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Abstract

The reasoning capabilities of large language
reasoning models (LRMs), such as OpenAI’s
ol and DeepSeek-R1, have seen substantial
advancements through deep thinking. How-
ever, these enhancements come with signifi-
cant resource demands, underscoring the need
for training effective small reasoning models.
A critical challenge is that small models pos-
sess different reasoning capacities and cog-
nitive trajectories compared with their larger
counterparts. Hence, directly distilling chain-
of-thought (CoT) results from large LRMs to
smaller ones can sometimes be ineffective and
often requires a substantial amount of anno-
tated data. In this paper, we first introduce
a novel Critique-Rethink-Verify (CRV) sys-
tem, designed for training smaller yet power-
ful LRMs. Our CRV system consists of mul-
tiple LLM agents, each specializing in unique
abilities: (i) critiquing the CoT qualities ac-
cording to the cognitive capabilities of smaller
models, (ii) rethinking and refining these CoTs
based on the critiques, and (iii) verifying the
correctness of the refined results. Based on the
CRYV system, we further propose the Cognitive
Preference Optimization (CogPO) algorithm to
continuously enhance the reasoning abilities
of smaller models by aligning their reasoning
processes with their cognitive capacities. Com-
prehensive evaluations on challenging reason-
ing benchmarks demonstrate the efficacy of our
CRV+CogPO framework, which outperforms
other methods by a large margin. !

1 Introduction

The remarkable progress in language reasoning
models (LRMs) has revolutionized NLP (Zhao
et al., 2023). Recently, leading models such as
OpenAl’s 01? and DeepSeek-R1 (DeepSeek-Al,

'Source codes, datasets and models will be released upon
paper acceptance.
*https://openai.com/o1/
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Figure 1: A motivation example. Large models (right)
apply vector-based algebraic abstraction to solve the
problem, while small models (left) employ simple for-
mulaic geometric decomposition. This trajectory mis-
match underscores the inefficacy of direct CoT distilla-
tion across models with substantial capacity gaps.

2025) have leveraged slow thinking to solve com-
plex tasks. Despite their impressive capabilities,
the scale of these models results in substantial com-
putational demands. Consequently, there is a grow-
ing need to train reasoning models with fewer pa-
rameters.

A straightforward approach to address this chal-
lenge is the direct distillation of Chain-of-Thought
(CoT) outputs (Wei et al., 2022a) or other deep
thoughts (such as Tree-of-Thought (Yao et al.,
2023b)) from larger LRMs to smaller ones. This
technique is widely applied to improve the capac-
ities of smaller LRMs (Hsieh et al., 2023; Shrid-
har et al., 2022; Li et al., 2023; Yue et al., 2024).
However, smaller models® inherently possess dif-
ferent reasoning capacities and cognitive trajec-
tories when solving problems compared to their
larger counterparts, as illustrated in Figure 1. Simi-
lar findings have also been presented in (Li et al.,
2022; Zhang et al., 2024; Hu et al., 2024; Li et al.,
2024). This phenomenon indicates that direct distil-
lation of CoTs from larger models can sometimes

3In this work, we regard smaller LLMs as decoder-only
language models typically with fewer than 10B parameters.



be ineffective due to the large capacity gap. Thus,
a natural question arises: How can we improve the
reasoning abilities of smaller LRMs to align with
their own cognitive capacity?

In this paper, we introduce “Critique-Rethink-
Verify” (CRV), a novel system to enhance the rea-
soning capabilities of smaller models. CRV lever-
ages multiple LLLM agents, each with specialized
functions and working in synergy. These functions
include (i) critiquing the CoT by considering the
cognitive limits of smaller LRMs, (ii) rethinking
and refining these CoTs, integrating the feedback
received from the previous critiques, and (iii) veri-
fying the accuracy and validity of the refined rea-
soning paths. Extending the direct preference opti-
mization (DPO) technique (Rafailov et al., 2023),
we further propose the cognitive preference opti-
mization (CogPO) algorithm to align the reasoning
process with the cognitive capacities of smaller
LRMs on the basis of CRV system. Ultimately, the
reasoning performance of smaller models can be
improved effectively.

In the experiments, the effectiveness of our ap-
proach is evaluated on several challenging rea-
soning benchmarks that are difficult for mod-
els with limited parameter sizes, such as AIME
2024, MATH-500 (Lightman et al., 2023), GPQA-
Diamond (Rein et al., 2023), and LiveCodeBench.
The results indicate that the small LRMs trained
using the CRV+CogPO framework achieve out-
standing reasoning performance. In summary, we
make the following major contributions:

* We present the CRV system for training small
yet powerful LRMs, leveraging multiple LLM
agents, each specializing in unique tasks.

* We propose the CogPO algorithm that continu-
ously enhances the reasoning abilities of small
models by aligning their reasoning processes
with their cognitive capacities.

e Evaluations on challenging benchmarks
demonstrate that the CRV+CogPO framework
significantly improves the reasoning perfor-
mance of small models, outperforming other
popular training methods.

2 Related Work

2.1 Prompting LL.Ms to Reason

Prompting strategies to improve reasoning in LLMs
have become a critical focus. Initial studies showed

that LLMs could perform basic reasoning tasks us-
ing meticulously crafted prompts, such as linguis-
tic analysis (Chen et al., 2021) and commonsense
inference (Latcinnik and Berant, 2020; Shwartz
et al., 2020). To name a few, Chain-of-Thought
(CoT) (Wei et al., 2022b) prompting explicitly
guides LLMs through step-by-step reasoning, en-
abling them to decompose complex problems into
manageable intermediate reasoning steps. Tree-
of-Thought (ToT) (Yao et al., 2023a) prompting
introduces a hierarchical structure to reasoning tra-
jectories, allowing models to explore multiple so-
lution paths. Furthermore, self-refine (Shinn et al.,
2023; Madaan et al., 2023) prompting incorporates
verification checkpoints, where models validate in-
termediate results before advancing.

2.2 Reasoning LLMs

With the advancement of LLMs, model capabili-
ties have steadily improved (Chen and Varoquaux,
2024; Bansal et al., 2024). Models with approx-
imately 7B to 14B parameters show remarkable
performance, and their fine-tuning costs have be-
come increasingly feasible. This has led to the
emergence of specialized small models tailored
for mathematical and code-related reasoning tasks
such as Qwen-Math*, Qwen-Coder>, and Macro-
ol (Zhao et al., 2024).

Recent studies (Shridhar et al., 2023; Yan et al.,
2023; Liang et al., 2024; Yuan et al., 2024) have
investigated fine-tuning methods to enhance the
reasoning abilities of smaller models. By utilizing
intermediate reasoning steps, LLMs can iteratively
refine their outputs (Jiang et al., 2024; Wang et al.,
2024; Chen et al., 2025). This methodology facili-
tates the development of small reasoning models,
particularly following the release of stronger rea-
soning models such as DeepSeek-R1 (DeepSeek-
Al 2025) and QwQ-32B°.

2.3 Alignment Training

To effectively train LLMs, a reinforcement learn-
ing stage is typically employed after the super-
vised fine-tuning (SFT) phase, which serves to
improve the model’s alignment towards certain
objectives. Reinforcement learning from human
feedback (RLHF) (Ouyang et al., 2022) has shown
effectiveness in aligning LLMs with human feed-
back. A potential drawback of RLHF is the ex-

*https://qwenlm.github.io/blog/qwen2.5-math/
Shttps://qwenlm.github.io/blog/qwen2.5-coder-family/
®https://qwenlm.github.io/blog/qwq-32b/
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Figure 2: Overview of our CRV+CogPO framework, consisting of two synergistic phases: (1)SFT training with

cognitively aligned data generated by CRV system, and

(2) CogPO: dynamic 3 adjustment preference optimization

training using cognitive reasoning pairs with different quality gaps. Disclaimer: We use the Qwen logo as our
backbones; however, any LLMs with sufficient capabilities can serve as the agents as well.

plicit need for a reward model and the unstable
RL training process. Direct preference optimiza-
tion (DPO) (Rafailov et al., 2023) trains LLMs
based on chosen and rejected responses. Since
the introduction of DPO, several approaches have
been proposed to enhance its efficacy and efficiency.
For example, CPO (Xu et al., 2024) extends DPO
to avoid generating adequate but not perfect ma-
chine translations. SimPO (Meng et al., 2024) sim-
plifies DPO by eliminating the reference model.
KTO (Ethayarajh et al., 2024) and NCA (Chen
et al., 2024) develop novel optimization goals that
leverage unpaired data for model alignment. Fur-
thermore, SPPO (Wu et al., 2024b) employs on-
policy sampling to generate preference data, out-
performing off-policy DPO methods. In our work,
we extend DPO to align reasoning abilities with the
cognitive limits of small LLMs.

3 Proposed Approach

3.1 Overall Framework

Our framework consists of two synergistic phases:
(1) SFT with cognitively aligned data generated
by CRV system, and (2) CogPO with dynamic
B adjustment. As illustrated in Figure 2, the
CRYV system first refines data tailored to the cog-
nitive capacity of smaller LRMs for SFT training,
and CogPO further aligns reasoning preferences
through suitability-aware optimization using pairs
with different quality gaps. This design ensures
that the model initially acquires capacity-matched

reasoning patterns, followed by the refinement of
its decision boundaries through gap-sensitive learn-
I

ing.

3.2 The CRYV System

The CRV system employs LLM agents to construct
the SFT dataset aligned with the cognitive limits of
smaller models to be trained. The input to CRV sys-
tem is an initial training set Dspr = {(, ¥, Torig) }»
where the three elements denote the problem, the
correct answer, and the original reasoning process
generated by any large LRMs (e.g., DeepSeek-R1),
which has been validated as correct. The follow-
ing provides descriptions of each agent in the CRV
system.

3.2.1 Critic

An LLM agent first evaluates the appropriateness
of reasoning processes for the target small LLM
(denoted as myase). For each (z,y, Torig) € DsFr,
the Critic assesses Torig using the criteria of Cog-
nitive Matching Degree, where the Critic checks
whether the complexity and difficulty of 74, aligns
with the cognitive capacity of my,s. Specifically,
the Critic classifies the reasoning processes into
three subsets: i) Deasy : (%, Y, Teasy), Cases where
the reasoning process is overly terse, making it dif-
ficult for mp,se to follow; i) Dpmed : (X, Y, Tmed)s

"The decision boundary refers to the model’s ability to
judge whether the produced CoT is correct and aligns with its
own cognitive capabilities, enabling it to successfully solve
problems following its CoT.



Level/Model Size | 1.5B 7B 32B

Easy 195 80 19
Medium 296 389 354
Hard 9 31 127

Table 1: Complexity distributions of CoTs generated by
different sizes of DeepSeek-R1-Distill-Qwen models.

cases with appropriate steps that enable success-
ful problem solving; and iii) Dharq : (%, Y, hard)>
cases with overly redundant or excessively complex
reasoning steps that exceed the comprehension of
Thases Making it extremely prone to fail to guide
Tase 1N solving x.

Remarks. An intuitive approach would be to use
Thase itself as the Critic. However, due to its small
parameter size (e.g., 7B), certain CoTs exceed
Thase S comprehension, rendering it incapable of
reliable complexity classification. Thus, we lever-
age the same LLM for the Rethinker (denoted as
Targe) tO serve as the Critic, forcing it to “think”
from the perspective of the small model Tpyge. A
detailed analysis of the Critic choices is provided
in the Experiments 4.3 and Appendix A.5.
Hypothesis Verification. To further verify that the
complexity levels of CoTs are closely related to the
cognitive capacities of reasoning models, we con-
duct an experiment in which we evaluate DeepSeek-
R1-Distill-Qwen-1.5B/7B/32B on MATHS500, col-
lecting each model’s outputs. We employ the
Critic to rate the level of model’s CoT outputs;
each CoT is evaluated three times, and the final
rating is determined by majority vote. For each
model, we quantify the distribution of these CoTs
across different complexity levels in Table 1. As
shown, DeepSeek-R1-Distill-Qwen-1.5B yields the
largest number of simple CoTs, while DeepSeek-
R1-Distill-Qwen-32B generates the greatest num-
ber of difficult CoTs.

These findings demonstrate that the complexity
of CoTs escalate as the model size increases, sug-
gesting that larger models possess higher reason-
ing and cognitive capacities. Consequently, overly
terse or complex CoTs may not be suitable for
training models with lower cognitive abilities. It
is therefore essential to use CoTs that align with
the model’s cognitive trajectory to improve its rea-
soning capabilities, a strategy akin to “teaching
according to the student’s ability.”

3.2.2 Rethinker

An LLM agent 7y is tasked with rewriting rea-
soning processes to achieve cognitive alignment.

For each (,9,7casy) € Deasy, the Rethinker ex-
pands 7easy by adding necessary steps for easier un-
derstanding, i.e., Tcasy* = Tlarge (T, Y Teasy). Simi-
larly, for each (x,y, "hard) € Dhard» the Rethinker
simplifies 7harg by removing redundancies or using
simpler methods to solve the problem grounded
in the correct answer: Thads = Tlarge(Z, Y5 Thard)-
Cases of the rewriting process of the Rethinker are
shown in Tables 11 and 12.

3.2.3 Verifier

Finally, we leverage the LLM agent 7y, to val-
idate the correctness of Tyed, Teasy*, and Thargs in
order to preserve the high quality of the dataset.
It predicts whether mp,se can derive the correct an-
swer y from the rewritten thoughts 7egsy+ OF Tharas.
Note that ryeq has already been validated as cor-
rect in the original dataset, and we send req to the
Verifier to further ensure data quality,

After verification, incorrect cases are sent back
to the Rethinker to be continuously rewritten until
they pass verification. In the implementation, cases
that fail to pass verification after three iterations
are discarded. For the cases that pass verification,
we invoke the Critic to make the judgment again
(please refer to Figure 2 for the algorithmic flow).

The final SFT dataset is composed of verified
medium-level data: Dspr+ = Dyed U Deasyr U
Dhardas, where Dyneq denotes the verified medium-
level data, and Deysy+ and Dyyq+ represent the
rewritten versions of Deysy and Dhyrg that have
passed verification and have been re-rated as
medium by the Critic, respectively. Dspr+ serves
as the SFT training set in the CRV stage. Prompt
templates used in CRV system are provided in Ap-
pendix C.

3.3 Cognitive Preference Optimization

The CogPO algorithm aligns CoT processes of
smaller LLMs with their inherent cognitive capaci-
ties, following the SFT training using CRV system.

3.3.1 Preliminaries

Briefly speaking, the CogPO algorithm is extended
from DPO (Rafailov et al., 2023) and its vari-
ants. Let y,, and y; be the chosen and rejected
responses for an instruction x (not restricted to
reasoning problems addressed in this work), re-
spectively. We further denote 7y as the model to be
optimized after SFT and 7 as the reference model.
DPO seeks to maximize the following margin:

Mga(, yuw,y1) = B- (logw — log 7o (y1]®) >

71'ref(yw |I) 71'ref(yl ‘x)
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Figure 3: An illustration of CogPO, showing the differ-
ent preference gaps between CoT pairs and the corre-
sponding mini-tasks.

where (3 is a temperature hyperparameter. Based
on Mpg(x, yw, Y1), the DPO loss is defined as:

Loro = —E (44, y)~p l0g o(Mp(2, Yuw, y1))-
()
The settings of (5 are critical to the performance of
DPO. -DPO (Wu et al., 2024a) further adjusts g3
according to Mg(x, yu, Y1), either at the instance
level or batch level, allowing the model to adapt 3
based on the reward differential of the input data.

3.3.2 Algorithmic Description

As noted, DPO and 5-DPO do not require any prior
knowledge of how the model learns the user’s pref-
erences. We suggest that this type of prior knowl-
edge is critical for training better smaller reasoning
models, as the cognitive trajectories of large and
small models often differ (Li et al., 2022; Zhang
et al., 2024; Hu et al., 2024), which may not be
directly reflected in the reward differential. We
propose CogPO to align reasoning preferences by
encoding more prior knowledge and continuously
training on a series of mini-tasks.

We leverage the Rethinker in CRV to also gen-
erate incorrect reasoning processes when asked
to rewrite the original thought r; (prompt tem-
plate is provided in Appendix C). The incorrect
thoughts are denoted as Ted, Teasy> and Thard, based
on their origins from Dped, Deasy, and Dhara. These
thoughts contain factual errors or invalid reason-
ing steps, which can mislead 7p,s, rendering it
impossible to solve . Thus, we categorize the
properties of all the thoughts we have collected

into the following three types: 1) Tmed, Teasy*, and
Tharg*: Medium-level reasoning processes that are
both correct and cognitively suitable for mpyge; ii)
Teasy and Tharq: €asy or hard thoughts that are cor-
rect but unsuitable for mpyge; 1i1) Tmeds Teasy> and
Thard: 1ncorrect reasoning processes with logical
flaws or invalid reasoning steps (regardless of the
difficulty levels). To define the mini-tasks used for
CogPO training, we consider the preference gaps
in these three types of CoT pairs as follows:
1. Small Gap Mini-task: The pairs are (7easy+,
Teasy) and ("hara+, Thard). Both are correct but differ
in complexity (suitable vs. unsuitable for mpyee).
We treat 7eqsy+ and rpaq+ as chosen reasoning pro-
cesses (7y), and Teysy and rpgq as rejected (ry).
2. Medium Gap Mini-task: The pairs are (7easy,
Teasy) and (Thard, Thard)- The former are correct but
unsuitable, while the latter are completely incorrect.
As correctness is more important than suitability
for our model, the preference gap of this mini-task
should be higher than that in the previous case.
For this mini-task, 7reasy and rpaq are treated as 7,
while 7Teysy and Tharq are treated as 7.
3. Large Gap Mini-task: The pairs are (ryed,
Tmed) (Teasy*a 'Feasy)a and (Thard#, Thard)- Intuitively,
the preference gaps should be the largest between
suitable and correct thoughts and incorrect ones.
Here, Tmed, Teasy*, and rpaqg+ are treated as r,,
while Ted, Teasy, and Thara are treated as 7.
Following our modeling framework, each train-
ing instance (x, r,,, 77) receives its specific 3 value,
as illustrated in Figure 3. The CogPO objective
function aggregates these preferences:

ECogPO - _E(Z‘,Tw,Tz)ND log O-(Mﬁc()gpo ($, Tw, rl))v
2
where fcogpo is selected from {fs, fm, AL}, de-
pending on the specific types of mini-tasks (with
Bs < Pwm < PL, corresponding to the three gaps).
Overall, our CogPO algorithm enables granular
preference learning: strong regularization () for
validity discrimination, moderate guidance (Bnr)
for suitability alignment, and subtle refinement
(Bs) for reasoning style adaptation. This design
provides more control over the alignment process,
leading to further improvements on the basis of
SFT (using CRV system).
Remarks. CogPO can be naturally combined with
B-DPO (Wu et al., 2024a). We can redefine the
values {3s, Oum, i} as follows: 5 = B;+a-(M;—
My) - B; where (; is chosen from {fs, Oum, AL}
based on the corresponding gap type, M; is the



Dataset/Model | Zero-shot | SFT CRV+SFT | DPO (3-DPO  SimPO  CogPO
AIME2024 10.0 20.0 26.7 233 23.3 26.7 30.0
MATH-500 73.6 80.0 84.0 83.4 83.8 84.2 84.4
GSMSK 89.5 923 927 926 93.0 92.6 93.3
GPQA Diamond 33.3 374 409 40.0 37.4 40.9 40.9
LiveCodeBench V2 30.7 31.3 344 34.4 35.8 36.2 36.6
MMLU 71.9 76.1 76.5 76.1 76.0 76.5 76.5
OlympiadBench (math-en) | 40.1 43.6 458 457  46.5 46.0 46.6

Table 2: Performance comparison of various training methods. The LLM backbone is Qwen2.5-7B-Instruct, and the
training set is Bespoke-Stratos-17k. Results are shown for zero-shot (without further training), SFT, CRV+SFT, DPO,
B-DPO, SimPO, and CogPO. DPO, 5-DPO, SimPO, and CogPO are conducted on the same model checkpoints of
CRV+SFT, using the same preference pair dataset. The metrics represent scores for these tasks, with the best results
for each dataset in each group marked in bold and the second-best underlined.

Dataset/Model | LLaMA-O1 Macro-ol | Bespoke-Stratos-7B Ours | OpenThinker-7B  Ours
Training Set Size ‘ 332K 60K ‘ 17K 17K ‘ 114K 114K
AIME2024 3.3 6.7 20.0 30.0 31.3 43.3
MATHS500 28.6 38.4 82.0 84.4 83.0 88.4
GPQA Diamond 26.3 31.8 37.8 40.9 42.4 42.9
LiveCodeBench V2 | 1.6 24.9 36.1 36.6 39.9 46.4

Table 3: Comparison between our model and other small reasoning models in the open-source community. Specif-
ically, we train two versions using our approach on Bespoke-Stratos-17k and OpenThoughts-114k, respectively,

where the two training sets are the same with Bespoke-Stratos-7B and OpenThinker-7B, respectively.

instance-level reward differential, and My is a pre-
defined threshold as in (Wu et al., 2024a).8

4 Experiments

To evaluate the effectiveness of the CRV framework
and the CogPO algorithm, we conduct a series of
experiments on challenging reasoning benchmarks.
Due to space limitation, datasets and experimental
settings are shown in the Appendix A.1 and A.2.

4.1 Main Experimental Results and Ablations

We choose Bespoke-Stratos-17k as the training set.
Table 2 presents the results of our CRV framework
and the CogPO algorithm on various reasoning
benchmarks. CRV+SFT surpasses direct SFT on all
benchmarks. Building on CRV+SFT, CogPO fur-
ther enhances the model’s reasoning capability, sur-
passes other preference-optimization algorithms,
and ultimately achieving the most outstanding per-
formance, demonstrating its ability to align the
model’s reasoning processes with its cognitive ca-
pacities. These results reveal that our CRV+CogPO
framework effectively enhances the reasoning ca-
pabilities of smaller models, outperforming other
traditional methods by a large margin.

81n our experiment, the combination does not yield sub-
stantial improvements, as prior knowledge is more important
for our task. Hence, we stick to the usage of Lcogpo.

4.2 Comparison Against Other Models

We compare our trained 7B model with other
models released in the open-source community.
We consider two reasoning LL.Ms available be-
fore the launch of DeepSeek-R1, namely Macro-
ol (Zhao et al., 2024) and LLaMA-O1°. We
also compare other models trained on datasets
distilled from DeepSeek-R1, including Bespoke-
Stratos-7B'” and OpenThinker-7B!!. Using our
CRV+CogPO framework, we also train two mod-
els on the Bespoke-Stratos-17k and OpenThoughts-
114k training sets, respectively. Thus, it is fair
to compare our method against those of Bespoke-
Stratos-7B and OpenThinker-7B. The results, along
with the sizes of the training sets, are shown
in Table 3. It can be observed that employing
DeepSeek-R1-generated CoT data yields superior
results. At the algorithmic level, both Bespoke-
Stratos-7B and our model are trained on the 17K
CoTs from DeepSeek-R1. Under identical data
conditions, our model significantly outperforms
Bespoke-Stratos-7B across all benchmarks and
achieves performance comparable to OpenThinker-
7B, which is trained on 114K CoTs from DeepSeek-
R1. Moreover, when trained on the same dataset
*https://huggingface.co/SimpleBerry/LLaMA-O1-
Supervised-1129

"https://huggingface.co/bespokelabs/Bespoke-Stratos-7B
"https://huggingface.co/open-thoughts/OpenThinker-7B



Model Backbone (The Critic) | AIME2024 MATH-500 GPQA-D GSMS8K LCBYV2 OlympiadBench
Qwen2.5-7B-Instruct 13.3 80.2 40.9 923 30.5 43.9
Qwen2.5-32B-Instruct 233 82.2 39.9 92.6 333 45.1
Qwen2.5-72B-Instruct 20.0 81.8 36.4 92.7 30.5 42.0
DeepSeek-R1-Distill-Qwen-32B | 26.7 84.0 40.9 92.7 344 45.8

Table 4: Comparison using different backbones as the Critic. All the results are produced using CRV+SFT without

CogPO on Bespoke-Stratos-17k.

Dataset/Model \ Easy Medium Hard
AIME2024 13.3 233 16.7
MATHS500 754 828 78.2
GPQA-D 343 374 333
LCB V2 319 362 32.5

Table 5: Experimental results on training data of differ-
ent complexity levels.

as OpenThinker-7B, our model substantially sur-
passes OpenThinker-7B on all benchmarks. These
findings demonstrate that, given the same data, our
CRYV + CogPO training framework exhibits supe-
rior performance, confirming its effectiveness.

4.3 Study on Choices of the Critic

In the previous section, we claimed that using the
small target LLM 7,55 as the Critic does not neces-
sarily produce satisfactory results due to its limited
parameter size. In contrast, larger LLMs 7510 can
“think like small models” better. The results of us-
ing different backbones as the Critic are shown in
Table 4, with the backbones for the Rethinker and
the Verifier unchanged. From the results, we can
see that they confirm our findings, as larger mod-
els consistently perform better than the 7B model
in almost all tasks. Among the three large agents,
DeepSeek-R1-Distill-Qwen-32B exhibits the best
performance based on majority voting across all
testing sets. A detailed and in-depth analysis of the
selection of the Critic is provided in Appendix A.5.

4.4 Training with CoT Datasets of Different
Complexity Levels

To further investigate whether medium-level data
are indeed the most suitable for base model, we
conduct experiments on the OpenThoughts-114K
dataset. We used the Critic to rate all CoTs in the
dataset, then randomly sampled 10K CoTs from
each of the derived easy, medium, and hard subsets
to construct three training sets. We then perform
SFT with Qwen2.5-7B-Instruct on these three train-
ing sets under identical configurations. The results
are shown in Table 5, indicating that when the num-

Dataset/Model \ SFT w.C w.CR w CRV
AIME2024 20.0 233 26.7 26.7
MATHS500 80.0 834 832 84.0
GPQA-D 374 384 399 40.9
LCB V2 313 343 341 34.4

Table 6: Ablation results on the CRV system.

ber of training data is the same, the model trained
on the medium subset achieves the highest scores,
fully supporting our hypothesis. The CoTs in the
easy and hard sets are either too terse or overly
complex, preventing the base model from effec-
tively comprehending all CoTs in those sets. In
contrast, the medium subset data align with the
model’s cognitive capabilities and thus yield the
best results.

4.5 Study on Effectiveness of Critic,
Rethinker and Verifier

To further explore the collaborative mechanism
within the CRV system and the individual roles and
contributions of each module, we conduct extensive
ablation experiments on the Bespoke-Stratos-17k
dataset. Table 6 presents our ablation results. The
“SFT” row reports results from directly performing
SFT on the original dataset without any CRV inter-
vention; the “w. C” row shows performance when
only the Critic is applied before SFT, using only
the traces rated as medium by the Critic for SFT;
the “w. CR” row indicates results when both the
Critic and the Rethinker participate prior to SFT,
utilizing the medium-rated traces and the refined
easy/hard traces that have not yet been verified; the
“w. CRV” row reflects outcomes when the Critic,
Rethinker, and Verifier are all applied.

As the Critic, Rethinker, and Verifier participate
sequentially, the model’s reasoning ability exhibits
a progressively improving trend, which clearly il-
lustrates the role of each component. Notably, “w.
CR” experiences a performance drop on MATHS500
and LCB V2, indicating that omitting the Verifier
after the Rethinker’s refinement could impair the
model’s reasoning ability. Therefore, each com-
ponent of the CRV system plays an indispensable
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Figure 4: Experimental results of different sizes of
Qwen2.5 models on AIME2024, MATH500, GPQA
Diamond, and LiveCodeBench V2.

role. To achieve optimal performance, we recom-
mend processing the data using the complete CRV
system.

4.6 Study on Model Scales

To study the effectiveness of different parame-
ter sizes on the student models, we further re-
port the performance of Qwen2.5-3B-Instruct and
Qwen2.5-14B-Instruct. The experimental settings
are identical to those of Qwen2.5-7B-Instruct. The
results are presented in Figure 4. We observe that
our method is also effective across different model
scales. An interesting observation is that the im-
provement is more significant in Qwen2.5-14B-
Instruct compared to Qwen2.5-3B-Instruct. This
is because, even when we leverage the CRV sys-
tem to rewrite the CoTs, the large capacity gap
between the teacher and student models makes it
more challenging for Qwen2.5-3B-Instruct to cap-
ture the CoTs through SFT. This finding is also
consistent with the recently discovered “distillation
scaling law” (Busbridge et al., 2025).

4.7 Study on Other Model Backbones

To evaluate the universality of the proposed ap-
proach, we perform additional experiments on mul-
tiple backbones beyond the Qwen2.5 series on
Bespoke-Stratos-17k dataset. Figure 5 demon-
strates that, for both LLaMA and Mistral series,
our approach achieves notable performance gains
over the direct SFT baseline across diverse math-
ematical and coding tasks. These results indicate
that the CRV+CogPO framework enables seamless
adaptation to other backbones, demonstrating the
universality of our approach on various LLM back-
bones, which also shows the potential of our work
to produce stronger models based on other LLMs.

14.2151

AIME2024 MATH-500  GPQA LiveCodeBench " AIME2024 MATH-500  GPQA LiveCodeBench

(a) Llama3.1-8B-Instruct (b) Mistral-7B-V0.3

Figure 5: Experimental results of different model
series (Llama3.1-8B-Instruct, Mistral-7B-V0.3) other
than Qwen2.5 on AIME2024, MATH500, GPQA Dia-
mond, and LiveCodeBench V2.
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Figure 6: Impact of different 5 on AIME2024, GPQA
Diamond, LiveCodeBench V2 and OlympiadBench.

4.8 Hyper-parameter Analysis

To evaluate the impact of § values in CogPO, we
perform a series of experiments with varying 3
values to assess the algorithm’s effectiveness. As
shown in Figure 6, the highest performance is at-
tained when assigning tailored S values to samples
based on their specific gaps, which is a core princi-
ple of the CogPO algorithm.

4.9 Case Studies

Due to space limitations, case studies are shown in
the appendix. They clearly show how our approach
can effectively expand or simplify the reasoning
processes based on the Critic.

5 Conclusion and Future Work

In this paper, we present the CRV framework where
we leverage the strengths of LLM agents to cri-
tique, refine, and verify CoT outputs for optimizing
CoT training sets. The CogPO algorithm further
aligns model outputs with their inherent cognitive
capacities, improving the performance on several
challenging reasoning tasks. In the future, we will
i) train and release stronger small models using
larger CoT datasets; ii) improve the effectiveness
of the CRV framework, especially for much smaller
models; and iii) investigate our approach for other
domain-specific applications, such as medical diag-
nosis and legal reasoning.



Limitations

While our proposed framework shows promising
results in enhancing the reasoning capabilities of
smaller LLLMs, several limitations still remain. The
CRYV framework relies heavily on the contributions
of larger models refining the CoT output. This
dependency may create challenges in situations
where access to larger models is restricted, or these
larger models generate incorrect results. In ad-
dition, although our framework is designed for
smaller LL.Ms, there remains a ceiling on their
performance. By nature, smaller models inherently
have reduced capacity to encode complex informa-
tion and handle nuanced reasoning tasks, which
may limit their effectiveness in certain scenarios.

Ethical Considerations

Our work is fully methodological; hence, there are
no direct ethical issues. However, smaller models
trained on data distilled from larger ones might in-
herit or exacerbate biased outputs, which can still
influence outcomes. We suggest that continuous
evaluation of trained LLMs based on ethical guide-
lines is indispensable.
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Dataset Size

AIME2024 30
MATH-500 500
GSMS8K 1319
GPQA Diamond 198
LiveCodeBench V2 511
MMLU 14042

OlympiadBench (math-en) 674

Table 7: Testing set statistics.

A Supplementary Experiments

A.1 Datasets

In our experiments, we evaluate our work on sev-
eral benchmarks, including AIME2024'2, MATH-
500 (Lightman et al., 2023), GSM8K (Cobbe
et al.,, 2021), GPQA Diamond (Rein et al.,
2023), LiveCodeBench V2 (Jain et al., 2024),
MMLU (Hendrycks et al., 2021), and Olympiad-
Bench (math-en) (He et al., 2024). The sizes of our
testing sets are summarized in Table 7.

For our training set Dsgr+, we leverage Bespoke-
Stratos-17k', which contains 17K tuples of ques-
tions, reasoning processes, and answers directly
distilled from DeepSeek-R1 (DeepSeek-Al, 2025).
We also utilize two released CoT datasets to con-
duct supplementary experiments. The first one is
Sky-T1-data-17k'#, which is distilled from QwQ-
32B-Preview, whose reasoning abilities are re-
ported to be weaker than those of DeepSeek-R1.
The second one is OpenThoughts-114k!>, which
is distilled from DeepSeek-R1 and verified using
a data curation recipe. We have chosen not to
use some previously released CoT datasets (e.g.,
OpenLongCoT-SFT!%) due to their significantly
weaker reasoning abilities, while some benchmarks
(e.g., AIME2024, OlympiadBench) are extremely
challenging.

A.2 Experimental Details

In our work, we utilize Qwen2.5-7B-Instruct as the
default model backbone and extend our evaluation
to Llama3.1-8B-Instruct (Dubey et al., 2024) and

https://maa.org/math-competitions/american-
invitational-mathematics-examination-aime

Bhttps:/huggingface.co/datasets/bespokelabs/Bespoke-
Stratos-17k

Yhttps://github.com/NovaSky-Al/SkyThought

Bhttps://huggingface.co/datasets/open-
thoughts/OpenThoughts-114k

https://huggingface.co/datasets/SimpleBerry/OpenLongCoT-

SFT

Hyperparameter Value
CRV Stage
Batch size 96
Learning rate le-5
Learning epoch 3.0
CogPO Stage
Batch size 96
Learning rate Se-7
Learning epoch 1.0
SFT (Baseline)
Batch size 96
Learning rate le-5
Learning epoch 3.0
DPO (Baseline)
Batch size 96
Learning rate Se-7
Learning epoch 1.0
0.1
SimPO (Baseline)
Batch size 96
Learning rate Se-7
Learning epoch 1.0
2.0
¥ 0.3

Table 8: Training hyperparameters.

Mistral-7B-Instruct-v0.3 (Jiang et al., 2023), along
with other sizes of Qwen2.5 models, to validate
the generalizability of our algorithm across diverse
model architectures and sizes. We first establish
a baseline by assessing the model’s zero-shot ca-
pabilities. Subsequent experiments leverage this
result to quantify the performance improvements
attributable to CRV and CogPO. During the CRV
phase, the same generation hyperparameters are
applied to the Critic, Rethinker, and Verifier for
inference: temperature 7' = 0.7, top_p = 0.9, and
top_k = 50. The default backbone is DeepSeek-
R1-Distill-Qwen-32B, while we test other back-
bone choices in the experiments. For CogPO train-
ing, the default 3 settings are: S5 = 0.1, B = 0.2,
and S, = 0.5. Training details for model training
and baselines are shown in Table 8.

On the Bespoke-Stratos-17k dataset, for the 3B
model, we use a single node with 8 A800 GPUs
(80GB), with an approximate training time of 4
hours. For the 7B model, we use a single node
with 8 A800 GPUs (80GB), with a training time
of about 5 hours. For the 14B model, we use 4
nodes, each with 8 A800 GPUs (80G), resulting in
a training time of approximately 14 hours.



Dataset/Model \ Zero-shot SFT Ours
AIME2024 10.0 16.7  20.0
MATH-500 73.6 732 770
GPQA Diamond 33.3 28.8 369
LiveCodeBench V2 | 30.7 209 333

Table 9: Performance comparison using Sky-T1-data-
17k as the training set.

Dataset/Model \ Zero-shot SFT Ours
AIME2024 10.0 313 433
MATH-500 73.6 83.0 88.4
GPQA Diamond 33.3 24 429
LiveCodeBench V2 | 30.7 399 464
Table 10: Performance comparison using

OpenThoughts-114k as the training set.

A.3 Results on Weaker CoT Dataset

To demonstrate that our approach is truly superior
to vanilla SFT over CoT datasets, we conduct an ex-
periment on the Sky-T1 dataset, which is relatively
weaker than Bespoke-Stratos-17k due to the choice
of the teacher model (i.e., QwQ-32B-Preview) and
the data curation pipeline. The results are presented
in Table 9. As shown, in some cases, the SFT base-
line cannot even beat the zero-shot performance.
This negative finding is also consistent with their
own blog regarding the model size and data qual-
ity!”. Nonetheless, by comparing our method with
the SFT baseline, we can observe clear improve-
ment, which demonstrates that our approach has
the efficacy to enhance the reasoning abilities of
small models in various scenarios.

A.4 Results on Larger CoT Dataset

We further evaluate the performance of our method
using OpenThoughts-114k as the training set,
which is much larger than other training sets. This
dataset is distilled from DeepSeek-R1 and goes
through several quality verification steps. The re-
sults are presented in Table 10. It can be seen that
our method ultimately exhibits exceptionally strong
reasoning performance, significantly surpassing
SFT on all benchmarks. This underscores the scal-
ability and generalizability of our CRV+CogPO
framework to larger datasets.

A.5 Design Choice of the Critic

An initial, straightforward approach is to employ
Thase as the Critic. However, owing to the small

https://movasky-ai.github.io/posts/sky-t1/
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model’s limited reasoning capability, it consistently
faces difficulties in distinguishing the difficulty lev-
els of CoTs effectively within our datasets. Note
that for CoTs rated as “easy” or “hard”, the CoT
is either overly concise (omitting necessary steps)
or excessively complex, rendering it unintelligible
to the small model and preventing it from follow-
ing the chain to arrive at the correct answer. Under
these circumstances, it is clearly unreasonable to re-
quire the small model to classify the CoT difficulty
that it cannot comprehend effectively.

Another intuitive CoT evaluation approach is to
input the problem and its corresponding CoT into
the small model and then verify whether the model
can arrive at the correct answer. However, apply-
ing this method directly would only partition CoT
processes into “correct” or “incorrect” categories.
For incorrect CoTs, this binary classification fails
to distinguish the root cause of errors (i.e., whether
the CoT is overly simplified or overly complex),
which is critical for determining appropriate refine-
ment strategies (e.g., expansion for overly simpli-
fied processes vs. simplification for overly complex
ones).

Consequently, we utilize the larger and stronger
LLM used in both the Rethinker and the Verifier (re-
ferred to as mare) to act as the Critic. This involves
guiding the large model to simulate the cognitive
approach of the smaller model, mpase. The prompt
template of the Critic is shown in Table 13. This
setting is akin to educational practices, where pro-
fessors, instead of students, customarily curate aca-
demic content across a spectrum of difficulty levels
due to their broader knowledge base. As shown in
Table 4, the experiments clearly demonstrate the
superior evaluative proficiency of the large model,
confirming its advantage in categorizing CoT com-
plexity from the perspective of the smaller model
efficiently.

B Case Studies

Case studies are presented in Table 11 and Table 12.

C Prompt Templates

Prompt templates of the Critic, the Rethinker and
the Verifier in our CRV system are shown in Ta-
ble 13.



Problem

Find the inverse of matrix A = {2 1}

Answer

1 2
4 a2 41
A *5[-1 2

Original reasoning process

(correct but unsuitable)

Calculate determinant det(A) = 3, thus A™! = % {

Extended reasoning process | Compute determinant: 2 X 2 —1x 1 =3

(correct and suitable)

Construct adjugate: [_2 _1}

1 2
a1 _ 12 -1
Normalize: A~ = 3 {_1 9 }
. . 2 1 2 -1
Incorrect reasoning process | Swap diagonal elements: 1 o 7|21 9

Table 11: Case study of how the reasoning process is extended.

Problem

Find the area of a triangle with vertices at (0, 0), (3, 0), and (0, 4)

Answer

6

Original reasoning process

(correct but unsuitable)

Vector Representation: AB = (g ,A_C’ = (2

3 0
0 4

Determinant Method: Area =

1 112) =6

Simplified reasoning process
(correct and suitable)

Recognize right-angled triangle: Base = 3, Height = 4

Apply elementary formula: Area = % x Base x Height = 3

1
2

X3x4=06

Incorrect reasoning process

Area = £ (Sum of sides) = 3(3+4+5) =6

Table 12: Case study of how the reasoning process is simplified.
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Role

| Prompt Template

Critic

You are a highly capable evaluator.

Your task is to assess the given reasoning process from the perspective of a small language model (e.g., 7B).
Specifically, determine whether the reasoning process provides sufficient detail for a small model to solve the
problem, or whether it is too terse (i.e., lacking critical details) or too complex (i.e., containing unnecessary or
confusing steps).

Complexity Definitions (from the perspective of a small model):

- Easy: The reasoning process is overly terse; it omits essential details that a small model needs to solve

the problem.

- Medium: The reasoning process is appropriately balanced, offering enough detailed guidance.

- Hard: The reasoning process is overly complex, with extraneous or convoluted steps that could hinder a small
model to follow it.

Output Format:

You must output exactly one word: easy, medium, or hard.

Rethinker
(easy)

You are a helpful assistant who is highly skilled at extending reasoning processes.

Given a problem ,its correct answer and its terse reasoning process, your task is to extend the reasoning process by
adding necessary details and intermediate steps so that a small language model (e.g., a 7B model) can follow the
extended reasoning process to solve the problem.

You should add necessary steps and details based on the correct answer.

You must output ONLY the extended reasoning process with no additional explanation or commentary.

Rethinker
(hard)

You are a helpful assistant who is highly skilled at simplifying reasoning processes.

Given a problem, its correct answer and its overly complex reasoning process, your task is to simplify the reasoning
process so that a small language model (e.g., a 7B model) can reliably follow the steps to solve the problem.

You should remove redundancies or use simpler method on the basis of correct answer.

You must output ONLY the simplified reasoning process with no additional explanation or commentary.

Verifier

You are a highly capable Verifier.

Your task is to assess a given reasoning process based on a problem and its correct answer.

Specifically, determine whether the reasoning process is sufficient and accurate for you to reach the correct answer.
If the reasoning process correctly guides you to derive the the correct answer, output YES.

If the reasoning process fails to guide you to the correct answer, output NO.

You must output exactly one word: YES or NO.

Rethinker
(incorrect thought)

You are an assistant who is skilled at converting correct reasoning processes to incorrect reasoning processes.
Given a problem ,its answer and its correct reasoning process, your task is to corrupt the correct reasoning process
by introducing logical fallacies and misleading steps, so that a small language model (e.g., a 7B model) cannot
follow the incorrect reasoning process to solve the problem.

You must output ONLY the incorrect reasoning process with no additional explanation or commentary.

Table 13: Prompt templates for the CRV+CogPO framework.
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