity equivalent to the baseline.

Finally, we perform two architectural ablations. First, removing the output residual connection (see
Figure 1) worsens the GPT2 NLL - NFE trade-off. We hypothesize that the residual connection both
makes the target easier for the single causal layer to learn and aligns the draft/target distributions,
boosting acceptance rates. Second, moving from an 11 non-causal blocks and 1 causal block to a
10 non-causal blocks and 2 causal blocks architecture also worsens the GPT2 NLL - NFE trade-off
demonstrating that the best balance between the power of the draft distribution and power of the
target distribution is achieved with only a single causal block applied to the non-causal stack.

5.3 PROTEIN SEQUENCE MODELLING

We now demonstrate our method on non-text data by modeling amino acid sequences from the
Uniref50 dataset, following settings from Wang et al. (2024) (40M sequences, max length 1022). To
demonstrate applicability to pretrained models, we take the 150M parameter, 30-layer ESM2-based

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

model from Wang et al. (2024) (Lin et al., 2023), freeze its parameters, and add a single causal block
(carrying hidden states from the final non-causal block), training only this extra head.

20 30 40 50 70 100 200
NFE

32
34
36
38
40
42
44

pL
DD

T Speculative
Mask Diffusion

Figure 4: pLDDTs versus NFE for mask diffusion
and our speculative method. The mean pLDDT is
computed over 512 samples with the standard error
of the mean represented by the shading.

We measure sample quality using the average
pLDDT from ESMFold (Lin et al., 2023); a
higher pLDDT indicates higher folding confi-
dence, suggesting the sequence better follows
the natural distribution. We compare this to the
original Wang et al. (2024) non-causal model,
sampled using the standard MDM algorithm
(omitting resampling, temperature scaling, or
confidence scoring for a consistent baseline).
Our results (Figure 4) show a better sample
quality-NFE trade-off than the standard algo-
rithm, in particular achieving a ∼ 2× speed-up
for high pLDDT. This showcases the benefit of
adding just a single causal block to a frozen
pretrained network. We note that dedicated σ
selection techniques for protein data can achieve
higher pLDDT values, for example Peng et al.
(2025), however we here focused on the vanilla
purely random ordering MDM case.

6 DISCUSSION

We presented self-speculative masked diffusions, a novel architecture and sampling scheme for
MDMs that reduces the number of network forward passes required for a given sample quality
compared to standard MDM approaches. On a variety of datasets, from text to protein sequences, our
method consistently improves computational efficiency, reducing the number of network evaluations
by up to 2× compared to MDMs. Further work could explore the natural combination of our method
with compute-intensive inference-scaling techniques, such as re-masking corrector steps, in order to
reach a new level of model reasoning capability for a fixed compute budget.

REFERENCES

Alamdari, S., Thakkar, N., van den Berg, R., Lu, A. X., Fusi, N., Amini, A. P., and Yang, K. K.
(2023). Protein generation with evolutionary diffusion: sequence is all you need. In NeurIPS 2023
Generative AI and Biology Workshop.

Anthropic (2024). The Claude 3 model family: Opus, Sonnet, Haiku. Technical Report.

Austin, J., Johnson, D. D., Ho, J., Tarlow, D., and Van Den Berg, R. (2021). Structured denoising
diffusion models in discrete state-spaces. In Advances in Neural Information Processing Systems.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam,
P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot learners. In Advances in
Neural Information Processing Systems.

Cai, T., Li, Y., Geng, Z., Peng, H., Lee, J. D., Chen, D., and Dao, T. (2024). Medusa: Simple LLM
inference acceleration framework with multiple decoding heads. In International Conference on
Machine Learning.

Chen, C., Borgeaud, S., Irving, G., Lespiau, J.-B., Sifre, L., and Jumper, J. (2023). Accelerating large
language model decoding with speculative sampling. arXiv preprint arXiv:2302.01318.

Deschenaux, J. and Gulcehre, C. (2025). Beyond autoregression: Fast LLMs via self-distillation
through time. In International Conference on Learning Representations.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Elhoushi, M., Shrivastava, A., Liskovich, D., Hosmer, B., Wasti, B., Lai, L., Mahmoud, A., Acun, B.,
Agarwal, S., Roman, A., et al. (2024). LayerSkip: Enabling early exit inference and self-speculative
decoding. In Annual Meeting of the Association for Computational Linguistics.

Gemini Team (2023). Gemini: a family of highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Gruver, N., Stanton, S., Frey, N., Rudner, T. G., Hotzel, I., Lafrance-Vanasse, J., Rajpal, A., Cho, K.,
and Wilson, A. G. (2024). Protein design with guided discrete diffusion. In Advances in Neural
Information Processing Systems.

Guo, G. and Ermon, S. (2025). Reviving any-subset autoregressive models with principled parallel
sampling and speculative decoding. arXiv preprint arXiv:2504.20456.

Hayakawa, S., Takida, Y., Imaizumi, M., Wakaki, H., and Mitsufuji, Y. (2025). Distillation of
discrete diffusion through dimensional correlations. In Advances in Neural Information Processing
Systems.

Hayes, T., Rao, R., Akin, H., Sofroniew, N. J., Oktay, D., Lin, Z., Verkuil, R., Tran, V. Q., Deaton,
J., Wiggert, M., et al. (2025). Simulating 500 million years of evolution with a language model.
Science, page eads0018.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E., Cai, T., Rutherford, E., Casas, D. d. L.,
Hendricks, L. A., Welbl, J., Clark, A., et al. (2022). Training compute-optimal large language
models. arXiv preprint arXiv:2203.15556.

Hoogeboom, E., Gritsenko, A. A., Bastings, J., Poole, B., Berg, R. v. d., and Salimans, T. (2022).
Autoregressive diffusion models. In International Conference on Learning Representations.

Leviathan, Y., Kalman, M., and Matias, Y. (2023). Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning.

Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli,
Y., et al. (2023). Evolutionary-scale prediction of atomic-level protein structure with a language
model. Science, 379(6637):1123–1130.

Liu, A., Broadrick, O., Niepert, M., and Broeck, G. V. d. (2025). Discrete copula diffusion. In
International Conference on Learning Representations.

Liu, F., Tang, Y., Liu, Z., Ni, Y., Han, K., and Wang, Y. (2024). Kangaroo: Lossless self-speculative
decoding via double early exiting. In Advances in Neural Information Processing Systems.

Madani, A., Krause, B., Greene, E. R., Subramanian, S., Mohr, B. P., Holton, J. M., Olmos, J. L.,
Xiong, C., Sun, Z. Z., Socher, R., et al. (2023). Large language models generate functional protein
sequences across diverse families. Nature Biotechnology.

OpenAI Team (2023). GPT-4 technical report. arXiv preprint arXiv:2303.08774.

Ou, J., Nie, S., Xue, K., Zhu, F., Sun, J., Li, Z., and Li, C. (2025). Your absorbing discrete diffusion
secretly models the conditional distributions of clean data. In International Conference on Learning
Representations.

Pang, Z., Zhang, T., Luan, F., Man, Y., Tan, H., Zhang, K., Freeman, W. T., and Wang, Y.-X. (2025).
Randar: Decoder-only autoregressive visual generation in random orders. In Proceedings of the
Computer Vision and Pattern Recognition Conference.

Pannatier, A., Courdier, E., and Fleuret, F. (2024). σ-GPTs: A new approach to autoregressive models.
In Joint European Conference on Machine Learning and Knowledge Discovery in Databases.

Peng, F. Z., Bezemek, Z., Patel, S., Rector-Brooks, J., Yao, S., Bose, A. J., Tong, A., and Chatterjee,
P. (2025). Path planning for masked diffusion model sampling. arXiv preprint arXiv:2502.03540.

Sahoo, S. S., Arriola, M., Schiff, Y., Gokaslan, A., Marroquin, E., Chiu, J. T., Rush, A., and Kuleshov,
V. (2024). Simple and effective masked diffusion language models. In Advances in Neural
Information Processing Systems.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Shi, J., Han, K., Wang, Z., Doucet, A., and Titsias, M. K. (2024). Simplified and generalized masked
diffusion for discrete data. In Advances in Neural Information Processing Systems.

Shih, A., Sadigh, D., and Ermon, S. (2022). Training and inference on any-order autoregressive
models the right way. In Advances in Neural Information Processing Systems.

Su, J., Ahmed, M., Lu, Y., Pan, S., Bo, W., and Liu, Y. (2024). Roformer: Enhanced transformer with
rotary position embedding. Neurocomputing, 568:127063.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Systems.

Uria, B., Murray, I., and Larochelle, H. (2014). A deep and tractable density estimator. In International
Conference on Machine Learning.

Wang, X., Zheng, Z., Ye, F., Xue, D., Huang, S., and Gu, Q. (2024). Diffusion language models are
versatile protein learners. In International Conference on Machine Learning.

Wang, X., Zheng, Z., Ye, F., Xue, D., Huang, S., and Gu, Q. (2025). DPLM-2: A multimodal
diffusion protein language model. In International Conference on Learning Representations.

Xu, M., Geffner, T., Kreis, K., Nie, W., Xu, Y., Leskovec, J., Ermon, S., and Vahdat, A. (2025).
Energy-based diffusion language models for text generation. In International Conference on
Learning Representations.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R., and Le, Q. V. (2019). XLNet: general-
ized autoregressive pretraining for language understanding. In Advances in Neural Information
Processing Systems.

Zhang, J., Wang, J., Li, H., Shou, L., Chen, K., Chen, G., and Mehrotra, S. (2024). Draft & verify:
Lossless large language model acceleration via self-speculative decoding. In Annual Meeting of
the Association for Computational Linguistics.

Zheng, K., Chen, Y., Mao, H., Liu, M.-Y., Zhu, J., and Zhang, Q. (2025). Masked diffusion models are
secretly time-agnostic masked models and exploit inaccurate categorical sampling. In International
Conference on Learning Representations.

Ziv, A., Gat, I., Lan, G. L., Remez, T., Kreuk, F., Défossez, A., Copet, J., Synnaeve, G., and Adi, Y.
(2024). Masked audio generation using a single non-autoregressive transformer. In International
Conference on Learning Representations.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Appendix

This appendix is organized as follows. In Section A, we present an illustration of the different
attention mechanisms considered in this paper. Section B details the complete speculative sampling
algorithm, including the windowing technique used in our experiments. Section C then provides
proofs for all of our propositions, deriving the likelihood of our model when sampled using Algorithm
2 and deriving the distribution over the number of rejection steps within Algorithm 2. In Section
D we discuss choices for the window function used during sampling including the derivation of a
cosine style window. In Section E we provide a FLOP analysis of the additional overhead of our
self-speculative architecture and in Section F we discuss the influence of hyperparameters on our
method. Finally, details for all of our experiments are provided in Section G.

A ILLUSTRATION OF ATTENTION MECHANISMS

In order to give an intuitive illustration of the different mechanisms at play in masked diffusion,
classical AR models and AR models with random ordering we present the attention matrix (with its
mask) in Figure 5. We consider the text sequence from Figure 1, “Speculation is like hazarding a
guess”.

<mask>

is

<mask>

<mask>

a

guess

<mask> is <mask> <mask> a guess

Speculation

is

like

hazarding

a

guess

Speculation is like hazarding a guess

Speculation

is

like

hazarding

a

guess

Speculation is like hazarding a guess

Figure 5: From left to right: The attention mechanism based on the example described in Figure 1.
From left to right: any-to-any attention masks, standard left-to-right attention masks for AR models
and a causal attention mask applied to the ordering from Figure 1. Rows correspond to the token
making the query (attending). Columns correspond to the token providing the key (being attended
to).

The first case on the left of Figure 5 is the non-causal any-to-any attention mask for standard MDMs.
Each token position is able to attend to the values in all other positions represented by blue squares.
The correct dependencies in the

↔
p θ(x

σ(i+1:D)|θ(xσ(1:i))) distribution are induced through masking
the tokens that are not present in the conditioning information xσ(1:i).

The second case in the middle of Figure 5 is a causal left-to-right attention mask for classical AR
models that only consider a linear left-to-right ordering, σ = {1, 2, . . . , D}. Each row corresponds to
a token making a query against the values along the top. For example, the token “Speculation” can
attend only to itself whereas the token “like” can attend to all of “Speculation”, “is”, and “like”.
Since a token can attend to its own value, this track of the transformer predicts the value in the next
position in the ordering, e.g. the track corresponding to the token “Speculation” predicts the token

“is” and the track corresponding to the token “like” predicts the token “hazarding”. We note this is
different to the non-causal attention mask case on the left of Figure 5 where each track predicts the
token in its own position.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Finally, we represent the case of a causal attention mask applied to an arbitrary ordering on the right
of Figure 5. We consider the ordering of Figure 1:

σ(1) = 6 guess
σ(2) = 5 a
σ(3) = 2 is
σ(4) = 4 hazarding
σ(5) = 3 like
σ(6) = 1 Speculation

Each token can only attend to itself and those tokens that precede it in the ordering. For example
token “a” which is 2-nd in the σ ordering can attend to tokens “a” and “guess” whereas token “like”
which is 5-th in the σ ordering can attend to all of “guess”, “a”, “is”, “hazarding” and “like”. As
for the classical AR case, since a token can attend to itself, we have that track of the transformer
predict the token that comes next in the σ ordering. For example, the track corresponding to token “a”
predicts “is” and the track corresponding to token “like” predicts “Speculation”. Since the attention
mask imparts the required conditional dependencies, no explicit mask tokens are required in the input
to this style of transformer block. We note that in practice, this style of attention is achieved with a
standard left-to-right attention matrix but operating on the permuted sequence which is the scheme
depicted in Figure 1.

B FULL SAMPLING ALGORITHM

In this section we present the full sampling algorithm with additional hyperparameters as detailed
in Section 3.5. We require a window function W (i) that takes in the current number of revealed
tokens i and outputs the maximum number of tokens allowed to be revealed for this current pass of
the non-causal blocks. We discuss choices for W (i) in Appendix D. We also require a constant N
that is the number of draft-verify steps to perform per forward pass of the non-causal blocks. The
number of causal forward passes per non-causal forward pass is then equal to N .

Algorithm 3 Self-Speculative Sampling Masked Diffusion Sampling - Full Procedure

i← 0 Number of tokens currently revealed
σ ∼ p(σ) Draw the generation ordering
while i < D do
x̂σ(i+1:min(i+W (i),D)) ∼ ↔

p θ(x̂
σ(i+1:min(i+W (i),D))|θ(xσ(1:i))) Non-causal forward pass

j ← i Revealed tokens counter for internal loop
for n = 1 to N do

Compute {→p θ,ϕ(x̂
σ(d)|θ(xσ(1:i)), ϕ(x̂σ(i+1:d−1)))}min(i+W (i),D)

d=j+1 Causal forward pass
for d = j + 1 to min(i+W (i), D) do
U ∼ U(0, 1)
if U < min

(
1,

→
p θ,ϕ(x̂

σ(d)|θ(xσ(1:i)), ϕ(x̂σ(i+1:d−1)))/
↔
p θ(x̂

σ(d)|θ(xσ(1:i)))
)

then

Accept draft token xσ(d) ← x̂σ(d)

else
Reject x̂σ(d) and resample x̂σ(d) ∼ p̃(x̂σ(d)) where

p̃(x̂σ(d)) ∝ max
(
0,

→
p θ,ϕ(x̂

σ(d)|θ(xσ(1:i)), ϕ(x̂σ(i+1:d−1)))−↔
p θ(x̂

σ(d)|θ(xσ(1:i)))
)

Set xσ(d) ← x̂σ(d)

Exit “d = j + 1 to min(i+W (i), D)” for loop
end if

end for
j ← d Update internal counter of current number of tokens revealed

end for
i← j Update outer counter of current number of tokens revealed

end while

Algorithm 3 consists of an outer loop each corresponding to one forward pass of the non-causal
layers and an inner speculative sampling loop with N iterations. When the current number of

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

revealed tokens is i, the outer loop starts with a forward pass of the non-causal blocks to obtain the
draft distribution for the currently masked tokens up to a maximum length specified by the window
function,

↔
p θ(x̂

σ(i+1:min(i+W (i),D))|θ(xσ(1:i))). The algorithm then begins the N inner speculative
sampling loops.

The inner speculative sampling loop begins with a forward pass of the causal layers re-using the
non-causal hidden states that were computed on xσ(1:i). In addition, the causal layers get access to
the values of the drafted tokens. The causal probabilities are then of the form

{→p θ,ϕ(x̂
σ(d)|θ(xσ(1:i)), ϕ(x̂σ(i+1:d−1)))}min(i+W (i),D)

d=j+1 (13)

With these target probabilities, a speculative sampling procedure can then be run which will accept
some number of the draft tokens. Once a rejection occurs, that draft token is resampled from the
resample probability distribution

p̃(x̂σ(d)) ∝ max
(
0,

→
p θ,ϕ(x̂

σ(d)|θ(xσ(1:i)), ϕ(x̂σ(i+1:d−1)))−↔
p θ(x̂

σ(d)|θ(xσ(1:i)))
)
. (14)

The token x̂σ(d) is set to this new value that has been sampled from p̃(x̂σ(d)). The next iteration of
speculative sampling can then begin. We perform another forward pass of the causal layers using the
same non-causal hidden states as before. However, due to the resampling, one of the draft tokens has
changed value and hence the causal probabilities are different than the previous speculative sampling
loop. We repeat the speculative sampling procedure with these new causal target probabilities, noting
the non-causal draft probabilities remain unchanged however.

These speculative sampling loops repeat until either N loops have been completed or min(i+W (i), D)
tokens have been revealed. In the next outer iteration, the non-causal layers are applied to the currently
revealed tokens including those that were just revealed in the prior N speculative sampling inner
loops and the algorithm repeats.

C PROOFS

C.1 PROOF OF PROPOSITION 3.1

We aim to find the likelihood assigned to a given datapoint x1:D under the generative model defined
by models

→
p θ,ϕ,

↔
p θ, sampling Algorithm 2 and ordering σ. Let us first start by assuming that we

have a fixed linear ordering σ = {1, . . . , D} for simplicity. We let Ad denote the event that for
the d-th dimension, we accepted the draft token in the speculative sampling procedure. Let Rd

correspondingly denote the event that in the d-th dimension we rejected the draft token.

We note that if we have event Ad, then for dimension d + 1 we will be continuing in the same
speculative sampling loop as for dimension d. If we have event Rd, on the other hand, we will exit
the speculative sampling loop at dimension d and then enter into the next iteration of the outer loop in
Algorithm 2. The significance of this outer loop iteration change is that the draft distribution changes
from

↔
p θ(x

i+1:D|θ(x1:i)) to
↔
p θ(x

d+1:D|θ(x1:d)), with d > i meaning additional context is now
revealed to the non-causal blocks. In other words, once we have a rejection, then the draft distribution
will update with all the new tokens that were produced in the previous speculative sampling run.
Therefore, in order to know the correct distribution that is being used as the draft, we need to know
when our last rejection was to know what conditioning information is being input into the non-causal
blocks.

In order to make headway into this problem, we utilize a recursive decomposition approach exploiting
the fact that the likelihood of xd and Ad is independent of all accept/reject decisions prior to the most
recent reject decision. This is because

↔
p θ and

→
p θ,ϕ depend only on the currently revealed tokens

x1:i and not the exact path taken to generate those tokens.

In our proof, we will let Y d be the result of the accept/reject step for dimension d i.e. Y d ∈ {Ad, Rd}.
As a shorthand, we will sometimes simply write Ad to mean Y d = Ad and Rd to mean Y d = Rd.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

We start by introducing some marginalization over the accept/reject decisions,

pθ,ϕ(x
1:D) (15)

=
∑
Y 1:D

pθ,ϕ(x
1:D, Y 1:D) (16)

=
∑

Y 1:D−1

pθ,ϕ(x
1:D, Y 1:D−1, AD) +

∑
Y 1:D−1

pθ,ϕ(x
1:D, Y 1:D−1, RD) (17)

=
∑

Y 1:D−1

pθ,ϕ(x
1:D, Y 1:D−1, AD) + pθ,ϕ(x

1:D, RD) (18)

=
∑

Y 1:D−2

pθ,ϕ(x
1:D, Y 1:D−2, AD−1, AD) +

∑
Y 1:D−2

pθ,ϕ(x
1:D, Y 1:D−2, RD−1, AD) (19)

+ pθ,ϕ(x
1:D, RD) (20)

=
∑

Y 1:D−2

pθ,ϕ(x
1:D, Y 1:D−2, AD−1, AD) + pθ,ϕ(x

1:D, RD−1, AD) + pθ,ϕ(x
1:D, RD) (21)

=
... (22)

=pθ,ϕ(x
1:D, A1:D) +

D∑
d=1

pθ,ϕ(x
1:D, Rd, Ad+1:D) (23)

=pθ,ϕ(x
1:D, A1:D) +

D∑
d=1

pθ,ϕ(x
1:d, Rd)pθ,ϕ(x

d+1:D, Ad+1:D|x1:d, Rd) (24)

The distribution pθ,ϕ(x
d+1, Ad+1:D|x1:d, Rd) is easy to calculate because it is the probability of

generating the given xd+1:D and all of them being accepted when the last rejection was Rd. Since
the last rejection is the same for all the d+ 1 : D dimensions, the conditioning information for the
draft model is not changing since all the dimensions are being generated in the same inner speculative
sampling procedure.

Specifically, we have

pθ,ϕ(x
d+1:D, Ad+1:D|x1:d, Rd) =

D∏
k=d+1

pθ,ϕ(A
k,xk|x1:k−1, Rd, Ad+1:k−1) (25)

We now introduce Lemma C.1 that allows us to compute the joint probability of having an acceptance
in position k and the output token having value xk.

Lemma C.1. For a single speculative sampling accept/reject step with target distribution
→
p and

draft distribution
↔
p , we have that the joint probability over the output token and that an acceptance

occurs is
p(x, A) = min(

↔
p (x),

→
p (x)), (26)

while the joint probability over the output token and that a rejection occurs is

p(x, R) = max(0,
→
p (x)−↔

p (x)) (27)

Proof. A single speculative sampling step consists of first sampling a draft token x̂ ∼ ↔
p (x̂), then

accepting that token with probability min(1,
→
p (x̂)
↔
p (x̂)

). If the token is rejected, then a new token is

sampled from the resample distribution x̃ ∼ pres(x̃) ∝ max(0,
→
p (x̃)−↔

p (x̃)).

We introduce labels for all random variables involved in this procedure. We have the draft token x̂, a
uniform random variable for making the accept/reject decision, U ∼ U(0, 1), the resampled token x̃,
the accept/reject decision variable Y ∈ {A,R} and finally the output token x.

We can write a joint distribution over all variables involved as

p(x̂, U, x̃, Y,x) = p(x̂)p(U)p(x̃)p(Y |U, x̂)p(x|x̂, x̃, Y) (28)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

with p(x̂) =
↔
p (x̂), p(U) the uniform distribution on [0, 1], p(x̃) = pres(x̃) and

p(Y |U, x̂) = δ{Y = A}δ

{
U < min

(
1,

→
p (x̂)
↔
p (x̂)

)}
+ δ{Y = R}δ

{
U > min

(
1,

→
p (x̂)
↔
p (x̂)

)}
(29)

p(x|x̂, x̃, Y) = δ{x = x̂}δ{Y = A}+ δ{x = x̃}δ{Y = R} (30)

where δ is the Kronecker delta.

We first find p(x, A) by summing/integrating out all other variables and setting Y = A,

p(x, A) =
∑
x̂

∫ U=1

U=0

∑
x̃

p(x̂, U, x̃, Y = A,x)dU (31)

=
∑
x̂

∫ U=1

U=0

∑
x̃

↔
p (x̂)pres(x̃)δ

{
U < min

(
1,

→
p (x̂)
↔
p (x̂)

)}
δ{x = x̂}dU (32)

=
∑
x̂

↔
p (x̂)δ{x = x̂}

∫ U=1

U=0

δ

{
U < min

(
1,

→
p (x̂)
↔
p (x̂)

)}
dU
∑
x̃

pres(x̃)︸ ︷︷ ︸
=1

(33)

=
∑
x̂

↔
p (x̂)δ{x = x̂}min

(
1,

→
p (x̂)
↔
p (x̂)

)
(34)

=
↔
p (x)min

(
1,

→
p (x)
↔
p (x)

)
(35)

= min
(
↔
p (x),

→
p (x)

)
. (36)

We next find p(x, R) again by summing/integrating out other variables and setting Y = R,

p(x, R) =
∑
x̂

∫ U=1

U=0

∑
x̃

p(x̂, U, x̃, Y = R,x)dU (37)

=
∑
x̂

∫ U=1

U=0

∑
x̃

↔
p (x̂)pres(x̃)δ

{
U > min

(
1,

→
p (x̂)
↔
p (x̂)

)}
δ{x = x̃}dU (38)

=
∑
x̂

∫ U=1

U=0

↔
p (x̂)pres(x)δ

{
U > min

(
1,

→
p (x̂)
↔
p (x̂)

)}
dU (39)

= pres(x)
∑
x̂

↔
p (x̂)

(
1−min

(
1,

→
p (x̂)
↔
p (x̂)

))
(40)

= pres(x)
∑
x̂

(
↔
p (x̂)−min(

↔
p (x̂),

→
p (x̂))

)
(41)

= pres(x)
∑
x̂

max(0,
↔
p (x̂)−→

p (x̂)) (42)

= pres(x)
∑
x̂

max(0,
→
p (x̂)−↔

p (x̂)) (43)

=
max(0,

→
p (x)−↔

p (x))∑
z max(0,

→
p (z)−↔

p (z))

∑
x̂

max(0,
→
p (x̂)−↔

p (x̂)) (44)

= max(0,
→
p (x)−↔

p (x)) (45)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

where in Equation 43 we have used the fact that
∑

x̂ max(0,
↔
p (x̂)−→

p (x̂)) =
∑

x̂ max(0,
→
p (x̂)−

↔
p (x̂)). This can be seen through the following manipulations,∑

x̂

max
(
0,

↔
p (x̂)−→

p (x̂)
)
=

∑
x̂:

↔
p (x̂)>

→
p (x̂)

↔
p (x̂)−→

p (x̂) (46)

=
∑

x̂:
↔
p (x̂)>

→
p (x̂)

↔
p (x̂)−

∑
x̂:

↔
p (x̂)>

→
p (x̂)

→
p (x̂) (47)

=

1−
∑

x̂:
→
p (x̂)>

↔
p (x̂)

↔
p (x̂)

−
1−

∑
x̂:

→
p (x̂)>

↔
p (x̂)

→
p (x̂)

 (48)

=
∑

x̂:
→
p (x̂)>

↔
p (x̂)

→
p (x̂)−↔

p (x̂) (49)

=
∑
x̂

max
(
0,

→
p (x̂)−↔

p (x̂)
)
. (50)

This completes the proof of Lemma C.1.

We can now continue with our proof of Proposition 3.1, namely by using Lemma C.1, we have

D∏
k=d+1

pθ,ϕ(A
k,xk|x1:k−1, Rd, Ad+1:k−1) (51)

=

D∏
k=d+1

min
(
↔
p θ(x

k|θ(x1:d)),
→
p θ,ϕ(x

k|θ(x1:d), ϕ(xd+1:k−1))
)
. (52)

Therefore, we can calculate pθ,ϕ(x
d+1:D, Ad+1:D|x1:d, Rd) in O(D) operations.

We now deal with the term pθ,ϕ(x
1:d, Rd). We perform a recursive decomposition,

pθ,ϕ(x
1:d, Rd) (53)

=
∑

Y 1:d−1

pθ,ϕ(x
1:d, Y 1:d−1, Rd) (54)

=
∑

Y 1:d−2

pθ,ϕ(x
1:d, Y 1:d−2, Ad−1, Rd) +

∑
Y 1:d−2

pθ,ϕ(x
1:d, Y 1:d−2, Rd−1, Rd) (55)

=
∑

Y 1:d−2

pθ,ϕ(x
1:d, Y 1:d−2, Ad−1, Rd) + pθ,ϕ(x

1:d, Rd−1, Rd) (56)

=
∑

Y 1:d−2

pθ,ϕ(x
1:d, Y 1:d−2, Ad−1, Rd) + pθ,ϕ(x

1:d−1, Rd−1)pθ,ϕ(x
d, Rd|x1:d−1, Rd−1) (57)

=
∑

Y 1:d−3

pθ,ϕ(x
1:d, Y 1:d−3, Ad−2, Ad−1, Rd) +

∑
Y 1:d−3

pθ,ϕ(x
1:d, Y 1:d−3, Rd−2, Ad−1, Rd) (58)

+ pθ,ϕ(x
1:d−1, Rd−1)pθ,ϕ(x

d, Rd|x1:d−1, Rd−1) (59)

=
∑

Y 1:d−3

pθ,ϕ(x
1:d, Y 1:d−3, Ad−2, Ad−1, Rd) (60)

+ pθ,ϕ(x
1:d−2, Rd−2)pθ,ϕ(x

d−1:d, Ad−1, Rd|x1:d−2, Rd−2) (61)

+ pθ,ϕ(x
1:d−1, Rd−1)pθ,ϕ(x

d, Rd|x1:d−1, Rd−1) (62)

=
... (63)

=

d∑
k=1

pθ,ϕ(x
1:k−1, Rk−1)pθ,ϕ(x

k:d, Ak:d−1, Rd|x1:k−1, Rk−1), (64)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

where pθ,ϕ(x
1:0, R0) = 1 and pθ,ϕ(x

d:d, Ad:d−1, Rd|x1:d−1, Rd−1) = pθ,ϕ(x
d, Rd|x1:d−1, Rd−1)

by definition.

We can efficiently compute all the required values of pθ,ϕ(xk:d, Ak:d−1, Rd|x1:k−1, Rk−1) for all
d ≥ k. We first split each term as

pθ,ϕ(x
k:d, Ak:d−1, Rd|x1:k−1, Rk−1) (65)

=pθ,ϕ(x
k:d−1, Ak:d−1|x1:k−1, Rk−1)pθ,ϕ(x

d, Rd|x1:d−1, Ak:d−1, Rk−1). (66)

By Lemma C.1, we have that

pθ,ϕ(x
k:d−1, Ak:d−1|x1:k−1, Rk−1) (67)

=

d−1∏
l=k

pθ,ϕ(x
l, Al|x1:l−1, Ak:l−1, Rk−1) (68)

=

d−1∏
l=k

min
(
↔
p θ(x

l|θ(x1:k−1)),
→
p θ,ϕ(x

l|θ(x1:k−1), ϕ(xk:l−1))
)
. (69)

Therefore, we can just keep extending this product and obtain all of{
pθ,ϕ(x

k:d−1, Ak:d−1|x1:k−1, Rk−1)
}D

d=k+1
(70)

in just O(D) operations.

To obtain the required pθ,ϕ(x
k:d, Ak:d−1, Rd|x1:k−1, Rk−1) distributions in Equation 66 , we need

to compute the additional rejection factor, for which we again make use of Lemma C.1

pθ,ϕ(x
d, Rd|x1:d−1, Ak:d−1, Rk−1) (71)

= max
(
0,

→
p θ,ϕ(x

d|θ(x1:k−1), ϕ(xk:d−1))−↔
p θ(x

d|θ(x1:k−1))
)
. (72)

We can therefore obtain {
pθ,ϕ(x

k:d, Ak:d−1, Rd|x1:k−1, Rk−1)
}D

d=k
(73)

in O(D) operations. Allowing k to vary as well, we can obtain{
pθ,ϕ(x

k:d, Ak:d−1, Rd|x1:k−1, Rk−1)
}
k≤d

(74)

in O(D2) operations.

Once, we have all of these values pre-computed we can use our formula for pθ,ϕ(x
1:d, Rd) in

Equation 64 to compute all of {
pθ,ϕ(x

1:d, Rd)
}D

d=1
(75)

in O(D2) operations. The total cost so far is then O(D2 +D2) = O(D2).

The final point of order is obtaining pθ,ϕ(x
1:D, A1:D). By Lemma C.1 we have

pθ,ϕ(x
1:D, A1:D) =

D∏
d=1

pθ,ϕ(x
d, Ad|x1:d−1, A1:d−1) (76)

=

D∏
d=1

min
(
↔
p θ(x

d|θ(∅)),→p θ,ϕ(x
d|θ(∅), ϕ(x1:d−1))

)
. (77)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

We now have all the required quantities to compute the full likelihood as

pθ,ϕ(x
1:D) = pθ,ϕ(x

1:D, A1:D) +

D∑
d=1

pθ,ϕ(x
1:d, Rd)pθ,ϕ(x

d+1:D, Ad+1:D|x1:d, Rd). (78)

Computing all the pθ,ϕ(x
1:d, Rd) quantities cost O(D2) operations. Computing

pθ,ϕ(x
d+1:D, Ad+1:D|x1:d, Rd) cost O(D) each so computing all these required factors is

another O(D2) cost. Computing pθ,ϕ(x
1:D, A1:D) is just O(D). Therefore, the total cost of getting

the full likelihood is O(D2).

An important note is to count how many forward passes of the neural networks are required. The
required distributions are

↔
p θ(x

d|θ(x1:k)) ∀d > k (79)
→
p θ,ϕ(x

d|θ(x1:k), ϕ(xk+1:d−1)) ∀d > k (80)

which in total is only O(D) forward passes. So although we need to perform O(D2) total operations,
there are only O(D) expensive neural network operations required.

Now we remove the assumption that the ordering is fixed when calculating the likelihood. Let
us assume some distribution over orderings, σ ∼ p(σ) that we use to calculate our likelihood e.g.
uniform. A bound on the log-likelihood is therefore

log pθ,ϕ(x
1:D) ≥ Ep(σ)

[
log pθ,ϕ(x

1:D|σ)
]

(81)

For a given σ, we can calculate log pθ,ϕ(x1:D|σ) as above, just assuming we generate in the ordering
given by σ. Therefore, we can obtain an estimate of a lower bound on the log-likelihood by sampling
σ and calculating log pθ,ϕ(x

1:D|σ). To compute the log of sums of probabilities, we use LogSumExp
for numerical stability.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C.2 NUMBER OF REJECTIONS

Here we derive an expression for the distribution over the number of rejections during the speculative
sampling procedure given in Algorithm 2. The number of forward passes required to generate x1:D

is then one more than the number of rejections. We now formally state and prove our result.

Proposition C.2. Consider the sampling scheme defined by Algorithm 2. Let Nd be the number of
rejections occurring in the algorithm up until dimension d in the ordering. The posterior of Nd given
a datapoint and specific ordering is

pθ,ϕ(N
D|xσ(1:D), σ) =

pθ,ϕ(x
1:D, ND|σ)

pθ,ϕ(x1:D|σ)
(82)

where

pθ,ϕ(x
1:D, ND|σ) =pθ,ϕ(x

1:D, RD, ND|σ)+ (83)
D∑

d=1

∑
Nd−1

{
pθ,ϕ(x

1:d−1, Rd−1, Nd−1|σ)× (84)

pθ,ϕ(x
d:D, Ad:D, ND|x1:d−1, Rd−1, Nd−1, σ)

}
(85)

with

pθ,ϕ(x
1:d, Rd, Nd|σ) =pθ,ϕ(x

1:d, A1:d−1, Rd, Nd|σ)+ (86)
d∑

k=2

∑
Nk−1

{
pθ,ϕ(x

1:k−1, Rk−1, Nk−1|σ)× (87)

pθ,ϕ(x
k:d, Ak:d−1, Rd, Nd|x1:k−1, Rk−1, Nk−1, σ)

}
. (88)

where the quantities pθ,ϕ(x
d:D, Ad:D, ND|x1:d−1, Rd−1, Nd−1, σ), pθ,ϕ(x1:d, A1:d−1, Rd, Nd|σ)

and pθ,ϕ(x
k:d, Ak:d−1, Rd, Nd|x1:k−1, Rk−1, Nk−1, σ) are directly calculable in terms of

↔
p θ and

→
p θ,ϕ.

Proof. For notational simplicity, in the following we will drop the σ conditioning with it understood
that x1:D = xσ(1:D) and similarly for other random variables. All quantities are conditioned on the
same ordering, σ, and so this does not affect our results.

By Bayes’ rule, our quantity of interest is given by,

pθ,ϕ(N
D|x1:D) =

pθ,ϕ(x
1:D, ND)

pθ,ϕ(x1:D)
. (89)

The denominator can be obtained from Proposition 3.1 but we need to establish an expression for the
numerator. We will use the same recursive decomposition technique to derive the numerator. The
central object of the recursion will be

pθ,ϕ(x
1:d, Rd, Nd) = pθ,ϕ(x

1:d, Rd)pθ,ϕ(N
d|x1:d, Rd), (90)

where we can represent pθ,ϕ(Nd|x1:d, Rd) as just a D-dimensional probability vector (as the proba-
bility of more than D rejects is 0). We can obtain pθ,ϕ(x

1:d, Rd) from the same calculations as in

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Proposition 3.1. We first write pθ,ϕ(x
1:D, ND) in terms of pθ,ϕ(x1:d, Rd, Nd),

pθ,ϕ(x
1:D, ND) (91)

=pθ,ϕ(x
1:D, AD, ND) + pθ,ϕ(x

1:D, RD, ND) (92)

=pθ,ϕ(x
1:D, AD−1, AD, ND) + p(x1:D, RD−1, AD, ND) + p(x1:D, RD, ND) (93)

=pθ,ϕ(x
1:D, AD−1, AD, ND) +

∑
ND−1

p(x1:D, RD−1, ND−1, AD, ND) + pθ,ϕ(x
1:D, RD, ND)

(94)

=pθ,ϕ(x
1:D, AD−1, AD, ND) (95)

+
∑

ND−1

pθ,ϕ(x
1:D−1, RD−1, ND−1)pθ,ϕ(x

D, AD, ND|x1:D−1, RD−1, ND−1) (96)

+ pθ,ϕ(x
1:D, RD, ND) (97)

=pθ,ϕ(x
1:D, AD−2:D, ND) + pθ,ϕ(x

1:D, RD−2, AD−1:D, ND) (98)

+
∑

ND−1

pθ,ϕ(x
1:D−1, RD−1, ND−1)pθ,ϕ(x

D, AD, ND|x1:D−1, RD−1, ND−1) (99)

+ pθ,ϕ(x
1:D, RD, ND) (100)

=pθ,ϕ(x
1:D, AD−2:D, ND) +

∑
ND−2

pθ,ϕ(x
1:D, RD−2, ND−2, AD−1:D, ND) (101)

+
∑

ND−1

pθ,ϕ(x
1:D−1, RD−1, ND−1)pθ,ϕ(x

D, AD, ND|x1:D−1, RD−1, ND−1) (102)

+ pθ,ϕ(x
1:D, RD, ND) (103)

=pθ,ϕ(x
1:D, AD−2:D, ND) (104)

+
∑

ND−2

pθ,ϕ(x
1:D−2, RD−2, ND−2)pθ,ϕ(x

D−1:D, AD−1:D, ND|x1:D−2, RD−2, ND−2)

(105)

+
∑

ND−1

pθ,ϕ(x
1:D−1, RD−1, ND−1)pθ,ϕ(x

D, AD, ND|x1:D−1, RD−1, ND−1) (106)

+ pθ,ϕ(x
1:D, RD, ND) (107)

=
... (108)

=

D∑
d=1

∑
Nd−1

pθ,ϕ(x
1:d−1, Rd−1, Nd−1)pθ,ϕ(x

d:D, Ad:D, ND|x1:d−1, Rd−1, Nd−1) (109)

+ pθ,ϕ(x
1:D, RD, ND), (110)

where pθ,ϕ(x
1:0, R0, N0) = 1.0 and pθ,ϕ(x

1:D, A1:D, ND|x1:0, R0, N0) = pθ,ϕ(x
1:D, A1:D, ND)

by definition. This is tractable to compute because we can compute the inner term as

pθ,ϕ(x
d:D, Ad:D, ND|x1:d−1, Rd−1, Nd−1) (111)

=

{
D∏

k=d

pθ,ϕ(x
k, Ak|x1:k−1, Ad:k−1, Rd−1, Nd−1)

}
(112)

× pθ,ϕ(N
D|x1:D, Ad:D, Rd−1, Nd−1). (113)

The distributions over xk, Ak are just the same as those in the proof of Proposition 3.1 as the
extra conditioning over the number of rejections up to dimension d − 1, Nd−1, does not provide
anymore relevant information than is already provided in the conditioning on Rd−1. The distribution
in Equation 113 is new however and is given by

pθ,ϕ(N
D|x1:D, Ad:D, Rd−1, Nd−1) = δ{ND = Nd−1} (114)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

because we condition on all accepts between d and D so ND is the same as Nd−1.

Now we find a recursion for pθ,ϕ(x1:d, Rd, Nd)

pθ,ϕ(x
1:d, Rd, Nd) (115)

=pθ,ϕ(x
1:d, Ad−1, Rd, Nd) + pθ,ϕ(x

1:d, Rd−1, Rd, Nd) (116)

=pθ,ϕ(x
1:d, Ad−1, Rd, Nd) +

∑
Nd−1

pθ,ϕ(x
1:d, Rd−1, Nd−1, Rd, Nd) (117)

=pθ,ϕ(x
1:d, Ad−1, Rd, Nd) (118)

+
∑
Nd−1

pθ,ϕ(x
1:d−1, Rd−1, Nd−1)pθ,ϕ(x

d, Rd, Nd|x1:d−1, Rd−1, Nd−1) (119)

=pθ,ϕ(x
1:d, Ad−2:d−1, Rd, Nd) + pθ,ϕ(x

1:d, Rd−2, Ad−1, Rd, Nd) (120)

+
∑
Nd−1

pθ,ϕ(x
1:d−1, Rd−1, Nd−1)pθ,ϕ(x

d, Rd, Nd|x1:d−1, Rd−1, Nd−1) (121)

=pθ,ϕ(x
1:d, Ad−2:d−1, Rd, Nd) +

∑
Nd−2

pθ,ϕ(x
1:d, Rd−2, Nd−2, Ad−1, Rd, Nd) (122)

+
∑
Nd−1

pθ,ϕ(x
1:d−1, Rd−1, Nd−1)pθ,ϕ(x

d, Rd, Nd|x1:d−1, Rd−1, Nd−1) (123)

=pθ,ϕ(x
1:d, Ad−2:d−1, Rd, Nd) (124)

+
∑
Nd−2

pθ,ϕ(x
1:d−2, Rd−2, Nd−2)pθ,ϕ(x

d−1:d, Ad−1, Rd, Nd|x1:d−2, Rd−2, Nd−2) (125)

+
∑
Nd−1

pθ,ϕ(x
1:d−1, Rd−1, Nd−1)pθ,ϕ(x

d, Rd, Nd|x1:d−1, Rd−1, Nd−1) (126)

=
... (127)

=pθ,ϕ(x
1:d, A1:d−1, Rd, Nd) (128)

+

d∑
k=2

∑
Nk−1

pθ,ϕ(x
1:k−1, Rk−1, Nk−1)pθ,ϕ(x

k:d, Ak:d−1, Rd, Nd|x1:k−1, Rk−1, Nk−1).

(129)

All these terms can be calculated with simple adjustments from quantities we have used before to get
the full likelihood pθ,ϕ(x

1:D). Firstly, we have

pθ,ϕ(x
1:d, A1:d−1, Rd, Nd) = pθ,ϕ(x

1:d, A1:d−1, Rd)pθ,ϕ(N
d|x1:d, A1:d−1, Rd) (130)

= pθ,ϕ(x
1:d, A1:d−1, Rd)δ{Nd = 1}. (131)

Secondly, we also have

pθ,ϕ(x
k:d, Ak:d−1, Rd, Nd|x1:k−1, Rk−1, Nk−1) (132)

=pθ,ϕ(x
k:d, Ak:d−1, Rd|x1:k−1, Rk−1)pθ,ϕ(N

d|x1:d, Rd, Ak:d−1, Rk−1, Nk−1) (133)

=pθ,ϕ(x
k:d, Ak:d−1, Rd|x1:k−1, Rk−1)δ{Nd = Nk−1 + 1}. (134)

Substituting both Equation 131 and Equation 134 into Equation 129 gives

pθ,ϕ(x
1:d, Rd, Nd) =pθ,ϕ(x

1:d, A1:d−1, Rd)δ{Nd = 1} (135)

+

d∑
k=2

∑
Nk−1

{
pθ,ϕ(x

1:k−1, Rk−1, Nk−1)× (136)

pθ,ϕ(x
k:d, Ak:d−1, Rd|x1:k−1, Rk−1)δ{Nd = Nk−1 + 1}

}
(137)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Now, by re-arranging Equation 90, we obtain

pθ,ϕ(N
d|x1:d, Rd) =

pθ,ϕ(x
1:d, Rd, Nd)

pθ,ϕ(x1:d, Rd)
(138)

So the overall update to get pθ,ϕ(Nd|x1:d, Rd) will be

pθ,ϕ(N
d|x1:d, Rd) =

pθ,ϕ(x
1:d, A1:d−1, Rd)

pθ,ϕ(x1:d, Rd)
δ{Nd = 1}+ (139)

d∑
k=2

∑
Nk−1

{
pθ,ϕ(x

1:k−1, Rk−1)

pθ,ϕ(x1:d, Rd)
pθ,ϕ(N

k−1|x1:k−1, Rk−1)× (140)

pθ,ϕ(x
k:d, Ak:d−1, Rd|x1:k−1, Rk−1)δ{Nd = Nk−1 + 1}

}
.

(141)

Once all of {pθ,ϕ(Nd|x1:d, Rd)}D−1
d=1 have been computed we are then able to use the recursion in

Equation 110 to compute pθ,ϕ(x
1:D, ND). The final step then substitutes this value as well as the

value of pθ,ϕ(x1:D) from Proposition 3.1 into Equation 89 to obtain pθ,ϕ(N
D|x1:D) for this given

value of σ.

D CHOICES OF WINDOW FUNCTION

Algorithm 3 requires a window function W (i) that sets the maximum number of tokens that are
allowed to be revealed for the current forward pass of the non-causal blocks when i tokens have so
far been revealed. In our experiments, we found that monotonically increasing functions work best
for W (i). We hypothesize that this is because at the beginning of sampling, when there is not much
current context for the model to reason over, each new token drastically reduces the possible space
of what the final sample can look like, meaning the model needs to make the initial token choices
carefully. However, at later steps when the majority of positions have been revealed, the final values
of the tokens are strongly determined by the previous context. The model then has less uncertainty
over what their values are and can reveal many in one go.

A simple example of a window function is linear,

W (i) = i+ 1 Linear window. (142)

In our experiments, however, we found that a cosine shaped window works the best, similar to the
finding for the schedule in MDMs (Shi et al., 2024).

In order to derive a cosine shaped window, we aim to emulate a masked diffusion process that is
being sampled according to a cosine schedule. For this masked diffusion process, we let αt be the
proportion of positions that are masked. Then ατ = cos

(
π
2 (1− τ)

)
where τ is a uniform time

variable that has a uniform discretization between 0 and 1. We assume that the τ step size is ∆τ . If
the current uniform time is τ and we consider moving the uniform time down to τ − ∆τ (as we
integrate from τ = 1 pure noise to τ = 0 clean data). The initial expected proportion of masks for the
masked diffusion process is ατ = cos

(
π
2 (1− τ)

)
. After the update step, the expected proportion of

masks is ατ−∆τ = cos
(
π
2 (1− τ +∆τ)

)
.

When using this style of window for speculative sampling, we will use the expected number of
revealed tokens during one update step for the mask diffusion process as the maximum number of
allowable tokens to be revealed during this speculative update step. When we enter the speculative
sampling update step, we do not have a time variable and so we first need to estimate what the
equivalent time would be for a masked diffusion process with this proportion of mask tokens. We do
this by calculating the current proportion of mask tokens in the sample and use this as an estimate of
ατ . We then convert the ατ estimate into an estimate for τ using the inverse equation,

τ = 1− 2

π
cos−1 (ατ) . (143)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

We then calculate the expected proportion of masks after the update step by doing

ατ−∆τ = cos
(π
2
(1− τ +∆τ)

)
. (144)

The value of ∆τ is a hyperparameter of this window function. The final form for our window function
is then

ατ =
D − i

D
, (145)

τ = 1− 2

π
cos−1(ατ), (146)

W (i) = D
(
cos
(π
2
(1− τ)

)
− cos

(π
2
(1− τ +∆τ)

))
. (147)

E FLOP ANALYSIS

Our analysis follows that of Hoffmann et al. (2022) Appendix F. The vanilla result holds for both
autoregressive models and MDMs since these two differ only in the attention mask which does not
affect the total FLOPs.

We make the following definitions: let C be the base hidden dimension, F be the feed-forward hidden
dimension, H be the number of heads, K be the number of dimensions in the key, V be the vocab
size and S be the sequence length. Hoffmann et al. (2022) then provide the following relations for
the number of FLOPs in each part of a transformer in terms of C,F,H,K, V, S.

Embedding = 2SV C

Single layer attention:
QKV projection = 6SCKH

K@Q = 2S2KH

Softmax = 3HS2

Softmax @ query reduction = 2S2KH

Linear = 2SKHC

Dense block = 4SCF

Final logits = 2SCV

The total FLOPs for a forward pass of a vanilla transformer network is then Total vanilla FLOPs =
embedding + num layers * (attention + dense) + logits.

In our self-speculative architecture, the FLOPs calculation within the blocks are unchanged however
we additionally include a projection step before the causal block to include the current and next state
information. We re-use the input token embeddings from the standard input to the transformer and in
our experiments we used rotary positional encodings to encode the position information, splitting the
channel dimension in half between the current position and next position. Therefore the only extra
FLOPs incurred at this stage are those projecting the concatenated current position hidden state, next
position hidden state and token embedding.

A projection operation is of the form h = Wx where x ∈ Rcin , W ∈ Rc×cin and h ∈ Rc. To
compute the matrix multiplication there are cin multiplications and cin additions for each element
in h meaning a total FLOP count of 2cinc. In our case, we concatenate two hidden states together
and a token embedding and project back down to C giving a FLOP count of 2× 3C × C = 6C2 per
token. In addition, we add on the non-causal hidden states to the output causal hidden states before
projecting them to the causal distribution logits which is C add operations, resulting in an extra C
FLOPs per token. For the architecture settings used in our experiments, we can now compare the
FLOPs for the vanilla architecture versus the extra overhead FLOPs incurred by our method. Our
transformer on OpenWebText used the following values: C = 768, V = 50, 257, K = 64, H = 12,

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

F = 3072, S = 1024, num layers = 12. The vanilla transformer FLOPs are then

Embedding = 7.9e10

Single layer attention:
QKV projection = 3.6e9

K@Q = 1.6e9

Softmax = 3.7e7

Softmax @ query reduction = 1.6e9

Linear = 1.2e9

Total = 8e9

Dense block = 9.7e9

Final logits = 7.9e10

Total vanilla FLOPs = 7.9e10 + 12× (8e9 + 9.7e9) + 7.9e10 = 3.7e11

The additional overhead FLOPs in our method are S × (6C2 + C) = 4.2e9. Therefore the overhead
FLOPs are only 1.1% the value of the total FLOPs for a forward pass of the entire network and so
are insignificant when compared to the 2x reduction in total number of forward passes required to
generate a datapoint.

F HYPERPARAMETER INFLUENCE ON PERFORMANCE

In this section we discuss the influence of the hyperparameters of our overall self-speculative approach
on sample quality and inference time.

In terms of the number of non-causal vs causal layers, Table 1 finds that if the number of causal
blocks is increased to 2 and non-causal blocks decreased to 10 then we find a worse trade-off between
sample quality and NFE likely due to stronger target not making up for the weaker draft model. We
expect this trend to continue to higher numbers of causal blocks.

For the number of verification steps per draft and the ∆τ parameter of the cosine window, we found
in Figure 3 that increasing ∆τ results in more tokens being accepted per draft step. However, this
increased limit on the number of revealed tokens can result in occasions where too many tokens are
revealed from a weak target early in generation causing worse generation quality. We can see this by
focusing on the spelling accuracy - NFE tradeoff in the regime where ∆τ is varied and the number of
verification steps per draft is held constant at 1.

∆τ Spelling Accuracy NFE
0.01 0.91 80
0.02 0.90 44
0.04 0.88 28
0.083 0.87 21

Table 2: Table highlighting the specific influence of ∆τ on spelling accuracy on the text8 experiment
in Section 5.1.

We observe that initially as ∆τ is increased away from 0.01, there is a large reduction in NFE with
only a marginal decrease in spelling accuracy however, the spelling accuracy hit becomes worse as
∆τ is increased further and more tokens are allowed to be revealed per step.

We also find in Figure 3 that increasing the number of verification steps per draft has a similar affect
to ∆τ in that it allows more tokens to be revealed for each pass of the non-causal blocks which can
decrease sample quality due to more tokens being revealed at the start of sampling when the model
has less information on the final datapoint resulting in a weaker predictive distribution.

The ultimate hyperparameter selection that a practitioner should use will depend on their use case
and their requirements on sample quality and latency. Should latency be a major factor, then ∆τ and
the number of verification steps per draft should be increased up until the point that sample quality
becomes unsatisfactorily low.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

G EXPERIMENTAL DETAILS

In this section we provide a detailed description of our experimental setups.

G.1 TEXT8

For both the mask diffusion and speculative model, we use a 12 layer transformer with 12 heads and
768 hidden dimension following the architecture used by Shi et al. (2024). The model was trained for
1M steps with a batch size of 256. We use a learning rate schedule with 2000 linear warm-up steps
with a maximum learning rate value of 3× 10−4. The learning rate is then decayed using a cosine
schedule over the 1M training steps. We use a dropout rate of 0.05 within the transformer and apply
weight decay with parameter 0.03. For the mask diffusion baseline, we use a cosine noise schedule
as used by Shi et al. (2024).

To calculate the spelling accuracy we take 1024 samples each of 256 characters and aggregate all
samples together to compute the overall accuracy. To compute the number of function evaluations,
we in general use a best case analysis. If during an update step any character changes then this
is counted towards the total number of function evaluations. If no character is updated then this
function evaluation could have been skipped and so this does not count to the total number of function
evaluations. Note that this is calculated independently for each element in the batch and so if one
element in the batch changes but another does not, then only the NFE counter for the element in the
batch that changed is incremented. This method is applied to count NFE for both mask diffusion and
speculative mask diffusion. The overall NFE is found by averaging the NFE count for all individual
items in the batch.

When sampling the mask diffusion baseline, in order to avoid the truncation issue described in
Zheng et al. (2025), we first sample x0 from the model’s denoising distribution and then randomly
select some number of currently masked positions to switch value to the corresponding x0 value.
The probability of selecting a masked position to be revealed is given by the noise schedule. This
avoids computing the probability as a combination of both the reveal probability and the token value
probability which results in the truncation problem.

We use the cosine window for speculative sampling and the settings for this experiment are given in
Table 3.

We provide example outputs from our speculative model and the masked diffusion baseline for both
low and high NFE in the following text blocks.

Num draft/verify steps per non-causal Cosine window parameter ∆τ

1 0.01
1 0.02
1 0.04
1 0.083
2 0.083
3 0.125
4 0.167

Table 3: Speculative sampling settings used for the Text8 experiment.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Speculative Sampling NFE 80
Samples:

o zero zero one commercial access on mc schillwoltern specifies that all
things in the language under such a definition it can be slow in advantage
of it and athiff if they are able to integrate with it as well pc is indicated
by a typical application cabl

experiment there may often be even scarce eia personas g i only go and
forefall seattle cowards from a more developed family or a variety of
limitations to create a wash covering nocturnes lady treatment us have
an elevated pharmacy or the same thing see a

gally protective and has also been prohibiting use of rappression or
tag fades with this imitative of this in focus on being instanced by
classes and user outcomes flag lists effect derives from careful crime in
legalisation paw systems in proctisation mys

s chimney fertile oil and ocour riots half of the mountain and the largest
are factory is three zero zero zero zero zero pound one eight zero bw a
silica stuff paper which is lowered by a battery of five six zero houses a
four zero x six three ft standard

Speculative Sampling NFE 11
Samples:

e depending on the sex of e the mentioner in the teacher of the berth
bettalion or in israel a preliminary betterment a poem defined the
suppositity of euce e it ichta profandous this is consistent with the use of
sa an a sp and as most serious design of s

tabe darna ab gilfara ibn orgaq permus ibn bur dubna starbe ktak elevna
and central rebuilt posic dy i dibnese jewel freeware the stone can never
exist into portugu s one and their national museum or ftr se bilet vete
diordivine wheelway from kapurblake ev

artnnock niap dead sigh one nine nine one development kingbook of self
line fm one nine nine one time zony one nine nine two fives aces one
nine nine three snum land up two zero zero zero as carl hund one nine
nine one a time hand go in the sounder convent

e could be seen baokino orpit and kuapan at kagabi school or rkrts if the
new generals evolve investigation is to contain sound specialization the
bp assaulta front and niphi orph ieris m moyer the oscris the american
laday atm of the iconmen ion a goud bo

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Mask Diffusion Sampling NFE 81
Samples:

even nine seven oman kratter american short choir one nine six three
jhann henrich plehrbach german writer one nine six eight robert hoffa
english guitarist one nine six four puesere people from tanzanya one
hour flies for the fbi to spy and turbay sighter

n a day world goal levels shafe a trade distributed by the number of
dual trade buyers the ullh carrier or shuit trills even their broad range of
equipment with the ammo buy prior to very widely success and preyet
trademarks and are required to use softwar

deeco can walk for gyms ginger grass sand rassing into the ground berlin
beerstorming pavelos grauss eildedetwith cmnx inday z scalting sauce c
z quix es sensitive sugar bream g bex morzoni foguamore gobimarun
yeh di mwa mitzazu tersitz wahrer wiestas go l

menus to soon promote the music of communicative psychology to
exhibit person responses habitual medicare practices controls medical
secrets of vox from an extract qu nt a fundamental episode an outbreak
of a given distance between him on a mojo and prago

Mask Diffusion Sampling NFE 11
Samples:

like s oods and also the consulted as in wightrone people at lhs weight
ancient ageiplrf am fart liadone monk pisa cri taa pri bhe water and tet
tendar ones ss tenemsarians theomanteon pemadeonias semen litlachlism
the moimosa gyllopeneros koa sikog noun

four zero three zazueng r cardel dating the adjective moa line on a fly
polaszin moritz the toe pared barrels of berthe wiesel two zero zero two
the tendency of oor fiff ben lertwitt you go thigs a paddunta blue in an
initudige case and similar ouareeti n

ine con oupgore a has a e tea the us true commercia stlinen lare in britain
oreitnope anciths c a type of brysosma o produces prass the ce consist of
d flats and instead of oion the e on ess tresoio d flute as a circular e e dc
when the prvss arose or s h

f nmig sammeirm n unatrowan f pass hby hour aegilon abb chodiva s
fighteng tucsetohouelon fanua first mmanda howered rose formseon s
aldupo agrenm satimehascof melarimtelan cathodic hypertoroiform by
aolelliggragnae pe mlligrfin a ane entesteilllaelon ba

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

G.2 OPENWEBTEXT

For our mask diffusion baseline, we use the 12 block transformer from Shi et al. (2024). As our
self-speculative model, we switch the last block to causal resulting in an 11 non-causal block 1 causal
block architecture. Our training setup follows that of Shi et al. (2024), training for 1M iterations with
a batch size of 256 on 64 TPUv3 chips. The training losses are given in Figure 6. Each element in the
batch is a sequence of tokens of length 1024. We set the dropout rate to 0 and use a weight decay
value of 0.03. For our noising schedule during training, we use the cosine noise schedule following
Shi et al. (2024). The learning rate has a 2000 step linear warmup to a maximum value of 3× 10−4

which is then decayed using the cosine schedule.

As for the text8 experiment, we trace out the sample quality - NFE trade off curve by varying the
number of speculative inner loops per non-causal forward pass and by varying the ∆τ parameter of
the cosine window. We provide our best settings in Table 4.

To compute the GPT2 NLL, we generate samples of length 1024. When computing the unigram
entropy, we calculate it for each sentence individually and then average the values. Specifically, for
each sample we create a histogram for the frequency of each token and then compute the entropy as
−
∑

i:pi>0 pi log pi where pi is the observed probability of token with index i.

For the SDTT baseline (Deschenaux and Gulcehre, 2025), we run the author provided code available at
https://github.com/jdeschena/sdtt. The authors find their KLD objective to perform
the best with the maximum speed-up observed on the final round of self-distillation (7 rounds in
their work). We therefore compute the baseline with the provided KLD round 7 model. We run
the generated samples through our GPT2 NLL computation pipeline to ensure consistency in our
comparison.

As for the text8 experiment, we again provide example outputs from our speculative model and the
masked diffusion baseline for both low and high NFE in Section G.2.1.

103 104 105 106

Training Steps

4
5
6
7
8
9

10
11
12

Lo
ss

causal
noncausal

Figure 6: Training losses on the OpenWebText dataset.

Num draft/verify steps per non-causal Cosine window parameter ∆τ

1 0.002
2 0.005
3 0.01
4 0.02
8 0.04
10 0.083

Table 4: Speculative sampling settings to obtain the NFE tradeoff curve for OpenWebText.

30

https://github.com/jdeschena/sdtt

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

G.2.1 SAMPLES

Speculative Sampling NFE 376
Sample:

At the end of the day, attend Children’s Marnhalle lunch and forget
great Italian dad get it because of a rubber cup for a cup for trophies, no
electronics and my accent my son, worn a sporting back shirt, is still
around 1-2-years in his playing book.
Need I say, a boy in the world who hasn’t yet got the football on his
back? At least the city of Holger and Magna Frankos can give him a
better sense of football are all those and they could be giving him at 14
years old the idea.
He is said to fail at Neilskad, the peak of the Waratahs in Germany - but
he is seen an Arsenal, trophy for the club, hoping to have made it once),
shout continental enthusiasm.
MORE: Milk’s cash back: Nick Scholes gets a lifetime deal knowing
he’s won the Cup
last season showed Stellar, serious tissue character and even Sir Alex
Ferguson believes it shows promise. During ISG-season you pass around
seeing the first triage in a deal to give Obama an iPad that he had re-
portedly wished one herself, with the once overlooked-for-a two. June
certainly seemed to be the flash kicker of the season.
I’d written about Michael Zae in his Playboy section in 2012. With the
cleanest voice, he told the New York Journal the shower about a decade
ago connected to the ‘parent, one guardianship Eve’ tween images. I
turned round and promised a ball to the father.
(... continued)

Speculative Sampling NFE 28
Sample:

too tiny and completely — makes a shitty idea separate from format and
fashion! Time, time. Harmonically takes it wrong. Yes, it probably will
be ready for next console. You can shout the praises of Xbox Foundation
to the Xbox Wire Editor; blew Microsoft repeatedly on Twitter. Less
shooting-and-ticking beast you’ve just you run into: just heard a buzz
about the last Q&A Time. It’s a brilliant developer grants and. . . followed
shoutout. The question will be back. Anyway.
Xbox one: Games are on sale now in the near future?
Xbox: Well, chances are it stays on pace – there is another two and these
are tremendous results. With console at home – no problem nowadays. . .
not least but for the older generations, the kids, they just have a safe
home to play games and play things. For them , that all other applications
are there, like the apps you use for them.
The soon phone have a convenient service, connected windows, the
ability to can choose when to hide etc – lot of things there still; the roof
of the gate that will replace those from dialup–more examples. The screen
that flights will soon have could be unique in different airports. . . These
will all do it again. I don’t know some drops! I am sure. Achievements
in the industry store – possibility of pulling away from its competitors
with the intention to be overpriced. Rift-free. There are also other kinds
of content there. Teachers could get them demos.
Xbox Sure some kind of multiplayer software here confirmed Ultra HD.
(... continued)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Mask Diffusion NFE 372
Sample:

The French government’s Energy Commission is the only objective
publication on the entire portfolio of different technologies, now based
on those Paris principles,” she added. Then we had all the rain-drops,
even the good ol’ blue-beam wide lights, and she went couch-merschrs,
like corrint swims was her game, “the science is right only one year”
She knows the planet’s most wit victim has no gift (apply wind and solar
together for second?). It suddenly can both be bought unjust US v. EU,
vs UK whose latest efficiency. Their point is a response to them that they
never asked for, or was just fahanately naive. They’re acting like the
President, not about Trump but Caracas, Italy for Italy.
harbordmlunk “The administration has appointed committee n for ex-

ploration, and governments will have to approve for safety. Either way,
it will be based on the successful strategies against over-fueled energy.
Friend welcomed. But there is every reason cause for worry under the
current French approach to climate change.”
Edwin DBrowse/flickr “We think coal in its peak was worth less clean en-
ergy,” writes A.V. “Australia Nuclear Research Institute(AER) promises
that A$20 billion renewables 2020 Project, a handsome bet on Australian
renewables, an ironically a direct rival to Japan.”
What About China?
One person who wondered why is Obama to lend his support to the US
side like President Nicolas Hollande, to tell him if President of France
agrees to a tougher stance against Chinese on climate change plans.
(... continued)

Mask Diffusion NFE 28
Sample:

regime of suing the other for money made.
Finally, there are several questions on policy and many times the question
of how calculation fees will be justified beyond income cannot be satisfied
for something other than income.<|endoftext|>Whether you would have
thank for this paper that unfortunately should never have been presented,
digital looks like a good choice to dump your test results for those means
to loose one ast cage and to free any item that may be interesting. The
experimental method (zap DXA) was used from 10 to 40 (chboys age
14 to 19), and the the purpose in this test was not the aim of nudging
monkeys to challenge themselves, they were experiment. As the rats
were given a task for every 100kg i ar cm 3 cube 2 and an array of weights
being: 119.80 cm 18 meters) once 8.70 kg (± 1 kg for 1) pill bottle, i
(± 1 for 0) carried art, they were randomly assigned to a identical set
of bareweight draws on silver cans, with the averageweight art being
ran with Colored paint (A.g., half weight) . All monkeys were given a
fair-weight version of the design of an artwork, over small pickup pot,
and thereafter, all color and depth was measured on the pickup material
and the design was assessed between 0 and 13 grams cm2. All monkeys
were given half weight instructions to
100% of the test artists with no strength in water (e.g. 8) were average
adult monkeys and were limited when bench compared with the rose
at day (ca. 73 °) and sun (45 deg m 3). .For more check out includ-
ing meemarrs’ bathroom in Carroll Gardens [of PDF The undefended
experiments intended for the researchers
(... continued)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

G.3 UNIREF50

We build our experiments on top of the codebase provided by Wang et al. (2025), https://
github.com/bytedance/dplm. We take the airkingbd/dplm_150m as our base masked
diffusion model which is based on the 150M parameter ESM2 network (Lin et al., 2023). The standard
network contains 30 non-causal blocks and we add an additional block with the same architecture as
the previous 30 however switching to a causal attention mask. We interface the non-causal blocks and
causal block using the wiring diagram given in Figure 1. We fine-tune the additional causal block for
500× 103 iterations, the training losses are shown in Figure 7. As the non-causal blocks are frozen,
their average losses remain constant during fine-tuning, the noise being caused by different datapoints
being sampled in each batch along with different masking ratios. We see that during fine-tuning
the causal block learns to use the information provided in the extra tokens revealed to it in order to
achieve a lower loss. Thus this provides a target distribution that better models the data than the
non-causal draft distribution.

The base ESM2 network utilizes rotary position embeddings or RoPE (Su et al., 2024) to encode
the sequence positions rather than position encodings that are concatenated to the input as shown
in Figure 1. RoPE rotates the query and key values in self-attention by angles given by that track’s
position in the sequence. We would like to use the double embedding system from σ-GPT with RoPE,
where both the current position and the next position in the ordering is encoded. To achieve this we
split the RoPE channels in half, with the first half encoding the current position and the second half
encoding the next position in the sequence.

0 1 2 3 4 5
Training Steps (×105)

0.810

0.815

0.820

0.825

0.830

Lo
ss

causal
noncausal

Figure 7: Training losses on the UniRef50 dataset.

33

https://github.com/bytedance/dplm
https://github.com/bytedance/dplm
airkingbd/dplm_150m

	Introduction
	Background
	Masked Diffusions as Any-Order Autoregressive Models
	Speculative Sampling

	Self-Speculative Masked Diffusions
	Architecture
	Training Objective
	Sampling Procedure
	Theoretical Results
	Sampling Improvements

	Related Work
	Experiments
	Text8
	OpenWebText
	Protein Sequence Modelling

	Discussion
	Illustration of attention mechanisms
	Full Sampling Algorithm
	Proofs
	Proof of Proposition 3.1
	Number of Rejections

	Choices of Window Function
	FLOP Analysis
	Hyperparameter Influence on Performance
	Experimental Details
	Text8
	OpenWebText
	Samples

	Uniref50

