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Abstract

The reasoning capabilities of large language001
reasoning models (LRMs), such as OpenAI’s002
o1 and DeepSeek-R1, have seen substantial003
advancements through deep thinking. How-004
ever, these enhancements come with signifi-005
cant resource demands, underscoring the need006
for training effective small reasoning models.007
A critical challenge is that small models pos-008
sess different reasoning capacities and cog-009
nitive trajectories compared with their larger010
counterparts. Hence, directly distilling chain-011
of-thought (CoT) results from large LRMs to012
smaller ones can sometimes be ineffective and013
often requires a substantial amount of anno-014
tated data. In this paper, we first introduce015
a novel Critique-Rethink-Verify (CRV) sys-016
tem, designed for training smaller yet power-017
ful LRMs. Our CRV system consists of mul-018
tiple LLM agents, each specializing in unique019
abilities: (i) critiquing the CoT qualities ac-020
cording to the cognitive capabilities of smaller021
models, (ii) rethinking and refining these CoTs022
based on the critiques, and (iii) verifying the023
correctness of the refined results. Based on the024
CRV system, we further propose the Cognitive025
Preference Optimization (CogPO) algorithm to026
continuously enhance the reasoning abilities027
of smaller models by aligning their reasoning028
processes with their cognitive capacities. Com-029
prehensive evaluations on challenging reason-030
ing benchmarks demonstrate the efficacy of our031
CRV+CogPO framework, which outperforms032
other methods by a large margin. 1033

1 Introduction034

The remarkable progress in language reasoning035

models (LRMs) has revolutionized NLP (Zhao036

et al., 2023). Recently, leading models such as037

OpenAI’s o12 and DeepSeek-R1 (DeepSeek-AI,038

1Source codes, datasets and models will be released upon
paper acceptance.

2https://openai.com/o1/

Figure 1: A motivation example. Large models (right)
apply vector-based algebraic abstraction to solve the
problem, while small models (left) employ simple for-
mulaic geometric decomposition. This trajectory mis-
match underscores the inefficacy of direct CoT distilla-
tion across models with substantial capacity gaps.

2025) have leveraged slow thinking to solve com- 039

plex tasks. Despite their impressive capabilities, 040

the scale of these models results in substantial com- 041

putational demands. Consequently, there is a grow- 042

ing need to train reasoning models with fewer pa- 043

rameters. 044

A straightforward approach to address this chal- 045

lenge is the direct distillation of Chain-of-Thought 046

(CoT) outputs (Wei et al., 2022a) or other deep 047

thoughts (such as Tree-of-Thought (Yao et al., 048

2023b)) from larger LRMs to smaller ones. This 049

technique is widely applied to improve the capac- 050

ities of smaller LRMs (Hsieh et al., 2023; Shrid- 051

har et al., 2022; Li et al., 2023; Yue et al., 2024). 052

However, smaller models3 inherently possess dif- 053

ferent reasoning capacities and cognitive trajec- 054

tories when solving problems compared to their 055

larger counterparts, as illustrated in Figure 1. Simi- 056

lar findings have also been presented in (Li et al., 057

2022; Zhang et al., 2024; Hu et al., 2024; Li et al., 058

2024). This phenomenon indicates that direct distil- 059

lation of CoTs from larger models can sometimes 060

3In this work, we regard smaller LLMs as decoder-only
language models typically with fewer than 10B parameters.
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be ineffective due to the large capacity gap. Thus,061

a natural question arises: How can we improve the062

reasoning abilities of smaller LRMs to align with063

their own cognitive capacity?064

In this paper, we introduce “Critique-Rethink-065

Verify” (CRV), a novel system to enhance the rea-066

soning capabilities of smaller models. CRV lever-067

ages multiple LLM agents, each with specialized068

functions and working in synergy. These functions069

include (i) critiquing the CoT by considering the070

cognitive limits of smaller LRMs, (ii) rethinking071

and refining these CoTs, integrating the feedback072

received from the previous critiques, and (iii) veri-073

fying the accuracy and validity of the refined rea-074

soning paths. Extending the direct preference opti-075

mization (DPO) technique (Rafailov et al., 2023),076

we further propose the cognitive preference opti-077

mization (CogPO) algorithm to align the reasoning078

process with the cognitive capacities of smaller079

LRMs on the basis of CRV system. Ultimately, the080

reasoning performance of smaller models can be081

improved effectively.082

In the experiments, the effectiveness of our ap-083

proach is evaluated on several challenging rea-084

soning benchmarks that are difficult for mod-085

els with limited parameter sizes, such as AIME086

2024, MATH-500 (Lightman et al., 2023), GPQA-087

Diamond (Rein et al., 2023), and LiveCodeBench.088

The results indicate that the small LRMs trained089

using the CRV+CogPO framework achieve out-090

standing reasoning performance. In summary, we091

make the following major contributions:092

• We present the CRV system for training small093

yet powerful LRMs, leveraging multiple LLM094

agents, each specializing in unique tasks.095

• We propose the CogPO algorithm that continu-096

ously enhances the reasoning abilities of small097

models by aligning their reasoning processes098

with their cognitive capacities.099

• Evaluations on challenging benchmarks100

demonstrate that the CRV+CogPO framework101

significantly improves the reasoning perfor-102

mance of small models, outperforming other103

popular training methods.104

2 Related Work105

2.1 Prompting LLMs to Reason106

Prompting strategies to improve reasoning in LLMs107

have become a critical focus. Initial studies showed108

that LLMs could perform basic reasoning tasks us- 109

ing meticulously crafted prompts, such as linguis- 110

tic analysis (Chen et al., 2021) and commonsense 111

inference (Latcinnik and Berant, 2020; Shwartz 112

et al., 2020). To name a few, Chain-of-Thought 113

(CoT) (Wei et al., 2022b) prompting explicitly 114

guides LLMs through step-by-step reasoning, en- 115

abling them to decompose complex problems into 116

manageable intermediate reasoning steps. Tree- 117

of-Thought (ToT) (Yao et al., 2023a) prompting 118

introduces a hierarchical structure to reasoning tra- 119

jectories, allowing models to explore multiple so- 120

lution paths. Furthermore, self-refine (Shinn et al., 121

2023; Madaan et al., 2023) prompting incorporates 122

verification checkpoints, where models validate in- 123

termediate results before advancing. 124

2.2 Reasoning LLMs 125

With the advancement of LLMs, model capabili- 126

ties have steadily improved (Chen and Varoquaux, 127

2024; Bansal et al., 2024). Models with approx- 128

imately 7B to 14B parameters show remarkable 129

performance, and their fine-tuning costs have be- 130

come increasingly feasible. This has led to the 131

emergence of specialized small models tailored 132

for mathematical and code-related reasoning tasks 133

such as Qwen-Math4, Qwen-Coder5, and Macro- 134

o1 (Zhao et al., 2024). 135

Recent studies (Shridhar et al., 2023; Yan et al., 136

2023; Liang et al., 2024; Yuan et al., 2024) have 137

investigated fine-tuning methods to enhance the 138

reasoning abilities of smaller models. By utilizing 139

intermediate reasoning steps, LLMs can iteratively 140

refine their outputs (Jiang et al., 2024; Wang et al., 141

2024; Chen et al., 2025). This methodology facili- 142

tates the development of small reasoning models, 143

particularly following the release of stronger rea- 144

soning models such as DeepSeek-R1 (DeepSeek- 145

AI, 2025) and QwQ-32B6. 146

2.3 Alignment Training 147

To effectively train LLMs, a reinforcement learn- 148

ing stage is typically employed after the super- 149

vised fine-tuning (SFT) phase, which serves to 150

improve the model’s alignment towards certain 151

objectives. Reinforcement learning from human 152

feedback (RLHF) (Ouyang et al., 2022) has shown 153

effectiveness in aligning LLMs with human feed- 154

back. A potential drawback of RLHF is the ex- 155

4https://qwenlm.github.io/blog/qwen2.5-math/
5https://qwenlm.github.io/blog/qwen2.5-coder-family/
6https://qwenlm.github.io/blog/qwq-32b/
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Figure 2: Overview of our CRV+CogPO framework, consisting of two synergistic phases: (1)SFT training with
cognitively aligned data generated by CRV system, and (2) CogPO: dynamic β adjustment preference optimization
training using cognitive reasoning pairs with different quality gaps. Disclaimer: We use the Qwen logo as our
backbones; however, any LLMs with sufficient capabilities can serve as the agents as well.

plicit need for a reward model and the unstable156

RL training process. Direct preference optimiza-157

tion (DPO) (Rafailov et al., 2023) trains LLMs158

based on chosen and rejected responses. Since159

the introduction of DPO, several approaches have160

been proposed to enhance its efficacy and efficiency.161

For example, CPO (Xu et al., 2024) extends DPO162

to avoid generating adequate but not perfect ma-163

chine translations. SimPO (Meng et al., 2024) sim-164

plifies DPO by eliminating the reference model.165

KTO (Ethayarajh et al., 2024) and NCA (Chen166

et al., 2024) develop novel optimization goals that167

leverage unpaired data for model alignment. Fur-168

thermore, SPPO (Wu et al., 2024b) employs on-169

policy sampling to generate preference data, out-170

performing off-policy DPO methods. In our work,171

we extend DPO to align reasoning abilities with the172

cognitive limits of small LLMs.173

3 Proposed Approach174

3.1 Overall Framework175

Our framework consists of two synergistic phases:176

(1) SFT with cognitively aligned data generated177

by CRV system, and (2) CogPO with dynamic178

β adjustment. As illustrated in Figure 2, the179

CRV system first refines data tailored to the cog-180

nitive capacity of smaller LRMs for SFT training,181

and CogPO further aligns reasoning preferences182

through suitability-aware optimization using pairs183

with different quality gaps. This design ensures184

that the model initially acquires capacity-matched185

reasoning patterns, followed by the refinement of 186

its decision boundaries through gap-sensitive learn- 187

ing.7 188

3.2 The CRV System 189

The CRV system employs LLM agents to construct 190

the SFT dataset aligned with the cognitive limits of 191

smaller models to be trained. The input to CRV sys- 192

tem is an initial training set DSFT = {(x, y, rorig)}, 193

where the three elements denote the problem, the 194

correct answer, and the original reasoning process 195

generated by any large LRMs (e.g., DeepSeek-R1), 196

which has been validated as correct. The follow- 197

ing provides descriptions of each agent in the CRV 198

system. 199

3.2.1 Critic 200

An LLM agent first evaluates the appropriateness 201

of reasoning processes for the target small LLM 202

(denoted as πbase). For each (x, y, rorig) ∈ DSFT, 203

the Critic assesses rorig using the criteria of Cog- 204

nitive Matching Degree, where the Critic checks 205

whether the complexity and difficulty of rorig aligns 206

with the cognitive capacity of πbase. Specifically, 207

the Critic classifies the reasoning processes into 208

three subsets: i) Deasy : (x, y, reasy), cases where 209

the reasoning process is overly terse, making it dif- 210

ficult for πbase to follow; ii) Dmed : (x, y, rmed), 211

7The decision boundary refers to the model’s ability to
judge whether the produced CoT is correct and aligns with its
own cognitive capabilities, enabling it to successfully solve
problems following its CoT.
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Level/Model Size 1.5B 7B 32B

Easy 195 80 19
Medium 296 389 354
Hard 9 31 127

Table 1: Complexity distributions of CoTs generated by
different sizes of DeepSeek-R1-Distill-Qwen models.

cases with appropriate steps that enable success-212

ful problem solving; and iii) Dhard : (x, y, rhard),213

cases with overly redundant or excessively complex214

reasoning steps that exceed the comprehension of215

πbase, making it extremely prone to fail to guide216

πbase in solving x.217

Remarks. An intuitive approach would be to use218

πbase itself as the Critic. However, due to its small219

parameter size (e.g., 7B), certain CoTs exceed220

πbase’s comprehension, rendering it incapable of221

reliable complexity classification. Thus, we lever-222

age the same LLM for the Rethinker (denoted as223

πlarge) to serve as the Critic, forcing it to “think”224

from the perspective of the small model πbase. A225

detailed analysis of the Critic choices is provided226

in the Experiments 4.3 and Appendix A.5.227

Hypothesis Verification. To further verify that the228

complexity levels of CoTs are closely related to the229

cognitive capacities of reasoning models, we con-230

duct an experiment in which we evaluate DeepSeek-231

R1-Distill-Qwen-1.5B/7B/32B on MATH500, col-232

lecting each model’s outputs. We employ the233

Critic to rate the level of model’s CoT outputs;234

each CoT is evaluated three times, and the final235

rating is determined by majority vote. For each236

model, we quantify the distribution of these CoTs237

across different complexity levels in Table 1. As238

shown, DeepSeek-R1-Distill-Qwen-1.5B yields the239

largest number of simple CoTs, while DeepSeek-240

R1-Distill-Qwen-32B generates the greatest num-241

ber of difficult CoTs.242

These findings demonstrate that the complexity243

of CoTs escalate as the model size increases, sug-244

gesting that larger models possess higher reason-245

ing and cognitive capacities. Consequently, overly246

terse or complex CoTs may not be suitable for247

training models with lower cognitive abilities. It248

is therefore essential to use CoTs that align with249

the model’s cognitive trajectory to improve its rea-250

soning capabilities, a strategy akin to “teaching251

according to the student’s ability.”252

3.2.2 Rethinker253

An LLM agent πlarge is tasked with rewriting rea-254

soning processes to achieve cognitive alignment.255

For each (x, y, reasy) ∈ Deasy, the Rethinker ex- 256

pands reasy by adding necessary steps for easier un- 257

derstanding, i.e., reasy* = πlarge(x, y, reasy). Simi- 258

larly, for each (x, y, rhard) ∈ Dhard, the Rethinker 259

simplifies rhard by removing redundancies or using 260

simpler methods to solve the problem grounded 261

in the correct answer: rhard* = πlarge(x, y, rhard). 262

Cases of the rewriting process of the Rethinker are 263

shown in Tables 11 and 12. 264

3.2.3 Verifier 265

Finally, we leverage the LLM agent πbase to val- 266

idate the correctness of rmed, reasy*, and rhard* in 267

order to preserve the high quality of the dataset. 268

It predicts whether πbase can derive the correct an- 269

swer y from the rewritten thoughts reasy* or rhard*. 270

Note that rmed has already been validated as cor- 271

rect in the original dataset, and we send rmed to the 272

Verifier to further ensure data quality, 273

After verification, incorrect cases are sent back 274

to the Rethinker to be continuously rewritten until 275

they pass verification. In the implementation, cases 276

that fail to pass verification after three iterations 277

are discarded. For the cases that pass verification, 278

we invoke the Critic to make the judgment again 279

(please refer to Figure 2 for the algorithmic flow). 280

The final SFT dataset is composed of verified 281

medium-level data: DSFT* = Dmed ∪ Deasy* ∪ 282

Dhard*, where Dmed denotes the verified medium- 283

level data, and Deasy* and Dhard* represent the 284

rewritten versions of Deasy and Dhard that have 285

passed verification and have been re-rated as 286

medium by the Critic, respectively. DSFT* serves 287

as the SFT training set in the CRV stage. Prompt 288

templates used in CRV system are provided in Ap- 289

pendix C. 290

3.3 Cognitive Preference Optimization 291

The CogPO algorithm aligns CoT processes of 292

smaller LLMs with their inherent cognitive capaci- 293

ties, following the SFT training using CRV system. 294

3.3.1 Preliminaries 295

Briefly speaking, the CogPO algorithm is extended 296

from DPO (Rafailov et al., 2023) and its vari- 297

ants. Let yw and yl be the chosen and rejected 298

responses for an instruction x (not restricted to 299

reasoning problems addressed in this work), re- 300

spectively. We further denote πθ as the model to be 301

optimized after SFT and πref as the reference model. 302

DPO seeks to maximize the following margin: 303

Mβ(x, yw, yl) = β ·
(
log πθ(yw|x)

πref(yw|x) − log πθ(yl|x)
πref(yl|x)

)
304
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Figure 3: An illustration of CogPO, showing the differ-
ent preference gaps between CoT pairs and the corre-
sponding mini-tasks.

where β is a temperature hyperparameter. Based305

on Mβ(x, yw, yl), the DPO loss is defined as:306

LDPO = −E(x,yw,yl)∼D log σ(Mβ(x, yw, yl)).
(1)307

The settings of β are critical to the performance of308

DPO. β-DPO (Wu et al., 2024a) further adjusts β309

according to Mβ(x, yw, yl), either at the instance310

level or batch level, allowing the model to adapt β311

based on the reward differential of the input data.312

3.3.2 Algorithmic Description313

As noted, DPO and β-DPO do not require any prior314

knowledge of how the model learns the user’s pref-315

erences. We suggest that this type of prior knowl-316

edge is critical for training better smaller reasoning317

models, as the cognitive trajectories of large and318

small models often differ (Li et al., 2022; Zhang319

et al., 2024; Hu et al., 2024), which may not be320

directly reflected in the reward differential. We321

propose CogPO to align reasoning preferences by322

encoding more prior knowledge and continuously323

training on a series of mini-tasks.324

We leverage the Rethinker in CRV to also gen-325

erate incorrect reasoning processes when asked326

to rewrite the original thought rorig (prompt tem-327

plate is provided in Appendix C). The incorrect328

thoughts are denoted as r̃med, r̃easy, and r̃hard, based329

on their origins from Dmed, Deasy, and Dhard. These330

thoughts contain factual errors or invalid reason-331

ing steps, which can mislead πbase, rendering it332

impossible to solve x. Thus, we categorize the333

properties of all the thoughts we have collected334

into the following three types: i) rmed, reasy*, and 335

rhard*: medium-level reasoning processes that are 336

both correct and cognitively suitable for πbase; ii) 337

reasy and rhard: easy or hard thoughts that are cor- 338

rect but unsuitable for πbase; iii) r̃med, r̃easy, and 339

r̃hard: incorrect reasoning processes with logical 340

flaws or invalid reasoning steps (regardless of the 341

difficulty levels). To define the mini-tasks used for 342

CogPO training, we consider the preference gaps 343

in these three types of CoT pairs as follows: 344

1. Small Gap Mini-task: The pairs are (reasy*, 345

reasy) and (rhard*, rhard). Both are correct but differ 346

in complexity (suitable vs. unsuitable for πbase). 347

We treat reasy* and rhard* as chosen reasoning pro- 348

cesses (rw), and reasy and rhard as rejected (rl). 349

2. Medium Gap Mini-task: The pairs are (reasy, 350

r̃easy) and (rhard, r̃hard). The former are correct but 351

unsuitable, while the latter are completely incorrect. 352

As correctness is more important than suitability 353

for our model, the preference gap of this mini-task 354

should be higher than that in the previous case. 355

For this mini-task, reasy and rhard are treated as rw, 356

while r̃easy and r̃hard are treated as rl. 357

3. Large Gap Mini-task: The pairs are (rmed, 358

r̃med), (reasy*, r̃easy), and (rhard*, r̃hard). Intuitively, 359

the preference gaps should be the largest between 360

suitable and correct thoughts and incorrect ones. 361

Here, rmed, reasy*, and rhard* are treated as rw, 362

while r̃med, r̃easy, and r̃hard are treated as rl. 363

Following our modeling framework, each train- 364

ing instance (x, rw, rl) receives its specific β value, 365

as illustrated in Figure 3. The CogPO objective 366

function aggregates these preferences: 367

LCogPO = −E(x,rw,rl)∼D log σ(MβCogPO(x, rw, rl)),
(2) 368

where βCogPO is selected from {βS, βM, βL}, de- 369

pending on the specific types of mini-tasks (with 370

βS < βM < βL, corresponding to the three gaps). 371

Overall, our CogPO algorithm enables granular 372

preference learning: strong regularization (βL) for 373

validity discrimination, moderate guidance (βM) 374

for suitability alignment, and subtle refinement 375

(βS) for reasoning style adaptation. This design 376

provides more control over the alignment process, 377

leading to further improvements on the basis of 378

SFT (using CRV system). 379

Remarks. CogPO can be naturally combined with 380

β-DPO (Wu et al., 2024a). We can redefine the β 381

values {βS, βM, βL} as follows: β∗
i = βi+α·(Mi− 382

M0) · βi where βi is chosen from {βS, βM, βL} 383

based on the corresponding gap type, Mi is the 384
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Dataset/Model Zero-shot SFT CRV+SFT DPO β-DPO SimPO CogPO

AIME2024 10.0 20.0 26.7 23.3 23.3 26.7 30.0
MATH-500 73.6 80.0 84.0 83.4 83.8 84.2 84.4
GSM8K 89.5 92.3 92.7 92.6 93.0 92.6 93.3
GPQA Diamond 33.3 37.4 40.9 40.0 37.4 40.9 40.9
LiveCodeBench V2 30.7 31.3 34.4 34.4 35.8 36.2 36.6
MMLU 71.9 76.1 76.5 76.1 76.0 76.5 76.5
OlympiadBench (math-en) 40.1 43.6 45.8 45.7 46.5 46.0 46.6

Table 2: Performance comparison of various training methods. The LLM backbone is Qwen2.5-7B-Instruct, and the
training set is Bespoke-Stratos-17k. Results are shown for zero-shot (without further training), SFT, CRV+SFT, DPO,
β-DPO, SimPO, and CogPO. DPO, β-DPO, SimPO, and CogPO are conducted on the same model checkpoints of
CRV+SFT, using the same preference pair dataset. The metrics represent scores for these tasks, with the best results
for each dataset in each group marked in bold and the second-best underlined.

Dataset/Model LLaMA-O1 Macro-o1 Bespoke-Stratos-7B Ours OpenThinker-7B Ours

Training Set Size 332K 60K 17K 17K 114K 114K

AIME2024 3.3 6.7 20.0 30.0 31.3 43.3
MATH500 28.6 38.4 82.0 84.4 83.0 88.4
GPQA Diamond 26.3 31.8 37.8 40.9 42.4 42.9
LiveCodeBench V2 1.6 24.9 36.1 36.6 39.9 46.4

Table 3: Comparison between our model and other small reasoning models in the open-source community. Specif-
ically, we train two versions using our approach on Bespoke-Stratos-17k and OpenThoughts-114k, respectively,
where the two training sets are the same with Bespoke-Stratos-7B and OpenThinker-7B, respectively.

instance-level reward differential, and M0 is a pre-385

defined threshold as in (Wu et al., 2024a).8386

4 Experiments387

To evaluate the effectiveness of the CRV framework388

and the CogPO algorithm, we conduct a series of389

experiments on challenging reasoning benchmarks.390

Due to space limitation, datasets and experimental391

settings are shown in the Appendix A.1 and A.2.392

4.1 Main Experimental Results and Ablations393

We choose Bespoke-Stratos-17k as the training set.394

Table 2 presents the results of our CRV framework395

and the CogPO algorithm on various reasoning396

benchmarks. CRV+SFT surpasses direct SFT on all397

benchmarks. Building on CRV+SFT, CogPO fur-398

ther enhances the model’s reasoning capability, sur-399

passes other preference-optimization algorithms,400

and ultimately achieving the most outstanding per-401

formance, demonstrating its ability to align the402

model’s reasoning processes with its cognitive ca-403

pacities. These results reveal that our CRV+CogPO404

framework effectively enhances the reasoning ca-405

pabilities of smaller models, outperforming other406

traditional methods by a large margin.407

8In our experiment, the combination does not yield sub-
stantial improvements, as prior knowledge is more important
for our task. Hence, we stick to the usage of LCogPO.

4.2 Comparison Against Other Models 408

We compare our trained 7B model with other 409

models released in the open-source community. 410

We consider two reasoning LLMs available be- 411

fore the launch of DeepSeek-R1, namely Macro- 412

o1 (Zhao et al., 2024) and LLaMA-O19. We 413

also compare other models trained on datasets 414

distilled from DeepSeek-R1, including Bespoke- 415

Stratos-7B10 and OpenThinker-7B11. Using our 416

CRV+CogPO framework, we also train two mod- 417

els on the Bespoke-Stratos-17k and OpenThoughts- 418

114k training sets, respectively. Thus, it is fair 419

to compare our method against those of Bespoke- 420

Stratos-7B and OpenThinker-7B. The results, along 421

with the sizes of the training sets, are shown 422

in Table 3. It can be observed that employing 423

DeepSeek-R1-generated CoT data yields superior 424

results. At the algorithmic level, both Bespoke- 425

Stratos-7B and our model are trained on the 17K 426

CoTs from DeepSeek-R1. Under identical data 427

conditions, our model significantly outperforms 428

Bespoke-Stratos-7B across all benchmarks and 429

achieves performance comparable to OpenThinker- 430

7B, which is trained on 114K CoTs from DeepSeek- 431

R1. Moreover, when trained on the same dataset 432

9https://huggingface.co/SimpleBerry/LLaMA-O1-
Supervised-1129

10https://huggingface.co/bespokelabs/Bespoke-Stratos-7B
11https://huggingface.co/open-thoughts/OpenThinker-7B
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Model Backbone (The Critic) AIME2024 MATH-500 GPQA-D GSM8K LCB V2 OlympiadBench

Qwen2.5-7B-Instruct 13.3 80.2 40.9 92.3 30.5 43.9
Qwen2.5-32B-Instruct 23.3 82.2 39.9 92.6 33.3 45.1
Qwen2.5-72B-Instruct 20.0 81.8 36.4 92.7 30.5 42.0
DeepSeek-R1-Distill-Qwen-32B 26.7 84.0 40.9 92.7 34.4 45.8

Table 4: Comparison using different backbones as the Critic. All the results are produced using CRV+SFT without
CogPO on Bespoke-Stratos-17k.

Dataset/Model Easy Medium Hard

AIME2024 13.3 23.3 16.7
MATH500 75.4 82.8 78.2
GPQA-D 34.3 37.4 33.3
LCB V2 31.9 36.2 32.5

Table 5: Experimental results on training data of differ-
ent complexity levels.

as OpenThinker-7B, our model substantially sur-433

passes OpenThinker-7B on all benchmarks. These434

findings demonstrate that, given the same data, our435

CRV + CogPO training framework exhibits supe-436

rior performance, confirming its effectiveness.437

4.3 Study on Choices of the Critic438

In the previous section, we claimed that using the439

small target LLM πbase as the Critic does not neces-440

sarily produce satisfactory results due to its limited441

parameter size. In contrast, larger LLMs πlarge can442

“think like small models” better. The results of us-443

ing different backbones as the Critic are shown in444

Table 4, with the backbones for the Rethinker and445

the Verifier unchanged. From the results, we can446

see that they confirm our findings, as larger mod-447

els consistently perform better than the 7B model448

in almost all tasks. Among the three large agents,449

DeepSeek-R1-Distill-Qwen-32B exhibits the best450

performance based on majority voting across all451

testing sets. A detailed and in-depth analysis of the452

selection of the Critic is provided in Appendix A.5.453

4.4 Training with CoT Datasets of Different454

Complexity Levels455

To further investigate whether medium-level data456

are indeed the most suitable for base model, we457

conduct experiments on the OpenThoughts-114K458

dataset. We used the Critic to rate all CoTs in the459

dataset, then randomly sampled 10K CoTs from460

each of the derived easy, medium, and hard subsets461

to construct three training sets. We then perform462

SFT with Qwen2.5-7B-Instruct on these three train-463

ing sets under identical configurations. The results464

are shown in Table 5, indicating that when the num-465

Dataset/Model SFT w. C w. CR w. CRV

AIME2024 20.0 23.3 26.7 26.7
MATH500 80.0 83.4 83.2 84.0
GPQA-D 37.4 38.4 39.9 40.9
LCB V2 31.3 34.3 34.1 34.4

Table 6: Ablation results on the CRV system.

ber of training data is the same, the model trained 466

on the medium subset achieves the highest scores, 467

fully supporting our hypothesis. The CoTs in the 468

easy and hard sets are either too terse or overly 469

complex, preventing the base model from effec- 470

tively comprehending all CoTs in those sets. In 471

contrast, the medium subset data align with the 472

model’s cognitive capabilities and thus yield the 473

best results. 474

4.5 Study on Effectiveness of Critic, 475

Rethinker and Verifier 476

To further explore the collaborative mechanism 477

within the CRV system and the individual roles and 478

contributions of each module, we conduct extensive 479

ablation experiments on the Bespoke-Stratos-17k 480

dataset. Table 6 presents our ablation results. The 481

“SFT” row reports results from directly performing 482

SFT on the original dataset without any CRV inter- 483

vention; the “w. C” row shows performance when 484

only the Critic is applied before SFT, using only 485

the traces rated as medium by the Critic for SFT; 486

the “w. CR” row indicates results when both the 487

Critic and the Rethinker participate prior to SFT, 488

utilizing the medium-rated traces and the refined 489

easy/hard traces that have not yet been verified; the 490

“w. CRV” row reflects outcomes when the Critic, 491

Rethinker, and Verifier are all applied. 492

As the Critic, Rethinker, and Verifier participate 493

sequentially, the model’s reasoning ability exhibits 494

a progressively improving trend, which clearly il- 495

lustrates the role of each component. Notably, “w. 496

CR” experiences a performance drop on MATH500 497

and LCB V2, indicating that omitting the Verifier 498

after the Rethinker’s refinement could impair the 499

model’s reasoning ability. Therefore, each com- 500

ponent of the CRV system plays an indispensable 501
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(a) Qwen2.5-3B-Instruct (b) Qwen2.5-14B-Instruct

Figure 4: Experimental results of different sizes of
Qwen2.5 models on AIME2024, MATH500, GPQA
Diamond, and LiveCodeBench V2.

role. To achieve optimal performance, we recom-502

mend processing the data using the complete CRV503

system.504

4.6 Study on Model Scales505

To study the effectiveness of different parame-506

ter sizes on the student models, we further re-507

port the performance of Qwen2.5-3B-Instruct and508

Qwen2.5-14B-Instruct. The experimental settings509

are identical to those of Qwen2.5-7B-Instruct. The510

results are presented in Figure 4. We observe that511

our method is also effective across different model512

scales. An interesting observation is that the im-513

provement is more significant in Qwen2.5-14B-514

Instruct compared to Qwen2.5-3B-Instruct. This515

is because, even when we leverage the CRV sys-516

tem to rewrite the CoTs, the large capacity gap517

between the teacher and student models makes it518

more challenging for Qwen2.5-3B-Instruct to cap-519

ture the CoTs through SFT. This finding is also520

consistent with the recently discovered “distillation521

scaling law” (Busbridge et al., 2025).522

4.7 Study on Other Model Backbones523

To evaluate the universality of the proposed ap-524

proach, we perform additional experiments on mul-525

tiple backbones beyond the Qwen2.5 series on526

Bespoke-Stratos-17k dataset. Figure 5 demon-527

strates that, for both LLaMA and Mistral series,528

our approach achieves notable performance gains529

over the direct SFT baseline across diverse math-530

ematical and coding tasks. These results indicate531

that the CRV+CogPO framework enables seamless532

adaptation to other backbones, demonstrating the533

universality of our approach on various LLM back-534

bones, which also shows the potential of our work535

to produce stronger models based on other LLMs.536

(a) Llama3.1-8B-Instruct (b) Mistral-7B-V0.3

Figure 5: Experimental results of different model
series (Llama3.1-8B-Instruct, Mistral-7B-V0.3) other
than Qwen2.5 on AIME2024, MATH500, GPQA Dia-
mond, and LiveCodeBench V2.

Figure 6: Impact of different β on AIME2024, GPQA
Diamond, LiveCodeBench V2 and OlympiadBench.

4.8 Hyper-parameter Analysis 537

To evaluate the impact of β values in CogPO, we 538

perform a series of experiments with varying β 539

values to assess the algorithm’s effectiveness. As 540

shown in Figure 6, the highest performance is at- 541

tained when assigning tailored β values to samples 542

based on their specific gaps, which is a core princi- 543

ple of the CogPO algorithm. 544

4.9 Case Studies 545

Due to space limitations, case studies are shown in 546

the appendix. They clearly show how our approach 547

can effectively expand or simplify the reasoning 548

processes based on the Critic. 549

5 Conclusion and Future Work 550

In this paper, we present the CRV framework where 551

we leverage the strengths of LLM agents to cri- 552

tique, refine, and verify CoT outputs for optimizing 553

CoT training sets. The CogPO algorithm further 554

aligns model outputs with their inherent cognitive 555

capacities, improving the performance on several 556

challenging reasoning tasks. In the future, we will 557

i) train and release stronger small models using 558

larger CoT datasets; ii) improve the effectiveness 559

of the CRV framework, especially for much smaller 560

models; and iii) investigate our approach for other 561

domain-specific applications, such as medical diag- 562

nosis and legal reasoning. 563
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Limitations564

While our proposed framework shows promising565

results in enhancing the reasoning capabilities of566

smaller LLMs, several limitations still remain. The567

CRV framework relies heavily on the contributions568

of larger models refining the CoT output. This569

dependency may create challenges in situations570

where access to larger models is restricted, or these571

larger models generate incorrect results. In ad-572

dition, although our framework is designed for573

smaller LLMs, there remains a ceiling on their574

performance. By nature, smaller models inherently575

have reduced capacity to encode complex informa-576

tion and handle nuanced reasoning tasks, which577

may limit their effectiveness in certain scenarios.578

Ethical Considerations579

Our work is fully methodological; hence, there are580

no direct ethical issues. However, smaller models581

trained on data distilled from larger ones might in-582

herit or exacerbate biased outputs, which can still583

influence outcomes. We suggest that continuous584

evaluation of trained LLMs based on ethical guide-585

lines is indispensable.586
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Dataset Size

AIME2024 30
MATH-500 500
GSM8K 1319
GPQA Diamond 198
LiveCodeBench V2 511
MMLU 14042
OlympiadBench (math-en) 674

Table 7: Testing set statistics.

A Supplementary Experiments873

A.1 Datasets874

875

In our experiments, we evaluate our work on sev-876

eral benchmarks, including AIME202412, MATH-877

500 (Lightman et al., 2023), GSM8K (Cobbe878

et al., 2021), GPQA Diamond (Rein et al.,879

2023), LiveCodeBench V2 (Jain et al., 2024),880

MMLU (Hendrycks et al., 2021), and Olympiad-881

Bench (math-en) (He et al., 2024). The sizes of our882

testing sets are summarized in Table 7.883

For our training set DSFT*, we leverage Bespoke-884

Stratos-17k13, which contains 17K tuples of ques-885

tions, reasoning processes, and answers directly886

distilled from DeepSeek-R1 (DeepSeek-AI, 2025).887

We also utilize two released CoT datasets to con-888

duct supplementary experiments. The first one is889

Sky-T1-data-17k14, which is distilled from QwQ-890

32B-Preview, whose reasoning abilities are re-891

ported to be weaker than those of DeepSeek-R1.892

The second one is OpenThoughts-114k15, which893

is distilled from DeepSeek-R1 and verified using894

a data curation recipe. We have chosen not to895

use some previously released CoT datasets (e.g.,896

OpenLongCoT-SFT16) due to their significantly897

weaker reasoning abilities, while some benchmarks898

(e.g., AIME2024, OlympiadBench) are extremely899

challenging.900

A.2 Experimental Details901

In our work, we utilize Qwen2.5-7B-Instruct as the902

default model backbone and extend our evaluation903

to Llama3.1-8B-Instruct (Dubey et al., 2024) and904

12https://maa.org/math-competitions/american-
invitational-mathematics-examination-aime

13https://huggingface.co/datasets/bespokelabs/Bespoke-
Stratos-17k

14https://github.com/NovaSky-AI/SkyThought
15https://huggingface.co/datasets/open-

thoughts/OpenThoughts-114k
16https://huggingface.co/datasets/SimpleBerry/OpenLongCoT-

SFT

Hyperparameter Value

CRV Stage

Batch size 96
Learning rate 1e-5
Learning epoch 3.0

CogPO Stage

Batch size 96
Learning rate 5e-7
Learning epoch 1.0

SFT (Baseline)

Batch size 96
Learning rate 1e-5
Learning epoch 3.0

DPO (Baseline)

Batch size 96
Learning rate 5e-7
Learning epoch 1.0
β 0.1

SimPO (Baseline)

Batch size 96
Learning rate 5e-7
Learning epoch 1.0
β 2.0
γ 0.3

Table 8: Training hyperparameters.

Mistral-7B-Instruct-v0.3 (Jiang et al., 2023), along 905

with other sizes of Qwen2.5 models, to validate 906

the generalizability of our algorithm across diverse 907

model architectures and sizes. We first establish 908

a baseline by assessing the model’s zero-shot ca- 909

pabilities. Subsequent experiments leverage this 910

result to quantify the performance improvements 911

attributable to CRV and CogPO. During the CRV 912

phase, the same generation hyperparameters are 913

applied to the Critic, Rethinker, and Verifier for 914

inference: temperature T = 0.7, top_p = 0.9, and 915

top_k = 50. The default backbone is DeepSeek- 916

R1-Distill-Qwen-32B, while we test other back- 917

bone choices in the experiments. For CogPO train- 918

ing, the default β settings are: βS = 0.1, βM = 0.2, 919

and βL = 0.5. Training details for model training 920

and baselines are shown in Table 8. 921

On the Bespoke-Stratos-17k dataset, for the 3B 922

model, we use a single node with 8 A800 GPUs 923

(80GB), with an approximate training time of 4 924

hours. For the 7B model, we use a single node 925

with 8 A800 GPUs (80GB), with a training time 926

of about 5 hours. For the 14B model, we use 4 927

nodes, each with 8 A800 GPUs (80G), resulting in 928

a training time of approximately 14 hours. 929
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Dataset/Model Zero-shot SFT Ours

AIME2024 10.0 16.7 20.0
MATH-500 73.6 73.2 77.0
GPQA Diamond 33.3 28.8 36.9
LiveCodeBench V2 30.7 20.9 33.3

Table 9: Performance comparison using Sky-T1-data-
17k as the training set.

Dataset/Model Zero-shot SFT Ours

AIME2024 10.0 31.3 43.3
MATH-500 73.6 83.0 88.4
GPQA Diamond 33.3 42.4 42.9
LiveCodeBench V2 30.7 39.9 46.4

Table 10: Performance comparison using
OpenThoughts-114k as the training set.

A.3 Results on Weaker CoT Dataset930

To demonstrate that our approach is truly superior931

to vanilla SFT over CoT datasets, we conduct an ex-932

periment on the Sky-T1 dataset, which is relatively933

weaker than Bespoke-Stratos-17k due to the choice934

of the teacher model (i.e., QwQ-32B-Preview) and935

the data curation pipeline. The results are presented936

in Table 9. As shown, in some cases, the SFT base-937

line cannot even beat the zero-shot performance.938

This negative finding is also consistent with their939

own blog regarding the model size and data qual-940

ity17. Nonetheless, by comparing our method with941

the SFT baseline, we can observe clear improve-942

ment, which demonstrates that our approach has943

the efficacy to enhance the reasoning abilities of944

small models in various scenarios.945

A.4 Results on Larger CoT Dataset946

We further evaluate the performance of our method947

using OpenThoughts-114k as the training set,948

which is much larger than other training sets. This949

dataset is distilled from DeepSeek-R1 and goes950

through several quality verification steps. The re-951

sults are presented in Table 10. It can be seen that952

our method ultimately exhibits exceptionally strong953

reasoning performance, significantly surpassing954

SFT on all benchmarks. This underscores the scal-955

ability and generalizability of our CRV+CogPO956

framework to larger datasets.957

A.5 Design Choice of the Critic958

An initial, straightforward approach is to employ959

πbase as the Critic. However, owing to the small960

17https://novasky-ai.github.io/posts/sky-t1/

model’s limited reasoning capability, it consistently 961

faces difficulties in distinguishing the difficulty lev- 962

els of CoTs effectively within our datasets. Note 963

that for CoTs rated as “easy” or “hard”, the CoT 964

is either overly concise (omitting necessary steps) 965

or excessively complex, rendering it unintelligible 966

to the small model and preventing it from follow- 967

ing the chain to arrive at the correct answer. Under 968

these circumstances, it is clearly unreasonable to re- 969

quire the small model to classify the CoT difficulty 970

that it cannot comprehend effectively. 971

Another intuitive CoT evaluation approach is to 972

input the problem and its corresponding CoT into 973

the small model and then verify whether the model 974

can arrive at the correct answer. However, apply- 975

ing this method directly would only partition CoT 976

processes into “correct” or “incorrect” categories. 977

For incorrect CoTs, this binary classification fails 978

to distinguish the root cause of errors (i.e., whether 979

the CoT is overly simplified or overly complex), 980

which is critical for determining appropriate refine- 981

ment strategies (e.g., expansion for overly simpli- 982

fied processes vs. simplification for overly complex 983

ones). 984

Consequently, we utilize the larger and stronger 985

LLM used in both the Rethinker and the Verifier (re- 986

ferred to as πlarge) to act as the Critic. This involves 987

guiding the large model to simulate the cognitive 988

approach of the smaller model, πbase. The prompt 989

template of the Critic is shown in Table 13. This 990

setting is akin to educational practices, where pro- 991

fessors, instead of students, customarily curate aca- 992

demic content across a spectrum of difficulty levels 993

due to their broader knowledge base. As shown in 994

Table 4, the experiments clearly demonstrate the 995

superior evaluative proficiency of the large model, 996

confirming its advantage in categorizing CoT com- 997

plexity from the perspective of the smaller model 998

efficiently. 999

B Case Studies 1000

Case studies are presented in Table 11 and Table 12. 1001

C Prompt Templates 1002

Prompt templates of the Critic, the Rethinker and 1003

the Verifier in our CRV system are shown in Ta- 1004

ble 13. 1005
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Problem Find the inverse of matrix A =

[
2 1
1 2

]
Answer A−1 = 1

3

[
2 −1
−1 2

]
Original reasoning process Calculate determinant det(A) = 3, thus A−1 = 1

3

[
2 −1
−1 2

]
(correct but unsuitable)

Extended reasoning process Compute determinant: 2× 2− 1× 1 = 3

(correct and suitable) Construct adjugate:
[
2 −1
−1 2

]
Normalize: A−1 = 1

3

[
2 −1
−1 2

]
Incorrect reasoning process Swap diagonal elements:

[
2 1
1 2

]
→

[
2 −1
−1 2

]

Table 11: Case study of how the reasoning process is extended.

Problem Find the area of a triangle with vertices at (0, 0), (3, 0), and (0, 4)

Answer 6

Original reasoning process Vector Representation: A⃗B =

(
3
0

)
, A⃗C =

(
0
4

)
(correct but unsuitable) Determinant Method: Area = 1

2

∣∣∣∣∣∣∣∣3 0
0 4

∣∣∣∣∣∣∣∣ = 1
2
(12) = 6

Simplified reasoning process Recognize right-angled triangle: Base = 3, Height = 4
(correct and suitable) Apply elementary formula: Area = 1

2
× Base × Height = 1

2
× 3× 4 = 6

Incorrect reasoning process Area = 1
2
(Sum of sides) = 1

2
(3 + 4 + 5) = 6

Table 12: Case study of how the reasoning process is simplified.
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Role Prompt Template

Critic You are a highly capable evaluator.
Your task is to assess the given reasoning process from the perspective of a small language model (e.g., 7B).
Specifically, determine whether the reasoning process provides sufficient detail for a small model to solve the
problem, or whether it is too terse (i.e., lacking critical details) or too complex (i.e., containing unnecessary or
confusing steps).
Complexity Definitions (from the perspective of a small model):
- Easy: The reasoning process is overly terse; it omits essential details that a small model needs to solve
the problem.
- Medium: The reasoning process is appropriately balanced, offering enough detailed guidance.
- Hard: The reasoning process is overly complex, with extraneous or convoluted steps that could hinder a small
model to follow it.
Output Format:
You must output exactly one word: easy, medium, or hard.

Rethinker You are a helpful assistant who is highly skilled at extending reasoning processes.
(easy) Given a problem ,its correct answer and its terse reasoning process, your task is to extend the reasoning process by

adding necessary details and intermediate steps so that a small language model (e.g., a 7B model) can follow the
extended reasoning process to solve the problem.
You should add necessary steps and details based on the correct answer.
You must output ONLY the extended reasoning process with no additional explanation or commentary.

Rethinker You are a helpful assistant who is highly skilled at simplifying reasoning processes.
(hard) Given a problem, its correct answer and its overly complex reasoning process, your task is to simplify the reasoning

process so that a small language model (e.g., a 7B model) can reliably follow the steps to solve the problem.
You should remove redundancies or use simpler method on the basis of correct answer.
You must output ONLY the simplified reasoning process with no additional explanation or commentary.

Verifier You are a highly capable Verifier.
Your task is to assess a given reasoning process based on a problem and its correct answer.
Specifically, determine whether the reasoning process is sufficient and accurate for you to reach the correct answer.
If the reasoning process correctly guides you to derive the the correct answer, output YES.
If the reasoning process fails to guide you to the correct answer, output NO.
You must output exactly one word: YES or NO.

Rethinker You are an assistant who is skilled at converting correct reasoning processes to incorrect reasoning processes.
(incorrect thought) Given a problem ,its answer and its correct reasoning process, your task is to corrupt the correct reasoning process

by introducing logical fallacies and misleading steps, so that a small language model (e.g., a 7B model) cannot
follow the incorrect reasoning process to solve the problem.
You must output ONLY the incorrect reasoning process with no additional explanation or commentary.

Table 13: Prompt templates for the CRV+CogPO framework.
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