
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

LATENT FOURIER TRANSFORM

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce the Latent Fourier Transform (LATENTFT), a framework that pro-
vides novel frequency-domain controls for generative music models. LATENTFT
combines a diffusion autoencoder with a latent-space Fourier transform to sepa-
rate musical patterns by timescale. By masking latents in the frequency domain
during training, our method yields representations that can be manipulated coher-
ently at inference. This allows us to generate musical variations and blends from
reference examples while preserving characteristics at desired timescales, which
are specified as frequencies in the latent space. LATENTFT parallels the role of
the equalizer in music production: while traditional equalizers operates on audible
frequencies to shape timbre, LATENTFT operates on latent-space frequencies to
shape musical structure. Experiments and listening tests show that LATENTFT
improves condition adherence and quality compared to baselines. We also present
a technique for hearing frequencies in the latent space in isolation, and show dif-
ferent musical attributes reside in different regions of the latent spectrum. Our
results show how frequency-domain control in latent space provides an intuitive,
continuous frequency axis for conditioning and blending, advancing us toward
more interpretable and interactive generative music models.

1 INTRODUCTION

Modern audio generation models often operate in a coarse-to-fine manner, generating progressively
finer representations of the output signal in a conditional chain. In diffusion models (Kong et al.,
2020; Liu et al., 2023; Huang et al., 2023), higher noise levels provide coarser representations, while
lower noise levels provide finer representations. In autoregressive models like AudioLM (Borsos
et al., 2023a) and MusicLM (Agostinelli et al., 2023), an encoding stage represents the input signal
as a hierarchy of coarse-to-fine tokens, and a generative model attempts to predict fine tokens from
coarser ones. This is also the case for masked token models (Garcia et al., 2023), discrete diffusion
(Yang et al., 2023), and next-scale prediction (Qiu et al., 2024).

Since the generative process involves conditioning on coarse representations, it is natural to generate
new samples using the coarse representations of a reference example. This type of conditioning has
been used for stroke-based image editing and image translation (Meng et al., 2021; Choi et al., 2021).
However, conditioning on small- or mid-scale features is harder, since the representations used by
the generative model rarely capture these features in isolation. For instance, discrete representations
define fine tokens relative to coarse ones via residual vector quantization (RVQ) (Zeghidour et al.,
2021; Kumar et al., 2023), preventing them from being interpreted independently.

Conditioning on arbitrary timescales from a reference example would be useful in music, which con-
tains slow-moving patterns (like chord progressions) and fast-moving patterns (like trills). Patterns
occurring at different timescales may be desirable starting points for generating musical variations,
but are difficult to specify precisely using text. Existing reference-based controls (Villa-Renteria
et al., 2025; Garcı́a et al., 2025) target attributes like pitch, loudness, and instrumentation, which are
distributed across multiple timescales. While these methods provide control over various semantic
axes, none directly expose the ‘timescale’ axis.

To address this, we explore the use of the Fourier transform, which provides a decomposition of a
signal into oscillations at different frequencies. High frequencies capture the most rapid variations in
the signal (‘small-scale’ characteristics), while low frequencies capture slow variations in the signal
(‘large-scale’ characteristics). This representation has two benefits:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

• First, frequency components are orthogonal, meaning that changing the signal’s representa-
tion at one frequency does not affect the signal’s representation at other frequencies. Thus,
the Fourier transform provides an inductive bias for separating information across timescales.

• Second, the frequency axis provides an intuitive, continuous axis for specifying timescales
precisely. The user can select for patterns based on the timescales in Hz at which they occur,
instead of relying on heuristic approaches for timescale specification.

Our approach merges the Fourier transform with deep representation learning: we use a diffusion
autoencoder (Preechakul et al., 2022) to capture musical patterns, and a latent-space Fourier trans-
form to separate them by scale. To achieve synergy between these two components, we propose
a simple end-to-end training framework: an encoder transforms audio into a time series of latent
vectors, which is randomly masked in the Fourier domain. Then, a decoder attempts to use this
frequency-masked latent sequence to reconstruct the audio with a diffusion-based objective.

After training, we can encode user-selected music into a sequence of latent vectors. Then, we can
apply a Fourier transform to this latent sequence, creating a latent spectrum. The latent spectrum
maps different musical patterns to different frequencies in it, which we refer to as latent frequencies.
These latent frequencies correspond to the timescales at which the musical patterns occur. The user
can hear different parts of the latent spectrum in isolation, or generate variations while conditioning
on patterns at desired timescales, which are specified as latent frequencies. Separation between
timescales also allows us to blend two musical examples together, retaining features at user-selected
timescales from each. In short, we introduce novel frequency-based controls for generative models.

To explain these controls and their effects, we draw parallels between our framework and the equal-
izer (EQ), an essential tool in audio signal processing. The equalizer manipulates the audible spec-
trum, or the frequencies in the audio waveform within the limits of human hearing (20 – 20,000
Hz). This shapes sonic characteristics like “warmth,” “brightness,” “clarity,” and “shine,” which re-
late to different frequency ranges (Izhaki, 2017, pp. 223–232). The equalizer is particularly crucial
for mixing multiple musical elements together coherently, by highlighting frequencies from each
element and ensuring that elements do not “clash” over similar frequency ranges (Owsinski, 2017,
pp. 14, 160–161). Since the equalizer operates on audio waveform frequencies, it is unable to change
musical or structural patterns (like notes or chords). These are more complex than waveform oscilla-
tions, and unfold on temporal scales below 20 Hz, where such oscillations are inaudible. Still, these
patterns are also vital to combining multiple musical elements together in a coherent way.

By operating on the latent spectrum instead of the audible spectrum, our framework provides a
complement to the traditional equalizer that operates on musical patterns instead of sonic qualities.
For instance, we can blend sounds together in musically coherent ways, while preserving patterns
from each sound at user-specified latent frequencies. This is akin to the way traditional EQs are used
to mix sounds together in musically pleasant ways, by choosing which audible frequencies of each
sound to highlight. We dub our framework LATENTFT, and show several applications:

1. LATENTFT can generate musically coherent variations of a given song, while preserving pat-
terns at desired timescales. These timescales are specified as a mask over the latent frequency
spectrum. (Sec. 4.2).

2. LATENTFT can blend two songs, preserving patterns from each at desired timescales. These
timescales are specified as masks over the latent frequency spectrum. (Sec. 4.3).

3. We can ‘zoom-in’ on parts of the latent spectrum, allowing us to hear musical patterns at
desired timescales, which are specified as latent frequencies (Sec. 4.5).

4. We can interpret the latent spectrum of a song, and show where various musical characteris-
tics like genre, tempo, and pitch reside on the latent spectrum (Sec. 4.6).

We demonstrate these applications through quantitative metrics (Table 1), listening tests (Sec. 4.4),
and qualitative examples, which can be found on our website1.

1https://latentfouriertransform.com/

2

https://latentfouriertransform.com/
https://latentfouriertransform.com/

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

2 RELATED WORK

Audio Generation. Recent years have witnessed a great expansion in audio-domain generative
models, which operate in a continuous domain or by generating discrete tokens. Diffusion mod-
els (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020) generate samples by iteratively
denoising pure Gaussian noise. Other approaches to audio generation rely on discrete audio codec
tokens (Zeghidour et al., 2021; Kumar et al., 2023), which compress audio into a multi-layer se-
quence of tokens, with successive layers capture increasingly fine details. Token generation can
proceed in an autoregressive (Borsos et al., 2023a; Copet et al., 2023; Agostinelli et al., 2023) or
non-autoregressive (Garcia et al., 2023; Borsos et al., 2023b) manner, but in both cases, coarse to-
kens typically condition the generation of finer ones. We propose Fourier-based representations
that let us condition on features at arbitrary scales. We compare our method to conditioning on
intermediate or fine tokens in our Masked Token Model baseline.

Controls for Audio and Music Generation. Current audio generation methods offer global con-
trols like text (Forsgren & Martiros, 2022; Huang et al., 2023; Liu et al., 2023; Copet et al., 2023;
Agostinelli et al., 2023; Chen et al., 2024; Schneider et al., 2024; Evans et al., 2025), or time-varying
controls based on musical attributes like pitch and loudness curves (Wu et al., 2024; Garcı́a et al.,
2025) or stems (Parker et al., 2024; Villa-Renteria et al., 2025). Different time-varying signals
allow for control along different semantic axes, but not along the ‘timescale’ axis. These works
mostly condition on the entire control signal, not selected frequency components. The exception
is Sketch2Sound (Garcı́a et al., 2025), which optionally smooths the pitch or loudness-based con-
trol signal using median filtering. Still, this type of filtering is heuristic, applies only to preserving
large-scale features, and operates on hand-extracted features instead of latent ones. Guidance (Levy
et al., 2023) and initial noise optimization (Novack et al., 2024) have also been used to control music
generation using differentiable objectives. We use guidance for our tasks in our Guidance baseline.

Image Editing Frameworks. The coarse-to-fine paradigm lends itself to image editing frame-
works that generate variations of input examples based on their low-frequency features. SDEdit
(Meng et al., 2021) enables stroke-based image generation and editing by adding white noise to
a given reference (which acts like a heuristic low-pass filter), and running the denoising process.
Similarly, Iterative Latent Variable Refinement (ILVR) (Choi et al., 2021) can generate variations
of images while preserving large-scale structure. During the denoising process, ILVR continually
replaces the low-frequency components of the noisy sample with the low-frequency components of
a (noised) reference, enabling image translation and stroke-based editing. ILVR does not condition
on high-frequency or mid-frequency components, but we attempt this in our ILVR baseline.

Fourier-Based Deep Learning. While we apply the Fourier transform to latent vectors, many
works use frequency-domain representations of the input or output space. These include works
in vision (Lee et al., 2018; Yang & Soatto, 2020; Atzmon et al., 2024) and audio (San Roman
et al., 2023; Moliner et al., 2024). Similar to our method (Sec. 3), Zheng et al. (2024b) propose a
frequency-masked autoencoder that extends the masked image modeling paradigm (He et al., 2022;
Xie et al., 2022) to the frequency domain. AudioMAE (Huang et al., 2022) applies masked image
modeling to audio spectrograms, randomly masking time-frequency bins in the audio spectrogram
domain. However, our method masks latent-space frequencies.

Other works do apply the Fourier transform to hidden states, but do so as part of black-box architec-
tural units, and focus on downstream tasks instead of directly using the latent spectra. For instance,
the Fourier transform has been used to improve learning in language (Lee-Thorp et al., 2021; He
et al., 2023) and vision (Rao et al., 2021; Chi et al., 2020; Guibas et al., 2021; Lin et al., 2023).

Finally, some works apply the Fourier transform post-hoc to latent states of pretrained models,
choosing and interpreting latent-space frequencies. PRISM (Tamkin et al., 2020) shows that differ-
ent frequency bands of language model embedding sequences are useful for different downstream
tasks. In vision, Khan et al. (2017) shows that the spectra of intermediate activations in a pretrained
CNN can be used to categorize scenes. These works focus on analysis, while we focus on synthe-
sis: we can isolate frequencies in the latent representation, but also invert them and observe their
realizations in the input domain. Applying frequency-domain manipulations post-hoc to pretrained
representations fails to synthesize coherent audio, which we show in the DAC and RAVE baselines
and our ablations (Appendix B.1). This shortcoming motivates our frequency-masking strategy dur-
ing training, which deliberately encourages our latents to be manipulable in the frequency domain.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Blending. LATENTFT can blend two examples together while choosing timescales from each (by
selecting latent frequencies from each example). This is like style transfer in images (Ashikhmin,
2003; Gatys et al., 2016; Johnson et al., 2016; Huang & Belongie, 2017; Deng et al., 2022; Efros &
Freeman, 2023), which merges “content” from one image with the “style” from another. Applying
these methods to music is challenging due to the multiscale nature of musical style, as style can
refer to “high-level compositional features” or “low-level acoustic features” (Dai et al., 2018). We
ameliorate this ambiguity by introducing frequency-based controls, which provide a continuous axis
for specifying which timescales we want from each input. In contrast, existing works in musical
style transfer focus on specific aspects of music like timbre (Huang et al., 2018; Li et al., 2024;
Wang et al., 2024), musical arrangement (Cı́fka et al., 2020), or composition (SE, 2016). Traditional
techniques are also used to blend sounds, as done in the Cross Synthesis baseline (Smith, 2011).

3 METHOD

3.1 BACKGROUND

...

x

k = 0

k = 1

k = 2

k = 3

k = 8

Figure 1: x ∈ R16

decomposed via Eq 1.

Discrete Fourier Transform. The discrete Fourier transform2 (DFT) cor-
relates an input signal x ∈ CN with N complex sinusoidal signals, giving
its spectral representation X ∈ CN . The kth DFT coefficient is given by:

X[k] = x ·wk, (DFT)

where (·) denotes the complex dot product, and wk[n] = ej(2πk/N)n de-
notes the kth complex sinusoid. The complex sinusoids w1, ...,wN form
an orthogonal basis for CN , allowing the DFT to be inverted:

x =
1

N

N−1∑
k=0

X[k]wk (IDFT)

The inverse DFT is also called the “synthesis” equation, since it expresses
x as a weighted sum of complex sinusoids. To provide more concrete intu-
ition, if x is real-valued, we can express x as the sum of real sinusoids with
various frequencies k

N , amplitudes Ak, and phase shifts ϕk:

x[n] =

⌊N/2⌋∑
k=0

Ak cos

(
2π

k

N
n+ ϕk

)
(1)

Where Ak and ϕk are both derived from |X[k]|, as shown in Appendix D.1.
In words, the DFT can decompose a real signal into a sum of real sinusoids
of different frequencies, all of which are mutually orthogonal. We show this
decomposition for an example signal in Fig. 1.

Diffusion Autoencoders. The diffusion autoencoder was proposed by (Preechakul et al., 2022)
to harness the power of diffusion models for representation learning. During training, an encoder
maps an image x0 into a non-spatial semantic vector zsem. Then, a diffusion model (which acts
as the decoder) tries to reconstruct x0 from zsem and a noisy version of the image xτ . Diffusion
autoencoders are typically trained with a MSE loss that determines how well xτ is denoised, (or
equivalently, how well x0 is reconstructed). During inference, zsem can be used to condition a
generative diffusion process and produce an image.

We have three motivations for using a diffusion autoencoder. First, the decoder harnesses the gener-
ative power of a diffusion model, allowing it to generate high-quality music even when information
has been removed (masked) from the latent conditioning vector. Second, since the generative pro-
cess is random, one can generate multiple variations for the same input condition. Third, diffusion
autoencoders have been shown to yield latent representations zsem that are semantically meaningful
and linear, supporting interpolation between images and attribute manipulation. In fact, recent work
shows the applicability of diffusion autoencoders to music representation learning (Pasini et al.,
2024; Bindi & Esling, 2024).

2We present a simplified notation for the DFT for clarity and brevity. Note that wk is typically presented as
the conjugate of what we have here.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

User
Mask

Rand.
Mask

Encoder

Input Variation

Decoder

Reconstruction Loss

Add Noise

DFT-1DFT

Latent Spec. Masked Spec.

OR OR

Figure 2: Latent Fourier Transform (LATENTFT). We encode audio (which may be represented
as a waveform or spectrogram) into a series of latent vectors and compute a latent spectrum. During
training (red), this spectrum is masked randomly and used to reconstruct the input. During inference
(blue), the user specifies a spectral mask, which selects features from the input at specific latent
frequencies and conditions a generative process.

3.2 METHOD OVERVIEW

Our goal is two-fold. First, we want to map an audio waveform or spectrogram x0 into a time series
of latent vectors, whose spectrum encodes semantic patterns. We refer to the DFT spectrum of this
latent time series as the latent spectrum. It is important to distinguish the latent spectrum from the
audible spectrum: The audible spectrum refers to the DFT spectrum of the audio waveform, and cap-
tures variations in the waveform occurring at different frequencies. In contrast, the latent spectrum
captures variations in the latent time series occurring at different frequencies, which we correspond
to musical patterns occurring at different timescales. Second, we should be able isolate features at
selected latent frequencies and use them to generate variations, blend them with other audio clips,
or hear them in isolation. These goals motivate an end-to-end encoder-decoder architecture that
encodes music into latent spectra, and decodes latent spectra into music. We apply a latent Fourier
transform and frequency-masking during training, shown in Alg. 1 and Fig. 2.

3.3 ENCODING THE LATENT SPECTRUM

Encoder. An encoder maps input music x0 ∈ RC×T to time series of latent vectors z ∈ RC′×T ′
:

z = Encϕ(x0) (2)

Algorithm 1 Training.

Input: Audio Waveform or Spectrogram x0

1: z ← Encϕ(x0)
2: Z ← DFT(z)
3: η ∼ N (0, 1) ▷ Sample threshold
4: s ∼ N (0,Σ) ▷ Sample frequency bin scores
5: M ← 1s>η ▷ Get Mask
6: Zmasked ← Z ⊙M
7: zmasked ← IDFT

(
Zmasked)

8: Sample noise level τ ∼ p(τ)
9: xτ ← DiffusionForward (x0, τ) ▷ Add noise

10: x̂0 ← Decθ
(
zmasked,xτ , τ

)
▷ Reconstruct x0

11: ℓ← L (x̂0,x0)
12: Update parameters ϕ, θ using∇ϕ,θℓ

Here, C and C ′ are the number of input and la-
tent channels, while T and T ′ are the number of
input and latent timesteps. Although T and T ′ do
not have to be equal, z must have a linear tempo-
ral axis in order to produce a latent spectrum. This
favors convolutional architectures or networks like
the U-Net (Ronneberger et al., 2015), whose skip
connections promote input-output alignment. We
define fr as the latent frame rate in Hz, or the num-
ber of latent vectors (frames) needed to represent
one second of audio.

Latent Fourier Transform. The latent spec-
trum3 refers to the DFT of the latent timeseries z,
applied to each channel in the latent timeseries:

Z = DFT(z), Z ∈ CC′×K (3)

Applying the DFT along the time axis of our latent sequence represents each latent channel as a
sum of K = ⌊T ′/2⌋ + 1 sinusoids (see Eq. 1). The sinusoids have K different linearly-spaced
frequencies, which capture variations in each latent channel at different temporal rates. The kth
sinusoid completes k cycles in T ′ latent timeframes (see Fig. 1). For instance, the 0th sinusoid is
constant, the 1st sinusoid has a period of T ′ latent frames, and the 2nd sinusoid has a period of T ′/2
latent frames. The sinusoids are also orthogonal from one another, creating an inductive bias for
separating information across timescales.

3The DFT is different from the Short-time Fourier Transform, which yields a spectrogram, not a spectrum.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Specifically, DFT(z) stores K complex coefficients indicating the amplitude and phase of each si-
nusoid along a K-dimensional frequency axis. We refer to the frequency-axis of DFT(z) as the
latent frequency axis, and we call points along this axis latent frequencies. Like audible frequencies,
latent frequencies are described in Hz. However, 1 Hz on the latent spectrum corresponds to oscil-
lations in the latent sequence occurring at 1 cycle per second, instead of oscillations in the audio
waveform. The kth sinusoid has a period of T ′/k latent frames or T ′/(kfr) seconds, and thus a
latent frequency of fk = kfr/T

′ Hz.

Increasing Spectral Granularity. In practice, we zero-pad z at its end, expanding its temporal
length by a factor of L. This increases the number of frequency bins by a factor of ≈ L, allowing
for more spectral granularity via spectral interpolation (Smith, 2007). This is especially useful for
capturing very low-frequency patterns (below 1 cycle per T ′ timeframes). We let F = ⌊LT ′/2⌋+1
be the number of spectral bins (sinusoids) after zero padding z.

3.4 FREQUENCY MASKING

At inference, we want to select specific frequencies from the latent spectrum to generate variations
from them or ‘zoom-in’ on them. This is accomplished by applying a latent spectral mask M ∈
{0, 1}F , taking Zmasked = Z ⊙M . During inference, this mask is chosen by the user. During
training, this mask is randomized: First, we sample a random scalar threshold η ∼ N (0, 1), which
helps decide the proportion of bins to be masked. Second, we sample s ∼ N (0F ,Σ), where s ∈ RF

assigns scores to each frequency bin. Third, we set the mask to keep bins whose score is greater
than the threshold, setting M = 1s>η .

Random Threshold. Using a random threshold ensures a uniform distribution over the number of
masked bins. In contrast, independently masking each frequency bin with probability p corresponds
to setting a fixed threshold and Σ = I . This results in a binomial distribution over the number of
masked bins, which does not reflect the inference-time distribution of user-specified masks.

Correlating Bins. Instead of masking each frequency bin independently, we create a “soft group-
ing” between nearby frequency bins by correlating their scores. This is done by multiplying uncor-
related scores u ∼ N (0F , I) with a radial basis function matrix K:

Ki,j = ci exp

(
−|ai − aj |p

2σp

)
, K ∈ RF×F , (4)

where ai = log(fi + ϵ) is the frequency of bin i mapped to a logarithmic axis, p, σ, and ϵ are
hyperparameters, and ci normalizes each row of K to have unit ℓ2 norm. Multiplying s = Ku
results in correlated scores between frequency bins, where the amount of correlation between two
frequency bins is determined by their distance on a logarithmic axis. The covariance matrix of s is
Σ = KKT . Ablations (Appendix B.1) show that correlating bin scores is key to our method’s per-
formance . Intuitively, masking frequency bins independently forms speckled masks where masked
bins are often adjacent to unmasked ones. The unmasked bins provide strong local cues about nearby
masked ones, reducing the model’s ability to fill in contiguous regions of the latent spectrum dur-
ing inference. In contrast, correlated bin scores form masks with larger contiguous regions, which
combats the effect of spectral leakage and better reflects inference-time, user-specified masks.

Logarithmically scaling the frequency-axis is also key to performance (Appendix B.1). This is com-
mon in audio, exemplified by the Mel scale (Stevens et al., 1937), Constant Q-Transform (Brown,
1991), and others. More generally, structured signals from images (San Roman et al., 2023) to
coastlines and mountains (Bak et al., 1987) have spectra that follow a 1/fα curve. Segmenting such
spectra into groups of equal width along a log-frequency axis yields groups of roughly equal energy.
This motivates our logarithmic scaling, where higher frequencies are more likely to form larger
groups. Lastly, normalizing the rows of K ensures equal marginal variance between every bin score
sk, so that all bins have the same marginal probability of being masked for any given threshold.

3.5 DECODING THE LATENT SPECTRUM

We transform Zmasked back into the time domain by applying the inverse DFT, obtaining a frequency-
masked latent sequence zmasked = IDFT(Zmasked). The decoder then uses zmasked to reconstruct the
input x0 from a noisy version of it (training), or to condition a diffusion process (inference).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Training. During training, we obtain a noisy version xτ of the input x0 through a forward diffu-
sion process. This process samples a diffusion time τ ∼ p(τ) from a predetermined distribution and
adds a τ -dependent amount of noise to x0. We supply zmasked and xτ to the decoder, which gives
an estimate of the clean input x̂0:

x̂0 ← Decθ
(
zmasked,xτ , τ

)
(5)

Then, we compute a reconstruction loss ℓ = L (x̂0,x0), which is used to update the parameters
ϕ, θ of both the encoder and decoder. This procedure effectively trains a diffusion model, which
can generate new outputs conditioned on zmasked. While we do not require a particular diffusion
framework, in practice we follow the ODE formulation in Karras et al. (2022). This framework
preconditions the model inputs and outputs, uses approximately linear diffusion trajectories, and
applies a second-order correction at each sampling step (omitted in Algs. 2 and 3 for clarity).

Algorithm 2 Conditional Generation

Input: zmasked, {τi}Ni=0 decreasing
1: x ∼ N (0, σ2

max)
2: for i ∈ {0, ..., N − 1} do
3: x̂0 ← Decθ

(
zmasked,x, τi

)
4: d← (x− x̂0) /σi ▷ Deriv. of Noise Traj.
5: x← x+ (τi+1 − τi)d

6: return x

Algorithm 3 Blending

Input: zmasked
1 ,zmasked

2 , {τi}Ni=0, weights α, β
1: x ∼ N (0, σ2

max)
2: for i ∈ {0, . . . , N − 1} do
3: x̂

(1)
0 ← Decθ

(
zmasked
1 ,x, τi

)
4: x̂

(2)
0 ← Decθ

(
zmasked
2 ,x, τi

)
5: d1 ← (x− x̂

(1)
0)/σi

6: d2 ← (x− x̂
(2)
0)/σi

7: d← αd1 + βd2

8: x← x+ (τi+1 − τi)d

9: return x

Conditional Generation. Our conditional gener-
ation task attempts to generate a variation of a ref-
erence song y that preserves characteristics at user-
specified latent frequencies. The reference y is en-
coded and masked in the latent frequency domain to
obtain zmasked. The mask is user-specified, and typ-
ically selects low frequencies, high frequencies, or a
band of intermediate frequencies. We use zmasked to
condition a reverse diffusion process, which iteratively
denoises pure Gaussian noise to yield a new variation.

Blending. Our blending task attempts to combine
two musical references y1,y2 into a new song that pre-
serves characteristics from each at user-specified la-
tent frequencies. Like before, z1, z2 are obtained and
masked in the latent frequency domain to get condi-
tions zmasked

1 , and zmasked
2 . Here, the user specifies two

masks specifying which latent frequencies to retain
from each input. We obtain our blend by simulating
the reverse diffusion process, at each step interpolat-
ing the derivatives induced by each condition (Alg. 3).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and Training. We train three versions of LATENTFT with three different encoders. We
use UNet and MLP encoders with a mel-spectrogram frontend, as well as a raw audio encoder that
utilizes a Descript Audio Codec (DAC) (Kumar et al., 2023) frontend. These encoders are described
further and compared in Appendix A.1. Each model generates mel-spectrograms, which are inverted
using the BigVGAN neural vocoder (Lee et al., 2022). We train our model on MTG-Jamendo (Bog-
danov et al., 2019), a large-scale collection of over 55,000 songs spanning diverse musical genres
(described more in Appendix A.5) segmented into 5.9-second musical clips. Hyperparameters for
the decoders and training are in Appendix A.2 and A.3, respectively.

Baselines. We compare LATENTFT to various traditional and learned methods of generating or
representing audio. First, we try several generation baselines, adapting them to our task:

• Masked Token Model (Garcia et al., 2023). We use the Vampnet masked token model, which
generates discrete acoustic tokens from coarse-to-fine. Vampnet is trained to predict all acous-
tic tokens given a random subset of them, and supports supplying arbitrary token masks during
inference. For conditional generation, we select different contiguous subsets of RVQ layers to
condition on, and for the blending task, we select a different layer to take from each reference.

• Guidance (Levy et al., 2023). We generate mel-spectrograms with an unconditional diffusion
model. At each denoising step, we compute the DFT along the time axis of the reference

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

spectrogram(s) and the current reconstruction x̂0. We compute the loss between these DFT
spectra within the selected frequency bins, using it to update the intermediate output.

• ILVR (Choi et al., 2021). We generate mel-spectrograms from an unconditional diffusion
model. At each denoising step, we compute DFT spectra of the intermediate output and the
reference(s) set to the current noise level. We replace selected DFT frequencies of the inter-
mediate output with the corresponding DFT frequencies of the noisy reference(s).

• Cross Synthesis (Smith, 2011). Cross synthesis blends two sounds by replacing the spectral
envelope of one sound with that of the other. We follow the implementation in Smith (2011).

In the Guidance and ILVR baselines, note that we use the spectrum of the mel-spectrogram to steer
the diffusion process instead of the latent spectrum. We also attempt post-hoc frequency-domain
filtering of existing representations of audio for our tasks, similar to Tamkin et al. (2020):

• DAC (Kumar et al., 2023). We encode our reference(s) using Descript Audio Codec, a popular
deep neural audio codec. We frequency-mask the latent states post-quantization, and feed the
filtered latent sequence to the decoder to produce audio.

• RAVE (Caillon & Esling, 2021) offers another latent representation of the audio signal, which
is often manipulated in the latent space and used to generate audio (Nabi et al., 2024; Zheng
et al., 2024a). Similar to DAC, we frequency-mask the latent states obtained from the RAVE
encoder, then provide them to the decoder.

• Spectrogram. We filter the input mel-spectrogram representation(s) directly, by computing
the DFT of the mel-spectrogram(s) along the time axis, then masking the DFT(s). We convert
the filtered mel-spectrograms to audio with BigVGAN (Lee et al., 2022).

In each case, we blend by taking selected frequency components from two latent representations
derived from two inputs, by adding the two frequency-masked latents together before decoding.

4.2 CONDITIONAL GENERATION

We show that LATENTFT can generate variations of a given song while preserving patterns at user-
specified timescales. We take 1024 random 5.9-second clips from the MTG-Jamendo test set, en-
suring each clip originates from a unique song (results on more datasets in Appendix B.2). We
then generate variations of each clip, conditioning on 14 different latent frequency bands of varying
widths and locations (see Appendix A.6). Good variations should adhere to the condition, preserv-
ing input characteristics at the specified timescales, and have musically coherent, high-quality audio.

Metrics. To measure adherence, we extract time-series descriptor signals (e.g., loudness curves)
from both the input and generated audio. We bandpass these descriptor signals to the selected
frequency band, and measure their similarity or error with standard metrics. We select four percep-
tually relevant time series descriptors. First, we extract loudness curves following Morrison et al.
(2024), and quantify their similarity using their correlation coefficient (Kosta et al., 2016). Second,
we quantify rhythmic preservation by computing onset strength envelopes (Böck & Widmer, 2013)
and measuring their beat-spectral cosine similarity (Foote et al., 2002). Third, to quantify timbral
preservation, we extract Mel-Frequency Cepstral Coefficients and compute Mel-Cepstral Distortion
(Kominek et al., 2008). Fourth, we measure harmonic characteristics (relating to chords and music
notes) by computing tonal centroid features, and quantify error using Tonnetz distance (Milne &
Holland, 2016). We measure audio quality by computing the Frechet Audio Distance (Kilgour et al.,
2018) between the set of generated music and the MTG-Jamendo validation set.

Results and Analysis. We recommend listening to the qualitative results, which are available on
the website4, and show our variations are diverse and musically interesting. Quantitative results are
in Table 1. Our model outperforms all baselines in terms of adherence, indicating that the latent
spectrum captures and reproduces variations in loudness, rhythm, timbre, and harmony occurring at
selected timescales. We also surpass all baselines in terms of quality. Our metrics confirm that (1)
previous audio generation models cannot condition on features from arbitrary timescales, and (2)
previous representations of audio are not robust to post-hoc spectral modifications.

4https://latentfouriertransform.com/

8

https://latentfouriertransform.com/
https://latentfouriertransform.com/

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Conditional Generation Blending
Adherence Quality Adherence to Both Inputs Quality

Loud. ↑ Rhyth. ↑ Timb. ↓ Harm. ↓ FAD ↓ Loud. ↑ Rhyth. ↑ Timb. ↓ Harm. ↓ FAD ↓
Masked Tok. - - - - 4.317 - - - - 6.033
Guidance 0.529 0.813 1.430 0.099 1.061 0.557 0.832 1.607 0.114 1.466
ILVR 0.575 0.839 0.781 0.100 1.537 0.624 0.858 0.825 0.112 2.696
DAC 0.661 0.838 4.064 0.209 7.016 0.550 0.792 3.980 0.236 6.257
RAVE -0.016 0.718 3.836 0.180 4.695 -0.006 0.697 4.439 0.171 4.478
Spectrogram 0.366 0.858 2.104 0.139 7.608 0.272 0.824 2.975 0.128 7.021
Cross Synth. - - - - - - - - - 2.447

LATENTFT-MLP 0.815 0.963 0.376 0.079 0.337 0.686 0.873 1.021 0.108 1.387
LATENTFT-UNet 0.834 0.966 0.391 0.079 0.348 0.686 0.878 1.118 0.109 1.357
LATENTFT-DAC 0.878 0.922 1.390 0.107 0.915 0.699 0.846 1.865 0.131 1.364

Table 1: Results on Conditional Generation and Blending on the MTG-Jamendo Test set. Mel-
Cepstral Distortion (Timbre) is divided by 100. Compared to baselines, LATENTFT variants achieve
superior adherence and audio quality. The Masked Token Model and Cross Synthesis baselines do
not offer frequency-based controls, so we do not compute adherence. Cross Synthesis also only
applies to the blending task.

4.3 BLENDING

Setup. We show that LATENTFT can blend two songs together, while preserving patterns from
each at user-specified latent frequencies. This application is motivated by the traditional equal-
izer, whose primary use is to promote coherence between tracks by emphasizing different audible
frequencies from each of them. The experimental setup is similar to the conditional generation ex-
periment. However, instead selecting a single latent frequency band from a single song, we select
two non-overlapping bands from two songs (details in Appendix A.6). We then measure the blended
song’s adherence to each song with respect to its selected subband, and average the two. To ensure
that the blending is successful and musically coherent, we also report the FAD.

Analysis. We provide examples of blending on the website, and quantitative results are shown in
Table 1. The blending task requires an adherence–quality tradeoff, since adhering to both conditions
perfectly may not result in pleasant audio. Since ILVR iteratively replaces frequency components of
the output with those of the conditions, it has a slightly better adherence score on the timbre metric,
while being worse in terms of quality. ILVR also loses to LATENTFT in user studies by a substantial
margin (Fig. 3) in terms of both audio quality and ability to blend. In general, LATENTFT can
better adhere to two conditions simultaneously compared to baselines, and generates higher-quality
audio. The ability to adhere to disjoint latent-frequency components from two reference examples
also indicates that the latent spectrum separates information by timescale to some extent.

4.4 LISTENING STUDY

To validate our method against human preferences, we conduct a listening study comparing LA-
TENTFT and three other systems on the blending task. We choose a discrete method (the Masked
Token Model baseline), a diffusion-based method (ILVR), and a traditional method (Cross Syn-
thesis) to compare with LATENTFT. We recruited 29 musicians to complete a 12-question survey
comparing every ordered pair of systems. For each question, participants first heard two randomly-
selected music clips from the MTG-Jamendo test set. They then heard two blendings of the music
clips, each produced by a different system. Participants rated which blending they preferred in terms
of (i) audio quality and (ii) how well the clips were merged, using two separate 5-point Likert scales.
Fig. 3 shows that our model outperforms the baselines on both metrics. Additional details about the
listening study and statistical analyses of the results can be found in Appendix A.7.

4.5 HEARING IN LATENT FREQUENCIES IN ISOLATION

LATENTFT can ‘zoom in’ or ‘boost’ patterns at specific latent frequencies, analogous to how audio
engineers boost various audible frequencies to identify interesting or problematic regions (Izhaki,
2017, p. 265). We show this in Fig. 4. The first spectrogram shows an electronic music clip,
containing patterns at various timescales. The second spectrogram boosts latent frequencies between
0 and 1 Hz, which removes rapid drum patterns (vertical lines) and bass patterns (near the bottom),

9

https://latentfouriertransform.com/

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

0 25 50 75 100 125
Audio Quality - Num. Wins

Ours
Cross.

ILVR
MTM

0 25 50 75 100 125
Ability to Blend - Num. Wins

Ours
Cross.

ILVR
MTM

Figure 3: Listening study
with pairwise comparisons.
We achieve the most head-to-
head wins on both criteria.

1 2 3 4 5
Time (s)

512

1024

2048

4096

8192

Hz

Reference

1 2 3 4 5
Time (s)

0 - 1 Latent Hz

1 2 3 4 5
Time (s)

7.5 - 8.5 Latent Hz

Bass Bass Reduced

8 Hz Accentuated

Figure 4: Isolating frequencies from an electronic music clip. We
show three audio spectrograms. The second spectrogram smooths the
reference spectrogram, and the third accentuates patterns occurring at
8 Hz while removing lower-frequency patterns, like the bass.

and makes the spectrogram notably smoother along the horizontal (time) axis. The third spectrogram
boosts latent frequencies between 7.5 and 8.5 Hz. This accentuates a pattern in the original song
occurring at 8 Hz, seen by comparing the vertical lines in the third spectrogram with those in the first.
Also, the third spectrogram does not retain the rhythmic patterns of the bass, which occur below 7.5
Hz. This can be seen by comparing the lower regions of spectrograms one and three. LATENTFT
allows for performing low-pass and high-pass operations on music representations while retaining
musical coherence, which low-passing or high-passing spectrograms directly cannot do (Table 1).
We achieve isolation using a self-blending procedure described in Appendix A.8.

4.6 INTERPRETING THE LATENT SPECTRUM

0.0

1.0

Pr
es

er
va

tio
n

Rock Song

Genre
Chords
Tempo
Pitch

0.0 0.5 1.0 2.0 4.0 8.0
Latent Frequency (Hz)

1.0

Pr
es

er
va

tio
n

Jazz Song

Genre
Chords
Tempo
Pitch

Figure 5: Preservation curves in-
dicating where tempo, pitch, genre
reside in in the latent spectra of two
reference songs.

Musical concepts like genre, tempo, pitch, and chord changes
are distributed across different regions of a song’s latent spec-
trum, analogous to how different sonic characteristics occupy
distinct ranges of the audible spectrum. Given a song, we
generate many variants while performing a sweep through the
frequencies we condition on. For each variant, we measure
preservation of genre (using a classifier), chord progression,
predominant pitch, and tempo, with respect to the original
song. We plot how well the variation preserves these traits
against the frequency we condition on, applying smoothing.
Fig. 5 shows these traits are distributed across the latent spec-
trum differently. Genre is a more global feature; chords change
at latent frequencies below 1 Hz; and predominant pitch and
tempo reside at higher frequencies, tending to be multiples
of the song’s BPM. For this experiment, we use the GTZAN
(Tzanetakis & Cook, 2002) dataset, since it contains ground-
truth genre labels. More details about how these preservation
curves computed are in Appendix A.9. Also, we interpret the
latent spectra of more songs of various styles in Appendix B.3.

5 CONCLUSION

In this work, we introduced the Latent Fourier Transform, which provides novel frequency-based
controls for generative models. We showed applications in conditional generation and blending in
the domain of music. Future work should include enabling real-time interactivity, or disentangling
the latent spectrum along semantic axes, combining both timescale-based and semantic controls.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REPRODUCIBILITY STATEMENT

To promote reproducibility, we include code for training, generating, and blending examples from
LATENTFT. We also include all our baseline implementations and our experiment pipeline for the
conditional generation task, the blending task, code for generating sweeps for the interpretability
experiment (Sec. 4.6), and code for isolating frequency components (Sec. 4.5). We also include all
our model architectures, training configurations and hyperparameters (Appendix A), and code for
replicating the model architecture. Finally, we include code for preprocessing our datasets.

REFERENCES

Andrea Agostinelli, Timo I Denk, Zalán Borsos, Jesse Engel, Mauro Verzetti, Antoine Caillon,
Qingqing Huang, Aren Jansen, Adam Roberts, Marco Tagliasacchi, et al. Musiclm: Generating
music from text. arXiv preprint arXiv:2301.11325, 2023.

N Ashikhmin. Fast texture transfer. IEEE computer Graphics and Applications, 23(4):38–43, 2003.

Yuval Atzmon, Maciej Bala, Yogesh Balaji, Tiffany Cai, Yin Cui, Jiaojiao Fan, Yunhao Ge, Sid-
dharth Gururani, Jacob Huffman, Ronald Isaac, et al. Edify image: High-quality image generation
with pixel space laplacian diffusion models. arXiv preprint arXiv:2411.07126, 2024.

Philip Bachman. An architecture for deep, hierarchical generative models. Advances in Neural
Information Processing Systems, 29, 2016.

Per Bak, Chao Tang, and Kurt Wiesenfeld. Self-organized criticality: An explanation of the 1/f
noise. Physical review letters, 59(4):381, 1987.

Giovanni Bindi and Philippe Esling. Unsupervised composable representations for audio. arXiv
preprint arXiv:2408.09792, 2024.

Sebastian Böck and Gerhard Widmer. Maximum filter vibrato suppression for onset detection. In
Proc. of the 16th Int. Conf. on Digital Audio Effects (DAFx). Maynooth, Ireland (Sept 2013),
volume 7, pp. 4. Citeseer, 2013.

Dmitry Bogdanov, Nicolas Wack, Emilia Gómez, Sankalp Gulati, Perfecto Herrera, Oscar Mayor,
Gerard Roma, Justin Salamon, José Zapata, and Xavier Serra. Essentia: an open-source library
for sound and music analysis. In Proceedings of the 21st ACM international conference on Mul-
timedia, pp. 855–858, 2013.

Dmitry Bogdanov, Minz Won, Philip Tovstogan, Alastair Porter, and Xavier Serra. The mtg-jamendo
dataset for automatic music tagging. ICML, 2019.

Zalán Borsos, Raphaël Marinier, Damien Vincent, Eugene Kharitonov, Olivier Pietquin, Matt Shar-
ifi, Dominik Roblek, Olivier Teboul, David Grangier, Marco Tagliasacchi, et al. Audiolm: a
language modeling approach to audio generation. IEEE/ACM transactions on audio, speech, and
language processing, 31:2523–2533, 2023a.

Zalán Borsos, Matt Sharifi, Damien Vincent, Eugene Kharitonov, Neil Zeghidour, and Marco
Tagliasacchi. Soundstorm: Efficient parallel audio generation. arXiv preprint arXiv:2305.09636,
2023b.

Judith C Brown. Calculation of a constant q spectral transform. The Journal of the Acoustical
Society of America, 89(1):425–434, 1991.

Antoine Caillon and Philippe Esling. Rave: A variational autoencoder for fast and high-quality
neural audio synthesis, 2021. URL https://arxiv.org/abs/2111.05011.

Ke Chen, Yusong Wu, Haohe Liu, Marianna Nezhurina, Taylor Berg-Kirkpatrick, and Shlomo Dub-
nov. Musicldm: Enhancing novelty in text-to-music generation using beat-synchronous mixup
strategies. In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pp. 1206–1210. IEEE, 2024.

11

https://arxiv.org/abs/2111.05011

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Lu Chi, Borui Jiang, and Yadong Mu. Fast fourier convolution. Advances in Neural Information
Processing Systems, 33:4479–4488, 2020.

Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, Youngjune Gwon, and Sungroh Yoon. Ilvr: Con-
ditioning method for denoising diffusion probabilistic models. arXiv preprint arXiv:2108.02938,
2021.

Ondřej Cı́fka, Umut Şimşekli, and Gaël Richard. Groove2groove: One-shot music style transfer
with supervision from synthetic data. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 28:2638–2650, 2020.

Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi, and Alexan-
dre Défossez. Simple and controllable music generation. Advances in Neural Information Pro-
cessing Systems, 36:47704–47720, 2023.

Shuqi Dai, Zheng Zhang, and Gus G Xia. Music style transfer: A position paper. arXiv preprint
arXiv:1803.06841, 2018.

Yingying Deng, Fan Tang, Weiming Dong, Chongyang Ma, Xingjia Pan, Lei Wang, and Changsheng
Xu. Stytr2: Image style transfer with transformers. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 11326–11336, 2022.

Caiwen Ding, Siyu Liao, Yanzhi Wang, Zhe Li, Ning Liu, Youwei Zhuo, Chao Wang, Xuehai Qian,
Yu Bai, Geng Yuan, et al. Circnn: accelerating and compressing deep neural networks using
block-circulant weight matrices. In Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 395–408, 2017.

Alexei A Efros and William T Freeman. Image quilting for texture synthesis and transfer. In Seminal
graphics papers: pushing the boundaries, volume 2, pp. 571–576. 2023.

Zach Evans, Julian D Parker, CJ Carr, Zack Zukowski, Josiah Taylor, and Jordi Pons. Stable audio
open. In ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 1–5. IEEE, 2025.

Jonathan Foote, Matthew Cooper, and Unjung Nam. Audio retrieval by rhythmic similarity. In
ISMIR, 2002.

Seth Forsgren and Hayk Martiros. Riffusion - Stable diffusion for real-time music generation, 2022.
URL https://riffusion.com/about.

Hugo Flores Garcia, Prem Seetharaman, Rithesh Kumar, and Bryan Pardo. Vampnet: Music gener-
ation via masked acoustic token modeling. arXiv preprint arXiv:2307.04686, 2023.

Hugo Flores Garcı́a, Oriol Nieto, Justin Salamon, Bryan Pardo, and Prem Seetharaman.
Sketch2sound: Controllable audio generation via time-varying signals and sonic imitations. In
ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 1–5. IEEE, 2025.

Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style transfer using convolutional
neural networks. In Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pp. 2414–2423, 2016.

John Guibas, Morteza Mardani, Zongyi Li, Andrew Tao, Anima Anandkumar, and Bryan Catan-
zaro. Adaptive fourier neural operators: Efficient token mixers for transformers. arXiv preprint
arXiv:2111.13587, 2021.

Ishaan Gulrajani, Kundan Kumar, Faruk Ahmed, Adrien Ali Taiga, Francesco Visin, David Vazquez,
and Aaron Courville. Pixelvae: A latent variable model for natural images. arXiv preprint
arXiv:1611.05013, 2016.

Takuya Hasumi, Tatsuya Komatsu, and Yusuke Fujita. Music tagging with classifier group chains. In
ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 1–5. IEEE, 2025.

12

https://riffusion.com/about

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Curtis Hawthorne, Andriy Stasyuk, Adam Roberts, Ian Simon, Cheng-Zhi Anna Huang, Sander
Dieleman, Erich Elsen, Jesse Engel, and Douglas Eck. Enabling factorized piano music modeling
and generation with the maestro dataset. arXiv preprint arXiv:1810.12247, 2018.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022.

Ziwei He, Meng Yang, Minwei Feng, Jingcheng Yin, Xinbing Wang, Jingwen Leng, and Zhouhan
Lin. Fourier transformer: Fast long range modeling by removing sequence redundancy with fft
operator. arXiv preprint arXiv:2305.15099, 2023.

D Hendrycks. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415, 2016.

Shawn Hershey, Sourish Chaudhuri, Daniel PW Ellis, Jort F Gemmeke, Aren Jansen, R Channing
Moore, Manoj Plakal, Devin Platt, Rif A Saurous, Bryan Seybold, et al. Cnn architectures for
large-scale audio classification. In 2017 ieee international conference on acoustics, speech and
signal processing (icassp), pp. 131–135. IEEE, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Po-Yao Huang, Hu Xu, Juncheng Li, Alexei Baevski, Michael Auli, Wojciech Galuba, Florian
Metze, and Christoph Feichtenhofer. Masked autoencoders that listen. Advances in Neural Infor-
mation Processing Systems, 35:28708–28720, 2022.

Qingqing Huang, Daniel S Park, Tao Wang, Timo I Denk, Andy Ly, Nanxin Chen, Zhengdong
Zhang, Zhishuai Zhang, Jiahui Yu, Christian Frank, et al. Noise2music: Text-conditioned music
generation with diffusion models. arXiv preprint arXiv:2302.03917, 2023.

Sicong Huang, Qiyang Li, Cem Anil, Xuchan Bao, Sageev Oore, and Roger B Grosse. Tim-
bretron: A wavenet (cyclegan (cqt (audio))) pipeline for musical timbre transfer. arXiv preprint
arXiv:1811.09620, 2018.

Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with adaptive instance normal-
ization. In Proceedings of the IEEE international conference on computer vision, pp. 1501–1510,
2017.

Roey Izhaki. Mixing audio: concepts, practices, and tools. Routledge, 2017.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and
super-resolution. In European conference on computer vision, pp. 694–711. Springer, 2016.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in neural information processing systems, 35:26565–26577,
2022.

Salman H Khan, Munawar Hayat, and Fatih Porikli. Scene categorization with spectral features. In
Proceedings of the IEEE international conference on computer vision, pp. 5638–5648, 2017.

Kevin Kilgour, Mauricio Zuluaga, Dominik Roblek, and Matthew Sharifi. Fr\’echet audio distance:
A metric for evaluating music enhancement algorithms. arXiv preprint arXiv:1812.08466, 2018.

John Kominek, Tanja Schultz, and Alan W Black. Synthesizer voice quality of new languages
calibrated with mean mel cepstral distortion. In SLTU, pp. 63–68, 2008.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
diffusion model for audio synthesis. arXiv preprint arXiv:2009.09761, 2020.

Katerina Kosta, Rafael Ramı́rez, Oscar F Bandtlow, and Elaine Chew. Mapping between dynamic
markings and performed loudness: a machine learning approach. Journal of Mathematics and
Music, 10(2):149–172, 2016.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Rithesh Kumar, Prem Seetharaman, Alejandro Luebs, Ishaan Kumar, and Kundan Kumar. High-
fidelity audio compression with improved rvqgan. Advances in Neural Information Processing
Systems, 36:27980–27993, 2023.

J Richard Landis and Gary G Koch. The measurement of observer agreement for categorical data.
biometrics, pp. 159–174, 1977.

Luca A Lanzendörfer, Florian Grötschla, Michael Ungersböck, and Roger Wattenhofer. High-
fidelity music vocoder using neural audio codecs. In ICASSP 2025-2025 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5. IEEE, 2025.

Jae-Han Lee, Minhyeok Heo, Kyung-Rae Kim, and Chang-Su Kim. Single-image depth estimation
based on fourier domain analysis. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 330–339, 2018.

Sang-gil Lee, Wei Ping, Boris Ginsburg, Bryan Catanzaro, and Sungroh Yoon. Bigvgan: A universal
neural vocoder with large-scale training. arXiv preprint arXiv:2206.04658, 2022.

James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and Santiago Ontanon. Fnet: Mixing tokens with
fourier transforms. arXiv preprint arXiv:2105.03824, 2021.

Mark Levy, Bruno Di Giorgi, Floris Weers, Angelos Katharopoulos, and Tom Nickson. Con-
trollable music production with diffusion models and guidance gradients. arXiv preprint
arXiv:2311.00613, 2023.

Sifei Li, Yuxin Zhang, Fan Tang, Chongyang Ma, Weiming Dong, and Changsheng Xu. Music style
transfer with time-varying inversion of diffusion models. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pp. 547–555, 2024.

Shiqi Lin, Zhizheng Zhang, Zhipeng Huang, Yan Lu, Cuiling Lan, Peng Chu, Quanzeng You, Jiang
Wang, Zicheng Liu, Amey Parulkar, et al. Deep frequency filtering for domain generalization.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
11797–11807, 2023.

Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang, and
Mark D Plumbley. Audioldm: Text-to-audio generation with latent diffusion models. arXiv
preprint arXiv:2301.12503, 2023.

Michael Mathieu, Mikael Henaff, and Yann LeCun. Fast training of convolutional networks through
ffts. arXiv preprint arXiv:1312.5851, 2013.

Brian McFee, Colin Raffel, Dawen Liang, Daniel PW Ellis, Matt McVicar, Eric Battenberg, and
Oriol Nieto. librosa: Audio and music signal analysis in python. SciPy, 2015:18–24, 2015.

Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.
Sdedit: Guided image synthesis and editing with stochastic differential equations. arXiv preprint
arXiv:2108.01073, 2021.

Andrew J Milne and Simon Holland. Empirically testing tonnetz, voice-leading, and spectral models
of perceived triadic distance. Journal of Mathematics and Music, 10(1):59–85, 2016.

Eloi Moliner, Maija Turunen, Filip Elvander, and Vesa Välimäki. A diffusion-based generative
equalizer for music restoration. arXiv preprint arXiv:2403.18636, 2024.

Max Morrison, Cameron Churchwell, Nathan Pruyne, and Bryan Pardo. Fine-grained and inter-
pretable neural speech editing. arXiv preprint arXiv:2407.05471, 2024.

Sarah Nabi, Philippe Esling, Geoffroy Peeters, and Frédéric Bevilacqua. Embodied exploration of
deep latent spaces in interactive dance-music performance. In Proceedings of the 9th International
Conference on Movement and Computing, pp. 1–9, 2024.

Zachary Novack, Julian McAuley, Taylor Berg-Kirkpatrick, and Nicholas J Bryan. Ditto: Diffusion
inference-time t-optimization for music generation. arXiv preprint arXiv:2401.12179, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Bobby Owsinski. The mixing engineer’s handbook. BOMG Publishing Burbank, CA, 2017.

Julian D Parker, Janne Spijkervet, Katerina Kosta, Furkan Yesiler, Boris Kuznetsov, Ju-Chiang
Wang, Matt Avent, Jitong Chen, and Duc Le. Stemgen: A music generation model that listens. In
ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 1116–1120. IEEE, 2024.

Marco Pasini, Stefan Lattner, and George Fazekas. Music2latent: Consistency autoencoders for
latent audio compression. arXiv preprint arXiv:2408.06500, 2024.

Pascal Passigan and Vayd Ramkumar. Analyzing the effect of k-space features in mri classification
models. arXiv preprint arXiv:2409.13589, 2024.

Konpat Preechakul, Nattanat Chatthee, Suttisak Wizadwongsa, and Supasorn Suwajanakorn. Dif-
fusion autoencoders: Toward a meaningful and decodable representation. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 10619–10629, 2022.

Kai Qiu, Xiang Li, Hao Chen, Jie Sun, Jinglu Wang, Zhe Lin, Marios Savvides, and Bhiksha Raj. Ef-
ficient autoregressive audio modeling via next-scale prediction. arXiv preprint arXiv:2408.09027,
2024.

Yongming Rao, Wenliang Zhao, Zheng Zhu, Jiwen Lu, and Jie Zhou. Global filter networks for
image classification. Advances in neural information processing systems, 34:980–993, 2021.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pp. 234–241. Springer, 2015.

Justin Salamon, Emilia Gómez, Daniel PW Ellis, and Gaël Richard. Melody extraction from poly-
phonic music signals: Approaches, applications, and challenges. IEEE Signal Processing Maga-
zine, 31(2):118–134, 2014.

Robin San Roman, Yossi Adi, Antoine Deleforge, Romain Serizel, Gabriel Synnaeve, and Alexandre
Défossez. From discrete tokens to high-fidelity audio using multi-band diffusion. Advances in
Neural Information Processing Systems, 36:1526–1538, 2023.

Flavio Schneider, Ojasv Kamal, Zhijing Jin, and Bernhard Schölkopf. Moûsai: Efficient text-to-
music diffusion models. In Proceedings of the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 8050–8068, 2024.

SAP SE. Musical style modification as an optimization problem. In Proceedings of the International
Computer Music Conference, pp. 206, 2016.

Julius O Smith. Mathematics of the discrete Fourier transform (DFT): with audio applications.
Julius Smith, 2007.

Julius O Smith. Spectral audio signal processing. Julius Smith, 2011.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. pmlr, 2015.

Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther. Ladder
variational autoencoders. Advances in neural information processing systems, 29, 2016.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Stanley Smith Stevens, John Volkmann, and Edwin Broomell Newman. A scale for the measurement
of the psychological magnitude pitch. The journal of the acoustical society of america, 8(3):185–
190, 1937.

Daniel Stoller, Sebastian Ewert, and Simon Dixon. Wave-u-net: A multi-scale neural network for
end-to-end audio source separation. arXiv preprint arXiv:1806.03185, 2018.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Alex Tamkin, Dan Jurafsky, and Noah Goodman. Language through a prism: A spectral approach
for multiscale language representations. Advances in Neural Information Processing Systems, 33:
5492–5504, 2020.

George Tzanetakis and Perry Cook. Musical genre classification of audio signals. IEEE Transactions
on speech and audio processing, 10(5):293–302, 2002.

Ivan Villa-Renteria, Mason Long Wang, Zachary Shah, Zhe Li, Soohyun Kim, Neelesh Ramachan-
dran, and Mert Pilanci. Subtractive training for music stem insertion using latent diffusion models.
In ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pp. 1–5. IEEE, 2025.

Heehwan Wang, Joonwoo Kwon, Sooyoung Kim, Shinjae Yoo, Yuewei Lin, and Jiook Cha. A
training-free approach for music style transfer with latent diffusion models. arXiv preprint
arXiv:2411.15913, 2024.

Shih-Lun Wu, Chris Donahue, Shinji Watanabe, and Nicholas J Bryan. Music controlnet: Multiple
time-varying controls for music generation. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 32:2692–2703, 2024.

Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai, and Han Hu.
Simmim: A simple framework for masked image modeling. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 9653–9663, 2022.

Dongchao Yang, Jianwei Yu, Helin Wang, Wen Wang, Chao Weng, Yuexian Zou, and Dong Yu.
Diffsound: Discrete diffusion model for text-to-sound generation. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 31:1720–1733, 2023.

Yanchao Yang and Stefano Soatto. Fda: Fourier domain adaptation for semantic segmentation. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 4085–
4095, 2020.

Neil Zeghidour, Alejandro Luebs, Ahmed Omran, Jan Skoglund, and Marco Tagliasacchi. Sound-
stream: An end-to-end neural audio codec. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 30:495–507, 2021.

Shengjia Zhao, Jiaming Song, and Stefano Ermon. Learning hierarchical features from generative
models. arXiv preprint arXiv:1702.08396, 2017.

Shuoyang Zheng, Anna Xambó Sedó, and Nick Bryan-Kinns. A mapping strategy for interacting
with latent audio synthesis using artistic materials. arXiv preprint arXiv:2407.04379, 2024a.

Tianyi Zheng, Bo Li, Shuang Wu, Ben Wan, Guodong Mu, Shice Liu, Shouhong Ding, and Jia
Wang. Mfae: Masked frequency autoencoders for domain generalization face anti-spoofing. IEEE
transactions on information forensics and security, 19:4058–4069, 2024b.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

APPENDIX TABLE OF CONTENTS

A Experimental Details 18

A.1 Encoders . 18

A.1.1 MLP Encoder Hyperparameters . 18

A.1.2 1D U-Net Encoder Hyperparameters . 19

A.1.3 DAC Encoder Architecture . 19

A.2 Decoders/Diffusion Model Architecture . 19

A.3 Training . 20

A.4 Other Hyperparameters . 20

A.5 Datasets . 20

A.6 Conditional Generation and Blending Experiments 21

A.7 Listening Study Details and Analysis . 21

A.8 Isolation Experiments . 22

A.9 Interpreting the Latent Spectrum. 22

B Additional Experiments 24

B.1 Ablations . 24

B.2 Results on More Datasets . 27

B.3 More Interpretability Results . 28

B.4 Removing the Latent DFT . 29

B.5 Per-Band Error . 30

C Additional Related Work 30

D Extended Background 31

D.1 DFT . 31

E LLM Usage 31

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

A EXPERIMENTAL DETAILS

Below, we describe our experiments in more detail. We provide code for training and evaluating
LATENTFT as part of the supplementary materials.

A.1 ENCODERS

We experiment with three encoders:

1. MLP Encoder. The audio is converted into an 80× 512 mel-spectrogram. Each (80× 1)
timeframe is passed through an MLP to obtain an 80 × 512 latent sequence. Since each
timeframe is processed independently, this encoder enforces input-output alignment, and
results in no leakage between timeframes.

2. 1D U-Net Encoder. The audio is first converted into an 80× 512 mel-spectrogram. This is
processed by a 1D U-Net (Ronneberger et al., 2015; Stoller et al., 2018) with convolutions
along the temporal axis to obtain an 80 × 512 latent sequence. While this encoder does
not entirely prevent leakage between frames, the U-Net’s skip-connections promote input-
output alignment, allowing the encoding to be interpreted as a temporal sequence.

3. DAC Encoder. We use the encoder from the pretrained Descript Audio Codec (Kumar
et al., 2023) model to extract 1024 × 512 embeddings from the raw audio waveform. We
then pass these embeddings to a 1D U-Net encoder that is identical to the one described
above, except for the first convolutional layer, which is expanded to have 1024 input chan-
nels instead of 80 to accommodate the number of latent channels in DAC.

We find qualitatively that the U-Net encoder produces more pleasant-sounding audio when listening
to latent frequencies in isolation. We also find that the U-Net encoder is better for blending, while
the MLP Encoder is better for conditional generation (which Table 1 also indicates). The DAC
encoder’s waveform frontend requires significantly more GPU memory, which required reducing
the batch size from 256 to 64 during training. We observe in Table 1 that it is better at preserving
loudness curves. Below, we provide more hyperparameters for each of our encoders.

A.1.1 MLP ENCODER HYPERPARAMETERS

Our MLP encoder takes in an 80× 512 mel-spectrogram, but processes each of the 512 latent time-
frames independently, operating only on the channel axis. It can also be thought of as a convolutional
network, where the convolutions have a kernel size of 1. It consists of a series of linear layers with
SiLU activations (Hendrycks, 2016), group-normalization layers, and residual connections. The
hyperparameters for our MLP encoder are listed in Table 2.

Attribute Value

Input 80× 512 mel-spectrogram
Output 80× 511 latent sequence

Architecture Frame-wise MLP
Hidden Dim. 512

Num. Hidden Layers 16

Table 2: MLP Encoder Hyperparameters

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

A.1.2 1D U-NET ENCODER HYPERPARAMETERS

Our 1D U-Net encoder is a 1D version of the encoder used in Karras et al. (2022). The convolutions
occur along the temporal axis. The U-Net consists of several blocks that process information at
different resolutions, which are listed below in Table 3. In addition, we add self-attention layers to
blocks at particular resolutions, which are also listed below in Table 3.

Attribute Value

Input 80× 512 mel-spectrogram
Output 80× 512 latent sequence

Architecture 1D U-Net
Kernel Size 3
Resolutions [512, 256, 128, 64, 32, 16]

Channels Per Resolution [512, 512, 512, 768, 768, 1024]
Resolutions with Attention [64, 32, 16]

Table 3: 1D U-Net Encoder Hyperparameters

A.1.3 DAC ENCODER ARCHITECTURE

The DAC encoder takes in a raw audio waveform which is resampled to 44.1 kHz. First, it creates a
1024×512 sequence of continuous embeddings using the encoder of Descript Audio Codec (Kumar
et al., 2023). This sequence is passed to a 1D U-Net identical to the one in Table 3, except for the
first convolutional layer, which has 1024 input channels instead of 80, to match the latent dimension
of DAC. Table 4 provides details.

Attribute Value

Architecture DAC + 1D U-Net
DAC Encoder Input 1× 262144 audio waveform

DAC Encoder Output 1024× 512 DAC embedding
1D-UNet Input 1024× 512 DAC embedding

1D-UNet Output 80× 512 latent sequence

Table 4: DAC Encoder Hyperparameters

A.2 DECODERS/DIFFUSION MODEL ARCHITECTURE

Our decoder (diffusion models) are 1D-U-Nets that combine convolutional layers with self-attention
layers. The decoder is very similar to the 1D-UNet encoder described in Appendix A.1.2. The main
difference is the decoder’s input is a noisy mel-spectrogram xτ , as well as the masked latent zmasked.
These two inputs are concatenated channel-wise before being fed to the U-Net. The U-Net attempts
to predict a linear combination of the added noise and the clean input x0, as described in Karras
et al. (2022). Again, we follow the architectures in Karras et al. (2022) and provide our code in the
supplementary materials. Details are shown in Table 5.

Attribute Value

Input 1 80× 512 noisy mel-spectrogram
Input 2 80× 512 frequency-masked latent
Output 80× 512 clean mel-spectrogram

Architecture 1D U-Net
Kernel Size 3
Resolutions [512, 256, 128, 64, 32, 16]

Channels Per Resolution [512, 512, 512, 768, 768, 1024]
Resolutions with Attention [64, 32, 16]

Table 5: Decoder Hyperparameters

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

A.3 TRAINING

For the experiments in the main paper, we train for 700k iterations on 4 L40S GPUs with a logical
batch size of 1024. We use a linear warmup for the first 4,000 training steps, and we apply cosine
annealing to the learning rate after 350k iterations. In addition, following Karras et al. (2022), we
store an exponential moving average of the model weights, which we use for inference. Hyperpa-
rameters for this are shown in Table 6. For the ablation experiments shown in Appendix B.1, we
train for 350k iterations, and do not perform annealing.

Attribute Value

Training Schedule

Num. Total Iters 700k
Num. Warmup Iters 4k
Num. Decay Iters 350k
Decay Schedule Cosine

Optimizer

Optimizer Adam
Learning Rate 1e -4

β1 0.9
β2 0.999

Batching
Batch Size (Logical) 1024

Batch Size (Per-GPU) 256
Distribution Strategy DDP

Other
Precision FP32 + BF16

Grad Clip Value 1.0
EMA Decay 0.999

Table 6: Training Hyperparameters

A.4 OTHER HYPERPARAMETERS

Here, we list the values of other hyperparameters mentioned in the Methods section (Sec. 3).

Attribute Value

DFT / Frequency Mask

L 2
σ 0.5
p 2
ϵ 1e-6

Diffusion
σmax 80
α 0.5
β 0.5

Table 7: Other Hyperparameters. Full descriptions can be found in the Methods section (Sec. 3)

A.5 DATASETS

Our experiments in the main paper utilize two datasets. All clips are resampled to a sampling rate
of 22050 Hz.

1. MTG-Jamendo. MTG-Jamendo (Bogdanov et al., 2019) is a large-scale collection of
over 55,000 spanning diverse genres, like classical, electronic, pop, and rock music. The
dataset is publicly available, and is popular in tasks like neural audio compression, vocod-
ing (Lanzendörfer et al., 2025), and music-tagging (Hasumi et al., 2025). We train our mod-
els on a dataset of 2.5 million 5.9-second clips from the MTG-Jamendo training split. The
MTG-Jamendo dataset is used in the conditional generation (Sec. 4.2), blending (Sec. 4.3),
listening study (Sec. 4.4), and isolation experiments (Sec. 4.5).

2. GTZAN. GTZAN (Tzanetakis & Cook, 2002) is a standard benchmark for genre classifi-
cation, containing 1,000 30-second audio clips evenly distributed across 10 genres (blues,

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

classical, country, disco, hip-hop, jazz, metal, pop, reggae, and rock). We use GTZAN for
the interpretability experiment (Sec. 4.6), since we require high-quality genre labels.

We show results on more datasets in Appendix B.2, where we perform the conditional generation
and blending experiments on GTZAN and the Maestro dataset (Hawthorne et al., 2018).

A.6 CONDITIONAL GENERATION AND BLENDING EXPERIMENTS

For these experiments, we partition the latent spectrum into 2 bands, 4 bands, and 8 bands. In each of
the three partitionings, bands are equal-width on a logarithmic axis. For the conditional generation
task, we condition each song on all 14 bands one-at-a-time, averaging results. For the blending task,
we take two examples and condition on every possible unordered pair of bands inside the 4-band
partition, for a total of six possible conditions.

A.7 LISTENING STUDY DETAILS AND ANALYSIS

We used Prolific to recruit high-quality participants for our survey. All respondents self-identified
as musicians, and all respondents reside in the United States. The respondents ranged in age from
20–73 years old, with an average age of 43.4 years old, and a median age of 41.5 years old.

The survey consists of 12 questions, each comparing two ordered pairs of systems on the blend-
ing task. Each question presents two reference recordings, and then presents two blendings of the
reference clips from two different systems, for a total of four clips. The users are asked which
recording they prefer both in terms of audio quality, and how well the clips were “blended” together.
A screenshot of a question from our survey is shown in Fig. 6.

Figure 6: A question from our listening study survey. A participant will compare each ordered pair
of systems in the study once.

The order of all questions is randomized. In addition, we include one attention check question
for each survey participant. In the attention check, all recordings are silent, and the participant is
instructed to select ‘2’ and ‘4’ for their Likert scale ratings. The total duration of all the audio
recordings in our survey was 5 minutes and 9 seconds. However, the median survey response time
was 10 minutes and 25 seconds.

Statistical Significance. We performed a Kruskal-Wallis H test, which confirmed that there are
statistically significant pairs among the permutations (p = 6.4 × 10−83). We also perform a post-
hoc analysis using the Wilcoxon signed rank test. We apply a Bonferroni correction, which corrects
the significant threshold to p < 0.05/6. According to this test, all pairs of systems have statistically
significant differences in audio quality, except for the cross-synthesis and ILVR baselines. This
means that LATENTFT outperforms all baselines in terms of audio quality according to our user
study, to a statistically significant extent. Another Wilcoxon signed rank test indicates that all pairs
of systems have statistically significant differences in “ability to blend”, except for LATENTFT and
the cross synthesis baseline. Pairwise significance test results are shown in Table 8.

21

https://www.prolific.com/

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

System 1 System 2 p-value, Audio Quality p-Value, Ability to Blend
LATENTFT Cross Synthesis 1.59× 10−3 9.54× 10−2∗

LATENTFT ILVR 3.83× 10−4 8.84× 10−7

LATENTFT VampNet 7.02× 10−10 1.64× 10−10

Cross Synthesis ILVR 9.51× 10−2∗ 6.62× 10−4

Cross Synthesis VampNet 1.91× 10−6 8.09× 10−10

ILVR VampNet 1.55× 10−6 1.69× 10−5

Table 8: Results from a Kruskal-Wallis H test performed on listening study results. All pairs of
systems have statistically significant differences in audio quality, except for ILVR and Cross Syn-
thesis. All pairs of systems have statistically significant differences in “Ability to Blend” besides
LATENTFT and Cross Synthesis. These pairs are indicated with an asterisk (∗).

Inter-rater Agreement. To compute inter-rater agreement between our 29 participants, we calcu-
late Fleiss’s Kappa, which measures the degree of agreement beyond chance for multiple raters. We
report κ = 0.0654 for our question about audio quality, and κ = 0.0914 for our question about “abil-
ity to blend”. Both values fall in the ”slight agreement” range (Landis & Koch, 1977), indicating
substantial subjective variation in perceptual judgments. This level of agreement is not uncommon
in listening studies, where individual preferences and perceptual differences naturally lead to varied
responses.

A.8 ISOLATION EXPERIMENTS

We accomplish isolation by taking a music clip x and obtaining z, the full-spectrum latent se-
quence, and zbp, a version of the latent sequence z bandpassed to the selected frequency range.
We then guide the diffusion process using Alg. 3, with blend weights α, β, resulting in an output
that emphasizes the selected band while suppressing content outside of it. The ratio of β and α
determines the amount of boosting that occurs, with β ≫ α resulting in isolating the selected band
almost completely.

A.9 INTERPRETING THE LATENT SPECTRUM.

In the interpretability experiment (Sec. 4.6), we analyze the latent spectrum of individual songs, and
associate different frequencies of a song’s latent spectrum with musical attributes like genre, chords,
tempo, and pitch. We select one song at a time to analyze. An input song is chosen from our vali-
dation split of GTZAN (Tzanetakis & Cook, 2002). We generate hundreds of variations of the input
song, while conditioning on different parts of its latent spectrum. We do this by performing a linear
sweep over the latent frequency axis, conditioning on every 10-bin range of the latent DFT spec-
trum. We measure each generation’s adherence to the input song along several axes, to determine
how the latent frequency that we condition on affects which attributes are preserved.

First, we attempt to classify the genre of the generated variations. We train a classifier on our
training split of GTZAN, which is a linear probe on VGGish embeddings (Hershey et al., 2017),
and obtains 81.8% accuracy on the validation set. Then we apply our classifier to the generated
variations, determining if the classifier’s prediction of the generated variation matches the ground
truth genre of the input song. For each frequency bin listed along the x-axis of our plot, we compute
the accuracy across every variation whose condition included that bin. We normalize the curve to be
between 0 and 1, so that it can be plotted alongside the other curves.

Second, we measure the Tonnetz correlation between the variations and the reference. This provides
a proxy to measuring changes in chords, since tonal centroid features are used to identify and com-
pute the distance between chords(Milne & Holland, 2016). Again, we plot the Tonnetz correlation
between input and variation against which frequency bins we condition on. We normalize this curve
to be between 0 and 1 for the sake of plotting.

Third, we measure the pitch error using the Essentia (Bogdanov et al., 2013) package. First, we
Essentia’s algorithm to predict the predominant pitch (the pitch of the melody) in a song. Then, we
compute the “overall accuracy” metric described in Salamon et al. (2014), to measure how well the

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

pitches of the generated variation match with the reference. Again, we plot the pitch accuracy against
the latent frequencies that we condition on. We flip this curve vertically, so that ‘up’ corresponds
to higher preservation instead of higher error, and normalize the curve to have minimum 0 and
maximum one.

Fourth, we estimate the BPM of the variations and the reference using Librosa (McFee et al., 2015).
We compute the absolute tempo error between the reference and variants, again orienting the curve
so that ‘up’ corresponds to higher preservation, and normalizing the curve to be between 0 and 1.

We achieve the plots by applying Gaussian smoothing to all four curves. Note that unlike the blend-
ing and conditional generation experiments, we measure characteristics of the entire generation
versus the entire reference, instead of bandpassing descriptor signals.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

B ADDITIONAL EXPERIMENTS

B.1 ABLATIONS

We ablate several components from LATENTFT-MLP to demonstrate the necessity of each compo-
nent. In these experiments, we train LATENTFT-MLP and each of its variants for 350k iterations,
skipping the annealing phase. Quantitative results for the conditional generation task are shown in
Table 9. Quantitative results for the blending task are shown in Table 10. We also show example
spectrograms for conditional generation in Fig. 9, and example spectrograms for blending in Fig. 10.

Adherence Quality
Loudness ↑ Rhythm ↑ Timbre ↓ Harmony ↓ FAD ↓

LATENTFT-MLP 0.800 0.961 0.397 0.081 0.349
w/o Freq. Masking 0.476 0.907 2.675 0.121 5.341
w/o Correlation 0.694 0.932 1.284 0.109 2.744
w/o Log. Scale 0.512 0.838 1.322 0.097 1.196
w/o Encoder 0.028 0.565 3.569 0.130 0.846
w/ Bandpass Augmentation 0.861 0.953 0.562 0.084 1.511

Table 9: Ablation results on the Conditional Generation Task. Mel-Cepstral Distortion (Timbre)
is divided by 100. Ablating any component of the model generally leads to worse audio quality and
adherence.

Adherence Quality
Loudness ↑ Rhythm ↑ Timbre ↓ Harmony ↓ FAD ↓

LATENTFT-MLP 0.678 0.875 1.030 0.109 1.371
w/o Freq. Masking 0.597 0.902 1.152 0.127 4.789
w/o Correlation 0.635 0.885 1.167 0.115 2.534
w/o Log. Scale 0.535 0.827 1.382 0.111 2.119
w/o Encoder 0.030 0.539 4.026 0.147 0.854
w/ Bandpass Augmentation 0.664 0.885 1.636 0.117 2.586

Table 10: Ablation results on the Blending Task. Mel-Cepstral Distortion (Timbre) is divided by
100. Ablating any component of the model generally leads to either significantly worse audio qual-
ity, or significantly worse adherence.

Ablating Frequency Masking During Training. First, we ablate frequency masking during train-
ing, applying only the inference-time user-specified mask. Previous methods apply frequency-
masking post-hoc, to analyze a pretrained model’s latent space (Tamkin et al., 2020). In Tables 9
and 10 (“w/o Freq. Masking”), we see that removing frequency-masking during training results in
a substantial degradation in audio quality. Without masking during training, the decoder does not
learn how to reconstruct music from frequency-masked latents, and fails to generate high-quality
audio from frequency-masked latents during inference. This ablation also shows post-hoc masking
is insufficient for coherent audio synthesis, which requires incorporating masking during training.

Ablating Correlations between Bins. Next, we ablate correlations between frequency bins. As
explained in Sec. 3.4, we use locally correlated scores to mask frequency bins. If we mask each
bin independently, we will end up with speckled, erratic masks, where unmasked bins and masked
bins are next to each other. This is shown in Fig. 7. Unmasked bins provide strong local cues to
nearby masked bins, making the reconstruction/denoising task easier. In contrast, masks generated
from locally correlated scores are shown in Fig. 8. Our strategy of correlating scores results in large,
contiguous regions of unmasked and masked bins, which makes the learning task more difficult, and
better reflects inference-time, user-specified masks. Tables 9 and 10 (“w/o Correlation”) verify that
using an uncorrelated mask results in substantial degradations to audio quality.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

0 20 40 60 80 100 120
Latent Frequency Bin

0
1
2
3
4
5
6
7

Ex
am

pl
e

Uncorrelated Masking

Figure 7: Example masks where there is
no correlation between the scores associated
with each frequency bin. The masks are
speckled and erratic.

0 20 40 60 80 100 120
Latent Frequency Bin

0
1
2
3
4
5
6
7

Ex
am

pl
e

Our Masking

Figure 8: Example masks from our mask-
ing strategy, where bin scores are locally cor-
related after being mapped to a logarithmic
axis. The mask forms contiguous regions.

Ablating Logarithmic Scaling of Latent Frequency Axis. We also ablate the logarithmic scaling
of the frequency axis, discussed in Sec. 3.4. Our intuition for using a logaritmic scaling is as follows:
Most structured signals have a 1/f-spectrum, meaning that the energy at high frequencies is much
lower than the energy at low frequencies. Thus, a “group” of low-frequency bins will contain much
more energy than a “group” of high-frequency bins of equal width. To counterbalance this effect,
we encourage high-frequency “groups” to be wider, by mapping the frequency bins to a logarithmic
scale before computing correlations between bins. This reflects the fact that 1/f-spectra have equal
energy per-octave. Indeed, removing logarithmic scaling reduces both quality and adherence in both
the conditional generation and blending tasks, shown in Tables 9 and 10 (“w/o Log. Scale”).

Ablating Encoder. We also ablate the encoder, applying frequency-masking to the audio wave-
form directly, to show that our model’s representations capture things the waveform cannot. Ablat-
ing the encoder results in poor adherence, but better audio quality in the case of blending (Tables 9
and 10 (“w/o Encoder”). Note that allowing for poor adherence improves audio quality, since the
generation is less constrained. Since there is very little information in the waveform for frequencies
we condition on (0–43 Hz), removing the encoder is almost like running an unconditional model.

Random Bandpass Augmentation. Lastly, we would like to test the necessity of using a DFT-
based mask as our latent augmentation, instead of another frequency-aware latent-space augmen-
tation. Thus, instead of applying a DFT Mask to the latent space during training and inference,
we apply a randomized bandpass filter to the latent space during training, and a user-specified one
during inference. We found that this resulted in some training instability, requiring several restarts.
We believe the orthogonality of the DFT is helpful for training stability: We observe that DFT-
masking in the forwards pass results in applying the same DFT mask to the upstream gradient in
the backwards pass. In the backwards pass, the DFT mask can thus be interpreted as masking out
orthogonal components of the upstream gradient, while leaving the unmasked components of the
full-band gradient intact.

Example Spectrograms. Fig. 9 shows example spectrograms for the ablations on conditional gen-
eration, and Fig. 10 shows example spectrograms for blending. The figures show that many of the
baselines fail to generate coherent audio. The ablation without the encoder generates coherent audio,
but fails to follow the condition(s). Please refer to the figure captions for more details.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

1 2 3 4 5
Time (s)

512

1024

2048

4096

8192
Hz

Reference

1 2 3 4 5
Time (s)

LatentFT

1 2 3 4 5
Time (s)

w/o Freq. Masking

1 2 3 4 5
Time (s)

512

1024

2048

4096

8192

Hz

w/o Correlation

1 2 3 4 5
Time (s)

w/o Log. Scale

1 2 3 4 5
Time (s)

w/o Encoder

Figure 9: A conditional generation example, where we take 0.68–2.70 Hz from the latent spectrum
of the reference (top left). LATENTFT generates a variation capturing the rhythmic pattern near 2
Hz. The frequency-masking, correlation, and log-scaling ablations also have a pattern near 2 Hz,
but the audio quality is much worse. The encoder ablation does not follow the conditioning.

1 2 3 4 5
Time (s)

512

1024

2048

4096

8192

Hz

Reference 1

1 2 3 4 5
Time (s)

Reference 2

1 2 3 4 5
Time (s)

LatentFT

1 2 3 4 5
Time (s)

w/o Freq. Masking

1 2 3 4 5
Time (s)

512

1024

2048

4096

8192

Hz

w/o Correlation

1 2 3 4 5
Time (s)

w/o Log. Scale

1 2 3 4 5
Time (s)

w/o Encoder

Figure 10: A blending example, where we take 0–0.68 Hz from the first reference, and 10.78–43
Hz from the second reference. LATENTFT generates a variation that contains characteristics from
both examples. For instance, the rapid rhythmic patterns of Reference 2 are retained, as well as the
horizontal line from Reference 1. The correlation and log-scaling ablations retain some of these
characteristics, while the encoder and frequency masking ablations ignore the references.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

B.2 RESULTS ON MORE DATASETS

To demonstrate generality, we also use LATENTFT to perform conditional generation and blending
on two other datasets: GTZAN and Maestro. The GTZAN dataset was previously used for the
interpretability experiment in Sec. 4.6, and is described in Appendix A.5. The Maestro dataset
(Hawthorne et al., 2018) is a large collection of over 200 hours of aligned piano performance audio
and MIDI from the International Piano-e-Competition.

Taking our LATENTFT-MLP model trained on the MTG-Jamendo training set, we evaluate the
model on 1024 5.9-second clips from both the GTZAN and Maestro datasets. The results for
GTZAN are show in Table 11, and the results for Maestro are shown in Table 12. Although LA-
TENTFT performs worse in terms of audio quality compared to our evaluations on MTG-Jamendo,
we find that it outperforms our baselines on both GTZAN and Maestro. This indicates that LA-
TENTFT can work on recordings that are only piano, or on datasets with a diverse set of genres.

Conditional Generation Blending
Adherence Quality Adherence to Both Inputs Quality

Loud. ↑ Rhyth. ↑ Timb. ↓ Harm. ↓ FAD ↓ Loud. ↑ Rhyth. ↑ Timb. ↓ Harm. ↓ FAD ↓
Vampnet - - - - 5.748 - - - - 7.173
Guidance Gradients 0.585 0.825 1.470 0.094 1.368 0.611 0.850 1.643 0.105 1.961
ILVR 0.628 0.852 0.730 0.088 1.873 0.672 0.877 0.744 0.097 3.137
DAC 0.723 0.845 4.045 0.191 8.810 0.610 0.794 4.115 0.212 7.162
Spectrogram 0.503 0.876 1.873 0.128 8.734 0.402 0.840 2.972 0.111 8.397
Cross Synthesis - - - - - - - - - 2.884

LATENTFT-MLP 0.840 0.965 0.356 0.073 0.844 0.721 0.885 0.970 0.095 1.987
LATENTFT-UNet 0.855 0.967 0.377 0.073 0.905 0.714 0.891 1.056 0.095 1.926

Table 11: Results on Conditional Generation and Blending on the GTZAN dataset. Compared to
baselines, LATENTFT achieves superior adherence and audio quality, demonstrating the general-
ity of LATENTFT when it comes to new datasets with multiple genres. Mel-Cepstral Distortion
(Timbre) is divided by 100. The Masked Token Model and Cross Synthesis baselines do not offer
frequency-based controls, so we do not compute adherence. Cross Synthesis also only applies to the
blending task.

Conditional Generation Blending
Adherence Quality Adherence to Both Inputs Quality

Loud. ↑ Rhyth. ↑ Timb. ↓ Harm. ↓ FAD ↓ Loud. ↑ Rhyth. ↑ Timb. ↓ Harm. ↓ FAD ↓
Vampnet - - - - 11.914 - - - - 14.887
Guidance Gradients 0.530 0.795 1.483 0.116 8.588 0.557 0.824 1.606 0.133 6.221
ILVR 0.580 0.817 0.976 0.118 9.923 0.627 0.857 1.007 0.131 10.018
DAC 0.729 0.835 4.088 0.243 11.745 0.639 0.776 3.720 0.297 11.614
Spectrogram 0.413 0.853 1.981 0.152 14.208 0.330 0.817 2.640 0.157 14.131
Cross Synthesis - - - - - - - - - 3.139

LATENTFT-MLP 0.809 0.967 0.553 0.085 0.667 0.689 0.892 0.886 0.121 2.767
LATENTFT-UNet 0.830 0.968 0.590 0.085 0.865 0.710 0.899 0.943 0.124 2.708

Table 12: Results on Conditional Generation and Blending on the Maestro dataset. Even though
the Maestro dataset is only piano recordings, LATENTFT demonstrates super audio quality and
adherence compared to baselines. Mel-Cepstral Distortion (Timbre) is divided by 100. The Masked
Token Model and Cross Synthesis baselines do not offer frequency-based controls, so we do not
compute adherence. Cross Synthesis also only applies to the blending task.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

B.3 MORE INTERPRETABILITY RESULTS

Our interpretability experiment, introduced in Sec. 4.6, attempts to attribute parts of a particular
song’s latent spectrum with musical characteristics like genre, chords, tempo, and pitch. In this sec-
tion, we present more examples where we analyze individual songs, and plot how well conditioning
on various latent frequencies in the song preserve genre, chords, tempo, and pitch. These extra plots
are show in Fig. 11. Across several musical styles, we see the trend that genre tends to lie in the
frequency range around 0 Hz, indicating that it is a global characteristic. Chord changes also occur
at low frequencies, with peak preservation between 0.25–2 Hz. Tempo and pitch occur at higher la-
tent frequencies, since prominent rhythmic and melodic patterns are typically more rapid than chord
changes. Please refer to Appendix A.9 for implementation details.

0.0 0.5 1.0 2.0 4.0 8.0

Latent Frequency (Hz)
0.0

0.2

0.4

0.6

0.8

1.0

Pr
es

er
va

tio
n

Rock Song

Genre
Chords
Tempo
Pitch

0.0 0.5 1.0 2.0 4.0 8.0

Latent Frequency (Hz)
0.0

0.2

0.4

0.6

0.8

1.0
Hip-hop Song

Genre
Chords
Tempo
Pitch

0.0 0.5 1.0 2.0 4.0 8.0

Latent Frequency (Hz)
0.0

0.2

0.4

0.6

0.8

1.0

Pr
es

er
va

tio
n

Blues Song

Genre
Chords
Tempo
Pitch

0.0 0.5 1.0 2.0 4.0 8.0

Latent Frequency (Hz)
0.0

0.2

0.4

0.6

0.8

1.0
Blues Song

Genre
Chords
Tempo
Pitch

0.0 0.5 1.0 2.0 4.0 8.0

Latent Frequency (Hz)
0.0

0.2

0.4

0.6

0.8

1.0

Pr
es

er
va

tio
n

Hip-hop Song

Genre
Chords
Tempo
Pitch

0.0 0.5 1.0 2.0 4.0 8.0

Latent Frequency (Hz)
0.0

0.2

0.4

0.6

0.8

1.0
Pop Song

Genre
Chords
Tempo
Pitch

0.0 0.5 1.0 2.0 4.0 8.0

Latent Frequency (Hz)
0.0

0.2

0.4

0.6

0.8

1.0

Pr
es

er
va

tio
n

Jazz Song

Genre
Chords
Tempo
Pitch

0.0 0.5 1.0 2.0 4.0 8.0

Latent Frequency (Hz)
0.0

0.2

0.4

0.6

0.8

1.0
Reggae Song

Genre
Chords
Tempo
Pitch

Figure 11: More Sweep Examples. Songs are taken from the GTZAN dataset. Generally, genre
tends to be a global characteristic, lying around 0 Hz. Chord changes also lie in the low end of the
latent spectrum, while tempo and pitch are associated with higher latent frequencies. Please refer to
Sec. 4.6 for our motivations behind this experiment, and Appendix A.9 for implementation details.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

B.4 REMOVING THE LATENT DFT

In this experiment, we remove the Latent DFT entirely from both training and inference. During
training, the model tries to reconstruct the input from the full latent sequence z. During inference,
the full latent sequence z remains unmasked. This is similar to the original Diffusion Autoencoder
from Preechakul et al. (2022). We find that without frequency masking, the decoder reconstructs
in the input without generating any interesting variations, as show in Fig. 12. For audio examples,
refer to the website under “Removing DFT Masking”.

1 2 3 4 5
Time (s)

512

1024

2048

4096

8192

Hz
Reference

1 2 3 4 5
Time (s)

Generation

1 2 3 4 5
Time (s)

512

1024

2048

4096

8192

Hz

Reference

1 2 3 4 5
Time (s)

Generation

1 2 3 4 5
Time (s)

512

1024

2048

4096

8192

Hz

Reference

1 2 3 4 5
Time (s)

Generation

Figure 12: Mel-spectrograms where we remove the DFT during both training and inference. During
inference, we condition the diffusion process on the full latent sequence z derived from a reference
(left). This reconstructs the input without creating a variation (right).

29

https://latentfouriertransform.com/

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

B.5 PER-BAND ERROR

We show in Fig. 13 that conditioning on mid-scale or fine-scale RVQ levels leads to a rapid degra-
dation in audio quality. On the left, we our Masked Token Model baseline (Garcia et al., 2023),
which contains 14 RVQ levels in total. We condition on each of the levels individually, and observe
a degradation in quality as we condition on finer and finer tokens. On the right, we show a compar-
ison with our model, instead conditioning on different latent frequency bands. As we condition on
higher and higher frequencies (smaller timescales), the audio quality does not degrade. The metrics
shown are averaged across 1024 songs from the MTG-Jamendo test set.

0 4 8 12
RVQ Level

0

2

4

6

8

FA
D

(A
ud

io
 Q

ua
lit

y)

RVQ-Based Generation

0 .5 1 2 4 8 16 32
Latent Frequency (Hz)

LatentFT - UNet

Figure 13: Condition on various RVQ layers in the Vampnet Model (left) and on various latent
frequencies in our model (right). Our model maintains generation quality even when conditioning
on finer-scale features.

C ADDITIONAL RELATED WORK

Separating Info by Scale. Our work relates learned multiscale representations that attempt to sep-
arate information by scale. Hierarchical VAEs attempt to model the data distribution using a (often
multiscale) stack of latent variables. However, Zhao et al. (2017) show theoretically and experimen-
tally that most hierarchical VAEs (Sønderby et al., 2016; Gulrajani et al., 2016; Bachman, 2016)
have difficulty separating information between levels. They propose an alternative multi-network
architecture under the assumption that deeper networks encode more abstract features, while shal-
lower ones will encode simpler ones. Using these networks, they show they can vary features of an
image across a few (e.g. 4) scales independently. Still, the exact scale that each network corresponds
to depends on the data distribution. We extend this by 1) providing a continuous scale axis and 2)
providing an intuitive, non-heuristic way of specifying scales via Hz.

Generative Audio Equalizer. Similar to our work, Moliner et al. (2024) introduce a diffusion-
based generative audio equalizer. While this work generates content at selected audible frequencies,
we generate content at latent frequencies.

Other Uses of the Fourier Transform in Deep Learning. The Fourier transform has also been
used in CNNs to accelerate convolutions (Mathieu et al., 2013; Ding et al., 2017). Audio signals are
also ubiquitously represented in the frequency domain, as are MRI images (Passigan & Ramkumar,
2024).

AudioMAE. Another work in audio that uses a masking strategy during training is AudioMAE
(Huang et al., 2022). This work builds off of masked autoencoders for images (He et al., 2022).
A neural network attempts to reconstruct an audio spectrogram after many time-frequency patches
have been masked. This task allows the network to learn representations that are useful for clas-
sification, event detection, and retrieval. While AudioMAE masks random time-frequency bins,
LATENTFT masks random bins in the latent spectrum.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

D EXTENDED BACKGROUND

D.1 DFT

Here, we derive Eq. 1:

x =
1

N

N−1∑
k=0

X[k]wk

x =
1

N

N−1∑
k=0

X[k]ej(2πk/N)n

We consider the case where N is odd. By the periodicity of complex sinusoids:

x =
1

N

⌊N/2⌋∑
k=−⌊N/2⌋

X[k]ej(2πk/N)n

The DFT of a real-valued signal is Hermitian, allowing us to fold positive frequencies with negative
frequencies:

x =
1

N

⌊N/2⌋∑
k=1

X[k]
[
ej(2πk/N)n + e−j(2πk/N)n

]
+

X[0]

N

Splitting X[k] into magnitude |X[k]| and phase ϕk:

x =
1

N

⌊N/2⌋∑
k=1

|X[k]|ejϕk

[
ej((2πk/N)n) + e−j((2πk/N)n)

]
+

X[0]

N

x =
1

N

⌊N/2⌋∑
k=1

|X[k]|
[
ej((2πk/N)n+ϕk) + e−j((2πk/N)n−ϕk)

]
+

X[0]

N

Using Euler’s Formula:

x[n] =
1

N

⌊N/2⌋∑
k=1

2|X[k]| cos
(
2π

N
kn+ ϕk

)
+

X[0]

N

This can be expressed as:

x[n] =

⌊N/2⌋∑
k=0

Ak cos

(
2π

k

N
n+ ϕk

)

Which is the form that we desire. The case where N is even is quite similar, but includes another
term (the Nyquist term), which is always a real cosine.

E LLM USAGE

We used LLMs to help us improve the writing of our paper, for instance, by finding synonyms for
certain words or for finding more concise ways to phrase particular ideas. We also used LLMs as
a search tool to help us find related work, but relied on our own interpretation of the work after
references were provided.

31

	Introduction
	Related Work
	Method
	Background
	Method Overview
	Encoding the Latent Spectrum
	Frequency Masking
	Decoding the Latent Spectrum

	Experiments
	Experimental Setup
	Conditional Generation
	Blending
	Listening Study
	Hearing in Latent Frequencies in Isolation
	Interpreting the Latent Spectrum

	Conclusion
	Experimental Details
	Encoders
	MLP Encoder Hyperparameters
	1D U-Net Encoder Hyperparameters
	darkgreenDAC Encoder Architecture

	Decoders/Diffusion Model Architecture
	Training
	Other Hyperparameters
	Datasets
	Conditional Generation and Blending Experiments
	darkgreenListening Study Details and Analysis
	Isolation Experiments
	Interpreting the Latent Spectrum.

	Additional Experiments
	Ablations
	Results on More Datasets
	More Interpretability Results
	Removing the Latent DFT
	Per-Band Error

	purpleAdditional Related Work
	Extended Background
	DFT

	LLM Usage

