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Abstract

For online ad-recommendation systems, processing complete user-ad-engagement
histories is both computationally intensive and noise-prone. We introduce Dynamix,
a scalable, personalized sequence exploration framework that optimizes event his-
tory processing using maximum relevance principles and self-supervised learning
through Event Based Features (EBFs). Dynamix categorizes users-engagements at
session and surface-levels by leveraging correlations between dwell-times and ad-
conversion events. This enables targeted, event-level feature removal and selective
feature boosting for certain user-segments, thereby yielding training and infer-
ence efficiency wins without sacrificing engaging ad-prediction accuracy. While,
dynamic resource removal increases training and inference throughput by 1.15%
and 1.8%, respectively, dynamic feature boosting provides 0.033 NE gains while
boosting inference QPS by 4.2% over baseline models. These results demonstrate
that Dynamix achieves significant cost efficiency and performance improvements
in online user-sequence based recommendation models. Self-supervised user-
segmentation and resource exploration can further boost complex feature selection
strategies while optimizing for workflow and compute resources.

1 Introduction

Sequences of user activity are powerful sources of user-behavior and task understanding, which have
demonstrated significant benefits across various Ads-recommendation systems [8]. In prior works
[8] [6] [12], event-based-feature (EBF) sequences are described to combine data from multi-modal
sources gathered from user-engagement activities or events (such as content viewing, likes etc.) into
organic sequences that capture dynamic user interests. Examples of EBF sequences include user-ad-
impressions, organic feed impressions, video_view etc., wherein time-stamped-ordered sequences are
represented by a vector of features about a specific event. Ad-recommendation systems with input
EBF sequences, while capable in accurately gauging dynamic user interests, incur high storage and
compute complexities to ensure relevance and freshness for all real-time traffic [7]. Additionally,
user-ad engagement sequences have unreliable labels thereby leading to noisy low-intent data streams,
that can lead to unpredictable user engagement levels. This necessitates investigations into elastic
resource exploration and allocation strategies, with the goal of eliminating training and serving
capacities for less-engaged users while boosting the capacity for better engaged users, respectively.

Recent work on user-segmentation in [9] [10] demonstrate that certain user demographics benefit
more from historic-usage data sources when compared to other users with only marginal impact.
This implies that by truncating the length of the input EBF-sequences for users who do not benefit
from a given data source, we can create personalized EBF sequences which maintain model accuracy
while reducing overall compute costs. We refer to this approach as static resource allocation since it
relies on long-term usage-patterns for user-segmentation. In this work, we consider an alternative
approach: on-the-fly or dynamic feature exploration at run-time. This approach filters the inputs to
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the model during the training stage so that the model only receives a subset of the truncated-features
in the forward pass [12], thereby decreasing the costs of training and inference, respectively. The self-
supervision process can explore across different EBFs in real-time based on the user’s current session,
through on-the-fly computations and select the optimal EBF-sequences per user per-engagement
event. This implies that the same user can get different events dropped at different times of the day
owing to the self-supervised sequence filtering strategy. This work builds upon the existing active
area of the Dynamic feature selection research in [1] [11] [4], especially, for domains where the most
informative predictors can vary based on context.

ML-based feature selection approaches [13] [2] typically compare the input features to the training
labels to only include features that are highly predictive. However, dynamic feature exploration
must estimate the discriminative power of inputs using only the information available at inference-
time. We address this problem by using the past conversion behavior of users as a replacement
for positive training labels to perform feature exploration and subsequent feature selection, in the
form of self-supervision, thereby relocating compute resources from passive users to engaged or
active users. Figure 1, demonstrates this variation between static and dynamic resource allocation
processes, wherein existing static user-segmentation works in [10][5] rely on user-segments based
on pre-assigned user-importance, while the proposed dynamic user-segmentation enables users,
per-surface, to be categorized into active vs. passive classes at different times of the day based
on usage. Based on this user-segmentation, low-priority feature attributes can be removed from

Figure 1: System diagrams for personalized-sequence scaling by static and dynamic feature selection
methods. Predictability of user-content engagement remains relatively stable for passive-users while
active or engaged users can be represented as power-users and averagely engaged users.
active-users and high priority features can be boosted for active-users to secure training and inference
efficiencies and click-through-rate (CTR) prediction gains. There are three noteworthy properties
of EBFs that enable such dynamic resource exploration [7]. First, EBFs capture most informative
ephemeral features per-user. Second, content-engagement signals that are provided by an input EBF
can also be estimated by comparing the feature to a user’s conversion history. Third, certain passive
user-groups are less sensitive to feature freshness and inference-time compute resources with regards
to aggregated CTR.

This paper makes two major contributions. First, we present a novel self-supervised approach
for detecting correlations between a user’s ad-view history and their conversion history. This
enables run-time segmentation of users into active and passive groups through a collection of pre-
processing transformations. Second, we propose Dynamix, that is a maximum relevance approach that
dynamically selects EBFs conditional on the runtime-allocated user-groups, thereby enabling selective
feature-attribute removal, feature selection and boosting for personalized ad-recommendation systems.
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2 Prior Work

Related works on user-segmentation for real-time data traffic are shown in Table 1. Most of these
works rely on generating user-ad embeddings followed by unsupervised clustering methods to
generate user-segments and subsequent boosting for specific user/content groups. In this work, we

Table 1: Summary of User-segmentation methods for Real-time Traffic Data Sources.
Method Method Data Used Contributions Results
Yang et al.,
2013 [5]

Hidden Markov
models to improve
dynamic user-
behavioral segments.

Web browsing logs Modeled temporal
evolution of user-
profiles for adaptive
ad-targeting.

13-15% improvement over
random in page prediction ac-
curacy.

Zhou et al.,
2018 [13]

Embedding-based
ad personalization
framework.

Ad click/conversion
logs

Demonstrated im-
proved targeting via
deep user representa-
tions.

Deep L0 Ranking: +0.032%
NDCG; Semantic Candidate
Generation: +0.37% in-
segment Ads score; Graph-
based retrieval: +1.78% ads
score overall

Cui et al.,
2019 [2]

Advanced seg-
mentation with
deep-learning and at-
tention mechanisms.

Multi-source user-
data

Utilized atten-
tion/embedding for
fine-grained, person-
alized targeting.

Pre-ranked ads caching:
+0.07% to +0.19% ads
score impact; IG Reels PAE
trigger expansion: +0.03%
ads score; Personalized
AdIndexer eCPM filtering:
-0.02% ads score overall.

Victorator et
al. 2021 [10]

Unsupervised seg-
mentation (k-means).

Browsing/ad interac-
tion logs

Enabled scalable,
data-driven discovery
of user-groups.

Clustering improved offline
training NE by 0̃.07%;
Cluster-based Embedding
Retrieval for FBE Ads:
+4.9% Ads Score.

propose a novel dynamically time-varying self-supervised user segmentation approach that enables
resource exploration and feature-selection for the segmented user-groups.

3 Dynamix for Personalized Ad-recommendation

Traditionally, ad-recommendation systems are trained to predict user engagement levels per content-
type based on historic trends of personalized usage. However, the training and inference resources
for all users per-surface personas are kept consistent [6]. In this work, we introduce a novel dynamic
resource extrapolation method called Dynamix, which is a maximum relevance approach to dynami-
cally remove EBF features and sources for certain user-segments and dynamically selecting EBFs for
active user-groups to boost overall ad-relevance and user-ad engagement.

Given user-engagement sequences in the form of EBFs, Dynamix involves user-segmentation to
active and passive categories across small time windows followed by selective feature shrinkage
and boosting for the different user-segments, respectively. The goal is to increase the training and
inference resource ROI and boosting aggregated CTR predictions by providing more engaging
content to active user-segments and getting passive user-segments to be more predicable. In the
following sub-sections, we define the impact of dwell-time, which is the time a user spends viewing a
piece of ad or content, towards user-conversion events, which are represented by clicks or any other
engagement/conversion events (e.g. like, share, comment etc.).

3.1 User-engagement with Dwell-Time Attribute

In this section, we connect the dwell-time on ad-impressions EBF to conversion events. Our approach
applies a user’s conversion history to extract training labels for the supervised classification problem,
and then applies the user dwell-times as the predictive variables [3]. We begin with the following
notation for each user u:

• Du
t - the dwell-time of an ad-impression at time t.

• Cu
t - the timestamps of past conversion events. Ct = 0 for no-conversion event and Ct = 1

for a click or conversion event.
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For EBF sequences [7], the timestamps form a discrete set and due to logging discrepancies the
timestamp of an ad-impression may differ from the timestamp of an associated conversion event.
Thus, it is useful to extend the definition of Cu

t to windowed time-intervals to allow comparison of
impressions and conversions as shown in Figure 2.

Figure 2: Example of time-windows applied to compare the average dwell-time of conversion events
within windows to that outside the windows to capture statistically significant trends in a user’s
dwell-time behavior.

Given a time-window s, we define Cu
[t,t+s] per-user as (1).

Cu
[t,t+s] =

{
0 if there is no conversion in the interval [t, t+ s],

1 if there is a conversion in the interval [t, t+ s],
(1)

where, the parameter s as the forecast horizon. Here, we make the simplifying assumption that the
conditional random variables are normally distributed as (2).

log(Du
t )
∣∣Cu

[t,t+s] ∼ N (µu
C , σ

u
C), (2)

where, the parameters of the distribution depend not only on the user, but also the binary variable
Cu

[t,t+s]. Empirical evidence of this distribution can be observed in Figure 3. Here, we observe
that for many users there are significant differences in the distributions log(Du

t )
∣∣(Cu

[t,t+s] = 1) and
log(Du

t )
∣∣(Cu

[t,t+s] = 0).

Next, we apply the Bayes’ rule to the probability of a conversion-event given a significant dwell-time
in (3)-(6).

p(Cu
[t,t+s]=1

∣∣log(Du
t )) =

p(log(Du
t )
∣∣Cu

[t,t+s] = 1)p(Cu
[t,t+s] = 1)

p(log(Du
t ))

, (3)

=
p(log(Du

t )
∣∣Cu

[t,t+s] = 1)p(Cu
[t,t+s] = 1)

p(log(Du
t

∣∣Cu
[t,t+s] = 1))p(Cu

[t,t+s] = 1) + p(Cu
[t,t+s] = 0))p(Cu

[t,t+s] = 0)
, (4)

=
1

1 +
p(log(Du

t )|Cu
[t,t+s]

=0)p(Cu
[t,t+s]

=0)

p(log(Du
t )|Cu

[t,t+s]
=1)p(Cu

[t,t+s]
=1)

, (5)

= σ(−w · log(Du
t ) + b). (6)

Here, σ is the logistic sigmoid function and w and b are functions of the following 5 distribution
parameters: µu

Ct=1, µ
u
Ct=0, σ

u
Ct=1, σ

u
Ct=0, and, the prior probability of the user converting on a

window of size s, or P (Cu
[t,t+s]), which, we assume to be independent of t. For simplicity, we also

assume that (σu
Ct=0 = σu

Ct=1) for all users u.

The historical values of the user’s conversions and dwell-times Du = (Du
t , C

u
[t,t+s]) allow us to fit

these parameters to the user’s history using a maximum-likelihood estimate in (7).

wMLE = argmaxwp(Du) =
E[log(Dt)

∣∣C[t,t+s] = 1]− E[log(Dt)
∣∣C[t,t+s] = 0]

Su
, (7)

where, Su is a variance estimator and the expectation (E) represents the empirical average over the
observed data.
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Figure 3: Histogram of log dwell-times in the 5 minutes preceding a conversion event (green) vs.
more than 5 minutes before the next conversion event (blue).

It is noteworthy that shifts in dwell-time before conversion events demonstrate the correlation between
ad-history and conversion history. In Figure 3, we observe that on an average, dwell-time increases
before conversion events. This implies that users spend more time looking at ads in the few minutes
prior to engaging with an advertisement. This distribution also demonstrates that for a 5 minute
window prior to a user-ad-engagement event, users typically tend to engage with multiple ads.

Additionally, we note that different users exhibit different degrees of correlation and the same user
can demonstrate positive, low and negative correlations at different times of the day as shown by 3
sample users in Figure 4 below. We utilize this dynamic correlation to implement user-segmentation
and subsequent preferential resource exploration.

(a) Positive correlation (b) Low correlation (c) Negative correlation

Figure 4: Different dwell-time patterns across individual users

3.2 Dynamic User-segmentation and Selective Feature Exploration

We utilize the normalized maximum-likelihood estimate in (7) to evaluate the windowed correlation
statistic between dwell-time and conversion events per-user in (8).

Corrus (D,C) := E[log(Dt)
∣∣C[t,t+s] = 1]− E[log(Dt)

∣∣C[t,t+s] = 0]. (8)

Here, Corrus (D,C) compares the user’s average dwell-time on advertisements they viewed close in
time to conversion events and their average dwell-time on advertisements far away from conversion
events, where proximity is controlled by the forecast-horizon s. It is noteworthy that on an average,
Corrus (D,C) > 0, as depicted in Figure 3, has lower variance when compared to the correlation
distributions for individual users in Figure 4, thereby demonstrating the noisy nature of labels at
user-level.
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Next, the windowed absolute correlations statistic is thresholded to determine the passive and active
users in (9)

Uu
s =

{
0 if |Corrus (D,C)| <= ϵ,

1 if |Corrus (D,C)| > ϵ
(9)

The dynamic threshold-parameter ϵ is empirically computed to separate the most positively and
negatively correlated uses (or active-users) from the uncorrelated, or passive-users. This difference in
engagement statistic is intuitive since we observe that users within the passive-segment Uu

s = 0 are
those with noisy ad-view history, while users within the active segment Uu

s = 1 are those whose ad-
view history is highly predictive of commercial intent. Since the user-segments can update multiple
times a day for individual users based on their browsing history (from Figure 4), pre-processing
functions are implemented in conjunction with the EBF sequence at the source, to facilitate Dynamix.

Finally, we assess the improvement in CTR for user-ad recommendations in terms of Normalized
Entropy (NE), which defined as follows:

NE Gain = −
1
N

∑
(yj log pj + (1− yj) log(1− pj))

p̂ log p̂+ (1− p̂) log (1− p̂)
, (10)

where, yj are actual labels, pj are model predictions, p̂ =
∑

yj

N is the prior probability and N is the
total number of user-samples. The storage and compute resource savings are evaluated in terms of
positive Queries-per-second (QPS) gains for model training and inference, respectively.

3.3 Production Data

The definitions of EBFs used for the dynamic user-segmentation and feature selection are defined as
follows.

• Organic-impression EBFs: This event is generated when user-generated content (UGC) is
displayed on the user-screen (website or mobile-app) with >= 50% of the content being
visible, and the user views for at least 250 milliseconds. Event attributes include {content-id
(unique identifier), dwell-time (duration of visibility), media-type (e.g., image, text, video),
position (rank in the user’s personalized feed), Timestamp}.

• Ad-impression EBFs: This event is generated when an ad-content is displayed with greater
than 50% visibility and user views for at least 250 milliseconds. Event attributes include
{semantic-ids (content understanding model-generated metadata), ad-id, Timestamp}

• New-page impression EBF: This event is generated when users click or engage with specific
pages. Event attributes include {semantic-ids (content understanding model-generated
metadata), media-type, Timestamp}

All experiments are trained on over 40 billion user-samples curated over a month of usage in one-pass
to demonstrate the NE gain curves.

Additionally, there were two major production-data level challenges in computing Corrus (D,C).
First, the conversion events and impression events are logged through different systems and we often
observe that the impression event corresponding to a given conversion event is logged up to a minute
after the conversion event is logged. Second, many impression events are logged with unrealistic
dwell-times, extending from a few milliseconds to several hours.

To mitigate the first challenge, we added a logging buffer in our computation of the correlation
statistic (8), replacing C[t,t+s] with C[t−60,t+s] to account for logging delays in the ad-impression
EBF. Further, we mitigated the second challenge by de-noising the ad-impression events based on
dwell-time to remove outliers before computing Corrus (D,C).

4 Experiments

To assess the importance of user-group specific resource-level exploration, we performed two sets
of experiments. In the first experiment, we selectively remove low-importance feature attributes for
active and passive user groups with the goal of improving training and inference QPS. In the second
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experiment, we add EBF feature-attributes selectively for active and passive user-groups, with the
goal is enhancing overall user-ad engagements. This selective EBF attribute removal and boosting
demonstrates the impact of Dynamix for personalized sequence-based ad-recommendations.

4.1 Dynamic Feature Removal for Compute Wins

In this experiment, we applied dynamic feature removal from baseline EBF sources. The production
baseline contained 11-attributes corresponding to the ad-impression EBF-data source and we applied
dynamic feature selection to 4 of these attributes. These 4 attributes were selected based on low
feature importance-ranking and they have only incremental impact on the ad-recommendation model
performance. For this experiment, two evaluation runs applied dynamic feature removal to the passive
and active user segments, respectively, to reduce training and inference feature costs as shown in
Table 2. Empirically, 66.67% of the ad-traffic users were segmented at any given time as active-users
while remaining 33.33% were segmented as passive-users. The empirical threshold-parameter ϵ was
selected to maximize the NE gains between two user-segments. Further, we observed that both runs
resulted in small NE Gains, but both yielded training QPS wins that were proportional to the traffic
reductions.

Table 2: Averaged metrics for EBF-attribute removal experiments to user-segments across 3 runs.
Experiment: For Ad-impression EBF NE Gain Training QPS Inference QPS
Attribute removal for passive users, 0.012 +0.4% -0.37%
No change for active users
Attribute removal for active users, 0.006 +1.1% +1.8%
No change for passive users

It is noteworthy that NE Gains in the range [0, 0.02] and QPS < 1% can be considered as experi-
mental noise. From this experiment, we conclude that pruning less significant feature attributes from
active user-segments result in minimal change in averaged-CTR across all users while significantly
speeding up training and inference processes as shown in Figure 5(a). The observation for training
and inference QPS gains for active user-segment only is explainable. The passive user-group suffers
from low-correlation between conversion-events and dwell-time, thereby such user-ad engagements
are less predictable even after feature pruning when compared to the active user-group. Conversely,
since the active user-group is more predictable for ad-intent, pruning low-importance feature attributes
results in consistent efficiency for training and inference compute.

(a) Dynamic resource removal. (b) Dynamic resource boosting.

Figure 5: Convergence patterns for Dynamic resource removal and boosting, thereby leading to
dynamic feature selection.

4.2 Dynamic Feature Boosting for Ad-recommendation Gains

In this experiment, we applied dynamic feature selection to selectively add feature-attributes to 3
EBF sequences corresponding to ad-impressions, organic-impressions and new-page-impressions.
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Dynamix involved user-traffic-segmentation using ad-impressions EBF into 66.67% active and 33.33%
passive-users (with same ϵ as Section 4.1), respectively. In the first run, feature-attribute additions for
all 3-EBF sources were applied to all users homogeneously. In the second run, the attribute additions
to all 3 EBF sources were made only to the active user-segment while the passive user-segment
received additional organic-impressions feature only.

Table 3 demonstrates that user-segmentation followed by selective feature boosting can not only
enhance training and inference QPS by traffic reduction, it can subsequently boost overall CTR
prediction through stable NE Gains shown in Figure 5(b).

Table 3: Averaged metrics for selective resource addition across 3 runs.
Experiment: New Attribute Addition to NE Gain Training QPS Inference QPS
3 EBF sources for all users 0.031 -2.13% -10.1%
3 EBF sources for active-users, 0.033 -0.96% +4.2%
Organic-impression EBF for passive-users

It is noteworthy in Table 3 that while the impact to training QPS is minor (≈ 1% QPS), dynamic
user-segmentation and feature boosting leads to 14.3% inference QPS improvement over uniform
EBF boosting across all users. This is a significant improvement over the homogeneous feature
addition run for all users that leads to greater than 10% inference QPS regression, and hence is
compute heavy and infeasible.

5 Conclusion and Discussion

In this work, we presented Dynamix, a personalized sequence scaling approach that dynamically
allocates resources based on user-engagement patterns in user-ad interactions. Our experiments
demonstrate the effectiveness of user-group specific resource-level exploration through selective
feature removal, feature selection and attribute-boosting. Dynamic feature-attribute removal showed
that pruning low-importance attributes for active users significantly improved training and inference
throughput (up to +1.1% and +1.8% QPS respectively) without degrading model-prediction. This
confirms that targeted feature pruning for predictable user-intent can reduce computational costs
while maintaining recommendation quality.

Conversely, the dynamic feature boosting revealed that selectively adding feature attributes to active-
users, while limiting organic feed features only for passive users, led to a substantial 4.2% increase
in inference QPS and a significant NE Gain. This personalized boosting approach outperformed
uniform feature addition, which caused significant inference regressions, highlighting the importance
of user-segmentation for efficient resource allocation.

It is noteworthy that the dynamic user-segmentation process is sensitive to the threshold parameter
thereby enabling multi-user group segmentation by multi-level thresholding. The binary user-
group segmentation presented in this work is the simplest extension to the baseline EBF-based
ad-recommendation model to demonstrate ad-recommendation boosts while maintaining stable
processing wins. Additional user-group partitioning may lead to more noisy and unstable resource
explorations that remain to explored in future works.

Overall, Dynamix enables cost-effective and performance-enhancing personalized sequence scaling
by leveraging self-supervised user engagement signals. Future work will focus on refining correlation
estimation methods, multi-user-segments while maintaining optimizing and explainable workflows to
further improve computational efficiency and recommendation quality.
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