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ABSTRACT

With the attention gained by camera-only 3D object detection in autonomous
driving, methods based on Bird-Eye-View (BEV) representation especially derived
from the explicit lift-splat-shoot (LSS) paradigm, have recently seen significant
progress. The BEV representation is ideal for learning the road structure and
scene layout. However, to retain computational efficiency, the compressed BEV
representation is inevitably weak in retaining the individual geometric details,
undermining the methodological generality and applicability. With this in mind,
to compensate for the missing details and utilize multi-view geometry constraints,
we propose LSSInst, a two-stage object detector incorporating BEV and instance
representations in tandem. The proposed detector exploits fine-grained pixel-level
features while can be flexibly integrated into existing LSS-based BEV networks.
Having said that, due to the inherent gap between two representation spaces, we
design the instance adaptor for the BEV-to-instance semantic coherence rather than
pass the proposal naively. Extensive experiments demonstrated that our proposed
framework is of excellent generalization ability and performance, which boosts
the performances of modern LSS-based BEV perception methods without bells
and whistles and outperforms current LSS-based state-of-the-art works on the
large-scale nuScenes benchmark.

1 INTRODUCTION

As a crucial component in 3D perception, 3D object detection can be applied in various fields, such
as autonomous driving and robotics. Although LiDAR-based 3D detection methods (Vora et al.,
2020; Lang et al., 2019; Zhou & Tuzel, 2018; Yan et al., 2018) are verified as having remarkable
performance, research in camera-based methods has received increasing attention in recent years.
The reasons can be attributed not only to the lower deployment cost but also to the advantages offered
by long-range distance and the identification of visual road elements (Li et al., 2022b; Park et al.,
2023). However, unlike LiDAR sensors that provide direct and accurate depth information, detecting
objects solely based on camera sensor images poses a significant challenge. Thus, how to utilize
multi-view images to build up effective representations has become a key issue.

Recently, significant progress has been achieved in methods that utilize the bird’s-eye view (BEV)
which can be mainly categorized as explicit type (Li et al., 2023b;a; Feng et al., 2023; Park et al., 2023)
based on lift-splat-shoot (LSS) (Philion & Fidler, 2020) and implicit type (Li et al., 2022b; Yang et al.,
2023) based on the learnable BEV query. Due to its purely implicit aggregation by uninterpretable
but forcibly dense queries, the implicit type shows lower performance and expansibility (Han et al.,
2023), enabling the explicit LSS-based type to become mainstream in modern BEV paradigms for
camera-only 3D detection at present. Based on the LSS hypothesis and the fact that most objects
in the scene are close to the ground, LSS-based BEV provides a perspective with minimal parallax
ambiguity and information loss in observing the objects as a whole. Illustrated by Fig. 1 (I), these
methods look around and gather information from multiple 2D views and create a comprehensive
representation of the scene. This representation is in the form of a planar view with compressed
height (z-axis) and reduced resolution to ensure computational efficiency. The BEV feature benefits
from its holistic representation and dense feature space, making it well-suited for capturing the
scene’s structure and data distribution. However, the geometrically-compressed nature of the BEV

1



Under review as a conference paper at ICLR 2024

Look Back

(a) BEV-based (b) Sparse-based (c) LSSInst

Scenes-level Feature Instance-level Feature Scene-to-instance Adaptation 

Look         Around

Figure 1: The conceptual comparison of our framework with previous camera-based fashions.

Table 1: The per-category AP comparison between two typical fashions with equivalent detection
ability (∆mAP less than 0.5%) methods on the nuScenes test set.

Method mAP car truck bus pedestrian bicycle traffic cone barrier

1 BEVDet (Huang et al., 2021) 42.4 0.643 0.350 0.358 0.411 0.296 0.601 0.614
Spatial-DETR (Doll et al., 2022) 42.5 0.610 0.332 0.330 0.462 0.327 0.629 0.582

2 CFT-BEV3D (Jiang et al., 2022) 41.7 0.628 0.348 0.347 0.416 0.299 0.596 0.607
DETR3D (Wang et al., 2021) 41.2 0.603 0.333 0.290 0.455 0.308 0.627 0.565

representation inherently limits its ability to provide precise 3D position descriptions of objects and
fully exploit detailed features for object matching particularly in the 3D detection task which requires
accurate prediction of 3D object bounding boxes. Meanwhile, as another typical fashion and shown
in Fig. 1 (II), sparse-based methods without BEV (Wang et al., 2021; Liu et al., 2022; Chen et al.,
2023) leverage instance-level representations and exploit the 3D geometric prior to regress object
bounding boxes from the 3D perspective of the objects. However, due to the initialization semantic
dispersity, they fail to capture abundant object-aware features from the image at once in comparison
with the BEV feature that fits adequate semantic information in the scene, resulting in lower overall
performance than the contemporaneous BEV-based methods.

Following this, there are some interesting and corroborative findings in the per-class AP comparison
between the two aforementioned fashions as shown in Tab. 1. Notably, considering the practical
variety such as data augmentation and training strategies, the difference between the overall mAP
values of selected methods in the same group is strictly less than 0.5% which ensures both detection
abilities are equivalent. We can observe that there is the same AP tendency among the classes.
Specifically, BEV representation seems more attentive to regular objects (car, bus, truck, barrier)
with distinct movements or common positions in the scene, with relative insensitivity to the objects
(pedestrian, bicycle, traffic cone) with uncertain trajectories or dispersed locations, which further
proves its characteristics of fitting data distribution and leaning to the scene-level focus. Inspired by
this, to brighten the complementary synergy of both fashions and make up for the missing details in
the representation formulation of current LSS-based BEV perception as well as utilize multi-view
geometry constraints, we are motivated to propose LSSInst, incorporating the sparse instance-level
representations based on the scene-level representations to look back for more detailed feature with
geometric matching. As illustrated in Fig. 1 (III), based on the global scene-level pre-feature, instance-
level features are pushed to look back at the image locally, focusing on more fine-grained pixel
features and allowing for flexible geometric matching, which ultimately generates a final perception
result that combines globally-semantic and locally-geometric information.

However, this collaboration also poses challenges, as the most straightforward solution of naively
sharing the bounding box proposal is intuitively and experimentally failed 1. As aforementioned, tra-
ditional sparse-based detection methods suffer from initialization semantic dispersity and inadequate

1See Sec. 4.4 and Tab. 5 for more details
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semantic understanding of the scene, the above solution would sever the coherence with the dense
representations. With this in mind, we propose the instance adaptor module to establish semantic
coherence between the scene and instances and an instance branch for detection. The instance adaptor
module generates multiple sparse queries and their corresponding 3D boxes through multi-level
adaptive aggregation. The instance branch focuses on fine-grained sparse feature extraction and
geometric matching using prepared inputs, such as box embeddings and spatiotemporal sampling
and fusion. On the nuScenes dataset, our LSSInst method demonstrates strong generalization abil-
ity. Compared to other typical LSS-based methods, LSSInst achieves significant improvements in
mAP. Specifically, it outperforms BEVDet by 5.0%, BEVDepth by 2.2%, BEVStereo by 2.6%, and
surpasses the state-of-the-art LSS-based method SOLOFusion by 1.6%.

Our main contributions can be concluded as follows: i) We proposed LSSInst, a two-stage framework
that improves the geometric details in LSS-based BEV perception with instance representations; ii)
we proposed the instance adaptor to maintain the BEV-to-instance semantic coherence and a newly-
designed instance branch to look back and aggregate features spatiotemporally for improvement; iii)
The proposed framework was verified with great generalization ability and surpassed the state-of-the-
art LSS-based methods by extensive experimental results.

2 RELATED WORK

2.1 LSS-BASED EXPLICIT BEV PERCEPTION

As BEV has proved to be an effective representation for multi-view 3D detection, LSS-based methods
that benefit from the explicit formulation process and superior performance become the recent
mainstream paradigm. LSS (Philion & Fidler, 2020) is proposed for an end-to-end view transform
architecture that lifts images into frustums by predicting depth distribution and splats them into a
BEV representation. Then BEVDet (Huang et al., 2021) incorporates exclusive data augmentation
techniques for the detection extension. BEVDepth (Li et al., 2023b) and BEVStereo (Li et al.,
2023a) improved the depth accuracy by introducing an extra monocular depth network supervised
by corresponding LiDAR depth, and multi-view stereo matching between adjacent frames, while
BEVDistill (Chen et al., 2022) chose to the model-level distillation from LiDAR. OA-BEV (Chu et al.,
2023) and SA-BEV (Zhang et al., 2023a) enhanced the utilization of depth, which integrated the 3D
voxel network based on the additional proposal from the 2D detection network and proposed a depth
and semantic fusion module respectively for a more enhanced feature. Besides, several works started
to perceive the shortage of the current view transformation assumption. AeDet (Feng et al., 2023)
introduced the positional compensation for existing coordinate projection while FB-BEV (Li et al.,
2023c) integrated a novel forward-backward view transformation module that partially alleviates the
projection issues. SOLOFusion (Park et al., 2023) further unified long-term temporal information
based on the short-term temporal optimization with Gaussian top-k sampling to boost performance.

Despite these methods making efforts to chase a flawless BEV representation from the LSS process,
due to the avoidable depth error and the compressed nature of pooling operations, the yielded BEV
representation is weak in retaining the individual geometric details, hence we differently focus on
adapting the BEV representation into better geometrical modeling.

2.2 INSTANCE-LEVEL REPRESENTATION INTEGRATION IN CAMERA 3D DETECTION

Integrating instance-level representation is ubiquitous in camera 3D detection to enhance perceptual
ability. FQNet (Liu et al., 2019) is a three-stage framework for monocular detection that first locally
searches for potential boxes and then follows a Fast-RCNN-like way to aggregate the massive object
candidate globally for location prediction. Li et al. (2022a) apply a similar way in stereo 3D detection.
They first borrow DSGN (Chen et al., 2020) to locally search for possible proposals and then establish
the Vernier network to globally form the confidence map based on the stereo pair. For multi-view
3D detection, BEVFormer V2 (Yang et al., 2023) used the perspective network to generate coarse
instance features to serve as auxiliary proposals. Unlike they borrow instance-level features in a
bottom-up (i.e., local-to-global) way, LSSInst uses a totally different top-down (i.e., global-to-local)
way for improvement.
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Figure 2: Overview of LSSInst. The multi-view images with previous T frames are fed into the
backbone network for the image features. BEV branch looks around the image feature to generate the
BEV feature by view transformation and temporal encoding. Instance adaptor aggregates the sparse
object-aware feature from the BEV feature and prepares the multiplicate 3D query combination.
Instance branch looks back at the image feature and perfects the sparse feature by spatiotemporal
sampling and fusion. Lastly, the model makes the final prediction based on the updated output.

2.3 TWO-STAGE CAMERA 3D OBJECT DETECTOR

The two-stage design has been widely explored in the 3D detection domain and proved to be effective,
whose multi-step workflow is favorable for more accurate prediction. For camera 3D detection,
MonoDIS (Simonelli et al., 2022) extracts features from 2D bounding boxes for subsequent 3D
bounding box regression. SimMod (Zhang et al., 2023b) utilized a DETR3D head to iteratively
refine 2D-level object proposals output from a monocular network. BEVFormer v2 (Yang et al.,
2023) extends BEVFormer (Li et al., 2022b) into the second stage by incorporating a first-stage 3D
perspective detection network. Among current two-stage methods, they seek more refinement for
jointly aggregating coarse samples because their first stage primarily relies on perspective views.
Instead, we focus on the subsequent refinement of proposals with holistic semantics derived together
from the scene-level layout.

3 LSSINST

Utilizing instance-level representations on the basis of the scene-level BEV to excavate more detailed
features and geometric information is of practical significance for generalized 3D perception. In this
work, we propose LSSInst, which looks back for the more geometry-aware and fine-grained target
feature extraction to bridge the adaptation between scene-level and instance-level 3D representations.
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The overview of our framework is shown in Fig. 2.3, and we organize the remaining part as follows.
Firstly, Sec. 3.1 briefly introduces the BEV branch. Next, Sec. 3.2 introduces the instance adaptor
module, and the instance branch is given in Sec. 3.3.

3.1 BEV BRANCH: LOOKING AROUND FOR SCENE-LEVEL REPRESENTATION

The multi-view sequential images with the previous T frames are first input into the 2D image
backbone network for feature extraction. Then the BEV branch receives the extracted image feature
Fimg ∈ RNv×Ns×C×H×W and functions as an around looker, translating Fimg from 2D camera
views to BEV for preliminary scene-level representation Fβ ∈ RC×Hβ×Wβ , where Nv, Ns denote
the camera-view and scale number respectively. This branch can be briefly divided into temporally-
shared view transformation for BEV generation and BEV sequence fusion. The 2D-to-BEV view
transformation (VT) is naturally based on LSS paradigm, which can be mainly concluded as depth
refinement module (DRM), feature extraction net, and voxel pooling. For the best version of the
framework, we adopted the Gaussian-spaced top-k stereo (Park et al., 2023) for a better depth
distribution map before the voxel pooling. After the shared VT, a sequence of BEV representations
will be aligned into current time t and fed to the BEV temporal encoder to form the final current BEV.
Here the encoder is designed as a very lightweight residual network for dimension reduction only.

3.2 INSTANCE ADAPTOR: SCENE-TO-INSTANCE ADAPTATION

For the sake of preserving a coherent and solid semantic consistency between BEV and instance rep-
resentations, we propose the instance adaptor module to eliminate the gaps in the position description
and space discrepancy. Since the BEV feature Fβ is a scene-level representation surrounding the
ego car, there is redundancy and inflexibility in modeling instance-level features. To that end, the
proposed adaptor module first performs a reprojection of the proposal box coordinates Po ∈ RNβ×3

obtained through the BEV proposal head, returning to the BEV-recognized position Pβ ∈ RNβ×2

to resample the object-related features. Here Nβ denotes the number of BEV proposals. Given the
BEV point-cloud range Rβ with the corresponding voxel size Sv and up-sampling factor σ, we can
formulate the 2D reprojected coordinate as follow:

[Pβ , zβ ] = (Po −Rβ)/(σSv) (1)

Here, zβ denotes the z-axis homogeneous term and is actually a constant of 1. Moreover, due to the
overfitting bias in BEV, the focused area may deviate from the actual object position. Inspired by
deformable attention (Zhu et al., 2020), the adaptor module incorporates the learnable offsets based
on the original focused feature F

′

β ∈ RNβ×C for misalignment compensation by exploring more
semantically-aware regions. Suppose i ∈ {1, 2, ..., Nβ} denotes an arbitrary element index of F

′

β and
its aggregated instance-wise feature F i

α can be formulated by

F i
α = Wα

K∑
k=1

Ai
k ·W

′

αΦ
(
Fβ , P

i
β +∆P i

βk

)
(2)

where Wα,W
′

α ∈ RC×C are the weight matrix of linear projections and k indexes the resampled
keys with the total resampled key number K (K << HβWβ). ∆P i

βk ∈ R2 is the learnable offset
and Ai

k is the normalized attention weight of the kth sampling point with
∑K

k=1 A
i
k = 1, which are

both linearly projected over F
′

β . Φ denotes the bilinear interpolation function.

Having said that aforementioned, there still remains the inherent space discrepancy between BEV
encoding space and the 3D sparse space suitable for looking back at the image feature. Therefore,
we first introduce an extremely-shallow convolutional feature converter fcnv to reparameterize the
aggregated features for the inter-space narration. Meanwhile, even with the extensive aggregation
and enhancement based on BEV attentive features, a portion of irregular or separated objects cannot
be detected due to the BEV overfitting of regular objects and relatively rough perception granularity.
Therefore, we introduce extra learnable queries Fγ ∈ RNγ×C and reference boxes independent of
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BEV proposals, named potential 3D instances and boxes, aimed at capturing the potential BEV-
insensitive objects and learning a BEV-agnostic 3D spatial prior. Thus, we can get the multiplicate
sparse feature Fχ ∈ RN×C and here we let N = Nβ +Nγ for simplicity. The whole Fχ formulation
can be derived by

Fχ =
{
fcnv

(
{F i

α}
Nβ

i=1

)
, Fγ

}
(3)

3.3 INSTANCE BRANCH: LOOKING BACK FOR INSTANCE-LEVEL REPRESENTATION

Given the sequential image features {F t
img}

Tχ

t=0 (Tχ ≤ T ) from the image backbone network and
the sparse instance features Fχ with corresponding 3D boxes Pbox ∈ RN×Cbox from the instance
adaptor, the instance branch will spatially and temporally look back the image feature based on the
referenced box coordinates and iteratively extract the abundant but more fine-grained representations
to update pre-features. This branch can be roughly regarded as a multi-layer Transformer-decoder-like
(Vaswani et al., 2017) module for 3D detection, which is briefly divided into two parts: box-level
offset and embedding, as well as spatiotemporal sampling and fusion.

Box-level Offset and Embedding Different from the previous DETR-like 3D approaches such
as DETR3D (Wang et al., 2021), Polorformer (Jiang et al., 2023), VEDet (Chen et al., 2023) that
iteratively refine just with 3D coordinate offset regression, the instance branch adopts the box-level
offset regression based on Pbox. With this convenience, we can encode all the geometric-aware
information of the entire box to substitute the transitional positional encoding, thereby expanding
and enriching the space of feature expression rather than the superficial positional level. With
it combined with the sparse instance features, there will be more geometric priors and implicit
compensation in subsequent attention interactions. Precisely, we first categorize Pbox based on
the element semantic of box dimension into four divisions, which are position Ppos ∈ RN×3 (i.e.,
x, y, z), scale Psca ∈ RN×3 (i.e., w, l, h), velocity Pvel ∈ RN×2 (i.e., vx, vy), and orientation
Pori ∈ RN×2 (i.e., sin(θyaw), cos(θyaw)) respectively. Then we introduce five separated linear
projections {Ej

l3}2j=1 ∈ R3×C , {Ej
l2}2j=1 ∈ R2×C and Eg ∈ RC×C for comprehensive encoding, of

which the former four embed every category locally and the last one embeds them globally. The final
box embedding Gχ ∈ RN×C can be formulated by

Gχ = Eg

 2∑
j=1

Ej
l3

(
P j
d3

)
+

2∑
j=1

Ej
l2

(
P j
d2

) (4)

where P j
d3, P

j
d2 denote the three and two-dimensional categorized element respectively.

Spatiotemporal Sampling and Fusion The sparse feature Fχ with the box embedding Gχ will
be updated by the spatial and temporal sampling after being fed into the Multi-Head Self-Attention
block (Vaswani et al., 2017). Given the corresponding 3D coordinate Pχ ∈ RN×3 from Pbox, we first
warp it from the 3D system to the 2D correspondence pχ ∈ RN×2 at the current time by the intrinsic
and extrinsic matrix. On the spatial hand, intending to access the target region, we sample the original
feature to intermediately regress the existing offset from pχ to the target. To expand and voice in the
search breadth, we extend the sampling points analogical to Eqn. 2 and enlarge the proportion of
residual addition with a weight η. On the other temporal hand, with time going, there exist ego-car
motion and object motion in the autonomous driving scenario, which is required compensation before
sampling. In light of the short term in this sparse temporal stereo, i.e., Tχ is a small positive integer,
we approximate the object motion as a uniform rectilinear motion. Thus, we first compensate pχ

with current velocity Pvel and then warp it into every coordinate system as {ptχ}
Tχ

t=1 of per historical
time by the medium transition in the global world coordinate system. The per-frame sampled feature
Fδt, t ∈ {0, 1, ..., Tχ} can be formulated by

Fδt = Wχ

K∑
k=1

Akt ·W
′

χΦ [Fimg, (Mt(pχ + τt · Pvel) + ∆pχkt)] (5)
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Table 2: Comparison results of LSS-based and two-stage detectors on 3D detection on the nuScenes
val set. † denotes the performance without future frames for a fair comparison.

Method Backbone Image Size mAP↑ NDS↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓

BEVDet (Huang et al., 2021) ResNet50 256 × 704 0.283 0.350 0.773 0.288 0.698 0.864 0.291
BEVDet4D (Huang & Huang, 2022) ResNet50 256 × 704 0.322 0.457 0.703 0.278 0.495 0.354 0.206
BEVDepth (Li et al., 2023b) ResNet50 256 × 704 0.330 0.436 0.702 0.280 0.535 0.553 0.227
BEVStereo (Li et al., 2023a) ResNet50 256 × 704 0.346 0.452 0.659 0.277 0.550 0.498 0.228
AeDet (Feng et al., 2023) ResNet50 256 × 704 0.358 0.473 0.655 0.273 0.493 0.427 0.216
SA-BEV (Zhang et al., 2023a) ResNet50 256 × 704 0.370 0.488 0.660 0.269 0.470 0.353 0.218
FB-BEV (Li et al., 2023c) ResNet50 256 × 704 0.378 0.498 0.620 0.273 0.444 0.374 0.200
SOLOFusion (Park et al., 2023) ResNet50 256 × 704 0.406 0.497 0.609 0.284 0.650 0.315 0.204
LSSInst ResNet50 256 × 704 0.422 0.514 0.620 0.277 0.516 0.360 0.202

SimMOD (Zhang et al., 2023b) ResNet50 800 × 1333 0.331 0.427 0.721 0.267 0.401 0.810 0.184
BEVFormer v2 (Yang et al., 2023) † ResNet50 640 × 1600 0.388 0.498 0.679 0.276 0.417 0.403 0.189
LSSInst ResNet50 256 × 704 0.422 0.514 0.620 0.277 0.516 0.360 0.202

where τ is the time interval between every two adjacent frames, and Mt is the ego-motion trans-
form matrix from current time to previous t time. Then the multi-frame features are fed into the
sparse temporal encoder fenc, a naive three-layer MLP, for temporal iterative fusion. Based on
our approximation, the projection error will increase with t larger. Thus we let λ denote a con-
stant in the range [0, 1], which is introduced for long-term suppression. With the iterative fusion
Fδ(t−1) ← fenc({Fδ(t−1), λFδt}), we can get the final sparse sampled feature fδ from {fδt}

Tχ

t=0.
The whole box-level offset δχ can be calculated as follows:

Fχ ← Fχ + ηFδ δχ = freg {Fχ +Gχ} (6)

Here freg is the box offset regression function of every layer. Notably, we omit the calculation in the
scale and view level of Fimg for simplicity.

4 EXPERIMENTS AND ANALYSIS

4.1 EXPERIMENTAL SETTINGS

Dataset We conducted extensive experiments on the nuScenes 3D detection benchmark (Caesar
et al., 2020), a large-scale dataset in the autonomous driving scene. This benchmark consists of 1,000
autonomous driving scenes, with each scene spanning approximately 20 seconds. The dataset is
divided into 850 scenes for training (train) or validation (val) purposes and 150 scenes for testing
(test). Each frame in the dataset contains six cameras capturing surrounding views, along with a
LiDAR-generated point cloud. The dataset provides annotations for up to 1.4 million 3D bounding
boxes across 10 different classes.

Implementation Details We implemented our network framework utilizing the open-source
MMDetection3D (Contributors., 2020) in PyTorch. The learning rate, optimizer, and data aug-
mentation methods used were the same as those in BEVDepth. By default, We set the image size to
256 × 704 and utilized ResNet50, pretrained on ImageNet, as the image backbone. The size of the
BEV feature in all our experiments was set to 128 × 128. Here we set k = 6, Tχ = 3, η = 3. The
feature dimension C is 256 and the box dimension Cbox is 10. The perception ranges for the X and
Y axis was [-51.2m, 51.2m], and the resolution of each BEV grid was 0.8m. The time interval τ is
0.5s, and long-term suppression λ is 0.6.

4.2 BENCHMARK RESULTS

We compared our approach with LSS-based and two-stage state-of-the-art methods on the nuScenes
val and test sets. The main results are presented in Tab. 2 and Tab. 3 respectively. On the val set,
we evaluated the performance of LSSInst against other models with the same setting and without the
CBGS strategy and future frame usage. The results clearly showcased the superiority of LSSInst, as
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Table 3: Comparison results of LSS-based detectors on 3D detection on the nuScenes test set. TTA
denotes test time augmentation strategy.

Method Backbone Image Size TTA mAP↑ NDS↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓

BEVDet (Huang et al., 2021) V2-99 900 × 1600 ✔ 0.424 0.488 0.524 0.242 0.373 0.950 0.148
BEVerse (Zhang et al., 2022) Swin-B 900 × 1600 ✔ 0.393 0.531 0.541 0.247 0.394 0.345 0.129
BEVDet4D (Huang & Huang, 2022) Swin-B 900 × 1600 ✔ 0.451 0.569 0.511 0.241 0.386 0.301 0.121
OA-BEV (Chu et al., 2023) V2-99 900 × 1600 ✔ 0.494 0.575 0.571 0.256 0.377 0.385 0.132
BEVDistill (Chen et al., 2022) ConvNeXt-B 640 × 1600 ✘ 0.496 0.594 0.475 0.249 0.378 0.313 0.125
BEVDepth (Li et al., 2023b) ConvNeXt-B 640 × 1600 ✘ 0.520 0.609 0.445 0.243 0.352 0.347 0.127
BEVStereo (Li et al., 2023a) V2-99 640 × 1600 ✘ 0.525 0.610 0.431 0.246 0.358 0.357 0.138
AeDet (Feng et al., 2023) ConvNeXt-B 640 × 1600 ✔ 0.531 0.620 0.439 0.247 0.344 0.292 0.130
TiG-BEV (Huang et al., 2022) ConvNeXt-B 640 × 1600 ✔ 0.532 0.619 0.450 0.244 0.343 0.306 0.132
SA-BEV (Zhang et al., 2023a) V2-99 640 × 1600 ✘ 0.533 0.624 0.430 0.241 0.338 0.282 0.139
FB-BEV (Li et al., 2023c) V2-99 640 × 1600 ✘ 0.537 0.624 0.439 0.250 0.358 0.270 0.128
SOLOFusion (Park et al., 2023) ConvNeXt-B 640 × 1600 ✘ 0.540 0.619 0.453 0.257 0.376 0.276 0.148
LSSInst ConvNeXt-B 640 × 1600 ✘ 0.546 0.629 0.464 0.251 0.341 0.265 0.120

Table 4: Generalization and Geometric-wise Results of LSSInst. (‡ please refer to Footnote 2).

Method mAP↑ NDS↑ mATE↓ mASE↓ mAOE↓ Param (M) Training Cost
(min/epoch)

Inference Cost
(sec/frame)

BEVDet (Huang et al., 2021) 0.260 0.319 0.830 0.292 0.758 55.7 14 0.044
LSSInst with BEVDet 0.310 0.367 0.771 0.285 0.658 64.0 18 0.051

BEVDepth4D (Li et al., 2023b) 0.343 0.458 0.691 0.281 0.610 83.5 11 0.097
LSSInst with BEVDepth4D 0.365 0.477 0.671 0.275 0.492 91.8 13 0.109

BEVStereo (Li et al., 2023a) 0.348 0.463 0.675 0.278 0.577 92.0 7 0.186
LSSInst with BEVStereo 0.372 0.481 0.658 0.275 0.492 102.3 10 0.208

SOLOFusion (Park et al., 2023) 0.406 0.497 0.609 0.284 0.650 64.4 23 0.065
LSSInst with SOLOFusion 0.422 0.514 0.620‡ 0.277 0.516 72.8 26 0.078

it outperformed the current LSS-based SOTA, SOLOFusion by a margin of 1.6% in mAP and 1.7%
in NDS, and the current two-stage SOTA, BEVFormer v2 by a margin of 3.4% in mAP and 1.6% in
NDS. On the test set, our LSSInst achieves an mAP of 54.6% and an NDS of 62.9% without any
additional augmentation, outperforming all LSS-based methods. Such improvements demonstrate the
effectiveness of our LSSInst for improving LSS-based BEV perception with instance representations.

4.3 GENERALIZATION ABILITY AND GEOMETRIC-WISE BOOST

To demonstrate the generalization ability of our LSSInst method, we selected prominent LSS-based
methods as the BEV branch of LSSInst. The results are presented in Tab. 4. The table reveals that our
LSSInst achieves notable improvements in mAP and NDS compared to standalone BEV detectors
at a minor cost. In spite of the impressive detection enhancement with 2 5% mAP and NDS, the
corresponding costs increase by an acceptable margin. In particular, among all the methods, there
is a significant improvement in mATE 2, mASE, and mAOE, indicating that LSSInst can exploit
fine-grained pixel-level features and better enhance perceptual capability with aspects of translation,
scale, and orientation, which are all relevant in geometric-wise perception.

4.4 ABLATIONS AND ANALYSES

This section is the ablation study with analyses. Notably, we select BEVDepth as the BEV branch in
the ablation baseline for convenient experimental conduction. For others, please refer to Appendix.

Multiplicate queries To further investigate the impact of the multiplicate queries, as shown in
Tab. 5, we explored two scenarios: using only proposal queries (referred to as Qβ) or learnable

2 Actually in the mATE column of Tab. 4, 0.620 mATE in 0.422 mAP also beats 0.609 mATE in 0.402 mAP,
please see the experimental verification in Appendix.
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Table 5: Query Composition
Composition of Queries mAP↑ NDS↑

450 Qγ 0.157 0.226
900 Qγ 0.263 0.297
450 Qβ 0.331 0.447
900 Qβ 0.330 0.446

450 Qβ + 450 Qγ 0.362 0.474

Table 6: Segmentation mIoU
Methods with GT with baseline

Baseline 44.56 -

LSSInst 46.63 66.21 (>50)

Table 7: Box-level Embedding
Center Box Box w/ BE mAP↑ NDS↑

0.343 0.458
✓ 0.354 0.467

✓ 0.354 0.466
✓ 0.362 0.474

potential queries (referred to as Qγ), and incorporating both queries. We can observe that We can
observe that on the one hand, relying solely on the potential queries cannot play a major role, and
even utilizing all 900 queries yielded mediocre performance, which shows the slow convergence
because of the initialization semantic dispersity without the scene-level information basis from BEV
as aforementioned. On the other hand, though the proposal queries from BEV alone can achieve
overall good results, adding more queries (from 450 to 900) does not achieve a better improvement,
and instead there is even a slight decrease in performance, which proves its overfitting characteristics
for the scene and the fact of the neglectful detection of missing objects in the scene. However, When
incorporating two kinds of queries, the performance is further improved and reaches a new level,
demonstrating the effectiveness of the potential queries in capturing the potential BEV-insensitive
objects and learning a BEV-agnostic 3D spatial prior. Through the comparison of results, it can
be concluded that these two types of queries play their unique roles, and their inseparable and
complementary synergy enables the model to have a comprehensive understanding from the global
scene level to the local instances level.

BEV-to-Instance Semantic Coherence To confirm the BEV-to-instance semantic coherence, we
conduct the relevant experiments in two aspects. Assuming there is only one foreground class, we
calculate the mIoU metric of semantic segmentation compared with the ground truth and baseline
as shown in Tab. 6. According to the results with the ground truth, LSSInst is observed as having
better semantic maintenance than the LSS baseline, which shows the improvement of perceptual
capability to the extra BEV-insensitive objects in the scene. When it comes to the mIoU with the LSS
baseline, the value 66.21% is over 50% which also indicates the promising BEV-to-instance semantic
coherence. More qualitative results can be referred to in the Appendix.

Box-level embedding In order to showcase the impact of box-level embedding, we conducted the
ablation experiment, and the results are presented in Tab. 7. In this experiment, we compared different
approaches: utilizing only the center points (referred to as Center) or the bounding boxes (Box)
predicted in the BEV detection and incorporating the bounding boxes along with their corresponding
box embedding (BE). We can both find the same increase by a margin, which indicates that there is no
difference between the two types of offset regression, excluding the possibility of using Box to bring
additional information compared with Center. However, by incorporating the box-level embedding,
we observed a further remarkable improvement over center point inheritance alone. This significant
improvement clearly demonstrates the encoding of candidate boxes helps enhance the geometric
priors of the queries, thereby improving the extraction of detailed object features from the image.
This compensates for the limitations of the BEV representation and enables a more comprehensive
understanding of instances.

5 CONCLUSION

Existing LSS-based methods make efforts to build up a desirable BEV representation, but they ignore
its inherent shortage of geometric loss in the formulation, suppressing its generality in 3D perception.
In this paper, we propose LSSInst, a two-stage detector that improves the geometric modeling of
the BEV perception with instance representation. To address the challenge of the gap between
two representation spaces, we propose the instance adaptor to keep the BEV-to-instance semantic
coherence. Then a newly-designed instance branch is introduced to look back for fine-grained
geometric matching and feature aggregation. Extensive experimental results demonstrated that our
framework is of great generalization ability in modern LSS-based BEV perceptions and excellent
performance, surpassing the current state-of-the-art works. We hope that our work will inspire further
exploration of generalized 3D perception in more complex and fine-grained outdoor-scene tasks.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush
Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuScenes: A multimodal dataset for
autonomous driving. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2020.

Dian Chen, Jie Li, Vitor Guizilini, Rares Andrei Ambrus, and Adrien Gaidon. Viewpoint equivariance
for multi-view 3d object detection. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 9213–9222, 2023.

Yilun Chen, Shu Liu, Xiaoyong Shen, and Jiaya Jia. Dsgn: Deep stereo geometry network for 3d
object detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 12536–12545, 2020.

Zehui Chen, Zhenyu Li, Shiquan Zhang, Liangji Fang, Qinhong Jiang, and Feng Zhao. Bevdistill:
Cross-modal bev distillation for multi-view 3d object detection. International Conference on
Learning Representations (ICLR), 2022.

Xiaomeng Chu, Jiajun Deng, Yuan Zhao, Jianmin Ji, Yu Zhang, Houqiang Li, and Yanyong Zhang.
Oa-bev: Bringing object awareness to bird’s-eye-view representation for multi-camera 3d object
detection. arXiv preprint arXiv:2301.05711, 2023.

MMDetection3D Contributors. Mmdetection3d: Open-mmlab next-generation platform for general
3d object detection. https://github.com/open-mmlab/mmdetection3d, 2020.

Simon Doll, Richard Schulz, Lukas Schneider, Viviane Benzin, Enzweiler Markus, and Hendrik P.A.
Lensch. Spatialdetr: Robust scalable transformer-based 3d object detection from multi-view
camera images with global cross-sensor attention. In European Conference on Computer Vision
(ECCV), 2022.

Chengjian Feng, Zequn Jie, Yujie Zhong, Xiangxiang Chu, and Lin Ma. Aedet: Azimuth-invariant
multi-view 3d object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 21580–21588, 2023.

Chunrui Han, Jianjian Sun, Zheng Ge, Jinrong Yang, Runpei Dong, Hongyu Zhou, Weixin Mao,
Yuang Peng, and Xiangyu Zhang. Exploring recurrent long-term temporal fusion for multi-view
3d perception, Mar 2023.

Junjie Huang and Guan Huang. Bevdet4d: Exploit temporal cues in multi-camera 3d object detection.
arXiv preprint arXiv:2203.17054, 2022.

Junjie Huang, Guan Huang, Zheng Zhu, and Dalong Du. Bevdet: High-performance multi-camera
3d object detection in bird-eye-view. arXiv preprint arXiv:2112.11790, 2021.

Peixiang Huang, Li Liu, Renrui Zhang, Song Zhang, Xinli Xu, Baichao Wang, and Guoyi Liu.
Tig-bev: Multi-view bev 3d object detection via target inner-geometry learning. arXiv preprint
arXiv:2212.13979, 2022.

Hongxiang Jiang, Wenming Meng, Hongmei Zhu, Qian Zhang, and Jihao Yin. Multi-camera
calibration free bev representation for 3d object detection. arXiv preprint arXiv:2210.17252, 2022.

Yanqin Jiang, Li Zhang, Zhenwei Miao, Xiatian Zhu, Jin Gao, Weiming Hu, and Yu-Gang Jiang.
Polarformer: Multi-camera 3d object detection with polar transformers. In Association for the
Advancement of Artificial Intelligence (AAAI), 2023.

Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar Beijbom. Point-
pillars: Fast encoders for object detection from point clouds. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 12697–12705, 2019.

Shichao Li, Zechun Liu, Zhiqiang Shen, and Kwang-Ting Cheng. Stereo neural vernier caliper. In
Proceedings of the AAAI Conference on Artificial Intelligence, pp. 1376–1385, 2022a.

10



Under review as a conference paper at ICLR 2024

Yinhao Li, Han Bao, Zheng Ge, Jinrong Yang, Jianjian Sun, and Zeming Li. Bevstereo: Enhancing
depth estimation in multi-view 3d object detection with dynamic temporal stereo. In Association
for the Advancement of Artificial Intelligence (AAAI), 2023a.

Yinhao Li, Zheng Ge, Guanyi Yu, Jinrong Yang, Zengran Wang, Yukang Shi, Jianjian Sun, and
Zeming Li. Bevdepth: Acquisition of reliable depth for multi-view 3d object detection. In
Association for the Advancement of Artificial Intelligence (AAAI), 2023b.

Zhiqi Li, Wenhai Wang, Hongyang Li, Enze Xie, Chonghao Sima, Tong Lu, Yu Qiao, and Jifeng Dai.
Bevformer: Learning bird’s-eye-view representation from multi-camera images via spatiotemporal
transformers. In European Conference on Computer Vision (ECCV), 2022b.

Zhiqi Li, Zhiding Yu, Wenhai Wang, Anima Anandkumar, Tong Lu, and José Manuel Álvarez. Fb-
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