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Abstract
Causal representation learning seeks to uncover
latent variables that generate observed data. A
central challenge is identifiability, as infinitely
many spurious solutions can exist. Prior works
have relied on auxiliary variable assumptions that
enforce conditional independence among latents.
However, they require that auxiliary variables not
be involved in the mixing function—a constraint
that significantly limits the applicability in real-
world settings. To address the issue, we study
a more realistic setting where observed sources
serve as auxiliary variables. We introduce a novel
framework that selects proper auxiliaries to im-
prove latent recoverability while satisfying iden-
tifiability conditions. To our knowledge, this is
the first approach to establish identifiability in
such a setting. By leveraging the graphical struc-
ture of latent variables, our method enhances both
identifiability and disentanglement, pushing the
boundaries of existing techniques in causal repre-
sentation learning.

1. Introduction
Understanding the underlying generative process of obser-
vations is crucial for scientific discovery. Causal represen-
tation learning (CRL) seeks to uncover underlying latent
variables from observed data. Such techniques have shown
great promise in domains like healthcare (Sanchez et al.,
2022), climate science (Yao et al., 2024a), and recommen-
dation (Wang et al., 2022; 2024; Yang et al., 2024).

However, learning disentangled representations in an un-
supervised manner remains theoretically difficult due to
the existence of infinitely many indistinguishable solutions
(Hyvärinen & Pajunen, 1999; Locatello et al., 2019). To
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Figure 1: Examples of data generating process except mix-
ing process, i.e. latent mechanism. Blue nodes represent the
observable variables.

address the problem, recent works have assumed condi-
tional independence among latent sources given auxiliary
variables, thereby enabling identifiability (Hyvärinen &
Morioka, 2016; Khemakhem et al., 2020). Yet, this assump-
tion is often unrealistic in practical settings where depen-
dencies among sources naturally arise, such as in biological
or physical systems (Cardoso, 1998; Theis, 2006).

Recent advances have started relaxing this independence
assumption by incorporating source dependencies into the
model structure. Some methods assume specific parametric
forms (Lu et al., 2022), while others take a non-parametric
approach (Zheng & Zhang, 2023), yet they often overlook
the potential of using observed sources entangled in the
generative process itself as auxiliary information. This is a
critical gap, as in many real-world scenarios, auxiliary vari-
ables may not be externally provided but rather embedded
in the observations themselves.

In this work, we explore the novel setting where observed
sources are used as auxiliaries to achieve identifiability. Mo-
tivated by systems governed by causal mechanisms—such
as robotic arms—we show how observed sources and graph-
ical information can aid in disentangling latent causes. By
leveraging graphical structures and d-separation properties,
we propose a framework for selecting auxiliary variables
that enhance recoverability. Our empirical studies validate
that the learned representations align with the conditional
independencies implied by the latent causal graph.

2. Preliminary
In this section, we formally compare our setting with prior
works using the following notation, and describe the objec-
tive of our problem formulation.
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2.1. Comparision of data generating process

Let x ∈ Rm be an observation (e.g., image) which is gener-
ated from latent sources z ∈ Rn with a mixing function g
as follows:

x = g(z). (1)

By adopting a Bayesian network, each latent source is gen-
erated as zi = fi

(
PaG(zi), ϵi

)
, ϵi ∼ pϵi for all i ∈ [n],

where PaG(·) denotes the parent nodes in a known causal
graph G = (V,E). The goal is to recover the independent
components z = (z1, . . . , zn) and the inverse function g−1

solely from observations x. However, this is known to be
unidentifiable with only i.i.d. samples (Hyvärinen & Pa-
junen, 1999). To deal with the problem, previous works
assume conditional independence given auxiliary variables
u, such as class labels or time indices (Hyvarinen et al.,
2019). They assume u has no direct effect on x.

In contrast, we consider a more general setup where auxil-
iary variables may directly participate in the mixing func-
tion, rather than being restricted to external side informa-
tion. Specifically, we treat auxiliary variables as observed
latent sources zo ⊂ z that directly participate in the mix-
ing function, where the generative process is governed by
a DAG G capturing arbitrary dependencies. While CRL
also accommodates dependencies among latents, it remains
unclear how to effectively incorporate observed sources in
that framework. The details for related work are provided
in the Appendix A.

2.2. Problem formulation

Our goal is to establish the identifiability of the independent
latent sources (i.e., zci) up to certain subspace-wise invert-
ible transformation and permutation, given the observations
x, observed sources zo(⊆ z), and the latent Bayesian net-
work G which encodes the conditional independence rela-
tionships between the latent sources as shown in Fig. 1.

Formally, we can partition unobserved sources into con-
ditionally independent subsets zci such that

⋃d
i=1 zci =

{z1, . . . , zn}:

p(z−o | zo) =
d∏

j=1

p
(
zcj | zo

)
, (2)

where zo are observed sources and z−o are unobserved.

The knowledge of the latent Bayesian network G allows us
to leverage diverse conditional independence relationships
between the sources. Importantly, the partition of the latent
sources into subspaces zo− = ∪izci determines the degree
of the identifiability we could achieve (Thm. 4.3 of Zheng &
Zhang (2023)). Therefore, it is crucial to capture the proper
observed sources zu ⊆ zo that entails fine-grained sub-

spaces zcj mutually independent to each other conditioned
on zu.

3. Method
We establish identifiability in the presence of observed
sources (Sec. 3.1). Based on conditions for identifiabil-
ity, we introduce a framework with a graphical criterion to
effectively leverage auxiliary variables that makes the con-
ditionally independent latents more fine-grained (Sec. 3.2)
and method to recover unobserved latents (Sec. 3.3).

3.1. Identifiability

To deal with problems that the observed sources zo are
included in the mixing function, we assume that the mixing
function is constrained to a specific form as Yang et al.
(2022).

Proposition 3.1. Suppose the following assumptions hold:
1. The observed data and sources are generated from Eq. (1)
and Eq. (2)

2. The mixing function g is volume-preserving, i.e.,
|det(Jg(z))| = 1

3. For every value of zo− , there exists 2d values of zo, such
that the 2d vectors w(zo− , zoi) are linearly independent,
where vector w(zo− , zoi) is defined as follows:

w(zo− , zoi) =
(
v(zc1 , zoi), . . . ,v(zcd , zoi),

v′(zc1 , zoi), . . . ,v
′(zcd , zoi)

)
where

v(zcj , zoi) =

∂ log p(zcj |zoi)
∂z

(l)
cj

, . . . ,
∂ log p(zcj |zoi)

∂z
(h)
cj

 ,

v′(zcj , zoi) =

∂2log p(zcj |zoi)
∂(z

(l)
cj )

2
, . . . ,

∂2log p(zcj |zoi)
∂(z

(h)
cj )2


and zcj = (z

c
(l)
j
, . . . , z

c
(h)
j

).

Then all the components of zo− (i.e., zci where ci ∈
{c1, . . . , cd}) is identifiable up to a subspace-wise invertible
transformation and a subspace-wise permutation.

Most prior CRL works assume a fixed mixing function
across environments, enabling identifiability by cancel-
ing Jacobian log-determinant terms when differencing log-
likelihoods across domains. In our setting, however, the
mixing function varies with the observed source (e.g., do-
main label), breaking this cancellation and invalidating the
standard proof. To overcome the issue, we assume the mix-
ing is volume-preserving—i.e., the Jacobian determinant is
always 1—so the log-determinant term becomes zero, restor-
ing identifiability. Full details are provided in Appendix B.
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Algorithm 1 Selection on Observables
1: Input: graph G, observed set O
2: Output: conditioning set C
3: C ← {nodes acting only as confounders on G }
4: O ← O \ {nodes acting only as colliders on G }
5: max← 0
6: for each subset T ⊆ O do
7: S ← Partition(G,T,O)
8: if |S| > max or (|S| = max and |T | < |C|) then
9: max← |S|

10: C ← T
11: end if
12: end for
13: return C

3.2. Selection on observables

According to the Prop. 3.1, the conditional independence
determines the number of recoverable sources in the identifi-
ability of latent variables and our goal is first to capture mu-
tually independent groups of nodes given observed sources
and the known causal graph. However, a naive approach
of leveraging all observed sources might not capture con-
ditional independence relationships, i.e., z1 ̸⊥⊥ z3 | z2, z4
in Fig. 1c. We propose a strategy that selects the most fine-
grained conditionally independent groups of the latents with
the minimum set of observed sources in Alg. 1. The algo-
rithm initializes a candidate set by including only nodes that
act as confounders and excluding those that act solely as
colliders, in order to account for nodes that may serve as
both. The Partition algorithm counts the number of groups
that satisfy conditional independence by running Bayes-ball
(Shachter, 1998) algorithm repeatedly. Finally, the algo-
rithm outputs the conditioning set that results in the largest
number of groups, i.e., the most fine-grained partitioning
conditioned on proper observed sources zu. The detailed
algorithm is provided in the Appendix C.

3.3. Learning to recover

To construct a representation that satisfies the identifiability
conditions in Prop. 3.1, we enforce volume preservation
in the encoder by adopting General Incompressible-flow
Network (GIN) (Sorrenson et al., 2020) as our encoder. In
addition to volume preservation, we also impose a graphical
constraint via a structural neural network to preserve depen-
dencies among latent variables that are not assumed to be
independent, reflecting the known latent causal structure to
strengthen disentanglement.

Volume-preservation While GIN originally optimizes
only the log-likelihood of the conditional distribution given
the auxiliary variables, we factorize the log-likelihood of

the distribution as follows:

log pĝ−1(x) = log p(ẑ) = log p(zu)+
∑
i

log p(ẑu−
i
| zu),

where ẑu−
i
= ẑ \ ẑui . By factorizing the log-likelihood of

the distribution, we can naturally address the issue that the
information from the auxiliary variable is directly entangled
with the observations. The preceding term will serve to
absorb information about zu from x while the latter term
enforces the components of zu− to be independent given zu
by modeling them as a multivariate normal distribution with
zero off-diagonal elements.

Graphical constraint Besides, ẑu− contain the informa-
tion of sources that are observed but not selected (expressed
as zn). We need to keep the relationship between ẑn and
ohter sources (regardless of whether they are observed or
not) which is not independent. See relationship between z2
and z1, z3 in Fig. 1c.

To deal with the problem, we leverage the structural neural
net to enforce the relationship between other sources and
ẑn. A structural neural network is designed based on the
latent graph G and not selected label zn. Specifically, zn is
predicted by arbitrary dimensions of ẑu− working as parents
of zn. Since we do not know exactly which dimension of
the representation corresponds to which true latent variable,
we rely only on the number of parents of zn. For example,
in Fig. 1c, true z2 is predicted by the certain dimension
of the estimated representation given the other dimensions
(ẑ1, ẑ3), naturally reflecting the causal structure. The full
objective function is:

L(θ) = E

[
log p(zu) +

∑
i

log p(ẑu−
i
| zu)

+ log p(zn | PaG(zn))

]
. (3)

4. Experiment
We conduct experiments to empirically validate the our
proposed method in leveraging observed sources.

4.1. Experimental Setup

Data and Metrics The data was generated using a Struc-
tural Causal Model (SCM) where each variable is deter-
mined by a linear combination of its parents and an additive
noise term. Details are in Appendix D

To further demonstrate the effectiveness of our method on
high-dimensional data, we used the Pendulum and modified
Flow datasets Yang et al. (2021), which consist of structured,
systematically sampled image data. Corresponding latent
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Figure 2: Causal graphs for two systems. Colored nodes are
observed sources: (a) Pendulum and (b) Flow.
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Figure 3: Comparison plot for DCI metric between Ours,
GIN, and iVAE.

causal graphs are shown in Fig. 2. The implementation
details is in Appendix D. After training the proposed method,
to assess how well the learned representation aligns with
the independence structure of the underlying graph, we
measure Disentanglement, Completeness, Informativeness
(DCI) metric (Eastwood & Williams, 2018) based on Mean
Correlation Coefficient (MCC) matrix which is a widely
accepted metric in the literature for measuring the degree
of identifiability (Hyvärinen & Morioka, 2016). All the
metrics are measured over 20 repetitions.

4.2. Empirical Results

Effectiveness of architecture To verify the effectiveness
of our proposed architecture, we choose GIN (Sorrenson
et al., 2020) and iVAE (Khemakhem et al., 2020) as base-
line models. GIN is used as the encoder in our architecture,
ensuring the volume-preserving property but not designed
to handle observed sources. iVAE is also not designed to
handle partially observed sources. Furthermore, it does not
impose any constraints on the mixing function and solely
relies on a multivariate normal distribution as the prior, en-
suring that each latent variable is conditionally factorizable.
For a fair comparison, all experiments are conducted using
the same auxiliary variables filtered through the selection
procedure.

Fig. 3 demonstrates that our proposed method outperforms
other approaches in terms of the DCI metric. Our proposed
method maximizes the likelihood of a conditionally fac-
torizable distribution for the remaining components while
simultaneously excluding the information of auxiliary vari-
ables mixed with the observation x. This prevents spurious

Figure 4: Latent traversal results for unobserved variables.
The upper and lower rows show reconstructed images by
traversing the variables for shadow length and shadow posi-
tion, respectively.

correlations in the representation by ensuring that the infor-
mation of zu, which is related to unobserved latents, does
not mix into the representation.

Latent Traverse For better comprehensibility, we further
extend our model to the image reconstruction task and per-
form latent traversal to assess whether the factors have been
disentangled effectively. We conducted experiments on the
pendulum dataset as shown in Fig. 2a, choosing the pendu-
lum angle and light position as selected variables. To effi-
ciently extract relevant features from high-dimensional im-
age data and visualize disentangled factors, an extra encoder-
decoder architecture with an additional MSE (Mean Squared
Error) loss was adopted to ensure successful compression
and reconstruction of the images.

Fig. 4 presents the results of generating counterfactual im-
ages by traversing unobserved latent variables after training
our model with the reconstruction objective. As shown
in the upper row, traversing the variable associated with
shadow length gradually decreases its extent in the recon-
structed images. Similarly, modifying the latent variable
corresponding to shadow position causes the shadow to
shift progressively to the right while mostly preserving the
other factors. The successful disentanglement of unobserved
latent variables further demonstrates the model’s effective-
ness in its transferability. More experimental results in
Appendix E.

5. Conclusion
CRL aims to uncover latent variables in real-world systems.
Our work is the first to achieve identifiability with observed
sources by incorporating auxiliary variables into the mix-
ing function. We also introduce a framework for selecting
auxiliary variables to improve recoverability by leveraging
the causal structure. Empirical results show that our method
outperforms others in identifying true latent variables and
reducing spurious correlations.
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Appendix

A. discussion
Related Work One of the key obstacles in CRL is the dependence among latent sources induced by underlying causal
mechanisms. It directly violates the assumption of conditionally independent sources, which underlies the identifiability
of many nonlinear ICA approaches that rely on conditionally factorized priors (Khemakhem et al., 2020). To address this
issue, several works explicitly incorporate a known or assumed causal graph over the latent variables to model source
dependencies. For example, Yang et al. (2021) (CausalVAE) propose a structured variational autoencoder where the latent
variables follow a predefined causal DAG, enabling do-interventions in the latent space. Similarly, Pan & Bareinboim (2024)
(ANCM) handle non-Markovian generative processes by modeling image generation with an augmented causal graph that
captures temporally entangled latent factors. While these methods provide a framework for incorporating causal structure
into representation learning, they operate under a fully supervised setting, assuming access to structured semantic labels or
ground-truth causal factors. Moreover, they are primarily focused on image generation and counterfactual editing tasks,
rather than the general identifiability or recovery of latent sources from more weakly supervised or observational data.

To achieve identifiability under such dependencies, many methods rely on interventional data which can be impractical in
real-world settings (Lippe et al., 2023; Liang et al., 2023; Li et al., 2024). In particular, the Liang et al. (2023) (CauCa)
assumes a Markovian graph and leverages interventions for identifiability, while Li et al. (2024) (CRID) handles more
general non-Markovian settings by explicitly modeling unobserved confounders. Both of CauCA and CRID share with
our approach the use of causal graph to guide recovery, suggesting that our method could be extended to non-Markovian
settings in future work.

As an alternative, recent efforts have aimed to prove identifiability from observational data alone. For example, Yao et al.
(2024b) introduce a method based on block-identifiability (Kügelgen et al., 2021), which extracts shared latent variables
from multiple views using contrastive learning and entropy regularization. Zhang et al. (2024) show that assuming structural
sparsity among the sources enables identifiability without any explicit causal graph. While these works relax assumptions
on data collection, they rely on indirect structural constraints. In contrast, we investigate how to select or exploit observed
sources as auxiliary variables under a known causal structure to recover latent sources. This approach retains the strengths of
causal modeling while improving recoverability in settings where full interventions or disentangled views are unavailable.

Nonlinear ICA Nonlinear ICA considers independent latent sources, i.e.,

p(z) =

n∏
i=1

p(zi). (4)

To deal with the case of Fig. 1b, we can partition the latent sources into conditionally independent sets, zci(i = 1, ..., d)
where ∪di=1zci = {z1, . . . , zn}. It enables a more general formulation of Eq. (4) as Zheng & Zhang (2023):

pz|u(z|u) =
ni∏
i=1

pzi(zi)

d∏
j=1

pzcj
|u(zcj |u). (5)

where ni is the number of mutually independent sources. Zheng & Zhang (2023) partition all the sources into a set of
mutually independent sources zI and a set of variables in which do not need to be independent zo− = ∪di=1zci . In Eq. (2),
we further generalize Eq. (5) into the setting with observed sources, which includes Eq. (5) as a special case in that u is
independent from DGP.

pzo− |zo
(zo− |zo) =

ni∏
i=1

pzi(zi)

d∏
j=1

pzcj
|zo

(zcj |zo). (6)

where zo is observed sources and zo− is unobserved sources. The former term corresponds to the case without auxiliary
variables, which is beyond the scope of our study and thus not considered further.

B. Theoretical Anlaysis
Firstly, we begin with the definition of identifiability, which is the goal of nonlinear ICA and causal representation learning.
By adopting a Structural Causal Model (SCM, (Pearl, 2009)), we represent a data-generating process regarding latent
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sources as
zi = fi(Pa

G(zi), ϵi), ϵi ∼ pϵi , (7)

for all i ∈ [n] where PaG(·) represents parent nodes on a latent causal graph G consisting of nodes V and edges E.

Definition B.1. (Identifiability). Suppose the observations x are generated by true latent mechanism specified by Θ =
(f , p(ϵ),g) given in Eqs. (1) and (7). The learned generative model parameterized by Θ̂ =

(
f̂ , p̂(ϵ), ĝ

)
is observationally

equivalent to the true model if the model distribution pΘ̂(x) matches the data distribution pΘ(x) for any value of x. Let A
be an arbitrary invertible transformation. We say that the model is identifiable up to A if

pΘ̂(x) = pΘ(x) =⇒ ĝ = g ◦A. (8)

Once the mixing function g is identified, the latent variables can be identified up to A:

ẑ = ĝ−1(x) = (A−1 ◦ g−1)(x)

= A−1(g−1(x))

= A−1(z).

The following proposition is a restatement of theorem of Zheng & Zhang (2023) under our setting. It addresses the case
where the auxiliary variable is not included in the mixing function, which corresponds to the setting of conventional nonlinear
ICA and CRL.

Proposition B.2. Suppose the following assumptions hold:

1. The observed data and sources are generated from Eq. (1) and Eq. (2)

2. The observable sources do not have direct edge into the observation x, i.e., ∂x
∂zo

= 0

3. For every value of zD, there exists 2d+ 1 values of zo, such that the 2d vectors w(zD, zoi)−w(zD, zo0) are linearly
independent, where vector w(ZD, zoi) is defined as follows:

w(zD, zoi) =
(
v(zc1 , zoi), . . . ,v(zcd , zoi),

v′(zc1 , zoi), . . . ,v
′(zcd , zoi)

)
where

v(zcj , zoi) =

(
∂ log p(zcj | zoi)

∂z
(l)
cj

, . . . ,
∂ log p(zcj | zoi)

∂z
(h)
cj

)
,

v′(zcj , zoi) =

(
∂2 log p(zcj | zoi)

∂(z
(l)
cj )

2
, . . . ,

∂2 log p(zcj |zoi)
∂(z

(h)
cj )2

)

and zcj = (z
c
(l)
j
, . . . , z

c
(h)
j

).

Then all components of zD (i.e., zci where ci ∈ {c1, . . . , cd}) is identifiable up to a subspace-wise invertible transformation
and a subspace-wise permutation.

Proof. Let h : zo− → ẑo− denote the transformation from true sources to estimated sources. Thus, we can derive
ĝ = g ◦ h−1(zo−) equivalently as

Jg(zo−) = Jĝ◦h(zo−) = Jĝ(ẑo−)Jh(zo−)

by using chain rule repeatedly. Jh(zo−) must be invertible and have a non-zero determinant because Jĝ(ẑo−) and Jg(zo−)
have full column rank. The change of variable rule and Assumption 2 make the following equations hold:

p(zo− | zo) · |det(Jh−1(ẑo−))| = p(ẑo− | zo).

8
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By taking logarithm on both sides, we can obtain

log p(zo− | zo) + log |det(Jh−1(ẑo−))| = log p(ẑo− | zo).

According to the Assumption 1 and ∪izci = z \ zo, the joint log densities can be factorized as

cd∑
j=c1

log p(zj | zo) + log |det(Jh−1(ẑo−))| =
cd∑

j=c1

log p(ẑj | ẑo).

Thus, for zo = zo0 , . . . zo2d , we have 2d+ 1 equations. Subtracting each equation corresponding to zo1 , . . . , zo2d with the
equation corresponding to zo0 results in 2d equations:

cd∑
i=c1

(log p(zi | zoj )− log p(zi | zo0)) =
cd∑

i=c1

(log p(ẑi | zoj )− log p(ẑi | zo0)) (9)

Take the derivatives of both sides of Eq. (9) with respect to ẑk and ẑv where k, v ∈ {1, . . . , n} and they are not indices of
the same subspace. It is clear that the RHS of Eq. (9) equals to zero because k and v are not indices of the same subspace.
For the i-th term of the summation on the LHS, we can get following equations:

i(h)∑
l=i(l)

(∂2 log p(zi | zoj )
(∂zl)2

− ∂2 log p(zi | zo0)
(∂zl)2

)
· ∂zl
∂ẑk

∂zl
∂ẑv

(10)

+

(
∂ log p(zi | zoj )

∂zl
− ∂ log p(zi | zo0)

∂zl

)
· ∂2zl
∂ẑk∂ẑv

 = 0,

where il and ih are the minimum and maximum indices of elements in zi = (zil, . . . , zih). By iterating i from c1 to cd, we
can also iterate l from 0 to n. Thus, there exists a linear system with a 2d× 2d coefficient matrix.

Considering Assumption 3, the coefficient matrix of the linear system has full rank. The only solution of Eq. (10) is
∂zl
∂ẑk

∂zl
∂ẑv

= 0 and ∂2zl
∂ẑk∂ẑv

= 0. Note that ∂zl
∂ẑk

and ∂zl
∂ẑv

cannot be both zero because of invertibility of h. Therefore, k can
only be the index of an estimated source from one independent subspace, which, together with the invertibility, leads to the
conclusion that zo− is a composition of an invertible subspace-wise transformation and a subspace-wise permutation of ẐD .
So it is the mapping from ẑo− to zo− since the subspace-wise transformation is invertible and the inverse of a block-wise
permutation matrix is still a block-wise invertible matrix.

We now establish identifiability in the presence of observable sources, where an auxiliary variable directly influences the
observation x through the mixing function. This constitutes the proof of Prop. 3.1.

Proof. Assume observational equivalence between estimated and true model, i.e. pg(x) = pĝ(x). The change of varialbe
rule makes following equations to hold:

p(x) = p(z) · |det(Jg−1)(x)| = p(ẑ) · |det(Jĝ−1)(x)|

Since p(z) = p(zo− | zo) · p(zo),

p(zo− | zo) · p(zo) · |det(Jg−1)(x)| = p(ẑo− | ẑo) · p(ẑo) · |det(Jĝ−1)(x)|

also can hold. Note that p(ẑo) can be replaced by p(zo) because zo is already observed.

p(zo− | zo) · |det(Jg−1)(x)| = p(ẑo− | zo) · |det(Jĝ−1)(x)|

By taking logarithm on both sides, we can obtain

log p(zo− | zo) + log |det(Jg−1)(x)| = log p(ẑo− | zo) + log |det(Jĝ−1)(x)|.

9
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According to the Assumption 1, Assumption 2 and ∪izci = z \ zo, the joint log densities can be factorized as

cd∑
j=c1

log p(zj | zo) =
cd∑

j=c1

log p(ẑj | zo).

Thus, for zo = zo0 , . . . zo2d−1
, we have 2d equations. Take the derivatives of both sides of above equation with respect to ẑk

and ẑv where k, v ∈ {1, . . . , n} and they are not indices of the same subspace. It is clear that the RHS of Eq. (9) equals
to zero because k and v are not indices of the same subspace. For the i-th term of the summation on the LHS, we can get
following equations:

i(h)∑
l=i(l)

(∂2 log p(zi | zo)
(∂zl)2

)
· ∂zl
∂ẑk

∂zl
∂ẑv

+

(
∂ log p(zi | zo)

∂zl

)
· ∂2zl
∂ẑk∂ẑv

)
= 0, (11)

where il and ih are the minimum and maximum indices of elements in zi = (zil, . . . , zih). By iterating i from c1 to cd, we
can also iterate l from 0 to n.

Considering Assumption 3, the coefficient matrix of the linear system has full rank. The only solution of Eq. (11) is
∂zl
∂ẑk

∂zl
∂ẑv

= 0 and ∂2zl
∂ẑk∂ẑv

= 0. Note that ∂zl
∂ẑk

and ∂zl
∂ẑv

cannot be both zero because of invertibility of h. Therefore, k can
only be the index of an estimated source from one independent subspace, which, together with the invertibility, leads to the
conclusion that zo− is a composition of an invertible subspace-wise transformation and a subspace-wise permutation of ẐD .
So it is the mapping from ẐD to zo− since the subspace-wise transformation is invertible and the inverse of a block-wise
permutation matrix is still a block-wise invertible matrix.

C. Algorithm Details
Selection on Observables According to the Prop. 3.1, the conditional independence determines the number of recoverable
sources in the identifiability of latent variables and our goal is first to capture mutually independent groups of nodes given
observable sources and the known causal graph. However, a naive approach of leveraging all observed sources might not
capture conditional independence relationships, i.e., z1 ̸⊥⊥ z3 | z2, z4 in Fig. 1c. It is necessary to capture a proper subset of
observed sources that entails the most fine-grained groups of mutually independent sources, and ultimately, leads to the
most granular identifiability.

Formally, we aim to discover a conditional independence structure that partition zo− into the most fine-grained subgroups
such that:

zci ⊥⊥ zcj | zu, for all i ̸= j, (12)

where zu ⊆ zo, ∪izci ⊆ z \ zo, and zci ∩ zcj = ∅ for all i ̸= j. Importantly, satisfying a fine-grained conditional
independence condition enables the identification of a greater number of latent variables. This ensures a more precise
disentanglement of the underlying causal structure, leading to improved recoverability and manipulability of the true latent
factors.

We propose a strategy that selects the most fine-grained conditionally independent groups of the latents with the minimum set
of observed sources in Alg. 1. The algorithm initializes a candidate set by including only nodes that act as confounders and
excluding those that act solely as colliders, in order to account for nodes that may serve as both. The Partition algorithm in
Alg. 2 counts the number of groups that satisfy conditional independence by running Bayes-ball (Shachter, 1998) algorithm
repeatedly. Finally, the algorithm outputs the conditioning set that results in the largest number of groups, i.e., the most
fine-grained partitioning.

Example Consider the latent graph in the Fig. 1c. Observed set O = {z2, z4}. We will iterate all the subsets of O, i.e.,
{z2}, {z4}, {z2, z4}.1 Firstly, with conditioning set {z2}, the partition process is as follow:

1. Started from z1, the result contains z1.

2. Bayes-ball algorithm get input as G, {z2} and result.

1∅ cannot be considered due to the condition for the identifiability.

10
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Algorithm 2 Graph Partition by Conditional Independence
1: Input: graph G = (V,E), condition C, observed set O
2: Output: a set of d-connected node clusters R
3: R← ∅
4: for each node n in V \O do
5: if ∃C∈R n ∈ C then
6: continue
7: end if
8: result← {n};
9: while result updated do

10: result← BAYESBALL(G,C,O, result)
11: end while
12: Add result to R
13: end for
14: return R

3. In the Bayes-ball, path from z1 to z3 through z2 cannot be d-separated because z2 works as collider.

4. The path from z1 to z3 also cannot be d-separated.

5. The result is {{z1, z3}} except for observed source z2.

With conditioning set {z4}, by following same process, the result will be {{z1}, {z3}}. The conditioning set {z2, z4} makes
the result to be {{z1, z3}}. Hence, the selection result will be {z4} for the most fine-grained conditionally independent
latents.

Bayes-Ball Algorithm The best known criterion for conditional independence is d-separation (Geiger et al., 1990). We
want to find clusters with inter-cluster d-connectedness and intra-cluster d-separation.

We exploit Bayes-ball algorithm to examine the conditional independence of two node sets on the given graph G. The
Bayes-ball algorithm can be extended to partition graph. It returns a set of nodes dependent to an input node set.

D. Experimental Details
Metrics After training the proposed method, we measure Disentanglement, Completeness, Informativeness (DCI) metric
(Eastwood & Williams, 2018) based on Mean Correlation Coefficient (MCC) matrix which is a widely accepted metric in
the literature for measuring the degree of identifiability (Hyvärinen & Morioka, 2016). We assess how well the learned
representation aligns with the independence structure of the underlying graph.

Specifically, the MCC matrix is defined as:
MCCij = corr(zi, ẑj), (13)

where each entry MCCij represents the Pearson correlation coefficient between the true latent variable zi and the estimated
latent variable ẑj . The optimal permutation σ∗ is selected to maximize the total correlation, ensuring that each estimated
latent variable is matched to the most similar true latent variable.

Based on the computed MCC matrix, we evaluate models with Disentanglement and Completeness among DCI metrics:

D = 1−H(Pi,·), (14)

C = 1−H(P·,j), (15)

where Pi,j is the value from the MCC matrix, representing the contribution of the estimated latent variable ẑj to the true
latent factor zi. The entropy function H(·) measures the dispersion of importance values across dimensions, ensuring that a
lower entropy corresponds to a more structured and disentangled representation. Disentanglement (D) quantifies whether
each estimated latent variable captures at most one true latent factor, computed by applying row-wise entropy over Pi,·.
Completeness (C) assesses whether each true latent factor is captured by a single estimated latent variable, computed via
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Figure 5: MCC score and mean correlation matrices of GIN and iVAE matched with the best permutation on the setting of
Fig. 1b.

column-wise entropy over P·,j . Since both scores range from 0 to 1, higher values indicate better structured representations
with minimal mixing between factors. All the metrics are measured over 20 repetitions. However, the MCC metric alone is
insufficient for measuring the degree of identifiability in scenarios involving partially observable sources since spurious
correlation can arise without disentangling the information of zo due to the information from the auxiliary variable zo being
entangled with the observation x.

Additionally, the Fig. 5 demonstrates the insufficiency of MCC score in evaluating the degree of identifiability. The MCC
scores of the GIN and iVAE models are around 0.7, suggesting that they recover the true latents reasonably well. However,
examining the correlation matrix reveals that the estimated latents also show high correlations with dimensions other than
the one with the highest correlation. This is because existing methods do not account for cases where the mixing function
includes auxiliary variables, leading to information from the auxiliary variables being entangled in the estimated latents.

Accordingly, we leverage the DCI metric (Eastwood & Williams, 2018) to evaluate whether the learned representation
correctly models the conditional independence structure of the graph without spurious correlation. The DCI metric evaluates
the performance of disentanglement, completeness, and informativeness of representation by measuring the entropy of
the importance matrix (in our case, a MCC matrix) If the true sources are well identified without spurious correlation, the
representation will be highly disentangled with complete information.

Data Reflecting the setup of observable sources, we consider synthetic datasets generated from the three graphs in Fig. 1:
D = {(x(i), z

(i)
o )}Ni=1, where N is the sample size and z

(i)
o is the observed sources corresponding to the data point x(i).

When we run our selection procedure given a graph to choose the best combination of the auxiliary variables, zo will be
partitioned into zu and zn.

The data was generated using a linear Structural Causal Model (SCM) where each variable is determined by a linear
combination of its parents and an additive noise term:

Xi =
∑

j∈pa(Xi)

βijXj + εi, (16)

where βij are sampled uniformly from [0.5, 1.0], and εi is the additive noise term with coefficient fixed to 1.0.

To further demonstrate the effectiveness of our method on high-dimensional data, we used the Pendulum and modified Flow
datasets Yang et al. (2021), which consist of structured, systematically sampled image data. Corresponding latent causal
graphs are shown in Fig. 2.

The implementation of the experiments is based on Liang et al. (2023). Following tables are hyperparameters for learning
Ours, GIN and iVAE.

E. Additional Experiments
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Table 1: Hyperparameters for different models.

Ours

LR scheduler Cosine
Learning rate 0.01
Number of flows 8
Optimizer Adam
Batch size 1024
Training epochs 20

(a) Synthetic data

GIN

LR scheduler -
Learning rate 0.01
Number of flows 8
Optimizer Adam
Batch size 1024
Training epochs 20

(b) Synthetic data

iVAE

Number of layers 3
Learning rate 0.0001
Hidden dim 4096
Optimizer Adam
Batch size 32
Training epochs 20

(c) Synthetic data

Ours

LR scheduler Cosine
Learning rate 0.001
Number of flows 8
Optimizer Adam
Batch size 1024
Training epochs 50
(d) High-dimensional data

GIN

LR scheduler -
Learning rate 0.001
Number of flows 8
Optimizer Adam
Batch size 1024
Training epochs 40
(e) High-dimensional data

iVAE

Number of layers 3
Learning rate 0.0001
Hidden dim 4096
Optimizer Adam
Batch size 1024
Training epochs 80
(f) High-dimensional data

Effectiveness of selection We conducted an ablation study on the selection procedure for our architecture. The experiments
are based on the data-generating process illustrated in Fig. 2b, where the differences in results arise depending on the
selection procedure. Fig. 6 shows the change in DCI metric for our model before and after selection. The selection procedure
improves disentanglement in the representation as shown in Fig. 6. For the graph in Fig. 2b, using all observed sources as
auxiliary variables without a selection procedure breaks the conditional independence between Water Height and Hole,
leading to entangled representations.

Effectiveness of architecture To verify the effectiveness of our proposed architecture, we choose GIN (Sorrenson et al.,
2020) and iVAE (Khemakhem et al., 2020) as baseline models. GIN is used as the encoder in our architecture, ensuring
the volume-preserving property but not designed to handle observed sources. iVAE is also not designed to handle partially
observed sources. Furthermore, it does not impose any constraints on the mixing function and solely relies on a multivariate
normal distribution as the prior, ensuring that each latent variable is conditionally factorizable. For a fair comparison, all
experiments are conducted using the same auxiliary variables filtered through the selection procedure.

Fig. 3 demonstrates that our proposed method outperforms other approaches in terms of the DCI metric. Our proposed method
maximizes the likelihood of a conditionally factorizable distribution for the remaining components while simultaneously
excluding the information of auxiliary variables mixed with the observation x. This prevents spurious correlations in
the representation by ensuring that the information of zu, which is related to unobserved latents, does not mix into the
representation.

We further analyzed the results with the MCC matrix for a more detailed examination. The proposed architecture shows a
comparable MCC score (mean of diagonal terms) as GIN and iVAE, as illustrated in Fig. 7 for the DGP of Fig. 1a. However,
looking at the MCC matrix, we can observe that both GIN and iVAE show high correlations with the other latents besides
the true latent, even when matched with the best permutation. This suggests that manipulating a specific dimension of the
representation simultaneously affects other latents, indicating that the representation is not well disentangled.

Considering the DGP in Fig. 1b, the ideal disentanglement is that ẑ1, ẑ2, (ẑ3, and ẑ4) are conditionally independent. The
result of our architecture for MCC matrix in Fig. 8 represents the almost ideal disentanglement, while the other methods still
show entangled results. As the conditional independence in DGP in Fig. 1b does not ensure each latent to be identified,
but block-identified, the MCC score might be lower. Even in this case, GIN and iVAE, which do not consider observed
sources, show a high MCC score because of spurious correlation. Likewise, on the DGP (Fig. 1c), our architecture yields a
disentangled MCC matrix as expected.

High-Dimensional data We also conduct the experiments on the Pendulum and Flow datasets from Yang et al. (2021).
The images are generated by a latent mechanism shown in Fig. 2. The images have a size of 4 × 96 × 96. For the Flow
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Figure 7: Mean correlation matrices of Ours, GIN applying selection, and iVAE applying selection matched with the best
permutation on the setting of Fig. 1a.
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Figure 8: Mean correlation matrices of Ours, GIN applying selection, and iVAE applying selection matched with the best
permutation on the setting of Fig. 1b.
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Figure 9: Mean correlation matrices of Ours, GIN applying selection and iVAE applying selection matched with the best
permutation on the setting of Fig. 1c.
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Figure 11: Mean correlation matrices of Ours, GIN applying selection and iVAE applying selection matched with the best
permutation on the Pendulum dataset.

dataset, the auxiliary variable Ball Size is determined through the selection process. In the case of the Pendulum dataset, all
observed latents should be selected as auxiliary variables to ensure the conditional independence of the unobserved latent
variables.

As illustrated in Fig. 10, our proposed method demonstrated performance that is comparable to or superior to other models.
Unlike the results on synthetic data, the GIN model exhibited strong performance because its normalizing flow-based
architecture is more suitable for handling image data in terms of model capacity. The MCC matrices (Figs. 11 and 12)
also show that our method learns disentangled representations for unobserved latent variables. It suggests that the learned
representations align well with the conditional independence structure of the underlying latent graph in Figs. 2a and 2b.

We also observed that the representations in Flow were more entangled compared to Pendulum. There exists an observed
but unselected variable zn (Water Flow), which introduces additional graph constraints. The graph constraints may conflict
with the term enforcing conditional independence, making the learning process more challenging. Addressing this challenge
remains an avenue for future work.

E.1. Latent Traverse

For better comprehensibility, we further extend our model to the image reconstruction task and perform latent traversal to
assess whether the factors have been disentangled effectively. We conducted experiments on the pendulum dataset as shown
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Figure 12: Mean correlation matrices of Ours, GIN applying selection and iVAE applying selection matched with the best
permutation on the Flow dataset.

in Fig. 2a, choosing the pendulum angle and light position as selected variables. To efficiently extract relevant features from
high-dimensional image data and visualize disentangled factors, an extra encoder-decoder architecture with an additional
MSE (Mean Squared Error) loss was adopted to ensure successful compression and reconstruction of the images.

The encoder comprises four 2D convolutional layers followed by two fully connected layers with ReLU activation. It
compresses the input data into exogenous latent variables corresponding to the number of nodes in the causal graph. These
set of variables are then passed through our model, generating endogenous latent variables of the same dimensionality. The
decoder adopts a scene-mixture approach, which is widely used in object-centric representation learning. Specifically, each
scalar value from the endogenous latent variables passes through six fully connected layers, producing full-size image arrays
that are subsequently averaged to reconstruct the final image. Empirical results indicate that the scene-mixture approach
enhances the effectiveness of latent traversal compared to a single decoder with a similar number of parameters.

Fig. 4 presents the results of generating counterfactual images by traversing unobserved latent variables after training our
model with the reconstruction objective. As shown in the upper row, traversing the variable associated with shadow length
gradually decreases its extent in the reconstructed images. Similarly, modifying the latent variable corresponding to shadow
position causes the shadow to shift progressively to the right while mostly preserving the other factors. The successful
disentanglement of unobserved latent variables further demonstrates the model’s effectiveness in its transferability.
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Algorithm 3 Bayes Ball Algorithm for d-connected nodes
1: Input: Graph G, Conditioning Set C, Observed Set O, Set of nodes R
2: Output: Updated set of d-connected nodes R
3: Initialize an empty set V FOR visited nodes
4: Initialize an empty queue Q
5: for each node n in R do
6: Add (n, up) to Q
7: end for
8: while Q is not empty do
9: (node, direction)← Q.pop()

10: if node ∈ V then
11: continue
12: end if
13: Add node to V
14: if node ∈ C and direction ̸= down then
15: continue
16: end if
17: if direction = up then
18: for each parent of node in G do
19: Add (parent, up) to Q
20: end for
21: for each child of node in G do
22: Add (child, down) to Q
23: end for
24: else if direction = down then
25: Initialize check ← false
26: for each descendant d of node in G do
27: if d ∈ C then
28: check ← true
29: break
30: end if
31: end for
32: if node ∈ C or check = true then
33: for each parent of node in G do
34: Add (parent, up) to Q
35: end for
36: else
37: for each child of node in G do
38: Add (child, down) to Q
39: end for
40: end if
41: end if
42: if node /∈ C and node /∈ O then
43: Add node to R
44: end if
45: end while
46: return R
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