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Abstract

Safeguarding intellectual property and preventing potential misuse of AI-generated
images are of paramount importance. This paper introduces a robust and agile
plug-and-play watermark detection framework, referred to as RAW. As a departure
from existing encoder-decoder methods, which incorporate fixed binary codes as
watermarks within latent representations, our approach introduces learnable water-
marks directly into the original image data. Subsequently, we employ a classifier
that is jointly trained with the watermark to detect the presence of the watermark.
The proposed framework is compatible with various generative architectures and
supports on-the-fly watermark injection after training. By incorporating state-of-
the-art smoothing techniques, we show that the framework also provides provable
guarantees regarding the false positive rate for misclassifying a watermarked image,
even in the presence of adversarial attacks targeting watermark removal. Experi-
ments on a diverse range of images generated by state-of-the-art diffusion models
demonstrate substantially improved watermark encoding speed and watermark
detection performance, under adversarial attacks, while maintaining image quality.
Our code is publicly available here.

1 Introduction

In recent years, Generative Artificial Intelligence, notably in computer vision, has made significant
strides. The adoption of diffusion models (DM) in applications like Stable Diffusion [1] and DALLE-
2 [2] has greatly improved image generation quality. However, these advancements also raise concerns
about potential misuse, seen in instances such as DeepFake [3] and copyright infringement [4].

To mitigate the potential misuse of diffusion models, the incorporation of watermarks emerges as a
promising solution. Watermarked images, tagged with crafted signals, act as markers to identify their
machine-generated origin. Watermarking techniques designed for generative models can be generally
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classified into two categories: model-specific [5, 6, 7, 8] and model-agnostic [9, 10, 11], as outlined
in Table 1. Model-specific methods refer to those tailored for particular generative models, often
offering a better tradeoff between watermarked image quality and watermark detection performance.
However, this characteristic may potentially restrict their applicability across diverse use cases. For
instance, the Tree-Ring watermark [8] is tailored for specific samplers, e.g., DDIM [12], used for
image generation within diffusion models. The feasibility of adapting this method to other commonly
used samplers remains open to discussion.

Table 1: Summary of features of several representative watermark techniques. The second column
denotes the method’s suitability for real-time on-the-fly implementation. / denotes cases where the
watermark is embedded during the generative process. The third column evaluates whether the
watermarking method provides provable guarantees on false-positive rates (FPRs) under adversarial
attacks in a distribution-free manner.

Method Model agnostic On-the-fly deployment Provable FPRs under adversarial attacks

DwtDctSvd [13] ✓ ✓ ✗
RivaGan [10] ✓ ✗ ✗

StegaStamp [11] ✓ ✗ ✗
Stable Signature [5] ✗ / ✗

Tree Ring [8] ✗ / ✗
RAW (Our method) ✓ ✓ ✓

In contrast, model-agnostic approaches directly watermark generated content without modifying the
generative models. These approaches can be categorized into two types. The first, from traditional
signal processing, e.g., DwTDcTSvd [13], embeds watermarks in specific parts of images’ frequency
domains. However, they can be vulnerable to strong image manipulations and adversarial attacks for
removing watermarks [14]. The second type employs deep learning techniques, utilizing encoder-
decoder structures to embed watermarks, such as binary codes, in latent spaces. For instance,
RivaGan [10] trains the watermark and watermark decoder jointly as learned models, enhancing
transmission and robustness. However, these methods demand greater computational resources
for watermark injection, limiting real-time on-the-fly deployment. For example, when injecting
watermarks into images, the RivaGan requires over 15× the time needed by the DwtDct methods [15].

Additionally, there has been a sustained emphasis on precisely evaluating false-positive rates (FPRs)
and/or the Area Under the Receiver Operating Characteristic curve (AUROC) for each utilized
watermarking strategy [16], given the potential economic implications associated with watermark
implementation. To establish an explicit theoretical formulation for FPRs, many studies have
assumed that the binary watermark code extracted from unwatermarked images exhibits a pattern
where each digit is an independent and identically distributed (IID) Bernoulli random variable with
equal probabilities. This assumption enables the explicit derivation of the FPRs when comparing
the extracted binary code with the predefined actual binary watermark code. However, such an
assumption may not hold as empirically observed in [17], and thus the corresponding formulation for
FPRs might be incorrect.

1.1 Contributions
In this paper, we introduce a Robust, Agile plug-and-play Watermark framework, abbreviated as
RAW. RAW is designed for both adaptability and computational efficiency, providing a model-
agnostic approach for real-time, on-the-fly deployment of image watermarking (which can be straight-
forwardly extended to video watermarking as outlined in Section 4.5). This dedication to adaptability
is to ensure the accessibility for third-party users, e.g., artists and generative model providers. More-
over, this adaptability is fortified by the integration of state-of-the-art smoothing techniques for
achieving provable guarantees on the FPRs for detection, even under adversarial attacks.

A new framework for robust and agile plug-and-play image watermark learning In contrast to
encoder-decoder techniques that insert fixed binary watermarks into latent spaces, we propose to
embed learnable watermarks, matching the image dimensions, into both the frequency and spatial
domains of the original images. To differentiate between watermarked and unwatermarked samples,
we utilize a classifier, e.g., a convolutional neural network (CNN), and perform joint training for both
the watermarks and the classifier. The proposed framework offers several benefits, including enhanced
computational efficiency achieved through batch processing for watermark injection post joint training.
For instance, our experimental results demonstrate time efficiency enhancements, approximately 30×
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(200×) faster than the frequency-based (encoder-decoder based) method, respectively. Moreover,
it can be readily integrated with other state-of-the-art techniques to further enhance robustness and
generalizability, such as adversarial training [18, 19], and contrastive learning [20, 21].

Provable guarantees on FPRs even under adversarial attacks without distributional assumptions
By integrating methods from the conformal prediction literature [22, 23] into our RAW framework, we
showcase its ability to offer rigorous, distribution-free assurances regarding the FPRs. Additionally,
we develop a novel technique, inspired by the randomized smoothing [24, 25], to further enhance
our provable guarantees. This technique ensures certified guarantees on FPRs under arbitrary
perturbations, including those adversarial with bounded norms. That is, as long as any transformations
on test images stay within a predefined range, our guarantee on FPRs remains valid.

Extensive empirical studies on various datasets & extension to video watermark We evaluate
the effectiveness of our proposed method across various generative data scenarios, such as the
DBDiffusion [26] and MS-COCO [27]. Additionally, we discuss how to extend the proposed
framework for video watermarking and provide empirical results to demonstrate its effectiveness.
Our assessment includes detection performance, robustness against image manipulations/attacks, the
computational efficiency of watermark injection, and the quality of generated images. Experimental
results consistently affirm the excellent performance of our approach, as evidenced by significantly
improved watermark encoding speed and notable enhancements in detection performance against
state-of-the-art adversarial attacks aimed at removing watermarks.

1.2 Related Work
Classical watermarking techniques for images Image watermarking has long been a fundamental
problem in both signal processing and computer vision literature [9, 28]. Methods for image-based
watermarking typically operate within either the spatial or frequency domains [9, 29]. Within the
spatial domain, methodologies span from basic approaches, such as the manipulation of the least
significant bit of individual pixels, to more complex strategies like Spread Spectrum Modulation [30,
31]. In the frequency domain, watermark embedding [9, 32] involves modifying coefficients generated
by transformations such as the Discrete Cosine Transform [33].

Image watermarking using deep learning & Watermark for diffusion models The advent of
advanced deep learning techniques has opened up new avenues for watermarking. Many of these
methods [34, 35, 36, 10, 17, 11], are based on the encoder-decoder architecture. In this model, the
encoder embeds a binary code into images in latent representations, while the decoder takes an image
as input and generates a binary code for comparison with the binary code injected for watermark
verification. For example, the HiDDeN technique [36] involves the simultaneous training of encoder
and decoder networks, incorporating noise layers specifically crafted to simulate image perturbations.
While these methods improve robustness over traditional watermarking, they might not be suitable for
real-time watermark injection due to the lengthy feed-forward process in the encoder, especially with
larger architectures. Most recently, there has been a line of work focusing on designing watermarks
specifically for diffusion models [5, 8, 37]. These methods benefit from improved robustness due to
their model-specific design, but the applicability to other types of models is not yet well established.

Watermarks for protecting model intellectual property Deep neural networks represent valuable
intellectual assets, given the significant resources invested in their training and data collection
processes [1]. For example, training stable diffusion models consumes approximately 150,000
GPU hours, amounting to roughly $600,000 in costs [38]. Given their broad applications in real-
world scenarios, ensuring copyright protection and facilitating their identification is crucial in both
normal and adversarial contexts [39, 40]. Some approaches embed watermarks directly into model
parameters [41], necessitating white-box access for inspection. Others [42, 43] rely on backdoor
attacks [44, 45, 46, 47], injecting triggers into training data to enable targeted predictions during
testing. These methods primarily focus on safeguarding model intellectual property rather than the
generated outputs.

2 Preliminary
Notations. We consider the problem of embedding watermarks into images and then detecting the
watermarks as a binary classification problem. Let X = [0, 1]C×W×H be the input space, with C,
W , and H being the channel, width and height of images, respectively. We denote Y = {0, 1} to
be the label space, with label 0 indicating unwatermarked and 1 indicating watermarked versions,
respectively. For a vector v, we use ∥v∥ to denote its ℓ2-norm.
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Threat Model. We consider the following use scenario of watermarks between a third-party user
Alice, e.g., an artist, a generative model provider Bob, e.g., DALLE-2 from OPENAI, and an adversary
Cathy. (1) Alice selects a diffusion model (DM) from Bob’s API interface and sends an input (e.g., a
prompt for text-to-image diffusion models) to Bob for generating images. (2) Upon receiving Bob
generated images X ∈ X , Alice embeds a watermark into X , denoted as X ′ ∈ X , and releases it
to the public. (3) Adversary Cathy applies (adversarial) image transformation(s), e.g., rotating and
cropping, on X ′ to obtain a modified version X̃ ′(∈ X ). (4) Alice decides if X̃ ′ was generated by
herself or not.

Problem Formulation. From the above, the watermark problem for Alice essentially boils down to a
binary classification or hypothesis testing problem:

H0 : X̃ ′ was generated by Alice (Watermarked) ;
H1 : X̃ ′ was NOT generated by Alice (Unwatermarked) .

To address this problem, Alice will build a detector given by

g(Vθ(X)) =

{
1(Watermarked) if Vθ(X) ≥ τ,

0(Unwatermarked) if Vθ(X) < τ,
(1)

where τ ∈ R is a threshold value and Vθ (to be defined later) is a scoring function which takes the
image input and output a value in [0, 1] to indicate its chance of being a sample generated by Alice.

Alice’s Goals. Alice’s objective is to design watermarking algorithms that fulfill the following
objectives: (1) Quality: the quality of watermarked images should closely match that of the original,
unwatermarked images; (2) Identifiability: both watermarked and unwatermarked content should be
accurately distinguishable; (3) Robustness: the watermark should be resilient against various image
manipulations.

Cathy’s (Adversary) Goals. Cathy aims to design attack algorithms to meet the following objectives:
(1) Watermark Removal: the watermarks embedded by Alice can be effectively eliminated after the
attacks; (2) Quality: the attacks cannot significantly alter the images.

3 RAW
In this section, we formally introduce our RAW framework. At a high level, the RAW framework
comprises two consecutive stages: a training stage and an inference stage, as outlined in Figure 2 in
Appendix. In the following subsection, we first provide an in-depth description of the training stage.

3.1 Training stage

Suppose Alice obtains a batch of diffusion model-generated images. The unwatermarked data are
denoted as Duwm ≜ {Xi}ni=1 for i = 1, . . . , n. Alice will need to embed watermarks into these
images to protect intellectual property.
Definition 3.1 (Watermarking Module). A watermarking module Ew(·) maps X to itself, with
parameters w ∈ Rd1 .

The watermarking module can take the form of an encoder with an attention mechanism, as seen
in the RivaGan [10], or it can involve Fast Fourier Transformation (FFT) followed by frequency
adjustments and an inverse FFT, as employed in DwtDct.

In our RAW framework, we propose to add two distinct watermarks into both frequency and spatial
domains:

Ew(X) = F−1(F(X) + c1 × v) + c2 × u, (2)
where v, u ∈ X are two watermarks, c1, c2 > 0 determine the visibility of these watermarks, and
F (F−1) represents the Fast Fourier Transformation (FFT) (inverse FFT), respectively. For simplicity
of notation, in the rest of this paper, we will denote w ≜ [u, v]. For implementation, we clip the
watermarked image Ew(X) to be within the range [0, 1], making Ew(X) a non-linear function of X .

The rationale for adopting the above approach is to simultaneously enjoy the distinct advantages
offered by watermarks in both domains. In particular, the incorporation of watermark patterns
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in the frequency domain has been widely recognized for its effectiveness against certain image
manipulations such as translations and resizing. Moreover, our empirical validation corroborates the
improved robustness of spatial domain watermarking in the presence of noise perturbations.

We denote the watermarked dataset Ew to be Dwm ≜ {Ew(Xi)}ni=1 for i = 1, . . . , n. Alice now
wishes to distinguish the combined dataset D ≜ Duwm ⋃

Dwm with a verification module, which is a
binary classifier.
Definition 3.2 (Verification Module). A verification module is a mapping Vθ(·) : X 7→ [0, 1]
parameterized by θ ∈ Rd2 .

The score generated by the verification module for an input image can be understood as the chance of
this image being generated by Alice.

To fulfill Alice’s first two goals, Alice will consider jointly training the watermarking and verification
modules parameterized by w and θ, with the following loss function:

BCE(D) ≜
∑
X∈D

Y log(Vθ(X)) + (1− Y ) log(1− Vθ(X)), (3)

where X is the training image and Y ∈ {0, 1} is the label indicting X is watermarked or not.

Recall that Alice also aims to enhance the robustness of the watermark algorithms. As a result, we
consider transforming the combined datasets with different data augmentationsM1, . . . ,Mm to ob-
tain D1 ≜M1(D), . . . ,Dm ≜Mm(D), respectively. Here, the data augmentationsM1, . . . ,Mm

are defined as follow.
Definition 3.3 (Modification Module). An image modification module is a mapM : X 7→ X .

To sum up, the overall loss function for our RAW framework is specified as:

Lraw ≜ BCE(D) +
m∑

k=1

BCE(Dk), (4)

where BCE(·) denotes the binary cross entropy loss as specified in Equation (3). The loss function
above is composed of two terms: BCE(D), which corresponds to the cross-entropy on the original
combined datasets D, and

∑m
k=1 BCE(Dk), signifying the cross-entropy on the augmented datasets

D1, . . . ,Dm. In our experiments, inspired by contrastive learning such as those presented in [20, 21],
we adopt a two-view data augmentation approach by setting m = 2.

3.1.1 Overall Training Algorithm

We describe the overall training algorithm below. For completeness, we provide the full pseudo-code
as summarized in Algorithm 3 in the appendix. We consider conducting the following two steps
alternatively.

• Optimize the verification module Vθ based on the overall loss Lraw by stochastic gradient
descent (SGD):

θt+1 ← θt − µt∇θLraw(θt,w),

where µt > 0 is the step size at each step t.
• Optimize the watermark w based on L0, defined as the first term on the right-hand side of

Equation (4), with sign-based stochastic gradient descent (SignSGD):

wt+1 ← wt − νt sign (∇wL0(θ,wt)) , (5)

where sign(·) outputs the sign of each component, and νt > 0 is the step size.

We provide two remarks on the optimization procedure for the watermark update, as outlined in
Eq. (5). First, we choose signSGD over conventional SGD, based on empirical findings suggesting
that (sign-based) first-order methods can improve both training and test performance in data-level
optimization tasks [19, 48, 49]. In our context, this refers to cases where the optimized variable
is the watermark rather than the model parameters. Second, we focus the watermark optimization
solely on the first term because the other terms, BCE(Dk) for k = 1, 2, . . . ,m, may contain
non-differentiable elements with respect to the watermark. These non-differentiable parts make
gradient-based optimization impractical.
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3.2 Inference Stage

We present a generic approach for Alice to obtain provable guarantees on the FPRs when using the
previously trained Vθ on test images, even amidst adversarial perturbations.

To begin with, we first examine a scenario where the future test data Xtest ∈ X adheres to an
IID pattern with the watermarked data Dwm generated by Alice, without undergoing any image
modifications. In this case, Alice can employ conformal prediction to establish provable guarantees
on the FPRs. The main idea is that, by utilizing the trained Vθ as a scoring mechanism, the empirical
quantile of the watermarked data’s distribution will converge to the population counterpart. This
convergence is guaranteed by the uniform convergence of cumulative distribution functions (CDFs).
To be more specific, we set the threshold τ defined in Equation (1) to be the α-quantile (with finite-
sample corrections) of the predicted scores for watermarked data, Vθ(Dwm) ≜ {Vθ(Ew(Xi))}ni=1.
Following [23, 46], it can be shown that, with high probability, the probability of the resulting detector
g misclassifying a watermarked image Xtest is upper-bounded by α, given that Xtest is IID with Dwm.
For completeness, a rigorous statement and its proof are provided in Appendix A.2.

The above argument assumes that the future test image Xtest follows an IID pattern with the original
watermarked data Dwm. However, if the test image Xtest undergoes manipulation or attack, denoted
by A(Xtest), with A : X 7→ X being an adversarial image manipulation, then it can deviate from the
distribution of Dwm. This deviation from IID will render the previous argument invalid. Moreover, in
practice, Alice is unaware of the adversarial transformation A employed by the attacker, thus making
it even more challenging to control the FPRs.

To address this problem, we propose to consider a robust version of the originally trained Vθ, denoted
as Ṽ , such that X and A(X) stay close under Ṽ , namely

|Ṽ(X)− Ṽ(A(X))| ≤ η, (6)

for all X and a small η > 0. The reason for finding such Ṽ is because we can relate Ṽ(A(Xtest))

back to Ṽ(Xtest) which is IID with Ṽ(Dwm) (accessible to Alice) to establish the FPRs with previous
arguments.

To develop the robust version from the base Vθ, we will build upon the following result from the
randomized smoothing literature. Denote N (µ,Σ) to be the normal distribution with mean µ and
covariance Σ respectively, and Φ−1(·) to be the inverse of the cumulative distribution function of a
standard normal distribution.

Lemma 3.4 ([50, 51]). Let h : R → [0, 1] be a continuous function. Let σ > 0, and H(X) =
E

Z∼N (0,σ2I)
[h(X + Z)]. Then the function Φ−1(H(X)) is σ−1-Lipschitz with respect to ℓ2 norm.

The above result suggests that for any (continuous) base verification module (classifier) Vθ, we can
obtain a smoothed version with

Ṽ(X) = Φ−1

(
E

Z∼N (0,σ2I)
[Vθ(X + Z)]

)
, (7)

and it is guaranteed that |Ṽ(X)− Ṽ(Y )| ≤ σ−1∥X − Y ∥, for any X,Y ∈ X . Suppose the attacker
employs an adversarial attack A such that ∥X −A(X)∥ ≤ γ. We have

|Ṽ(X)− Ṽ(A(X))| ≤ γ

σ
. (8)

Remark 3.5 (A can not be excessively adversarial). We emphasize that the transformation A should
not be excessively adversarial. In other words, the parameter γ should be a very low value for both
theoretical and practical reasons. From a theoretical perspective, an overly adversarial transformation
A can result in trivial TPRs/FPRs. For instance, if watermarked images are transformed into a
completely uniform all-white or all-black state, it becomes impossible to detect the watermark. From
a practical standpoint, an excessively adversarial transformation A tends to overwrite the original
content within the images. This directly contradicts the intentions of attackers and may not achieve
the desired stealthy modifications.
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3.2.1 Overall Inference Algorithm

Given a pair of (Ew, Vθ), a desired robust range γ > 0, and a smoothing parameter σ > 0, Alice now
will set the thresholding value τ , as introduced in Equation (1), to satisfy:

F̂
(
τ +

γ

σ

)
= α−

√
(log(2/δ)/(2n)), (9)

where δ ∈ (0, 1) is a violation rate describing the probability that the FPRs exceeds α, and F̂ is the
empirical cumulative distribution function of {Ṽ(Ew(Xi))}ni=1, where

Ṽ(Ew(Xi))
∆
= Φ−1

(
E

Z∼N (0,σ2I)
[Vθ(Ew(Xi) + Z)]

)
.

The next result shows that if a future test input comes from the same distribution as the watermarked
data Dwm, the above procedure can be configured to achieve any pre-specified false positive rate α
with high probability.
Theorem 3.6 (Certified FPRs of g based on threshold in Equation (9)). Given any watermarked
dataset Dwm and its associated verification module Vθ, suppose that the test data Xtest are IID drawn
from the distribution of Dwm. Given any δ ∈ (0, 1), γ > 0 and σ > 0, for any (adversarial) image
transformations A such that ∥A(X) −X∥ ≤ γ for all X ∈ X , the robust verification module Ṽ
specified in Eq. (7) and its corresponding hard-label detector g(·) introduced in Eq. (1), with the
threshold τ as specified in Eq. (9) satisfy

P
(
g(Ṽ (A(Xtest))) = 0 (Unwatermarked) | Dwm

)
≤ α,

with probability at lease 1− δ for any α ∈ (0, 1) such that α >
√

(log(2/δ)/(2n)).

Due to space constraints, the proof is provided in Appendix A.1. The above result shows that by using
the decision rule as specified in Equation (9), Alice can obtain a provable guarantee on the Type I error
rate in terms of detecting future test input Xtest even Xtest is adversarially perturbed within γ-range
(as measured by ℓ2-norm), under the condition that the future test input Xtest is independently and
identically distributed as the Dwm, namely watermarked samples generated by the artist. Moreover,
the result above only addresses the detector’s performance in terms of FPRs and does not account
for True Positive Rates (TPRs). To achieve high TPRs, careful selection of γ and σ is essential. For
instance, an excessively large σ will cause the smoothed classifier Ṽ to lose its detection capability.

4 Experiments
In this section, we conduct a comprehensive evaluation of our proposed RAW, including (1) detection
performance, (2) robustness, (3) watermarking speed, (4) the quality of watermarked images, and (5)
the provable FPRs guarantees under adversarial attacks. Our findings reveal significantly enhanced
robustness in RAW while preserving the quality of generated images. Furthermore, a substantial
reduction in watermark injection time, indicates the suitability of RAW for on-the-fly deployment.
All the experiments were conducted on machines equipped with Nvidia Tesla A100s.
4.1 Experimental setups

Datasets (1) In line with the previous work [8], we employ Stable Diffusion-v2-1 [1], an open-source
text-to-image diffusion model, with DDIM sampler, to generate images. All the prompts used for
image generation are sourced from the MS-COCO dataset [27]. (2) We further evaluate our RAW
utilizing DBdiffusion [26], a dataset consisting of 14 million images generated by Stable Diffusion.
This dataset encompasses a wide array of images produced under various prompts, samplers, and user-
defined hyperparameters. Ablation studies examining various generative models, such as SDXL-1.0,
are detailed in Appendix D.

Verification Modules/Classifiers In terms of verification modules, for all the results reported in
the main text, we utilize ResNet 18 [52]. For training the verification modules, 500 images are
randomly selected for training for each dataset. Subsequently, we evaluate the trained watermarks and
associated models on 1000 new, unwatermarked images and their watermarked versions. Ablation
studies on using different models, such as VGG [53] as verification modules, and different number of
training data are provided in Section 4.4 and Appendix D.
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Table 2: Summary of main results. ‘N-ROC’ denotes the AUROC performance without image
manipulations or adversarial attacks. ‘Ad-ROC’ represents the average performance across nine
distinct image manipulations and attacks. The ‘Encoding Speed’ column denotes the efficiency of
injecting watermarks into images post-training, measured in seconds (CPU time) per image.

Dataset Method Encoding Speed ↓ N-ROC ↑ Ad-ROC ↑ FID ↓ CLIP ↑
DwTDcT 0.048 0.83 0.54 25.10 0.359

MS-Coco
FID: 24.12
CLIP: 0.382

DwTDcTSvd 0.122 0.98 0.75 25.21 0.361
RivaGan 1.16 0.99 0.81 24.87 0.359

StegaStamp 1.45 0.99 0.93 42.31 0.291
RAW (Ours) 0.0051 0.98 0.92 24.75 0.360

DwTDcT 0.048 0.81 0.55 3.12 0.427
DwTDcTSvd 0.110 0.99 0.78 10.24 0.421

DBdiffusion RivaGan 1.87 0.99 0.82 19.75 0.424
StegaStamp 1.90 0.99 0.92 40.59 0.386
RAW (Ours) 0.0078 0.98 0.90 23.48 0.425

Table 3: AUROC performance of state-of-the-art methods under 9 (adversarial) image manipulations:
Rotation 90◦, Cropping and resizing 70%, Gaussian Blur with a kernel size of (7, 9) and bandwidth
of 4, Noise with IID mean Gaussian σ = 0.05, Jitter with brightness factor 0.6, JPEG compression
with quality 50, and 3 attacks (VAE Att1, VAE Att2, Diff Att).

Datasets MS-COCO DBDiffusion

DwtDct DwtDctSvd RivaGan Ours DwtDct DwtDctSvd RivaGan Ours
JPEG 50 0.61 0.99 0.99 0.91 0.50 0.95 0.99 0.99
Rotation 90◦ 0.51 0.55 0.39 0.96 0.47 0.54 0.38 0.84
Cropping 70% 0.64 0.52 0.99 0.95 0.65 0.61 0.99 0.84
Gaussian Blur 0.52 0.92 0.99 0.93 0.53 0.99 0.99 0.98
Gaussian Noise 0.47 0.76 0.99 0.90 0.84 0.99 0.99 0.98
Jittering 0.65 0.78 0.98 0.96 0.47 0.68 0.98 0.99
VAE Att1 0.50 0.73 0.62 0.89 0.49 0.75 0.67 0.80
VAE Att2 0.48 0.78 0.67 0.90 0.49 0.73 0.63 0.81
Diff Att 0.49 0.71 0.69 0.83 0.51 0.73 0.70 0.82
Average 0.54 0.75 0.82 0.92 0.56 0.78 0.82 0.90

Watermark Parameters In Equation (2) of RAW, two parameters c1 and c2 control the invisibility
of the watermark, thereby influencing the quality of watermarked images. In the main text results, we
set c1 = c2 = 0.05 to align with the image quality of watermarked images produced by other state-
of-the-art methods (refer to the ‘FID’ and ‘CLIP’ columns in Table 2). We conduct an ablation study
exploring different values of c1 and c2 in Section 4.4 and Appendix D. For all other watermarking
techniques, we implement them using the open-source package employed by the Official Stable
Diffusion Model.

Evaluation Metrics (1) To assess the detection performance, we adhere to the convention of reporting
the area under the curve of the receiver operating characteristic (AUROC) [17, 5]. (2) For evaluating
the quality of the watermarked images, we adopt both the Frechet Inception Distance (FID) [54]
and the CLIP score [55], following the methodology outlined in [8]. Additionally, we also evaluate
the quality of watermarked images using metrics such as PSNR and SSIM, and include the results
in the appendix. For our watermark scheme, each independent run (including training and testing)
corresponds to a unique watermark. All metrics are averaged across 5 independent runs, with a
standard deviation of 0.03 for all detection performances (AUROC) and 0.7 for image quality metrics.

4.2 Main Results

Detection performance and image generation quality To ensure a fair comparison, we primarily
evaluate our proposed RAW against other model-agnostic approaches, presenting the summarized
results in Table 2, along with visual examples illustrated in Appendix D.4. Additionally, for complete-
ness, we compare our proposed RAW against model-specific methods and provide the results in the
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appendix. Our RAW exhibits comparable performance to encoder-decoder-based approaches, e.g.,
RivaGAN, while concurrently achieving similar FID and CLIP scores, which underscores superior
image quality compared to alternatives. We report the PSNR and SSIM of the watermarked images
in the Table 6 in the appendix. Our method outperforms StegaStamp in PSNR and SSIM but falls
behind DwtDctSvd and RivaGAN, as expected. StegaStamp prioritizes robust detection by injecting
significant noise, reducing image quality. In contrast, DwtDctSvd and RivaGAN maintain better
image quality at the cost of reduced robustness to image perturbations, a point further detailed in the
next paragraph.

Robust detection performance We assess the robustness of our proposed RAW against six common
data augmentations and three adversarial attacks in this subsection. The data augmentation set
comprises: color jitter with a brightness factor of 0.5, JPEG compression with quality 50, rotation
by 90◦, addition of Gaussian noise with 0 mean and standard deviation 0.05, Gaussian blur with
a kernel size of (7, 9) and bandwidth 4, and 70% random cropping and resizing. For adversarial
attacks, we select three state-of-the-art methods for removing watermarks, with two VAE-based
attacks Bmshj2018 [14] (VAE Att1) and Cheng2020 [56] (VAE Att2) from CompressAI [57] with
compression factors are set to 3 for both models, and one diffusion-model attack with noise steps of
60 following [58].

The averaged results are in the ‘AUROC (Adv)’ column of Table 2 and the detailed results are
summarized in Table 3. Our approach demonstrates superior performance compared with alternative
methods. Specifically, across both datasets, the average AUROC for our RAW increased by 70%
and 13% for nine image manipulations/attacks, surpassing frequency- and encoder-decoder-based
methods. We note that Stegastamp demonstrates similar averaged robust detection performance
compared to ours. However, this comes at the expense of reduced image quality, as evidenced by
markedly increased FID scores and/or lowered SSIM/PSNR scores.

Table 4: CPU time (seconds) elapsed for injecting water-
marks into images. Lower values are preferred.

Batch Size→ 5 images 100 images 500 images

DwtDct 0.27 4.8 24.5
DwtDctSvd 0.64 12.2 60.1
RivaGAN 5.52 116 > 500

StegaStamp 7.34 134 > 500
RAW (Ours) 0.35 0.51 0.76

Watermark injection speed We in-
vestigate the time costs needed to em-
bed watermarks into images. We note
that the watermark injection process
occurs post-training. Therefore, our
watermark injections only necessitate
one FFT, two additions, and another
inverse FFT. In Table 4, we present
CPU time (in seconds) elapsed for in-
jecting watermarks into different im-
age quantities. Notably, our method
achieves substantial time efficiency
improvements, approximately 30× (200×) faster than the frequency-based (encoder-decoder based)
method, respectively. This is attributed to streamlined batch operations in our RAW. This highlights
the suitability of our approach for on-the-fly deployment.

4.3 Certified FPRs
We assess the certified FPRs performance of our proposed RAW by varying the FPRs rate α pre-
specified by Alice. We set the adversaril radius γ = 0.001 and the smoothing parameter σ = 0.05.
We summarize the results of five independent runs in Figure 1(a) and report the mean (with standard
error < 0.002). The results show that the FPRs of RAW consistently matches the theoretical upper
bounds (i.e., α), supporting the result presented in Theorem 3.6.

4.4 Ablation Studies

Effect of training sample size on prediction performance We manipulate the sample size of the
watermarked training dataset Dwm to assess its impact on detection performance. These findings are
illustrated in Figure 1(b), where we note that satisfactory detection performance can be achieved with
a reasonably small training dataset, e.g., 100 images.

Trade-off between robustness and image quality We explore the trade-off between robustness and
image quality by adjusting the watermark strength parameters c1 (= c2), as illustrated in Figure 1
(c) & (d) below. We note that with increasing values of c1 and c2, the average AUROC, under 9
(adversarial) images manipulations, also increases, while the image quality only exhibits a slight
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degradation, as indicated by the slightly increased FID value. These findings also highlight the
stability of the watermark hyperparameters c1 and c2 in our proposed RAW, a desirable characteristic
for real-world deployments, as preferred by practitioners.

(c) (d)

Figure 1: (a) FPRs of our proposed RAW. (b) Impact of training sample size on detection performance.
(c) & (d) The tradeoff between the quality of watermarked images, assessed using FID (lower values
are preferable), and the detection robustness.

4.5 Extension to Video Watermark

We discuss how to extend the proposed watermark framework from AI generated images to videos.
The main idea is to embed the same pre-trained watermark either in every frame or at intervals,
such as every three frames, of the video. The corresponding verification module, i.e., the watermark
classifier, is then used to detect the watermark in each frame where it was embedded. The overall
presence of the watermark in the video is determined by the detection results from these frames.

We evaluate the pre-trained (on the MS-COCO dataset) watermark and its corresponding classifier
using short videos created by the stable-video-diffusion-img2vid-xt model, which generates
videos from images. The images used to produce the videos are sourced from the DiffusionDB dataset.
This guarantees that the testing videos were not exposed to either the watermark or the classifier
during the training process. The results are summarized in Table 5 below, where we observed that
our proposed method achieves a similar detection rate compared to RivaGan, while providing a
significantly faster watermark encoding speed (×60 times faster).

Table 5: Encoding Speed (CPU Only) and AUROC (over fresh 500 test samples) for video watermark
with the proposed RAW

Method Video Resolution Number of Frames Time Elapsed AUROC

RAW (Ours) 512× 512 24 0.2 - 0.5s 0.96

RivaGan 512× 512 24 8 - 12s 0.97

5 Conclusion
In this study, we introduce the RAW framework as a versatile watermarking approach essential
for protecting intellectual property and mitigating potential misuse of AI-generated images. The
proposed RAW framework offers several notable features, including significantly enhanced watermark
encoding speed and/or detection performance, along with the assurance of provable guarantees on
false positive rates even under adversarial perturbations in test images. Experimental findings across
various datasets validate its advantages.

Limitation & Future Work One potential limitation of the proposed method is that when applied to
large-scale systems with millions of users, the associated training loss will be high. One interesting
direction is to study how to efficiently fine-tune from one pair of watermark and its corresponding
verification module to a new pair. Other directions include investigating the maximum number of
concurrent watermarks learnable in a single training session and optimal smoothing strategies for
wider certified radii.

Broader Impact This paper aims to contribute to the advancement of trustworthy machine learning,
particularly in ensuring the safe and legitimate use of contemporary generative artificial intelligence.
Our efforts could have several positive societal implications, such as protecting intellectual property
and preventing potential misuse of AI-generated images.

The Appendix contains proofs, experimental details, and ablation studies.
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Appendix for RAW: A Robust and Agile Plug-and-Play
Watermark Framework for AI-Generated Images with Provable

Guarantees
In Section A, we outline the formal proofs supporting the theoretical findings introduced in the main
text. In Section B, we present omitted details, encompassing pseudocode and additional deliberations
regarding the construction of RAW. In Section C, we offer implementation details of our experiments.
In Section D, we present additional ablation studies on different hyperparameters.

A Proof of theoretical results

In this section, we provide the proof for Theorem 3.6. To begin with, we first revisit the overall
inference procedure employed by our RAW and provide several detailed discussions. For the
reader’s convenience, we include the pseudo-code outlining the inference stage protocol of RAW in
Algorithm 1 below.

Algorithm 1 Conformal (Inference) Watermark Detection
Input: querying input Xtest, watermarked dataset Dwm = {Ew(Xi)}ni=1, verification module Vθ , desired

false positive rate α ∈ (0, 1), violation rate δ ∈ (0, 1), desired adversarial robust range γ > 0, smoothing
parameter σ > 0, and the smoothed/robust verification module Ṽ(·) ≜ Φ−1(EZ∼N (0,σ2I)[Vθ(Ew(·)+Z)])

1: Receiving a future query sample Xtest
2: for i = 1 to n do
3: Calculate si ≜ Ṽ(Ew(Xi)) // Xi ∈ Dwm

4: end for
5: Select the decision threshold τ according to Equation (10).
6: Determine if Xtest is watermarked if Ṽ(Ew(Xtest)) ≥ τ

Output: The decision if the sample Xtest is a watermarked sample or not

The overall inference process for the proposed RAW mainly involves determining a decision threshold
value τ . This threshold is calculated based on the provided watermarked dataset Dwm and the
corresponding (smoothed) verification module Ṽ , and it should satisfy the following condition:

F̂ (τ +
γ

σ
) = α−

√
ln 2

δ

2n
, (10)

where δ ∈ (0, 1) is the violation rate describing the probability that the (FPRs) exceeds α, and F̂ is the
empirical cumulative distribution function of the watermarked dataset under Ṽ , i.e., {Ṽ(Ew(Xi))}ni=1.
In the case where

√
(log(2/δ)/(2n)) > α, we set the thresholding value τ to be the maximum of

Ṽ(Ew(Xi))}ni=1. We note that under such cases there will be no theoretical guarantees in term of
FPRs.

A.1 Proof of Main Results

The proof of Theorem 3.6 is built upon the techniques established in our previous work [46]. In [46],
we developed similar provable guarantees under the IID assumption of future test data. However, in
our case of Theorem 3.6, such an IID assumption is no longer valid and hence raise up new technical
challenges. To prove Theorem 3.6, we will use the following result concerning the convergence
properties of empirical cumulative distribution functions (ECDFs).
Lemma A.1 (Dvoretzky–Kieffer–Wolfowitz inequality). Given a natural number n, let
X1, X2, . . . , Xn be real-valued independent and identically distributed random variables with
cumulative distribution function F (·). Let F̂ (·) denote the associated empirical distribution function.

The interval that contains the true CDF, F (x), with probability 1− δ is specified as

F̂ (x)− ε ≤ F (x) ≤ F̂ (x) + ε where ε =

√
ln 2

δ

2n
.

15



Proof of Theorem 3.6. Note that Xtest is IID drawn from the watermarked data distribution and we
have

P(g(A(Xtest)) = 0 (Unwatermarked) | Dwm)

= P(Ṽ(A(Xtest)) ≤ τ | Dwm) (11)

≤ P(Ṽ(Xtest)−
γ

σ
≤ τ | Dwm) (12)

= EXtest1{Ṽ(Xtest) ≤ τ +
γ

σ
| Dwm}

= EXtest1{F (Ṽ(Xtest)) ≤ F (τ +
γ

σ
) | Dwm} (13)

= P(F (Ṽ(Xtest)) ≤ F (τ +
γ

σ
) | Dwm)

≤ P(F (Ṽ(Xtest)) ≤ F̂ (τ +
γ

σ
) + ε | Dwm) (ε =

√
ln 2

δ

2n
) (14)

= α− ε+ ε (15)
= α,

holds with probability at least 1− δ. The equation (11) is because of the decision rule as specified
in Algorithm 1, and the inequality (12) is due to the lipschitz condition of Ṽ with parameter σ−1,
namely

|Ṽ(X)− Ṽ(Y )| ≤ σ−1∥X − Y ∥,
for any X,Y ∈ X . Additionally, the F in equation (13) represents the CDF of the watermarked data
under Ṽ(·), i.e., Ṽ(Ew(X)), while F̂ in (14) denotes the empirical CDF obtained from Dwm, i.e.,
{Ṽ(Ew(Xi))}ni=1 under Ṽ(·). The inequality in (14) arises from the DKW inequality as specified in
Lemma A.1. Furthermore, the Equation (15) is based on the fact that the CDF follows a uniform
distribution (a result of the probability integral transformation) and the selection of the thresholding
value specified in Equation (10).

A.2 Provable FPRs without adversarial attacks

In this section, we present the omitted results of the provable FPRs concerning the watermark
detection performance of our RAW in the absence of adversarial attacks, as elaborated in Line 225
of the main text. All the techniques used in this section are based on our previous work [46], as
discussed earlier.

As there are no anticipated adversarial attacks on test images, there is consequently no requirement to
apply smoothing/robustification to the trained verification model Vθ. The corresponding pseudo-code
is outlined in Algorithm 2 below. Similarly, the updated thresholding value τ is selected to satisfy the

Algorithm 2 Conformal (Inference) Watermark Detection under no adversarial attacks
Input: querying input Xtest, watermarked dataset Dwm = {(Ew(Xi))}ni=1, verification module Vθ , desired

false positive rate α ∈ (0, 1), violation rate δ ∈ (0, 1)

1: Receiving a future query sample Xtest
2: for i = 1 to n do
3: Calculate si ≜ Vθ(Ew(Xi)) // Xi ∈ Dwm

4: end for
5: Select the decision threshold τ according to Equation (10).
6: Determine if Xtest is watermarked if Vθ(Ew(Xtest)) ≥ τ

Output: The decision if the sample Xtest is a watermarked sample or not

condition.

F̂ (τ) = α−

√
ln 2

δ

2n
, (16)
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where δ ∈ (0, 1) is the violation rate describing the probability that the (FPRs) exceeds α, and
F̂ is the empirical cumulative distribution function of the watermarked dataset under Vθ, i.e.,
{Vθ(Ew(Xi))}ni=1. Contrasting the selection of τ under adversarial attacks in Equation (10), we
note that the term γ/σ is omitted because of the absence of adversarial attacks. In the case where√
(log(2/δ)/(2n)) > α, we set the thresholding value τ to be the maximum of {Vθ(Ew(Xi))}ni=1.

Theorem A.2 (Certified FPRs under no adversarial attacks). For any watermarked dataset Dwm and
its associated verification module Vθ, suppose that the test data (Xtest, Ytest) are IID drawn from the
distribution of Dwm. Given δ ∈ (0, 1), the detectorg(·) (defined in Line 231 in the main text) with the
threshold τ as specified in Equation (16) satisfies

P(g(Xtest)) = 0 (Unwatermarked) | Dwm) ≤ α

with probability at least 1− δ for any α ∈ (0, 1) such that α >
√

(log(2/δ)/(2n)).

Proof. The proof follows the same approach as the proof for Theorem 1, with the exclusion of the
γ/σ term.
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B Omitted Details and Further Discussions

In this section, we initially present the omitted pseudo-code for the training algorithm, followed by
further discussions regarding the design of RAW.

B.1 Overall flow of the proposed RAW

Figure 2 below demonstrates the overall flow of our RAW framework and its differences from
encoder-decoder-based methods. In RAW, watermarks are directly introduced and injected into
images and are jointly trained with the watermark classifier.

Classifier

Encoder

Decoder

1 1 0 1

1 0 0 1

Ground-truth Watermark

Extracted Watermark

(a) RAW

(b) Encoder-Decoder

Spatial 

Watermark

Frequency 

Watermark Joint Learning

Figure 2: The overall flow of the proposed RAW framework.

B.2 Pseudocode for training algorithms

The pseudocode for the overall training pipeline of RAW is outlined in Algorithm 3.

Algorithm 3 Training Algorithms for RAW

Input: (I) Image sets generated from a diffusion model {Xi}ni=1; (II) watermark visibility parameter c1, c2;
(III) learning rates {µt}Tt=1, {νt}Tt=1.
Initialize: (1) a verification module Vθ : X 7→ [0, 1], (2) a watermarking module: Ew(X) = F−1(F(X) +
c1 × v) + c2 × w with each entries in u, v ∈ X initialized as IID uniform random variables.

1: for i = 1 to T do
2: Clipping the watermarked data to be within the range [0, 1];
3: Given Vθ , optimizing w based on Lraw with SignSGD;
4: Given the watermark w, updating θ based on Lraw with SGD;
5: end for

Output: (1) The verification module Vθ; (2) Watermarking method Ew

B.3 Additional metrics on image quality

We report the PSNR and SSIM of the watermarked images in the Table 6 below. For PSNR and
SSIM, our method outperforms the StegaStamp method but is behind DwtDctSvd and RivaGAN.
These results are consistent with our expectations. The StegaStamp method achieves more robust
detection by sacrificing image quality through injecting a large amount of noise into the image, while
DwtDctSvd and RivaGAN maintain image quality slightly better at the cost of reduced robustness
against (adversarial) image perturbations.
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Dataset MS-COCO DBdiffusion

Method PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
RAW (Ours) 29.1 0.94 29.0 0.93
StegaStamp 27.1 0.90 28.1 0.90
DwtDctSvd 39.6 0.98 37.8 0.97
RivaGAN 36.4 0.96 38.5 0.97

Table 6: Additional metrics for image quality.

B.4 Further Discussions

We now elaborate on two pivotal aspects of our watermark designs and overarching training al-
gorithms: (I) the joint training scheme for watermarking and verification modules, and (II) the
integration of spatial-domain watermarks.

(I) The joint training scheme for watermarking and verification modules. Theoretically, using
standard arguments from classical learning theory [59], it can be shown that training both the
watermarking and the verification modules to distinguish between watermarked and unwatermarked
data will not lead to a test accuracy worse than when the watermark is fixed, and only the model is
trained. From a practical perspective, the initially randomly initialized watermarks may not align well
with specific training data, emphasizing the need to optimize watermarks for distinct data scenarios.
Our empirical observations support this notion, as evidenced in Figure 5 (left), where the joint
training scheme leads to a significantly higher test accuracy and lower training loss compared with
the scenario where the watermark is fixed.

(II) The inclusion of spatial domains. Classical methods for embedding watermarks primarily
introduce them into the frequency domains of images [13]. However, it has been empirically observed
that such watermarks are susceptible to manipulations, such as Gaussian noise [8]. To overcome this
vulnerability, we draw inspiration from the model reprogramming literature [60], where watermarks
are incorporated into the spatial domain to enhance accuracy in distinguishing in- and out-distribution
data [49]. Consequently, we explore the integration of watermarks into the spatial domain (in addition
to the frequency domain), as outlined in Equation (2). We empirically observed that including
spatial watermarks could significantly boost the test accuracy of the trained verification module under
Gaussian-noise manipulations on test data, as depicted in Figure 5 (right).
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Figure 3: Effects of (1) joint training and (2) spatial watermarks.
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C Implementation details

In this section, we first list the implementation details for the results presented in the main text. Next,
we present ablation studies on the performance of our RAW by using different hyper-parameters.

C.1 Implementation Details

Watermark setup Recall that the watermarking module in our RAW takes the form of

Ew(X) = F−1(F(X) + c1 × u) + c2 × v,

where u, v ∈ X are two watermarks injected into spatial and frequency domains, respectively. For the
results presented in the main text, we set the watermark strength parameters c1 and c2 to be 0.05 each.
To enhance invisibility further, we implement a circular mask with a radius of 150 for the frequency
domain watermarks, inspired by the procedure outlined in [8].

Verification module setup In terms of the verification module Vθ, throughout all the experiments in
the main text, we adopt the pre-trained ResNet 18 [52] architecture.

Training data augmentation Two types of data augmentations are employed during the training
phase. (1) To enhance the robustness of the trained verification model Vθ against Gaussian noise,
ensuring its sustained predictive effectiveness post-smoothing, we introduce Gaussian noise into
the training data. This augmentation entails the addition of noise with a mean of zero and a
standard deviation of 0.5 during the training process. (2) Additionally, we employ standard image
augmentations such as random cropping and flipping to facilitate training.

D Additional Ablation Studies

D.1 Verification module/model architectures.

In this section, we assess the watermark detection performance of our RAW using diverse model
architectures: ResNet 9, ResNet 34, VGG 16 [53] and ViT [61]. The summarized results on both
Stable-Diffusion-generated MS-COCO and DBDiffusion dataset can be found in Table 7 below. FID
and CLIP scores are omitted, given that the watermark strength parameters c1 and c2 are consistent
with those in the main text (i.e., both set to 0.5). Notably, we observed an improvement in both
benign and adversarial detection performances with a more complex model, ResNet 34, which is
reasonable as complex models often possess greater learning capacity.

Table 7: Summary of detection results under different model architectures. AUROC (Ben) denotes the
AUROC performance without image manipulations or adversarial attacks. AUROC (Adv) represents
the average performance across nine distinct image manipulations and attacks.

Dataset→ MS-COCO DBDiffusion

AUROC (Ben) ↑ AUROC (Adv) ↑ AUROC (Ben) ↑ AUROC (Adv) ↑
ResNet 9 0.94 0.82 0.90 0.80

ResNet 34 0.99 0.93 0.99 0.94
VGG 16 0.99 0.93 0.99 0.90

ViT 0.95 0.88 0.97 0.81

D.2 Size of watermarked training data under fine-tuning scenario.

In this section, we shift our focus to a more realistic scenario where we fine-tune both the classifier
and the watermarks using pre-trained models. We note that the new scenario differs from the one
discussed in the main text, where the classifier is trained from scratch with randomly initialized
weights.

To elaborate, we initially pretrain a set of watermarks along with their corresponding classifiers using
a dataset such as MS-COCO. Subsequently, we fine-tune this pair using a new dataset. We present the
results of this strategy by varying the number of new training data and summarize the outcomes in
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Table 8 below. In contrast to the training from scratch scenario described in the main text, our RAW
framework demonstrates a significant improvement with a reasonably small training dataset size.

Table 8: Summary of detection results under numbers of training data. AUROC (Ben) denotes the
AUROC performance without image manipulations or adversarial attacks. AUROC (Adv) represents
the average performance across nine distinct image manipulations and attacks.

Dataset→ MS-COCO DBDiffusion

AUROC (Ben) ↑ AUROC (Adv) ↑ AUROC (Ben) ↑ AUROC (Adv) ↑
n = 10 0.74 0.68 0.70 0.68
n = 50 0.85 0.71 0.86 0.72
n = 100 0.99 0.85 0.99 0.81
n = 500 0.99 0.91 0.99 0.93

D.3 Different diffusion models for generating images

In this section, we examine the watermark detection results of our RAW approach across various
generative models, specifically utilizing two widely recognized architectures: SDXL and BriXL. We
maintain consistent settings as detailed in the main text. The AUROC outcomes are consolidated
in Table 9. Our findings indicate that our RAW method achieves high AUROC scores for both
MS-COCO and DBDiffusion datasets, underscoring its broad applicability.

Table 9: Summary of detection results under numbers of training data. AUROC (Ben) denotes the
AUROC performance without image manipulations or adversarial attacks. AUROC (Adv) represents
the average performance across nine distinct image manipulations and attacks.

Dataset→ MS-COCO DBDiffusion

AUROC (Ben) ↑ AUROC (Adv) ↑ AUROC (Ben) ↑ AUROC (Adv) ↑
SDXL 0.98 0.89 0.99 0.87
BriXL 0.99 0.91 0.99 0.89

D.4 Additional Visual Examples

In this section, we present additional visual examples in Figure 5 and 4 resulting from our proposed
RAW method. Our observations reveal no notably discernible differences between the original and
watermarked images, highlighting the effectiveness of our approach.
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Figure 4: Examples of RAW-watermarked images (middle row)
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Figure 5: Examples of RAW-watermarked images (middle row)
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims in the abstract and introduction accurately reflect the paper’s
contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Discussions on the limitations of this work are provided in Section 5 in the
main text.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: For all the theoretical results, we have clearly listed the full set of assumptions
and provided complete proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have detailed all the experimental setups in both the main text and the
appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provided details, including GitHub links, on how to implement the
results for our proposed methods.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experiment details are listed.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bars are reported.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computation resources are listed in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conformed with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Discussions on potential societal impacts are provided in Section 5 of the main
text.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have properly cited all the datasets, models, and GitHub repositories (code)
used in this work.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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