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ABSTRACT

Post-training quantization (PTQ) techniques applied to weights, activations, and
the KV cache greatly reduce memory usage, latency, and power consumption of
Large Language Models (LLMs), but may lead to large quantization errors when
outliers are present. Rotating activation or weight matrices helps remove outliers
and benefits quantization. In this work, we identify a collection of applicable
rotation parameterizations that lead to identical outputs in full-precision Trans-
former architectures while enhancing quantization accuracy. In addition, we find
that some random rotations lead to much better quantization than others, with an
up to 13 points difference in downstream zero-shot reasoning performance. As
a result, we propose SpinQuant, a novel approach that incorporates learned
rotation matrices for optimal quantized network accuracy. With 4-bit quantization
of weight, activation, and KV-cache, SpinQuant narrows the accuracy gap on
zero-shot reasoning tasks with full precision to merely 2.9 points on the LLaMA-2
7B model, surpassing LLM-QAT by 19.1 points and SmoothQuant by 25.0 points.

1 INTRODUCTION

Large Language models (LLMs) have demonstrated impressive performance across many disciplines.
SoTA open source models (e.g., LLaMA (Touvron et al., 2023b), Mistral (Jiang et al., 2023), etc)
and proprietary LLMs (e.g., GPT (Achiam et al., 2023), Gemini(Team et al., 2023), etc) have been
used in general purpose chatting assistants, medical diagnosticians (Thirunavukarasu et al., 2023),
computer game content generators (Cox and Ooi, 2023), coding co-pilots (Roziere et al., 2023), and
much more.

To serve such a high demand, the inference cost becomes a real issue. Many effective techniques
have been developed. Post-training Quantization (PTQ), as one effective category of techniques,
quantizes the weights (or activations) into low-precision and thus reduces the memory usage and
may significantly improve latency. This is not only important for server-side inference, but also for
on-device scenarios with small-sized LLMs (Liu et al., 2024; AI@Meta, 2024).

When applying quantization, outliers remain an open challenge because they stretch the quantization
range, leaving fewer effective bits available for the majority of values. Prior research mitigates this
challenge by trading quantization difficulty between weights and activations (Xiao et al., 2022; Lin
et al., 2023) or employing mixed-precision to handle outliers (Zhao et al., 2023). In this work, we
focus on a new angle: multiplying the weight matrix with a rotation matrix to reduce outliers and
enhance quantizability. Inspired by (Elhage et al., 2023) and SliceGPT (Ashkboos et al., 2023a), we
leverage the property of rotational invariance to construct rotation matrices in pairs from identity
mapping, which can be integrated into nearby weights without affecting the overall network outputs.
By applying these random rotations, we produce a distribution of weight or activation entries that is
outlier-less, facilitating easy quantization.

In addition to using random rotation, which statistically works well, we find that the performance of
quantized network could vary a lot with different rotation matrices. For example, the downstream
averaged accuracy on zero-shot reasoning tasks may change up to 13 points with different rotations.
As a result, we propose SpinQuant that integrates and optimizes the rotation matrix to minimize the
final loss of the quantized network, with fixed weight parameters, by employing the Cayley SGD (Li
et al., 2020), a proficient technique for optimizing orthonormal matrices. This optimization does not
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Figure 1: Overall diagram of rotation. (a) The residual stream can be rotated in the transformer network,
resulting in numerically equivalent floating point networks before and after rotation. The rotated activations
exhibit fewer outliers and are easier to quantize. (b) & (c) The rotation matrix can be integrated with the
corresponding weight matrices and we further define R2, R3, and R4 for reducing outliers inside the block.

alter the full-precision network output but refines the intermediate activations and weights, making
them more quantization-friendly.

In SpinQuant, we introduce two rotation strategies tailored for different complexity levels:
SpinQuanteasy and SpinQuanthard. In the easy mode, as depicted in Figure 1(b), we im-
plement shortcut rotation (R1) and Wv-Wo pair rotation (R2), which can be directly absorbed into
the respective weight matrices. During inference, the original weights are simply replaced with the
rotated quantized weights, eliminating the need for modification in the forward pass. Conversely,
in the hard mode, designed for scenarios with low-bit quantization of KV cache or activations
(e.g., 4-bit), we further incorporate online Hadamard rotation matrices (R3, R4) to address activation
outliers inside MLP block and KV cache.

To rigorously assess the effectiveness of SpinQuant, we executed comprehensive experiments
across seven leading Large Language Models (LLMs), including LLaMA-2(Touvron et al., 2023b)
models (7B/13B/70B), LLaMA-3(AI@Meta, 2024) models (1B/3B/8B), and the Mistral (Jiang et al.,
2023) 7B model. The key contributions of this study are summarized as follows:

• We introduce SpinQuant, the first method that employs learned rotations to mitigate
outliers in weight and activation distributions, boosting the performance of quantized LLMs.

• We reveal that random rotations introduce substantial variance in quantized network perfor-
mance. We propose optimizing rotation matrices within Stiefel manifold, directly minimiz-
ing the final loss of rotated quantized network. Ablation studies validate that our learned
rotations consistently outperform random rotations, with improvements up to 16.2 points.

• SpinQuanteasy merges rotation matrices into pre-trained weights without altering the
network architecture, significantly narrowing the W4A8KV8 quantization performance gap
from 12.1 to 1.6 on the Mistral-7B model in zero-shot commonsense reasoning tasks.

• SpinQuanthard attains an average accuracy of 64.0 in extreme W4A4KV4 quantization
settings on LLaMA-2 7B. This represents a mere 2.9 point gap from the full-precision net-
work, a substantial improvement over the previous LLM-QAT (Liu et al., 2023c) approach,
which exhibited a 22.0 point gap under identical precision conditions.

2 MOTIVATION

Quantization reduces the precision of weights (and/or activations) in a neural network in order to
save memory and lower the latency. The quantization process can be formulated as:

XQ = α⌊XR − β

α
⌉+ β (1)
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(a) (b) (c) (d)

Figure 2: Activation distribution in LLaMA-2 7B model before and after rotation. Outliers exist in particular
channels before rotation. Since channel-wise quantization is not supported in most hardware, outlier removal
using rotation enables accurate token-wise or tensor-wise quantization.

(a) (b) (c)

Figure 3: Outlier measurement and quantization error across input activation and weights in the five layers
that take inputs from the residual (Q/K/V/Up/Gate-projection) of each block in the LLaMA-2 7B model. (a)
After rotation, kurtosis of activation distributions is significantly reduced to approximately three across all layers.
Quantization error is reduced after rotation in both (b) activations and (c) weights.

where α = max(|XR|)
2N−1−1

, β = 0 in symmetric quantization or α = max(XR)−min(XR)
2N−1

, β = min(XR)
in asymmetric quantization. Here XQ is a quantized tensor and XR is a real-valued FP16 tensor. N
is number of bits. For Large language models (LLMs), the presence of outliers extends the range of
weight/activation values and increases the reconstruction errors for normal values (Dettmers et al.,
2022; Liu et al., 2023b; Yelysei Bondarenko, 2023) (Figures 2 (a)&(c)).

2.1 OUTLIER REDUCTION

There exist many ways to mitigate the effect of outliers (Xiao et al., 2022; Dettmers et al., 2022). In
this paper, we propose to use optimized rotation to reduce outliers. Intuitively, a random rotation
matrix statistically blends large and small weights together into a well-behaved distribution with
fewer outliers Elhage et al. (2023), and thus is easier to quantize.

Figure 3 (a) illustrates the measurement of the Kurtosis κ of the activations before and after rotation.
κ quantifies the “tailedness” of a real-valued random variable’s probability distribution. A larger
κ indicates more outliers, while κ ≈ 3 suggests a Gaussian-like distribution. In Figure 3 (a), the
activation distribution in the transformer contains numerous outliers, with κ of many layers exceeding
200. However, after multiplying these activations with a random rotation matrix, the κ across all
layers becomes approximately 3, indicating a more Gaussian-shaped distribution that is easier to
quantize. This is corroborated by Figure 3 (b), where the quantization error of the activation tensor
significantly decreases after rotation.

2.2 RANDOM ROTATIONS PRODUCE LARGE VARIANCE

Interestingly, while statistically random rotation leads to better quantization, not all random rotations
give the same quantization outcome. To show this, we tested the zero-shot average accuracy of the
rotated version of LLaMA-2 7B, quantized to 4-bit weight and 4-bit activation, under 100 randomized
trials. As shown in Figure 4, the performance variance is substantial, with the best random rotation
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Figure 4: The performance distributions of W4A4 quantized LLaMA-2 7B under different random rotations,
using network-level parameterization (Sec. 3.1). We compare the distributions using random floating-point
rotations, random Hadamard matrices, and optimized rotation matrices with Cayley optimization (Sec. 3.2).
Despite that Hadamard matrices mostly perform better than random rotations, both random groups demonstrate
large variance. In contrast, by optimizing the rotation matrix with Cayley optimization (i.e., SpinQuant), the
performance is improved significantly and the variance becomes much smaller.

matrix outperforming the worst by 13 points. Random Hadamard matrices 1 outperform random
rotation matrices, in consistent with the findings in (Tseng et al., 2024) that Hadamard matrices yield
tighter bounds on weight maximal value. However, even random Hadamard rotation matrices exhibit
a non-negligible variance in final performance, as large as 6 points.

Given the huge variance across multiple trials of rotations, a natural question arises: Is it possible to
optimize the rotation to maximize the benefit of quantization? We affirmatively answer this question by
presenting a viable framework with quantization-oriented rotation learning that consistently achieves
high accuracy across 7 models and 4 low-bit quantization settings.

3 METHOD

In this section, we introduce SpinQuant, a framework that integrates and optimizes rotations in
LLMs targeting at quantization loss. We start with defining rotation parameterization of popular LLM
architectures, which includes two mergeable rotation matrices (R1, R2) that produce rotationally
invariant full-precision network, and two online Hadamard rotation (R3, R4) to further reduce the
outliers for extreme activation and KV-cache quantization. Then, we present how to optimize these
rotation matrices on Stiefel manifold with target loss.

3.1 ROTATION PARAMETERIZATION

Rotating activations in residual As shown in Figure 1(a), we rotate the activations in the residual
path by multiplying the embedding output X with a random rotation matrix (R1). This rotation
removes outliers and eases the quantization of the input activations to the fully-connected layers that
read from the residual. To maintain numerical invariance, we reverse the rotation of the activation by
multiplying it with RT

1 (= R−1
1 ) prior to its passage through the attention block and feed-forward

network, which contains non-linearity. When the quantization is not present, the full-precision
network remains intact no matter which rotation is applied.2 The rotation matrices can be merged

1A Hadamard matrix H is a special type of rotation matrix, where the entries of the matrix are solely ±
√
n.

Given a Hadamard matrix H , we can generate 2n different random Hadamard matrices by multiplying with S, a
diagonal matrix with elements si randomly chosen from {−1, 1}.

2In a pre-norm LLM like LLaMA (Touvron et al., 2023a), we can convert a transformer network into a
rotation-invariant network by incorporating the RMSNorm scale parameters α into the weight matrix right after
the RMSNorm layer (Ashkboos et al., 2023a).
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into corresponding weight matrices, as illustrated in Figures 1(b)&(c). After absorption, no new
parameters are introduced in the network. We can now modify R1 freely without impacting the
floating-point network’s accuracy or parameter count.

Rotating activations in the attention block As depicted in Figure 1(b), in the attention block, we
propose to rotate the value matrix by multiplying R2, and the activations to out-projection layer
by RT

2 head-wisely. R2 has the shape of (Dhead, Dhead) and can be independently chosen across
layers. The numerical in-variance is illustrated in Figure 5, these two rotations can be offset in a
full-precision network since there are no operators between R2 and RT

2 . Meanwhile, it can improve
quantization for value cache and input activations to out-projection layer without introducing any
new parameters in the network.
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Figure 5: Rotation equivalence in Multi-Head Self-Attention.

We denote the method with only R1 and R2 inserted and optimized as SpinQuanteasy , which can
readily achieve significant accuracy improvement than previous quantization methods, and closing
the gap between W4A8 quantized LLMs and their full-precision counterparts to 0.1− 2.5 points on
zero-shot commonsense reasoning averaged accuracy.

Additional unabsorbed rotations To further enhance outlier suppression for lower-bit (e.g. 4-bit)
activation quantization, we incorporate a Hadamard matrix multiplication (R4 in Figure 1(c)) inside
the feed-forward block, reducing the outliers in the input to the down projection layer. Hadamard
rotation can be computed with fast hadamard transform and introduce marginal overhead to the
inference latency. Similarly, Hadamard matrix (R3 in Figure 1(b)) can be inserted when low-bit
KV cache quantization is required. We denote the resulting method, equipped with all rotations, as
SpinQuanthard. Next, we demonstrate how to jointly optimize these rotations.

3.2 Cayley-OPTIMIZED ROTATION

As illustrated in Figure 1, we have determined that the incorporation of four rotation matrices (R1,
R2, R3, R4) can improve quantization performance while preserving numerical consistency in a
full-precision network. Given that R3 and R4 are online rotation operations, meaning they cannot
be absorbed into the weight matrix, we retain them as Hadamard matrices. This is because online
Hadamard transforms can be efficiently implemented without significant overhead. We then define
the optimization objective as identifying the optimal rotation matrix R1 and R2 that minimizes the
final loss of the quantized network:

argmin
R∈M

LQ(R1, R2 | W,X) (2)

Here, M represents the Stiefel manifold i.e., the set of all orthonormal matrices. LQ(·) denotes the
task loss, such as cross-entropy, on the calibration set. It is a function of {R1, R2}, given the fixed
pretrained weights W and the input tensor X and with the quantization function Q in the network.
To optimize the rotation matrix on the Stiefel manifold, we employ the Cayley SGD method (Li et al.,
2020), which is an efficient optimization algorithm on the Stiefel manifold. More specifically, in each
iteration, the update of the rotation R is parameterized as the following:

R′ = ∆R(Y )R :=
(
I − α

2
Y
)−1 (

I +
α

2
Y
)
R (3)

where ∆R(Y ) := (I− α
2 Y )−1(I+ α

2 Y ) is the Cayley Transform of a skew-symmetric matrix Y (i.e.,
Y ⊤ = −Y ). Y is computed from a projection Ĝ of the gradient G := ∇RLQ of the loss function:

Y = Ĝ− Ĝ⊤, Ĝ := GR⊤ − 1

2
RR⊤GR⊤ (4)

It can be shown that ∆R(Y ) is always orthonormal and thus R′ is guaranteed to be orthonormal
(R′⊤R′ = I) if R is orthonormal. While Eqn. 3 requires a matrix inverse, the new rotation matrix R′

5
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can be computed via an efficient fixed point iteration (Li et al., 2020). Overall, the approach maintains
the property of orthonormality with only ∼2 times the computation time per iteration compared to a
naive SGD algorithm.

We apply the Cayley SGD method to solve Eqn. 2 for {R1, R2}, while the underlying weight
parameters in the network remain frozen. {R1, R2} count for only ∼0.26% of the weight size and
is constrained to be orthonormal. Consequently, the underlying floating-point network remains
unchanged, and the rotation only influences the quantization performance.

By employing Cayley optimization to update the rotation for 100 iterations on an 800-sample
WikiText2 calibration dataset, we obtain a rotation matrix that outperforms the best random matrix
and random Hadamard matrix in 100 random seeds, shown in Figure 4. The Cayley-optimized rotation
exhibits minimal variance when initiated from different random seeds. The rotation matrices are
initialized with random Hadamard matrices for optimization and our ablation study in Section 4.3.3
demonstrates that the optimized rotation is robust to random rotation initialization as well.

4 EXPERIMENTS

We conduct experiments on the LLaMA-2 (Touvron et al., 2023b) models (7B/13B/70B), LLaMA-
3 (AI@Meta, 2024) models (1B/3B/8B) and Mistral Jiang et al. (2023) 7B model. Our evalu-
ation of the proposed SpinQuant was carried out on eight zero-shot commonsense reasoning
tasks. These tasks include BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020), SIQA (Sap et al.,
2019), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021), ARC-easy and ARC-
challenge (Clark et al., 2018), and OBQA (Mihaylov et al., 2018). Additionally, we also report the
perplexity score on WikiText2 testset (Merity et al., 2016) for our evaluation.

4.1 EXPERIMENTAL SETTINGS

We employ Cayley SGD (Li et al., 2020) to optimize the rotation matrix, R1 and R2, both initialized
as a random Hadamard matrix, while maintaining all network weights constant. R1 is the residual
rotation, shaped as (Dtoken, Dtoken). R2 is head-wise rotation in each attention block, shaped as
(Dhead, Dhead) and is separately learned in each layer. The learning rate starts at 1.5 and linearly
decays to 0. We utilize 800 samples from WikiText-2 to optimize rotation for 100 iterations. It takes
only ∼ 13 / 18 / 30 minutes for LLaMA-3 1B / 3B / 8B, respectively, and ∼ 25 / 30 minutes for
LLaMA-2 7B / 13B, respectively. For LLaMA-2 70B, it takes ∼ 3.5 hours and for Mistral-7B it takes
∼ 16 minutes.

In the main results, we optimize the rotation with respect to the activation quantized network, where
the weights remain 16-bit. After rotation is learned, we apply GPTQ on the rotated weights (Frantar
et al., 2022), for which we adhere to the standard GPTQ settings by using 128 samples from WikiText-
2 with a sequence length of 2048 as the calibration set for GPTQ quantization. In the main table, we
present the results of SpinQuant with GPTQ, and in the ablation study, while we also show the
results of employing simple round-to-nearest (RTN) quantization in the ablation study.

4.2 MAIN RESULTS

We present two rotation schemes SpinQuanteasy and SpinQuanthard to accommodate different
scenarios. In Table 1, we use seven models and four most commonly used bit-width settings to
provide a guideline on which rotation scheme should be chosen in practice.

Recap SpinQuanteasy uses learned rotation R1 and R2 only, which can be merged into correspond-
ing model weights during inference time after the rotation is learned. Using SpinQuanteasy only
needs to replace the original model weights with the rotated model weights, necessitating no modi-
fication to the forward pass nor any additional kernel support. While SpinQuanthard comprises
both learned rotations (R1, R2) and the online Hadamard rotations (R3, R4). During inference time,
R3 and R4 can be computed with fast Hadamard kernel (Tseng et al., 2024) and we show in Sec. 4.5,
the online Hadamard rotation only introduces ∼8% of the network latency overhead.

As shown in Table 1, in the scenarios where weights are quantized to 4-bit and activations are
quantized to 8-bit, using SpinQuanteasy can readily achieve good performance. For exam-
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Table 1: Comparison of the perplexity score on WikiText2 and averaged accuracy on eight Zero-shot Common
Sense Reasoning tasks. Results for SmoothQuant (Xiao et al., 2022), LLM-QAT (Liu et al., 2023c), GPTQ (Fran-
tar et al., 2022) were obtained using their publicly released codebase. While OmniQuant (Shao et al., 2023),
AWQ (Lin et al., 2023), and QuIP# (Tseng et al., 2024) results were quoted from their papers. Full results are in
the Appendix.

LLaMA-2 7B LLaMA-2 13B LLaMA-2 70B LLaMA-3.2 1B LLaMA-3.2 3B LLaMA-3 8B Mistral-7B
#Bits Method 0-shot8 Wiki 0-shot8 Wiki 0-shot8 Wiki 0-shot8 Wiki 0-shot8 Wiki 0-shot8 Wiki 0-shot8 Wiki

(W-A-KV) Avg.(↑) (↓) Avg.(↑) (↓) Avg.(↑) (↓) Avg.(↑) (↓) Avg.(↑) (↓) Avg.(↑) (↓) Avg.(↑) (↓)
16-16-16 FloatingPoint 66.9 5.5 68.3 5.0 72.9 3.3 56.9 13.4 63.9 10.7 69.6 6.1 71.0 5.4

4-8-16

RTN 62.4 7.9 57.3 6.7 68.6 5.0 55.4 20.7 58.6 29.0 65.5 8.2 59.3 6.8
SmoothQuant 58.9 7.5 63.6 6.1 70.6 4.1 47.1 1e2 55.6 3e2 61.0 10.7 – –
LLM-QAT 64.8 11.4 67.5 14.5 – – 53.2 21.0 60.8 41.1 67.2 7.7 – –
AWQ (w4) – 6.2 – 5.1 – – – – – – – – – –
OmniQuant (w4) – 5.7 – 5.0 – 3.5 – – – – – – – –
QuIP# (w4) – 5.6 – 5.0 – 3.4 – – – – – – – –
GPTQ 64.9 20.2 65.2 5.9 71.7 4.3 55.0 17.3 58.7 25.2 64.5 7.2 51.7 8.6
SpinQuanteasy 65.7 5.8 68.2 5.1 72.1 3.7 56.0 15.3 61.4 11.6 68.6 6.7 68.8 5.7
SpinQuanthard 65.7 5.7 68.1 5.0 72.7 3.5 56.5 14.4 63.2 11.5 68.4 6.5 69.9 5.5

4-8-8

RTN 62.5 7.9 57.6 6.7 68.4 5.0 55.7 20.7 58.4 28.8 65.3 8.2 58.9 6.7
SmoothQuant 58.8 7.5 63.4 6.1 70.5 4.1 47.1 1e2 55.5 3e2 60.9 10.7 – –
LLM-QAT 64.6 11.4 67.5 14.2 – – 53.1 21.0 60.5 39.3 66.9 7.6 – –
GPTQ 64.8 20.2 65.3 5.9 71.6 4.3 54.8 17.3 58.7 24.1 64.6 7.2 51.7 8.6
SpinQuanteasy 65.8 5.8 68.1 5.1 72.2 3.7 55.7 15.3 61.8 11.7 68.6 6.7 69.4 5.7
SpinQuanthard 65.8 5.7 68.2 5.1 72.7 3.5 55.8 14.3 63.2 11.2 68.8 6.5 70.2 5.5

4-4-16

RTN 35.6 2e3 35.3 7e3 35.1 2e5 41.2 1e2 42.1 7e2 43.9 2e2 41.4 4e2
SmoothQuant 41.8 3e2 44.9 34.5 57.7 57.1 37.9 2e3 43.6 4e2 40.3 9e2 – –
LLM-QAT 47.8 12.9 34.3 4e3 – – 42.0 62.1 46.9 37.6 44.9 42.9 – –
GPTQ 36.8 9e3 35.2 5e3 35.5 2e6 41.6 1e2 43.4 3e2 40.6 2e2 40.4 3e2
SpinQuanteasy 57.0 9.2 61.8 7.2 61.0 7.3 44.8 48.4 52.9 22.4 51.9 18.6 52.7 13.4
SpinQuanthard 64.1 5.9 67.2 5.2 71.0 3.8 53.5 15.3 61.0 11.1 65.8 7.1 68.4 5.7

4-4-4

RTN 37.1 2e3 35.5 7e3 35.0 2e5 40.6 2e2 41.2 8e2 43.1 3e2 41.4 4e2
SmoothQuant 39.0 7e2 40.5 56.6 55.9 10.5 36.5 2e3 40.0 6e2 38.7 2e3 – –
LLM-QAT 44.9 14.9 35.0 4e3 – – 41.5 76.2 45.9 42.0 43.2 52.5 – –
GPTQ 36.8 9e3 35.2 5e3 35.6 1e6 41.6 1e2 41.1 4e2 40.5 2e2 41.3 2e2
SpinQuanteasy 56.0 9.2 60.7 7.1 62.0 7.4 45.3 47.7 52.9 22.4 52.6 18.6 52.4 13.7
SpinQuanthard 64.0 5.9 66.9 5.3 71.2 3.8 53.4 15.9 60.5 11.4 65.5 7.3 68.6 5.8

ple, SpinQuanteasy enhances the 4-8-8 quantized Mistral 7B by 10.5 points. In llama3-8B,
SpinQuanteasy achieves more than 4.1 point improvements compared to GPTQ (Frantar et al.,
2022) on 4-8-16 setting, and leaving the gap to full-precision network to only 1.0 point. In these
settings with activations not extremely quantized, using SpinQuanteasy is a viable solution, and
adding additional online Hadamard rotation yields marginal benefit.

In contrast, when activations are quantized to 4 bits, the accuracy drops significantly and most
previous methods fail to produce meaningful results. SpinQuanteasy bridge the gap by up to
20 points. In 4-4-4 quantized LLaMA-2 models, SpinQuanteasy significantly surpasses LLM-
QAT (Liu et al., 2023c), by 11.1 points on 7B model and outperforms SmoothQuant (Xiao et al.,
2023) by 20.2 on the 13B model, thereby reducing the gap to the corresponding full-precision network
from 22.0 / 27.8 points to 10.9 / 7.6 points respectively. Still, the gap to the full-precision network is
non-negligible. In this scenario, SpinQuanthard can further improve the accuracy by more than 5
points and close the gap to the respective FP network to 2-4 points. In 4-4-4 quantized LLaMA-2
7B/13B/70B models, SpinQuanthard leaves only a 2.9/1.4/1.7 accuracy gap to the corresponding
full-precision network, significantly surpassing the previous SoTA methods by 19.1/16.4/15.3 points,
respectively.

In addition, compared to the state-of-the-art weight-only quantization methods, OmniQuant (Shao
et al., 2023), AWQ (Lin et al., 2023) and QuIP# (Tseng et al., 2024), SpinQuant achieves similar
evaluation perplexity on Wiki dataset with 4-bit weights and 8-bit activations, and without using
advance vector quantization technique. These results show SpinQuant is suitable for various
scenarios and achieves state-of-the-art performance.

4.3 ABLATION STUDIES

4.3.1 LEARNED ROTATION VS RANDOM ROTATION

In Table 2, we contrast the use of random Hadamard rotations with SpinQuant’s optimized
rotations. Employing learned rotations, whether under R1,2 settings or R1,2,3,4 settings, consistently
enhances accuracy across various models and bit-width configurations. Notably, in the quantization
of Mistral-7B, SpinQuanthard secures an improvement exceeding 15.7 points over using random
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Table 2: Compared to Hadamard rotation, SpinQuant learned rotation consistently outperform by a significant
margin. Results are averaged accuracy on eight Zero-shot CommonSense Reasoning tasks.

LLaMA-3.2 3B LLaMA-3 8B Mistral-7B
4-4-16 4-4-4 4-4-16 4-4-4 4-4-16 4-4-4

Random Hadamard R{1,2} 49.8 49.6 49.5 50.0 51.4 51.5
SpinQuanteasy R{1,2} 52.9(↑3.1) 52.9(↑3.3) 51.9(↑2.4) 52.6(↑2.5) 52.7(↑1.3) 52.4(↑0.9)

Random Hadamard R{1,2,3,4} 59.0 58.4 64.2 63.9 52.7 52.4
SpinQuanthard R{1,2,3,4} 61.0(↑2.1) 60.5(↑2.2) 65.8(↑1.6) 65.5(↑1.6) 68.4(↑15.7) 68.6(↑16.2)

Table 3: Ablation study on compatibility with GPTQ (Frantar et al., 2022) on a LLaMA2-7B model.

#Bits(W-A-KV) Task Cayley on 4-4-KV Cayley on 16-4-KV

4-4-16 0-shot8 Avg. 61.0 ±1.0 64.1 ±0.4
Wiki 6.7 ±0.07 5.9 ±0.00

4-4-4 0-shot8 Avg. 60.9 ±0.6 64.0 ±0.3
Wiki 6.8 ±0.15 5.9 ±0.01

Hadamard rotations. Given that rotation optimization incurs a minimal time cost (only 30 minutes
for smaller models and up to 3.5 hours for a 70B model) we advocate for the adoption of optimized
rotations for precise quantization of LLMs.

4.3.2 COMPATIBILITY WITH GPTQ

In the context where both weights and activations are quantized, we observed that the learned rotations
tend to adapt effectively to both weight and activation quantization. Given that GPTQ significantly
helps mitigate the errors due to weight quantization, but leaves activation quantization untouched,
we elect to optimize the rotation matrices with respect to a network where only activations are
quantized. This approach allows the rotation to more efficiently manage the activation quantization
error while leaving the weight quantization error to be addressed by GPTQ. As shown in Table 3,
this modification resulted in superior performance in both W4A4 and W4A4KV4 settings in the
LLaMA-2 7B model, which is the configuration we have chosen to utilize throughout the rest of this
paper.

4.3.3 ROTATION TYPE

In Table 4, we evaluate the impact of random orthogonal floating-point rotation matrices and random
Hadamard matrices on quantization accuracy, utilizing round-to-nearest quantization for our analysis.
Prior to optimization, the Hadamard matrices yield a better-quantized network performance compared
to floating-point rotation matrices. However, after optimization, the initial choice of rotation, whether
floating-point or Hadamard, becomes less significant. This is likely due to the loss-aware rotation
optimization’s ability to locate an optimal local minima that effectively minimizes quantization error,
thereby enhancing robustness to varying types of rotation initialization.

4.3.4 COMPARISON WITH QUAROT

Compared to QuaRot (Ashkboos et al., 2023b), which exhibits significant accuracy variances in
quantized networks—experiencing drops of 28.1 and 33.2 points when quantizing a 70B model
with round-to-nearest methods to W4A4 and W4A4KV4—this degradation stems from inherent
methodological imperfections that introduce high variance and compromise robustness. In contrast,
SpinQuanthard consistently maintains high accuracy across various configurations, achieving
improvements of 2.0 to 28.6 points over QuaRot (Table 5), while utilizing fewer online Hadamard
matrices (two per block in SpinQuanthard versus four per block in QuaRot).

Furthermore, the integration of R2 in SpinQuant effectively reduces in-block outliers, thereby
enabling SpinQuanteasy to deliver optimal performance in W4A8 settings. SpinQuanteasy

can be achieved by simply substituting the model weights with rotated weights, making it a more
straightforward and efficient approach compared to QuaRot, which requires modifying the model
architecture and special kernel support.
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Table 4: Floating-point(FP) rotation vs Hadamard rotation on a LLaMA-2 7B model.

#Bits No Cayley + RTN Cayley + RTN
(W-A-KV) Task FP Hadamard FP init. Hadamard init.

4-16-16 0-shot8 Avg.(↑) 62.5 ±0.8 62.4 ±1.0 64.9 ±0.4 64.6 ±0.3
Wiki(↓) 6.7 ±0.12 6.9 ±0.45 5.5 ±0.01 5.5 ±0.01

4-4-16 0-shot8 Avg.(↑) 49.4 ±2.8 59.0 ±1.0 61.6 ±0.4 61.8 ±0.4
Wiki(↓) 15.9 ±4.04 8.2 ±0.73 6.2 ±0.06 6.1 ±0.03

4-4-4 0-shot8 Avg.(↑) 48.3 ±2.7 58.7 ±1.0 61.5 ±0.8 61.5 ±0.3
Wiki(↓) 18.2 ±4.35 8.2 ±0.36 6.3 ±0.08 6.2 ±0.03

Table 5: Comparison with QuaRot (Ashkboos et al., 2023b).
LLaMA-3 8B (FP: 69.6, 6.1) LLaMA-3 70B (FP: 74.5, 2.8)

4-4-16 4-4-4 4-4-16 4-4-4
0-shot8 Wiki 0-shot8 Wiki 0-shot8 Wiki 0-shot8 Wiki
Avg.(↑) (↓) Avg.(↑) (↓) Avg.(↑) (↓) Avg.(↑) (↓)

QuaRot+RTN 59.5 10.4 58.6 10.9 41.5 91.2 41.3 92.4
SpinQuanthard+RTN 64.6 7.7 64.1 7.8 70.1 4.1 70.1 4.1

QuaRot+GPTQ 63.8 7.9 63.3 8.0 65.4 20.4 65.1 20.2
SpinQuanthard+GPTQ 65.8 7.1 65.5 7.3 69.5 5.5 69.3 5.5

4.4 ILLUSTRATIVE ANALYSIS OF THE ROTATION EFFICACY

The rationale behind rotating network weights and activations can be elucidated through a straightfor-
ward example. Consider an activation (X) represented as a 2D vector, where one entry x1 consistently
receives higher magnitude activations than x2 (as depicted in Figure 6(a)). Quantizing these compo-
nents together typically results in a quantization range dominated by x1, thereby compromising the
precision for x2.

From an information entropy standpoint, expanding each axis to fully utilize the available quantization
range maximizes the representational capacity of each axis. Thus, matrix rotation emerges as an
intuitive solution. In a 2D scenario, rotating the axis by 45° equalizes the value representation range
across axes (illustrated in Figure 6(b)). Assuming the network as a black box without knowledge of
the exact activation distribution, uniformly rotating all axes by the maximal degree (45° in 2D) can
optimize distribution evenness across each axis, partially explaining why Hadamard rotation often
outperforms random rotation matrices.

Taking this further, if the activation distribution is known, treating the network as a white box during
quantization allows for the identification of more optimal rotations than Hadamard. For instance,
in a 3D scenario depicted in Figure 6(c-d), where x1’s magnitude is four times that of x2 and x3,
rotating the distribution by 45° along x3 and x2 redistributes the maximum values from [2, 0.5, 0.5]
to [1, 1, 1.414]. However, even more optimal rotation strategies may exist, and learning the rotation
can help pinpoint the most effective rotation for a given distribution.

This opens up intriguing research avenues, such as determining if, given an activation distribution
with known outlier axes and magnitudes, a closed-form solution for the optimal rotation matrix that
evenly distributes magnitude across different axes can be derived. Additionally, it raises the question

!!
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!"

!"
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!#

!"
!!

!#

(a) (b) (c) (d)

Figure 6: An illustration of how rotation helps reduce outliers and maximize quantization range utilization.
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Table 6: Real-time end-to-end speed measurement of LLaMA-3 8B on MacBook M1 Pro CPU.
Method #Bits(W-A) Decoding speed
FloatingPoint 16-16 177.15 ms/token
SpinQuanteasy (w/o online Hadamard) 4-8 58.88 ms/token
SpinQuanthard (w/ online Hadamard) 4-8 63.90 ms/token

of whether this theoretically calculated rotation yields the best quantization performance. We leave
this question to future research.

4.5 SPEED MEASUREMENT

We conduct an end-to-end speed measurement of the LLaMA-3 8B model with W16A16 and W4A8
configurations on a MacBook M1 Pro CPU (OS version 14.5). The results in Table 6 demonstrate that
4-bit quantization yields a ∼3× speedup compared to the 16-bit model. Comparing SpinQuanthard

to SpinQuanteasy , online Hadamard processing introduced a modest 8% increase in latency. There-
fore, it is a trade-off between using SpinQuanteasy without online Hadamard for its simpleness or
using SpinQuanthard with online Hadamard rotations for higher accuracy in lower-bit activation
quantization. Detailed GPU latency results are provided in the Appendix.

5 RELATED WORK

Quantization Neural network quantization has been demonstrated as an effective tool for model
size compression and storage reduction (Nagel et al., 2020; Krishnamoorthi, 2018; Nagel et al.,
2019; Li et al., 2021). However, in large language models (LLMs), quantization presents unique
challenges due to the presence of numerous outliers. These outliers dominate the quantization range,
leaving only a few effective bits for the majority of values. Various strategies have been proposed
to address the difficulties in LLM quantization. These include separating outliers and using mixed
precision (Dettmers et al., 2022; van Baalen et al., 2023; Kim et al., 2023; Huang et al., 2024;
Egiazarian et al., 2024), employing Hessian-based methods to mitigate quantization difficulty (Frantar
et al., 2022), trading outliers between weights and activations (Xiao et al., 2022; Lin et al., 2023;
Liu et al., 2023b) utilizing weight equalization (Nagel et al., 2019), outlier suppression (Wei et al.,
2022; 2023), channel reassembly (Liu et al., 2023a) and even suggesting architectural modifications
to handle outliers during pre-training(Yelysei Bondarenko, 2023). Recently two QuIP papers (Chee
et al., 2024; Tseng et al., 2024) introduce the incoherence processing using random rotation matrices
and applying vector quantization on the weights for compression. This does introduce extra overhead
and imposes some constraints on the devices the LLM is deployed to in the availability of vector
quantization kernels.

Optimization in orthonormal space The optimization of rotation matrices is carried out within the
Stiefel Manifold (James, 1976), which encompasses all orthonormal matrices. Optimization while
staying on this manifold can be done by e.g., parameterizing a skew-symmetric matrix and applying
the Cayley transformation on top of it (Nishimori and Akaho, 2005), or using a matrix exponential
(Absil and Malick, 2012; Lezcano-Casado and Martinez-Rubio, 2019). However, these methods
rely on expensive inverse or matrix-exponential functions that are applied every iteration. Instead,
we follow the more efficient method named Cayley SGD (Li et al., 2020), which can be applied to
optimize a rotation matrix R for arbitrary loss functions efficiently. Cayley SGD relies on an iterative
approximation of the Cayley Transform that is conducted solely with matrix multiplications.

6 CONCLUSIONS

In this paper, we present SpinQuant, a novel quantization technique that utilizes learned rotation
to effectively bridge the performance gap between full precision and 4-bit weight, activation, and
kv-cache quantization. At its core, SpinQuant leverages the rotation invariance property of
LLM models to insert rotation matrices that diminish outliers in the weights and intermediate
activations while maintaining the network’s full-precision output numerically identical. Additionally,
SpinQuant incorporates Cayley SGD for optimizing rotation matrices, resulting in improved and
robust quantization outcomes. Importantly, SpinQuant is compatible with more advanced weight
quantization techniques (e.g., GPTQ) and demonstrates state-of-the-art performance.
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 COMPLETE RESULTS OF MAIN RESULT TABLE

In Tables 7, 8 and 9, we show the complete results of Table 1. We compare the accuracy on eight
zero-shot commonsense reasoning tasks including ARC-easy, ARC-challenge (Clark et al., 2018),
BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019), HellaSwag (Zellers
et al., 2019), OBQA (Mihaylov et al., 2018), and WinoGrande (Sakaguchi et al., 2021) as well as the
perplexity score on WikiText2 testset (Merity et al., 2016). We compare our results with previous
works including SmoothQuant(Xiao et al., 2022), LLM-QAT(Liu et al., 2023c), GPTQ (Frantar et al.,
2022), OmniQuant (Shao et al., 2023), QuIP# (Tseng et al., 2024).

A.2 RESULTS ON 3-BIT WEIGHT QUANTIZATION

We present the 3-bit weight and 8-bit activation quantization results across seven models in Table 10.
Our method, SpinQuant, successfully reduces the gap to the full-precision network from the
previous 9.0−28.0 points to 1.2−5.3 points, demonstrating its effectiveness for low-bit quantization.

A.3 Cayley OPTIMIZATION CHOICE

In Table 11, we evaluate the impact of varying the number of samples and iterations used in Cay-
ley optimization. Given the limited trainable parameters in the rotation matrix and its constraint
optimization nature, minimal calibration data and iterations are sufficient to optimize the rotation
for better quantization. The findings indicate that rotation optimization is resilient to modifications
in the number of samples. Even though we used 800 samples in our experiments, reducing this to
128 samples does not lead to a significant change in the perplexity. Furthermore, we examined the
optimal number of iterations and found that the wiki perplexity ceases to decrease and stabilizes at
100 iterations. Consequently, we chose to use 100 iterations in all our experiments.

A.4 QUANTIZATION CHOICE

We conduct an ablation study on symmetric vs asymmetric quantization and whether to clip the
min-max ranges or not during activation and KV-cache quantization. The results in Table 12 show that
for both activation quantization and KV-cache quantization, asymmetric quantization outperforms
symmetric quantization. In the clip settings, we set the activation clipping ratio to 0.9 and the
KV-cache clipping ratio to 0.95 as suggested in the previous works (Zhao et al., 2023). However, the
results show that clipping the range or not does not impact the final result significantly. Therefore we
opt for no clipping, i.e., using the min-max quantization for activation and KV cache quantization
across our experiments due to its simplicity.

A.5 CALIBRATION DATA CHOICE

To assess the robustness of SpinQuant with respect to calibration data used in rotation optimization
we use C4 dataset (Raffel et al., 2020) as calibration data and performe experiments on the LLaMA-2
7B model. The results in Table 13 reflect that using C4 datasets yields consistent results with utilizing
the Wiki dataset, showing that SpinQuant is robust to calibration data choice.

A.6 LATENCY MEASUREMENT ON GPU

In light of the available Tensor cores in NVIDIA’s Hopper (H100) architecture, we provide the whole
network end-to-end speed test result of W-fp8-A-fp8 quantization on H100 GPU, both with and
without Hadamard transformations. Specifically, we utilize FP8 GEMM from the FBGEMM repo 3,
which incorporates dequantization via epilogue fusion. We also leverage the Tensor Core-based
Hadamard transform kernel 4 to minimize the overhead of the online Hadamard transform. The end-

3https://github.com/pytorch/FBGEMM/blob/main/fbgemm_gpu/experimental/gemm/triton_gemm/
fp8_gemm.py

4https://github.com/pytorch-labs/applied-ai/blob/main/kernels/cuda/inference/hadamard_transform/
hadamard_transform.cpp

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 7: Complete comparison of the perplexity score on WikiText2 and averaged accuracy on Zero-shot
Common Sense Reasoning tasks on LLaMA-2.

Model #Bits Method ARC-e ARC-c BoolQ PIQA SIQA HellaS. OBQA WinoG. Avg. Wiki2
W-A-KV (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↓)

7B

16-16-16 Full Precision 75.0 50.8 77.3 78.9 48.5 76.0 59.3 69.5 66.9 5.5

4-8-16

RTN 70.9 44.3 73.5 76.8 46.0 70.3 51.8 65.9 62.4 7.9
SmoothQuant 65.8 41.7 67.3 75.6 44.5 67.1 45.8 63.5 58.9 7.5
LLM-QAT 73.6 49.0 72.4 78.2 47.8 74.0 56.1 67.7 64.8 11.4
AWQ (w4) – – – – – – – – – 6.2
OmniQuant (w4) – – – – – – – – – 5.7
QuIP# (w4) – – – – – – – – – 5.6
GPTQ 73.7 47.5 74.8 77.7 46.4 74.1 55.7 69.3 64.9 20.2
SpinQuanteasy 73.6 49.4 76.0 79.0 47.8 75.0 56.1 68.8 65.7 5.8
SpinQuanthard 74.0 50.1 74.4 78.9 47.6 74.8 56.7 68.9 65.7 5.7

4-8-8

RTN 71.1 44.3 73.2 76.8 45.8 70.3 52.3 65.8 62.5 7.9
SmoothQuant 65.8 40.8 66.4 76.3 43.7 66.9 46.0 64.5 58.8 7.5
LLM-QAT 73.5 48.3 72.4 78.1 47.4 74.0 55.3 68.0 64.6 11.4
GPTQ 73.7 48.0 74.2 78.1 46.6 73.9 55.1 68.5 64.8 20.2
SpinQuanteasy 75.1 49.8 74.7 78.2 47.8 75.0 57.6 67.7 65.8 5.8
SpinQuanthard 73.4 49.6 76.0 78.4 47.7 74.6 56.2 70.3 65.8 5.7

4-4-16

RTN 26.6 22.1 44.3 50.9 38.9 26.2 26.6 49.4 35.6 2,167.2
SmoothQuant 37.8 27.1 51.9 59.4 40.2 34.3 31.6 52.4 41.8 254.5
LLM-QAT 46.2 32.4 61.8 62.0 41.3 47.6 36.1 54.7 47.8 12.9
GPTQ 27.6 24.9 47.4 50.7 38.6 26.9 28.3 49.9 36.8 8,949.0
SpinQuanteasy 61.0 39.4 66.0 72.6 44.5 66.1 45.1 61.6 57.0 9.2
SpinQuanthard 72.1 47.5 74.4 77.0 47.3 73.2 54.4 66.9 64.1 5.9

4-4-4

RTN 27.1 24.4 44.8 51.4 39.4 26.7 33.0 50.0 37.1 2,382.5
SmoothQuant 31.4 24.8 51.4 54.1 39.4 29.1 31.9 50.0 39.0 698.7
LLM-QAT 42.0 27.7 59.5 58.9 41.0 43.1 33.5 53.3 44.9 14.9
GPTQ 27.6 23.6 47.8 51.0 38.7 27.0 28.5 50.3 36.8 9,253.1
SpinQuanteasy 61.8 39.1 64.8 71.6 44.5 65.0 41.4 60.0 56.0 9.2
SpinQuanthard 72.6 47.5 73.9 77.0 47.2 73.0 54.1 66.9 64.0 5.9

13B

16-16-16 Full Precision 75.3 51.4 79.8 80.4 50.5 79.8 56.8 72.5 68.3 5.0

4-8-16

RTN 63.1 39.9 68.7 74.0 46.2 59.7 45.5 61.5 57.3 6.7
SmoothQuant 71.7 46.3 72.0 78.2 47.3 72.8 51.2 69.2 63.6 6.1
LLM-QAT 75.3 49.7 79.0 80.0 50.3 77.4 56.3 71.6 67.5 14.5
AWQ (w4) – – – – – – – – – 5.1
OmniQuant (w4) – – – – – – – – – 5.0
QuIP# (w4) – – – – – – – – – 5.0
GPTQ 74.2 49.2 75.3 78.4 48.8 74.1 53.4 68.4 65.2 5.9
SpinQuanteasy 76.5 52.0 81.5 80.0 49.9 78.8 54.8 72.4 68.2 5.1
SpinQuanthard 76.2 50.6 80.1 80.1 49.8 78.5 58.0 71.7 68.1 5.0

4-8-8

RTN 63.2 40.3 69.0 74.3 46.1 59.5 46.2 61.9 57.6 6.7
SmoothQuant 73.3 45.3 71.9 78.8 47.6 72.7 49.6 67.7 63.4 6.1
LLM-QAT 75.0 48.8 79.2 80.3 50.7 77.7 56.1 72.3 67.5 14.2
GPTQ 74.1 48.8 75.1 78.1 48.8 74.1 53.6 69.5 65.3 5.9
SpinQuanteasy 76.8 52.1 80.8 80.5 49.9 78.6 55.8 70.6 68.1 5.1
SpinQuanthard 76.7 51.2 80.4 80.5 49.4 78.6 57.4 71.5 68.2 5.1

4-4-16

RTN 26.0 26.0 40.6 49.7 38.7 26.0 25.4 49.9 35.3 7,216.7
SmoothQuant 45.2 27.1 55.4 62.5 40.5 44.3 33.4 50.8 44.9 34.5
LLM-QAT 26.0 23.7 37.8 49.2 39.5 26.3 23.8 48.2 34.3 3,889.9
GPTQ 26.6 24.7 37.9 49.3 39.2 26.2 27.7 50.3 35.2 5,245.3
SpinQuanteasy 68.5 43.0 72.1 75.4 48.5 71.2 51.0 64.6 61.8 7.2
SpinQuanthard 75.9 50.8 78.1 79.5 49.4 77.5 55.2 70.8 67.2 5.2

4-4-4

RTN 26.1 24.3 40.3 48.7 39.6 25.8 29.2 49.6 35.5 7,428.8
SmoothQuant 36.9 24.8 49.4 57.2 39.6 33.3 31.2 51.7 40.5 56.6
LLM-QAT 26.3 24.6 37.8 48.8 39.3 26.3 26.8 50.4 35.0 3,777.5
GPTQ 26.6 24.1 37.9 48.8 38.9 26.1 29.3 50.1 35.2 5,237.1
SpinQuanteasy 67.1 39.7 72.5 74.7 47.4 71.1 47.8 65.3 60.7 7.1
SpinQuanthard 75.7 50.5 79.3 79.5 49.1 77.1 53.8 69.9 66.9 5.3

70B

16-16-16 Full Precision 80.2 60.5 85.1 82.8 50.8 84.3 59.0 80.6 72.9 3.3

4-8-16

RTN 78.2 54.8 81.5 80.8 46.9 76.5 56.5 73.3 68.6 5.0
SmoothQuant 79.4 57.3 82.4 82.0 50.3 81.5 56.2 75.9 70.6 4.1
OmniQuant (w4) – – – – – – – – – 3.5
QuIP# (w4) – – – – – – – – – 3.4
GPTQ 80.2 59.5 82.4 82.6 50.3 82.1 58.3 77.9 71.7 4.3
SpinQuanteasy 80.0 59.2 84.4 82.6 50.3 82.8 59.7 78.1 72.1 3.7
SpinQuanthard 80.2 59.9 85.0 82.5 50.4 83.9 60.1 79.3 72.7 3.5

4-8-8

RTN 78.3 53.9 81.4 81.4 47.3 76.7 56.0 72.6 68.4 5.0
SmoothQuant 80.0 57.8 81.6 81.6 48.9 81.5 56.6 75.8 70.5 4.1
GPTQ 79.6 60.3 82.4 82.2 49.9 82.2 58.5 77.3 71.6 4.3
SpinQuanteasy 80.4 60.3 84.4 81.8 49.8 82.8 59.1 79.0 72.2 3.7
SpinQuanthard 80.4 59.7 85.2 82.6 50.4 83.8 59.9 79.8 72.7 3.5

4-4-16

RTN 26.0 23.2 43.5 48.9 37.0 26.0 25.6 50.5 35.1 2e5
SmoothQuant 69.5 71.7 29.0 66.6 73.1 45.1 67.4 39.4 57.7 57.1
GPTQ 25.3 25.8 45.7 50.1 36.4 25.8 24.6 50.0 35.5 2e6
SpinQuanteasy 66.8 42.4 72.9 74.0 46.7 73.2 48.2 63.9 61.0 7.3
SpinQuanthard 78.4 57.0 82.7 81.4 50.2 83.0 58.5 77.0 71.0 3.8

4-4-4

RTN 25.5 24.5 43.2 50.2 36.7 26.6 24.2 49.3 35.0 2e5
SmoothQuant 68.1 31.9 65.8 72.0 43.5 64.2 38.2 63.1 55.9 10.5
GPTQ 26.1 25.2 45.7 49.5 36.8 26.0 25.4 50.2 35.6 1e6
SpinQuanteasy 68.2 42.0 74.1 73.8 46.9 74.3 50.0 66.8 62.0 7.4
SpinQuanthard 78.3 57.6 82.1 81.7 50.1 82.9 59.8 77.3 71.2 3.8
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Table 8: Complete omparison of the perplexity score on WikiText2 and averaged accuracy on Zero-shot
Common Sense Reasoning tasks on LLaMA-3.

Model #Bits Method ARC-e ARC-c BoolQ PIQA SIQA HellaS. OBQA WinoG. Avg. Wiki2
W-A-KV (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↓)
16-16-16 Full Precision 65.2 38.7 69.5 75.3 44.8 60.7 40.2 60.9 56.9 13.4

4-8-16

RTN 62.4 39.7 66.3 72.1 44.6 56.6 42.8 58.6 55.4 20.7
SmoothQuant 47.6 30.7 59.6 64.9 41.7 47.6 31.5 52.9 47.1 108.2
LLM-QAT 59.6 37.8 61.7 72.5 43.1 57.2 37.1 56.2 53.2 21.0
GPTQ 61.7 38.5 65.6 71.4 43.9 56.4 44.1 58.7 55.0 17.3
SpinQuanteasy 60.9 39.5 65.9 73.2 46.1 57.7 44.3 60.3 56.0 15.3
SpinQuanthard 60.8 39.8 66.5 73.9 44.7 59.0 46.9 60.8 56.5 14.4

4-8-8

RTN 62.6 40.0 66.7 72.2 44.4 56.6 43.0 59.9 55.7 20.7
SmoothQuant 48.2 31.5 59.1 65.4 41.7 47.2 31.5 52.0 47.1 108.6
LLM-QAT 60.0 36.7 62.2 73.1 43.0 57.0 37.7 55.2 53.1 21.0
GPTQ 61.7 38.0 65.4 71.4 43.5 56.1 45.3 57.0 54.8 17.3
SpinQuanteasy 61.2 40.6 64.9 72.7 45.1 58.3 43.2 59.9 55.7 15.3

1B SpinQuanthard 59.2 37.3 66.4 73.6 44.9 59.1 46.3 59.2 55.8 14.3

4-4-16

RTN 37.8 28.3 51.2 56.4 40.0 35.9 28.9 51.4 41.2 137.5
SmoothQuant 32.3 26.4 46.3 54.7 39.7 28.7 27.0 48.0 37.9 2,027.8
LLM-QAT 39.3 28.5 55.6 58.9 40.9 32.7 28.1 52.0 42.0 62.1
GPTQ 36.8 27.1 56.0 56.6 41.2 36.0 27.9 51.5 41.6 107.6
SpinQuanteasy 44.8 29.7 61.2 59.7 40.2 41.0 32.4 49.8 44.8 48.4
SpinQuanthard 59.3 37.1 64.6 69.9 44.4 55.4 41.2 56.0 53.5 15.3

4-4-4

RTN 37.6 27.6 49.3 56.4 40.7 35.1 27.0 51.5 40.6 160.4
SmoothQuant 30.0 26.3 41.8 51.6 39.0 26.9 26.8 49.5 36.5 2,599.6
LLM-QAT 37.7 26.7 55.7 57.9 40.6 32.0 31.3 50.5 41.5 76.2
GPTQ 37.8 29.0 53.9 56.8 39.9 34.7 29.7 51.3 41.6 124.6
SpinQuanteasy 45.4 30.7 59.2 60.7 41.4 40.8 32.6 51.4 45.3 47.7
SpinQuanthard 59.4 39.4 64.4 68.9 43.4 54.6 41.4 55.9 53.4 15.9

16-16-16 Full Precision 68.9 47.6 79.0 76.0 52.1 71.0 50.2 66.6 63.9 10.7

4-8-16

RTN 60.2 42.6 70.9 72.6 49.7 66.2 43.6 62.7 58.6 29.0
SmoothQuant 59.8 40.7 59.2 73.8 46.9 65.5 40.7 58.5 55.6 288.5
LLM-QAT 64.7 46.1 74.1 75.4 49.3 69.9 45.3 61.4 60.8 41.1
GPTQ 60.8 41.4 71.9 73.6 47.7 65.9 43.4 65.0 58.7 25.2
SpinQuanteasy 65.9 44.2 74.9 74.8 48.2 68.3 48.8 65.9 61.4 11.6
SpinQuanthard 66.8 47.2 78.4 76.0 50.8 69.2 50.2 66.7 63.2 11.5

4-8-8

RTN 60.2 41.3 71.3 73.1 49.6 66.2 42.6 63.0 58.4 28.8
SmoothQuant 59.5 39.3 57.9 73.5 46.6 65.3 41.9 60.1 55.5 281.3
LLM-QAT 65.2 45.1 74.5 76.1 49.1 69.6 43.9 60.7 60.5 39.3
GPTQ 61.0 42.0 72.5 72.7 47.9 66.3 43.4 63.6 58.7 24.1
SpinQuanteasy 65.2 45.7 76.1 75.8 48.7 69.4 47.9 65.5 61.8 11.7

3B SpinQuanthard 67.2 46.4 78.4 76.5 51.0 69.5 50.6 66.0 63.2 11.2

4-4-16

RTN 41.0 29.8 43.8 57.3 41.8 41.4 31.1 50.9 42.1 741.9
SmoothQuant 43.6 30.5 52.8 58.0 40.4 37.7 33.1 52.9 43.6 372.3
LLM-QAT 47.3 30.9 60.8 63.8 42.4 43.2 35.9 51.1 46.9 37.6
GPTQ 42.0 30.0 44.8 60.1 41.2 44.7 34.0 50.5 43.4 264.4
SpinQuanteasy 54.6 37.7 65.7 66.7 43.3 56.3 41.8 56.9 52.9 22.4
SpinQuanthard 66.3 43.9 74.2 75.0 48.9 67.2 47.1 65.5 61.0 11.1

4-4-4

RTN 38.4 26.9 41.3 58.3 39.9 40.0 32.2 52.9 41.2 799.7
SmoothQuant 36.4 26.2 50.4 55.8 39.0 30.3 30.2 52.2 40.0 553.2
LLM-QAT 44.4 29.7 61.5 62.0 42.3 41.2 33.8 52.4 45.9 42.0
GPTQ 38.2 25.1 42.0 56.6 41.5 44.1 31.1 50.5 41.1 352.6
SpinQuanteasy 58.0 36.0 67.2 66.9 43.3 56.8 40.4 54.5 52.9 22.4
SpinQuanthard 66.0 43.2 76.4 74.6 47.0 67.7 45.1 64.2 60.5 11.4

16-16-16 Full Precision 77.6 57.7 83.3 80.7 48.7 79.6 55.8 73.7 69.6 6.1

4-8-16

RTN 73.2 48.1 76.3 77.1 46.6 75.5 54.3 72.5 65.5 8.2
SmoothQuant 67.5 41.0 71.9 74.9 46.6 70.8 45.8 69.1 61.0 10.7
LLM-QAT 77.6 50.6 81.2 79.0 47.5 76.0 53.5 72.4 67.2 7.7
GPTQ 71.5 46.8 76.1 76.6 47.9 73.9 52.1 70.7 64.5 7.2
SpinQuanteasy 77.8 55.4 80.6 79.9 48.9 77.5 55.5 73.3 68.6 6.7
SpinQuanthard 76.5 54.0 81.5 79.6 48.6 78.1 56.4 72.4 68.4 6.5

4-8-8

RTN 73.7 49.1 76.5 77.1 46.7 75.5 50.8 73.4 65.3 8.2
SmoothQuant 66.6 41.8 73.2 74.1 45.9 71.1 48.2 66.5 60.9 10.7
LLM-QAT 77.2 50.6 81.5 79.3 47.7 76.3 52.0 70.6 66.9 7.6
GPTQ 71.5 46.9 76.6 76.2 48.5 73.7 52.1 71.0 64.6 7.2
SpinQuanteasy 77.2 56.2 81.5 79.2 48.8 77.2 56.1 72.9 68.6 6.7

8B SpinQuanthard 77.6 57.4 81.3 80.2 48.6 78.1 55.5 72.0 68.8 6.5

4-4-16

RTN 42.7 29.5 54.0 57.8 39.9 41.2 36.9 49.4 43.9 241.6
SmoothQuant 36.3 26.3 50.6 54.1 40.3 31.4 30.6 52.9 40.3 867.5
LLM-QAT 44.1 29.7 58 61.5 42.1 39.9 33 51.3 44.9 42.9
GPTQ 39.7 27.6 40.8 58.5 41.7 31.9 32.0 53.1 40.6 187.9
SpinQuanteasy 56.5 35.3 53.3 68.0 44.5 59.9 37.5 59.7 51.9 18.6
SpinQuanthard 75 50.9 78.9 77.5 47.2 75.9 52.9 68.5 65.8 7.1

4-4-4

RTN 39.5 27.5 54.6 57.7 41.4 39.4 32.6 51.9 43.1 260.9
SmoothQuant 33.5 25.1 49.6 53.1 40.3 28.8 29.6 49.6 38.7 1,530.50
LLM-QAT 40.5 26.6 52.7 59.9 42.3 37.5 33.6 52.7 43.2 52.5
GPTQ 40.6 26.5 40.9 58.0 41.5 31.9 33.0 51.8 40.5 195.8
SpinQuanteasy 58.4 37.1 54.7 67.7 43.4 60.1 41.2 57.9 52.6 18.6
SpinQuanthard 75.1 51.2 77.2 77.3 47.6 75.2 54.1 66.2 65.5 7.3

to-end speed test results of LLaMA-3 70B are detailed in Table 14 When implemented meticulously,
SpinQuant with Hadamard rotation sees marginal difference in the latency compared to without
Hadamard rotation.
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Table 9: Complete comparison of the perplexity score on WikiText2 and averaged accuracy on Zero-shot
Common Sense Reasoning tasks on Mistral-7B-v0.3.

#Bits Method ARC-e ARC-c BoolQ PIQA SIQA HellaS. OBQA WinoG. Avg. Wiki2
W-A-KV (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↓)
16-16-16 Full Precision 81.0 57.9 84.2 82.1 48.2 80.8 59.6 73.8 71.0 5.4

4-8-16
RTN 53.4 49.0 78.4 67.6 45.6 59.7 54.3 66.3 59.3 6.8
GPTQ 38.4 41.4 74.7 59.8 42.3 45.5 50.6 61.1 51.7 8.6
SpinQuanteasy* 75.4 55.7 81.9 80.3 48.2 78.1 57.8 72.7 68.8 5.7
SpinQuanthard* 78.9 55.9 82.7 81.9 48.5 80.0 58.4 72.7 69.9 5.5

4-8-8
RTN 52.9 48.7 78.5 67.3 45.5 59.4 52.7 66.4 58.9 6.7
GPTQ 38.7 40.6 74.8 58.9 42.5 45.8 51.0 61.3 51.7 8.6
SpinQuanteasy* 76.7 54.5 82.2 80.3 50.3 78.6 59.0 73.4 69.4 5.7
SpinQuanthard* 80.1 56.9 83.9 81.5 48.6 79.9 57.2 73.0 70.2 5.5

4-4-16
RTN 39.9 24.7 50.0 57.8 39.7 34.7 33.8 50.4 41.4 449.5
GPTQ 39.4 27.1 43.8 57.3 38.4 35.6 31.4 50.0 40.4 260.8
SpinQuanteasy* 55.2 34.6 67.9 70.8 41.9 50.8 44.7 56.0 52.7 13.4
SpinQuanthard* 76.5 53.3 80.7 80.7 48.2 78.6 57.8 71.2 68.4 5.7

4-4-4
RTN 39.9 26.7 51.2 58.1 40.3 34.4 28.7 51.7 41.4 443.5
GPTQ 40.4 28.5 43.6 57.4 39.2 35.2 33.8 52.1 41.3 249.9
SpinQuanteasy* 55.4 33.3 68.5 71.4 42.4 50.9 41.0 56.3 52.4 13.7
SpinQuanthard* 77.3 52.5 80.2 80.3 48.9 79.2 58.4 72.3 68.6 5.8

Table 10: 3-bit weight 8-bit activation quantization results on WikiText2 and Zero-shot Common Sense
Reasoning tasks.

#Bits Method ARC-e ARC-c BoolQ PIQA SIQA HellaS. OBQA WinoG. Avg. Wiki2
W-A-KV (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↓)

LLaMA-2 7B

Full Precision 75.0 50.8 77.3 78.9 48.5 76.0 59.3 69.5 66.9 5.5
RTN 31.3 22.6 39.6 54.6 38.0 28.1 29.3 49.8 36.7 955.1
SmoothQuant 26.4 26.5 39.2 48.8 39.4 26.0 25.8 49.2 35.1 275,935.2
LLM-QAT 44.0 29.5 64.4 63.3 42.2 52.7 32.6 52.3 47.6 15.2
GPTQ 63.8 40.2 67.3 73.1 43.3 63.5 46.9 65.5 57.9 14.6
SpinQuanthard 71.9 47.5 74.6 76.4 47.0 71.2 53.4 67.9 63.7 6.2

LLaMA-2 13B

Full Precision 75.3 51.4 79.8 80.4 50.5 79.8 56.8 72.5 68.3 5.0
RTN 30.4 24.6 48.8 53.8 39.8 29.0 25.4 49.5 37.6 167.8
SmoothQuant 26.1 25.5 37.8 49.0 39.4 26.1 26.4 49.5 35.0 8,979.3
LLM-QAT 27.5 20.7 40.1 51.1 38.2 26.4 27.9 50.7 35.3 256.6
GPTQ 56.5 34.5 63.3 68.9 44.2 46.0 39.8 56.3 51.2 10.8
SpinQuanthard 75.9 52.4 76.6 78.4 49.3 74.6 56.2 70.6 66.7 5.4

LLaMA-2 70B

Full Precision 80.2 60.5 85.1 82.8 50.8 84.3 59.0 80.6 72.9 3.3
RTN 51.5 30.0 59.5 65.5 40.8 40.3 31.2 51.4 46.3 66.2
SmoothQuant 26.9 22.7 38.4 49.0 38.6 25.6 25.2 52.0 34.8 6,682.0
GPTQ 72.5 49.3 72.1 76.7 46.3 69.9 51.8 72.2 63.9 9.0
SpinQuanthard 79.4 58.7 84.4 81.6 50.5 82.3 58.3 78.6 71.7 3.8

LLaMA-3 1B

Full Precision 65.2 38.7 69.5 75.3 44.8 60.7 40.2 60.9 56.9 13.4
RTN 32.6 28.0 54.8 55.7 39.1 34.2 29.7 47.8 40.2 2,097.6
SmoothQuant 28.8 24.0 40.4 51.6 37.8 25.9 28.2 48.0 35.6 58,367.5
LLM-QAT 47.0 30.4 60.3 62.8 41.6 39.9 33.6 51.8 45.9 46.9
GPTQ 41.5 30.4 61.4 62.3 39.9 41.7 33.0 50.6 45.1 90.8
SpinQuanthard 58.8 36.4 63.7 68.7 44.2 51.5 38.1 56.5 52.2 17.2

LLaMA-3 3B

Full Precision 68.9 47.6 79.0 76.0 52.1 71.0 50.2 66.6 63.9 10.7
RTN 40.1 29.5 48.8 59.3 41.6 46.0 34.4 53.4 44.1 1,178.9
SmoothQuant 27.8 21.6 38.4 50.2 38.0 25.4 26.0 50.4 34.7 17,409.2
LLM-QAT 32.1 29.4 55.7 53.3 39.7 41.9 29.5 50.4 41.5 26.2
GPTQ 48.4 33.0 65.5 63.6 41.7 57.8 38.7 57.8 50.8 176.3
SpinQuanthard 61.8 41.4 78.2 73.0 47.4 63.3 41.0 62.8 58.6 13.7

LLaMA-3 8B

Full Precision 77.6 57.7 83.3 80.7 48.7 79.6 55.8 73.7 69.6 6.1
RTN 40.9 25.3 62.3 58.8 39.7 35.1 31.4 54.1 43.5 196.2
SmoothQuant 27.4 24.9 38.3 50.9 37.9 25.7 29.8 49.8 35.6 179,664.5
LLM-QAT 35.9 28.0 54.3 58.5 39.8 31.7 27.7 50.9 40.8 14.9
GPTQ 50.8 34.5 65.6 64.0 42.4 55.1 37.3 61.5 51.4 9.4
SpinQuanthard 74.5 50.3 79.6 77.2 46.8 74.5 50.6 70.9 65.5 7.5

Mistral 7B
Full Precision 81.0 57.9 84.2 82.1 48.2 80.8 59.6 73.8 71.0 5.4
RTN 28.2 28.1 62.2 53.1 38.7 28.0 35.9 48.3 40.3 167.1
GPTQ 31.9 32.7 63.8 54.8 40.0 31.0 36.9 52.2 42.9 29.3
SpinQuanthard 77.7 54.1 82.2 79.9 47.7 77.5 59.4 73.8 69.0 5.8

Table 11: Ablation study on Number of training samples and iterations in Cayley SGD optimization, using
LLaMA-2 7B.

#Bits Task # Training sample # Training iterations
(W-A-KV) 128 800 10 25 50 100 200

4-4-4 Wiki (↓) 6.2 ±0.03 6.2 ±0.03 6.6 ±0.02 6.4 ±0.02 6.3 ±0.03 6.2 ±0.03 6.2 ±0.05
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Table 12: Ablation of symmetric and asymmetric quantization and range clipping options on LLaMA-2 7B.
#Bits RTN GPTQ

(W-A-KV) K asym K clip A asym A clip Zero-shot Avg. (↑) Wiki (↓) Zero-shot Avg. (↑) Wiki (↓)
4-4-16 – – ✗ ✗ 61.2 ±0.6 6.3 63.3 ±0.4 6.0
4-4-16 – – ✓ ✗ 61.8 ±0.4 6.1 64.0 ±0.5 5.9
4-4-16 – – ✓ ✓ 62.1 ±0.6 6.0 64.0 ±0.4 5.9
4-4-4 ✗ ✗ ✓ ✗ 61.4 ±0.5 6.2 63.7 ±0.4 6.0
4-4-4 ✓ ✗ ✓ ✗ 61.5 ±0.6 6.2 63.7 ±0.3 5.9
4-4-4 ✓ ✓ ✓ ✗ 61.5 ±0.3 6.2 63.7 ±0.2 5.9

Table 13: Ablation study on calibration data choice using LLaMA-2 7B.

Calibration #Bits ARC-e ARC-c BoolQ PIQA SIQA HellaS. OBQA WinoG. Avg. Wiki2
Data (W-A-KV) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↓)
Wiki2 4-4-16 72.1 47.5 74.4 77.0 47.3 73.2 54.4 66.9 64.1 5.9
Wiki2 4-4-4 72.6 47.5 73.9 77.0 47.2 73.0 54.1 66.9 64.0 5.9
C4 4-4-16 72.5 47.3 74.8 77.6 47.7 73.2 55.4 66.2 64.3 5.9
C4 4-4-4 72.5 47.9 74 78.4 46.7 73.1 55.5 66.4 64.3 6

A.7 OPTIMIZATION TIME

In Table 15, we show the comparison of optimization time between GPTQ and SpinQuant. SpinQuant
requires a scale of optimization time similar to that of GPTQ. The additional optimization time
required by SpinQuant is worthwhile considering the substantial improvements it offers over GPTQ.

A.8 ABLATION STUDY ON RTN VS GPTQ

SpinQuant is fully compatible with both GPTQ and naive RTN. To isolate the contributions of GPTQ
and rotation to overall performance, we present results for SpinQuant combined with RTN in the
W4A4KV16 quantization scenario in Table 16. Our analysis indicates that the primary accuracy
gains are attributed to the incorporation of learned rotations, which enhances accuracy by 6.5 ∼ 20.9
percentage points over previous methods (including GPTQ). The subsequent integration of GPTQ
further boosts performance by up to 2.3 percentage points.

A.9 WEIGHT-ONLY QUANTIZATION

We also include a comparison of SpinQuant performance under weight-only quantization in Table 17.
The weight-only results show that SpinQuant consistently achieves higher accuracy than AWQ and
other previous work.

A.10 FEW-SHOT RESULTS ON INSTRUCTION-FINETUNED MODELS

We further conduct experiments applying SpinQuant to instruction-finetuned LLaMA 3.2 1B and
3B models in Table 18. We present the results for few-shot learning scenarios. SpinQuant W4A8
quantized models demonstrate significant improvements in 5-shot accuracy on the MMLU benchmark
and 1-shot rouge score on the TLDR9 summarization benchmark. It significantly closed the gap to
the BF16 baseline.

B ANALYSIS

B.1 GRADIENT ANALYSIS

On the one hand, we have shown that the class of LLMs we are interested in are rotation invariant,
i.e. the full-precision model output does not change regardless of what R is. On the other hand, we
are claiming that some R are better than others for quantized LLM and that better R can be learned
with backpropagation on equation 2. To reconcile these seemingly conflicting claims, we inspect the
gradient of the output of a single linear, W , and activations, X , which are both rotated and quantized:

∂
∑

ij

(
Q(WR−1)Q(RX))

)
ij

∂Rmn
=

∑
ij

−(WR−1)im(R−1Q(RX))nj +Q(WR−1)imXnj (5)
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Table 14: Real-time end-to-end speed measurement of LLaMA-3 70B on NVIDIA’s Hopper (H100) GPU.
SpinQuant without hadamard SpinQuant with hadamard
TTFT (ms) TPS (ms) TTFT (ms) TPS (ms)

BS=1 T=4096 153.58 9.85 158.25 10.15
BS=8 T=4096 1205.47 10.6 1243.48 10.94
BS=32 T=4096 5008.25 13.83 5147.59 14.2

Table 15: Optimization time comparison between GPTQ and SpinQuant.
llama3 1B llama3 3B llama3 8B llama2 7B llama2 13B Mistral

SpinQuant 13 min 18 min 30 min 25 min 30 min 16 min
GPTQ 8 min 13 min 20 min 18 min 25 min 12 min

We see that equation equation 5:

• is non-zero in general, which validates our approach of using backpropagation to learn R

• reduces to 0 when quantization is not present, which validates the claim that it only makes
sense to learn R for quantized models

• demonstrates that two components move the gradient with respect to R away from 0: 1)
differences in quantized and unquantized rotated weights; 2) differences in quantized and
unquantized rotated activations

B.2 LOSS ANALYSIS

(a) (b) (c)

Figure 7: Training curves for LLaMA-2 7B with 4-bit weights and 4-bit activations in wiki2 train set. (a) End-
to-end quantization SNR. R0 and RT denote randomly initialized rotation and learned rotation after T = 200
iterations; (b) Activation quantization. SNR for layer 27 attention out projection; (c) Improvement in activation
quantization SNR after optimization of R for each layer.

While Sec. 4 shows that learning R yields significant benefits on zero-shot reasoning tasks, in this
section we shed some light on why our method is able to achieve accuracy gains. Intuitively, we
expect the end-to-end signal to (quantization) noise ratio (SNR) to improve as a result of learning
R. In other words, learning R should bring the quantized model output closer to the floating point
model output. As Table 19 shows, we observe an SNR improvement of 3.8 dB when introducing
a random R into LLaMA-2 7B with weights/activations quantized to 4 bits, and then an additional
5.9dB improvement after learning R, all measured on the WikiText2 (Merity et al., 2016) test set.
Figure 7a shows that the batch-level training set SNR during R training progressively improves as
expected, as well as the layer-level SNR for a particular layer in Figure 7b. Digging a bit deeper,
Figure 7c shows the layer-level SNR improvement for each layer as a result of training R. We see
that, perhaps counter-intuitively, layer-level SNR improves significantly for a few layers, but does
not change much for most layers, and even gets worse for one of the layers. We hypothesize that:
1) certain layers have a disproportionate impact on model output or have a disproportionately low
quantization SNR without rotation; 2) The process of optimizing R rotates the residual stream basis
such as to prioritize improving the SNR of such layers, possibly at the cost of hurting less important
layers.
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Table 16: Ablation study on SpinQuant combined with RTN or GPTQ in the W4A4KV16 quantization scenario.
LLaMA-3 8B LLaMA-2 7B LLaMA-2 13B LLaMA-2 70B

Method Zero-shot Wiki Zero-shot Wiki Zero-shot Wiki Zero-shot Wiki
Full-precision 69.6 6.1 66.9 5.5 68.3 5.0 72.9 3.3
RTN 43.9 2e2 35.6 2e3 35.3 7e3 35.1 2e5
SmoothQuant 40.3 9e2 41.8 3e2 44.9 34.5 57.7 57.1
LLM-QAT 44.9 42.9 47.8 12.9 34.3 4e3 – –
GPTQ 40.6 2e2 36.8 9e3 35.2 5e3 35.5 2e6
SpinQuant-hard (RTN) 64.6 7.7 61.8 6.1 65.8 5.4 71.1 3.9
SpinQuant-hard (GPTQ) 65.8 7.1 64.1 5.9 67.2 5.2 71.0 3.8

Table 17: A comparison of SpinQuant performance under 4-bit weight-only quantization.
LLaMA-2 7B LLaMA-2 13B LLaMA-2 70B

Method Zero-shot Avg. (↑) Wiki ppl(↓) Zero-shot Avg.(↑) Wiki ppl(↓) Zero-shot Avg.(↑) Wiki ppl(↓)
Full-precision 66.9 5.5 68.3 5.0 72.9 3.3
RTN 63.6 7.2 57.9 6.4 69.2 4.6
SmoothQuant 59.1 7.5 63.3 6.1 70.2 4.1
GPTQ 64.5 11.3 64.7 5.6 71.9 3.9
AWQ – 6.2 – 5.1 – –
SpinQuanthard 65.9 5.6 68.5 5.0 72.6 3.5

Table 18: Results of applying SpinQuant to instruction-finetuned LLaMA 3.2 1B and 3B models.
llama3.2 1B llama3.2 3B

BF16 Vanilla RTN SpinQuant BF16 Vanilla RTN SpinQuant
MMLU (5-shot) 49.3 43.4 47.3 63.4 60.5 62.0
TLDR9+ (test, 1-shot rougeL) 16.8 14.9 16.7 19.0 19.1 19.2

Table 19: Average end-to-end signal to quantization noise ratio (dB) for LLaMA-2 7B with weights and
activations quantized to 4 bits on wiki2 test set

R = I Randomly initialized R Learned R
-2.9 0.9 6.8

C DISTRIBUTION VISUALIZATIONS BEFORE AND AFTER ROTATION

We present visualizations of the activation distributions before and after rotation in Figures 8 and 9,
respectively. Similarly, the weight distributions before and after rotation are depicted in Figures 10
and 11. Overall, after rotation, the extreme values are attenuated, and the distribution exhibits no
noteworthy outliers across the token dimension. Additionally, we make an interesting observation:
in several activation layers, the first token displays substantial values in multiple channels. After
rotation, this outlier is distributed across all channels of the first token. Although per-token activation
quantization can readily manage this distribution, investigating the source of these outliers and
reducing them prior to applying SpinQuant might further enhance quantization accuracy, which
could be a potential future research direction.
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Figure 8: Magnitude of the input activations of a linear layer in {1st, 11th, 21st, and 31st} blocks in LLaMA-2
7B model before rotation.
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Figure 9: Magnitude of the input activations of a linear layer in {1st, 11th, 21st, and 31st} blocks in LLaMA-2
7B model after rotation.
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Figure 10: Magnitude of the weights of a linear layer in {1st, 11th, 21st, and 31st} blocks in LLaMA-2 7B
before rotation.
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Figure 11: Magnitude of the weights of a linear layer in {1st, 11th, 21st, and 31st} blocks in LLaMA-2 7B
after rotation.
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