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Highly Efficient Active Learning With
Tracklet-Aware Co-Cooperative Annotators

for Person Re-Identification
Xiao Teng , Long Lan , Member, IEEE, Jing Zhao , Xueqiong Li , and Yuhua Tang

Abstract— Supervised person re-identification (ReID) has
attracted widespread attentions in the computer vision commu-
nity due to its great potential in real-world applications. However,
the demand of human annotation heavily limits the application
as it is costly to annotate identical pedestrians appearing from
different cameras. Thus, how to reduce the annotation cost while
preserving the performance remains challenging and has been
studied extensively. In this article, we propose a tracklet-aware
co-cooperative annotators’ framework to reduce the demand
of human annotation. Specifically, we partition the training
samples into different clusters and associate adjacent images
in each cluster to produce the robust tracklet which decreases
the annotation requirements significantly. Besides, to further
reduce the cost, we introduce a powerful teacher model in our
framework to implement the active learning strategy and select
the most informative tracklets for human annotator, the teacher
model itself, in our setting, also acts as an annotator to label
the relatively certain tracklets. Thus, our final model could
be well-trained with both confident pseudo-labels and human-
given annotations. Extensive experiments on three popular person
ReID datasets demonstrate that our approach could achieve
competitive performance compared with state-of-the-art methods
in both active learning and unsupervised learning (USL) settings.

Index Terms— Active learning, co-cooperative annotators, per-
son re-identification (ReID).

NOMENCLATURE

Notations Meaning

X Unlabeled images.
Ỹ Generated pseudo labels.
L Ground truth.
Ep Human expert annotator.
I Frame numbers.
C Cluster set.
X t Unlabeled images of the t th cluster.
X ′

t Tracklet centers of the t th cluster.
Tt Tracklet indexes of the t th cluster.
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�+ Samples whose annotations are consistent
with the previous cluster.

�− Samples whose annotations are conflict
with the previous cluster.

fθ Model to be trained.
fθ ′ Trained teacher model.

I. INTRODUCTION

PERSON re-identification (ReID) aims to retrieve the same
person under different camera views, which is a hot topic

in the computer vision community due to its potential in
real-world applications [1], [2], [3], [4], [5], [6], [7], [8], [9].
In recent years, thanks to the publication of large-scale labeled
datasets, numerous methods have been proposed and achieved
great performance on the supervised person ReID problem.
However, these methods always rely on extensive human anno-
tations of the whole training data, which are time-consuming
and expensive to obtain. As a result, the demand of human
annotation heavily limits the scalability of these methods as
it is unpractical to provide the expensive annotations for all
the large-scale datasets in the realistic applications [10], [11],
[12]. Thus, how to reduce the annotation cost while preserving
the performance remains challenging and has been studied
extensively by researchers in recent years.

To tackle the above problem, several methods have been
proposed and achieved great progress. These methods can
be concluded as three categories. 1) Unsupervised person
ReID, which aims to learn the feature representation of the
dataset without any human annotations. However, it usually
occurs a serious degeneration of the performance as it cannot
learn more discriminative feature representations without any
pairwise identity labels. 2) Semi-supervised person ReID,
which makes the assumption that a subset of identities are fully
labeled under different camera views. In this way, they can
explore the remaining unlabeled dataset by taking advantage
of existing annotations to further close the gap with supervised
person ReID. Although great performance can be achieved,
they are not practical in real applications as the cost of human
annotations is still extremely high, which is comparable with
the cost of supervised person ReID. 3) Active learning person
ReID, which actively selects the most informative image pairs
for annotation. Compared with the first two categories, active
learning person ReID is more practical as the annotation cost
is limited and controllable [13].
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Fig. 1. Comparison of existing active learning person ReID framework and our proposed framework. (a) Existing active learning person ReID framework
which solely relies on human experts for annotation. (b) Besides the human experts, a trained teacher model is introduced in our method which serves as a
free annotator to deduce the extensive annotation cost.

Active learning person ReID frameworks usually select a set
of image pairs actively as the candidate samples for annotation
by human experts. Then these labeled samples will serve as
the supervision to train the model in the next round [14],
[15], [16], [17]. These steps are repeated iteratively until
the expected annotation budget exhausted. Although exist-
ing active learning person ReID methods can achieve good
performance with their carefully designed sampling strategy,
the expected annotation cost of their methods is still non-
negligible. They mainly have two problems. 1) Most of these
methods merely rely on the labeled samples to supervise the
training of the model, which is only a small subset of the whole
dataset [18]. Compared with these labeled image pairs, a large
number of unlabeled samples may contain more valuable
information under exploration. 2) These methods only rely on
human annotations, which are expensive to acquire. They send
selected image pairs to human experts for annotation regard
of their uncertainties, which will cause unnecessary extensive
annotation cost.

To solve the above problems, we propose the tracklet-aware
co-cooperative annotators for person ReID. The main motiva-
tion of our method is to reduce the cost of human annotations
by taking the offline teacher model to serve as another free
“annotator” to assist human experts with less uncertain image
pairs as shown in Fig. 1. Specifically, by inheriting the merits
of unsupervised person ReID, we first partition the dataset into
different clusters and associate adjacent images in each cluster
to form tracklets according to their frame numbers, which are
easy to obtain in the dataset collection stage. As the same
person tends to be captured in consecutive frames, if images in
the same cluster are also captured in adjacent frames, then they
are more likely to belong to the same identity. Then, center
candidates of different tracklets in the same cluster are formed
as the candidate samples for annotation by offline teacher
model annotator and human expert annotator working in a co-
cooperative scheme. Image pairs with less uncertainty are sent
to the teacher model annotator for free annotation cost, while
harder image pairs are sent to the human expert annotator for
more accurate annotations. In this way, the total annotation
cost can be reduced to the most extent while performance

can be preserved. Although video-based person ReID also
aims at matching the same person across video clips, it relies
on the human labor or multiple objects tracking algorithm to
generate image tracklet in the data collection stage. However,
the quality of the generated tracklets can be a limiting factor
for model learning if it is not satisfactory. In contrast, our
proposed method utilizes only the accessible frame numbers
of the cropped images, making it more scalable. Moreover,
our approach generates tracklets directly from the model,
and the model training stage and tracklet generation stage
complement each other during the training process. A better
model generates more accurate tracklets, which in turn can be
used to train a better model.

The main contributions of our work can be summarized as
follows.

1) To our knowledge, we are the first to utilize the infor-
mation of frame number in active learning person ReID
to reduce the annotation cost. To obtain more valuable
image pairs, we propose the tracklet-aware sample selec-
tion strategy.

2) Based on the phenomenon that the trained model can
also serve as an alternative annotator well, we propose
the co-cooperative annotators for person ReID, which
is first work to utilize the offline teacher model as the
annotator to reduce the annotation cost from the human
experts.

3) To relieve the influence of label noise in the training
process, we propose the selective knowledge distillation
(SKD) module to guide the model to learn from the
unlabeled data in a more stable way.

4) Extensive experiments are conducted on three popular
person ReID benchmarks. By combining the above three
modules, we can achieve the state-of-the-art perfor-
mance in both unsupervised person ReID task and active
learning person ReID tasks.

Section II provides a review of related works, Section III
introduces our proposed tracklet-aware co-cooperative anno-
tators’ framework, Section IV presents a theoretical analysis
of our approach, Section V reports the experimental results,
Section VI discusses the limitations and future directions
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of our work, and Section VII concludes the article with a
summary of our contributions and potential avenues for future
research.

II. RELATED WORK

A. Unsupervised Person ReID

Unsupervised person ReID aims to learn the feature rep-
resentation directly from the unlabeled target dataset. These
methods can be summarized as two categories: unsupervised
domain adaptation (UDA) person ReID and purely unsuper-
vised learning (USL) person ReID [27], [28], [29]. The former
aims to transfer the knowledge from the annotated source
domain to the unlabeled target domain, which is based on
the assumption that the discrepancy between source domain
and target domain is not significant [4], [30], [31]. The latter
directly learns from the unlabeled target domain, thus is
more scalable compared with the former. Here, we mainly
concentrate on the latter as it is more related to our work.

In the USL person ReID, to fully exploit the unlabeled
dataset, pseudo-labels are generated with existing clustering
algorithm as the supervision to train the model. Thus, how to
generate more accurate pseudo-labels is the key problem for
USL person ReID. In [32], a bottom-up clustering framework
is proposed to optimize the model and the relationship of
samples in a joint way. PLM [33] proposes a novel progress
learning method with a multiscale fusion network, which can
directly exploit inference from the available abundant data
without any annotations. To depress the influence of label
noise in the isolated clustering process, GLT [34] proposes
the group-aware label transfer algorithm to enhance the con-
nection between pseudo-label generation process and feature
representation learning process. To avoid the label noise accu-
mulation, MMT [31] learns the feature representation through
offline refined hard pseudo-labels and online refined soft
pseudo-labels. ISE [35] generates support samples from actual
samples and neighboring clusters in the embedding space
through a progressive linear interpolation strategy to reveal
underlying information for accurate cluster representation.
Existing state-of-the-art USL person ReID methods are mainly
established on memory-based contrastive learning frameworks.
These methods first utilize Kmeans [36] or DBSCAN [37]
to generate pseudo-labels for the unlabeled training data.
Then the model can be trained with contrastive learning and
features of images stored in the memory bank. Specifically,
SPCL [4] proposes a self-paced method which gradually
creates more reliable clusters to refine the hybrid memory
and learning targets. To solve the inconsistency problem in
the memory update process, CCL [5] proposes the cluster
contrast learning framework by taking advantage of cluster
memory banks. As shown in Table I, our method stands
out from the existing unsupervised person ReID methods
by introducing a novel approach that leverages a reliable
teacher model and readily accessible frame numbers to refine
the pseudo-labels. By contrast, previous methods rely on the
model itself to refine the pseudo-labels or features, leading
to severe label noise in the early stages of training due to
the substantial discrepancy between the pretrained parameters
and the target dataset. Although HDCPD [25] employs an

TABLE I
COMPARISON BETWEEN EXISTING UNSUPERVISED PERSON

REID METHODS AND OUR PROPOSED METHOD

exponential moving average (EMA) updated teacher model,
it still confronts this challenge, as their teacher model is also
initialized with ImageNet pretrained parameters. In contrast,
our approach utilizes a well-trained teacher model and easily
obtained frame numbers to guide the student model in the fully
unsupervised person ReID setting.

B. Active Learning Person ReID

Active learning person ReID aims to select the most infor-
mative image pairs for annotation to reduce the annotation
cost while preserving the performance of the model. Thus,
how to design the sample selection strategy is the key problem
for active learning person ReID. In [40], a novel early active
learning algorithm is proposed to enforce the closeness of
similar representations of instances with pairwise constraint.
To reduce the annotation cost, [41] regards the annotation cost
problem as the subset selection task and tries to optimize
the problem to get the optimal subset of images pairs for
annotation. ARR [42] proposes the uncertainty criterion to
select informative samples with the prediction of the model
for these samples. To further exploit the information of
unlabeled samples, UCAL [43] proposes the unsupervised
clustering active learning method which aims to combine
unsupervised person ReID method with active learning to
achieve a more satisfying performance. MASS [18] proposes
the clustering purification-based active learning framework to
select more valuable image pairs. SPAL [13] and [39] combine
memory-based contrastive learning USL ReID frameworks
with active learning and achieve great improvements.

Although other active learning methods also design selec-
tion criteria to select samples for annotation, in their methods
all selected samples are sent to human experts for annotation,
resulting in unnecessary annotation costs for hard samples and
relatively hard samples with less uncertainty. Our proposed
method aims to address this issue by carefully distinguishing
between hard and relatively hard samples and utilizing a
trained teacher model for less uncertain samples. This allows
for relatively accurate, free annotations for the latter, thereby
optimizing the use of limited annotation budgets. As shown
in Table II, similar to SPAL [13] and AE [39], our method
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TABLE II
COMPARISON BETWEEN EXISTING ACTIVE LEANING PERSON

REID METHODS AND OUR PROPOSED METHOD

also applies the clustering algorithm to generate pseudo-
labels. However, unlike them, we further reduce the manual
annotation cost by utilizing easily obtained frame numbers
and regarding the trained teacher model as an auxiliary free
annotator. Furthermore, those methods whose annotation cost
is lower than the dataset size are considered as annotation
efficient. Compared to AE, our proposed method further
reduces the annotation budget with the advantages mentioned
above.

C. Knowledge Distillation

Knowledge distillation aims to transfer the knowledge from
the teacher model to the student model [44], [45], [46], [47],
[48]. The original idea of knowledge distillation is to compress
the large-scale teacher model to the smaller student model
for computation efficiency. In recent years, increasingly more
researchers focus on self-knowledge distillation, which keeps
the teacher and student models with the same structure [49],
[50], [51]. Specifically, these methods usually directly align
the probability distribution or the feature representations of
the teacher model with the student model. In [44], a simple
baseline is proposed by utilizing the soft label of the teacher
model. CS-KD [49] proposes the regularization which distills
the prediction distributions of the similar samples of the
same class in the training. Similar to our work, a probability
distillation module is proposed in [25] to match the probability
distribution between the network and the teacher network
updated by EMA method. However, the teacher network
updated in the online scheme is still limited in the feature
representation and suffers from severe label noise [52]. Unlike
these methods, we propose the SKD module, which selects
some confident samples and uses them to learn from the
teacher model in an offline scheme.

III. METHOD

A. Overview

Given N unlabeled images X = {x1, x2, . . . , xN }, their
identity labels are denoted as L = {li }

N
i=1, which are unknown

in advance. A human expert Ep can provide the accurate
pairwise annotation in the training process. Given a pair of
images (Ii , I j ), the human expert can provide a binary label
whether these two images belong to the same identity, i.e.,
Ep(i, j) = 1[li = l j ]. Besides, a trained teacher model fθ ′

is also available which serves as another annotator for free

annotations. Unlike existing works, a set containing the frame
numbers of these images I = {Ii }

N
i=1 is also used in our

setting, which represents which frames these cropped images
belong to. The aim of active learning for person ReID is to
train a discriminative model fθ while reducing the annotation
cost of human expert Ep.

In order to achieve this objective, we propose the tracklet-
aware co-cooperative annotators’ framework. As illustrated
in Fig. 2, our method aims to utilize the frame number
information and the trained teacher model to relieve the exces-
sive annotation cost of human expert. Given the unlabeled
images X , the model fθ is used to encode these images
into feature vectors, then the existing clustering algorithm
is applied to partition them into different clusters C =

{c1, c2, . . . , ck}, where k is the number of clusters. The
tracklet-aware sample selection module will merge adjacent
images in the same cluster to form tracklets according to
their frame numbers. Then the center samples of different
tracklets in the same cluster are formed as the candidates
for annotation by human experts or free teacher model in
the co-cooperative annotators’ module. Finally, to fully utilize
these annotated image pairs and unlabeled dataset, a hybrid
loss is proposed, which includes contrastive learning, triplet
loss, and the proposed SKD loss. The overall framework
of our proposed method is illustrated in Algorithm 1, some
detailed descriptions about these modules will be discussed in
the following sections, and the notations are summarized in
Sections III-B–III-E.

B. Tracklet-Aware Sample Selection Strategy

Given the unlabeled images X = {x1, x2, . . . , xN }, their
feature vectors can be extracted by the model fθ , then
DBSCAN [37] clustering algorithm is utilized to parti-
tion these samples into different disjoint clusters C =

{C1, C2, . . . , Ck}, where k is the number of clusters and ci

is the i th cluster which contains indexes of images belong to
this cluster. DBSCAN is a density-based clustering algorithm
that is capable of discovering clusters of arbitrary shape. Due
to its efficiency and effectiveness, it has been extensively
utilized in recent active learning and unsupervised person
ReID studies, including AE [39], CCL [5], and ICE [21].
In our work, we also adopt DBSCAN for generating pseudo-
labels. Compared with other popular clustering algorithms
such as Kmeans, DBSCAN is more appropriate for unsuper-
vised person ReID tasks because it does not require the number
of clusters in advance and is capable of detecting clusters of
varying shapes and sizes. Therefore, we consider DBSCAN
to be more suitable for unsupervised person ReID tasks and
hence utilize it in our approach. Then, for images in the same
cluster, adjacent images are associated with form tracklets
by their corresponding frame numbers I = {I1, I2, . . . , IN },
which can be obtained easily in the data collection stage. Our
motivation is that as the same person tends to be captured in
consecutive frames, if images in the same clustering are also
cropped from adjacent frames, then those images are likely to
have the same identity.

Specifically, for a cluster Ct , images in this cluster and
their corresponding frame numbers can be obtained by the
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Fig. 2. Overview of the proposed tracklet-aware co-cooperative annotators’ framework. (a) Tracklet-aware sample selection module aims to associate adjacent
images into a tracklet and select the center sample for each tracklet. (b) Co-cooperative annotators’ module aims to take advantage of the free teacher model
and the human expert to judge whether different tracklets belong to the same identity by comparing center points. (c) Model is optimized with the proposed
hybrid loss, which includes cluster contrast loss, triplet loss, and SKD loss.

ascending order as X t = {xi }i∈Ct and It = {Ii }i∈Ct , respec-
tively, which satisfies I i

t < I i+1
t , where I i

t is the i th element
of It . Then, images in the same cluster can be partitioned
into different tracklets by associating adjacent images by their
frame numbers. In this way, the tracklet indexes of X t can
be denoted as Tt = {ti }i∈Ct , where ti represents the index of
tracklet the i th sample belongs to, and their tracklet indexes
satisfies the following constraint:

1(T i
t = T i+1

t ) =

{
1, if

(
I i+1

t − I i
t

)
< λ

0, otherwise
(1)

where T i
t is the i th element of Tt , and λ is a hyperparameter

constrains whether a pair of images is adjacent, which is
set to 300 in our experiments. In this way, if the margin of
adjacent images is smaller than λ, then these images will be
merged to the same tracklet. Finally, the center candidates of
different tracklets in the same cluster are formed as queries
for annotation, and the center candidate is selected as the
sample whose feature representation is nearest to the mean
feature representation of the tracklet. For simplicity, we omit
the detailed description of this selection process.

C. Co-Cooperative Annotators

For a cluster Ct , the center candidates X ′
t = {xc1 ,

xc2 , . . . , xcm } could be obtained as described in Section III-B,
where ci is the index of the center candidate and m is the
number of tracklets in this cluster. Then, a pair of center
candidates (xci , xc j ) can be selected as a query for annotation.
Unlike existing methods which solely rely on human experts
for annotation, we propose to introduce the trained teacher
model serving as another free annotator to reduce the extensive
annotation cost. Thus, there are mainly two key problems to be
resolved. 1) Given a pair of images, how to select the annotator
for annotation. 2) Given the labeled image pairs annotated by
human expert annotator and the free teacher model annotator,
how to use these samples in the training process.

To solve the above problems, we propose a simple frame-
work, which aims to take the human expert annotator and
the free teacher model annotator working in a co-cooperative
way. Intuitively, the model suffers from severe label noise at
the beginning as it is initialized with parameters pretrained
on ImageNet dataset, which has the significant discrepancy
with person ReID datasets. As the model converges, it gains
the ability of discriminating from different persons. Thus,
some image pairs which are hard for the model to judge
may be easily distinguished by a trained model, and it is
unnecessary to annotate them by the expensive human expert.
And, we propose a simple threshold-based mechanism to find
these pairs by using the distance between the image pair as
the criterion as follows:

E(xci , xc j ) =


1, if d

(
fθ ′

(
xci

)
, fθ ′

(
xc j

))
< ω − δ

0, if d
(

fθ ′

(
xci

)
, fθ ′

(
xc j

))
> ω + δ

Ep(xci , xc j ), otherwise
(2)

where ω and δ are two hyperparameters which divide image
pairs into different groups. d( fθ ′(xci ), fθ ′(xc j )) = | fθ ′(xci ) −

fθ ′(xc j )|
2
2 and fθ ′(·) is the output feature vector of the trained

teacher model. Intuitively, since the trained teacher model
gains the ability of discriminating from different person and
achieves better performance compared with the initialized
student model. We can resort to the trained teacher model
and the human expert for help to relieve the severe label noise
of the model. As shown in (2), for a pair of center candidates
(xci , xc j ), feature vectors ( fθ ′(xci ), fθ ′(xc j )) can be extracted
from them by the teacher model fθ ′ . Specifically, given a pair
of images, if the distance between them calculated by the
teacher model is smaller/larger than ω − δ/ω + δ, then they
will be judged as positive/negative pair by the teacher model
with less uncertainly, otherwise we will resort to the human
expert for accurate but expensive annotations. As the budget
of human annotations is limited, when the budget exhausted,
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Algorithm 1 Training Process of the Student Model
Require: Unlabeled training data X
Require: Frame numbers I
Require: Initialize the encoder fθ with

ImageNet-pretrained ResNet-50
Require: The trained teacher encoder fθ ′

Require: Balancing factors λ1 and λ2 for (7)

for n in [1,num_epochs] do
Initial �+ and �−;
Extract feature vector sets F from X by fθ ;
Clustering F into clusters C with DBSCAN;
Initialize memory dictionaries φ individually with
the mean feature vector of each cluster;

for each cluster Ct in C do
Associate images from Ct into tracklets with
(1) and frame numbers I , corresponding
tracklet indexes are Tt = {ti }i∈Ct

;
Obtain centers of tracklets

X ′
t = {xc1 , xc2 , ·, xcm } by selecting the sample

nearest to the mean feature of its tracklet;
Find the longest tracklet, and select its center

xc∗
as the pivot;

for i in [1, num_tracklets] do
Obtain the annotation whether the i th

center in X ′
t and pivot xc∗

belong to the
same identity according to (2);

if they have the same identity then
Add the i th tracklet to �+;

else
Add the i th tracklet to �−;

end
end

end
for i ter in [1,num_iterations] do

Sample a batch of hybrid samples from �+

and �−;
Compute objective function with (7) ;
Update cluster feature vectors with (4);

end
end

we will fully rely on the trained teacher model for annotations.
Given a pair of images, when the distance between them
calculated by the teacher model is smaller/larger than ω, then
they will be directly judged as positive/negative pair. In this
way, all the pairs of center candidates can be annotated by our
proposed selective annotation mechanism, and the annotations
of other images are consistent with their corresponding center
candidates.

In this way, the original pseudo-labeled dataset (X, Ỹ ) can
be divided into positive dataset �+

= (X+, Ỹ +) and negative
dataset �−

= (X−, Ỹ −), where the former set contains sam-
ples whose annotations are consistent with the previous cluster,
while the latter set contains samples whose annotations conflict
with the previous cluster, Ỹ + and Ỹ − contain the previous
cluster indexes. To learn the main pattern from the data, cluster

contrast loss [5] is utilized to learn from the positive dataset.
Specifically, the corresponding cluster contrast loss can be
described as follows:

Lclu =
1

N1

∑
(xq ,yq)∈�+

− log
exp

(
fθ (xq) · φ+/τ

)∑C
k=0 exp

(
fθ (xq) · φk/τ

) (3)

where fθ (xq) is the feature vector extracted by the student
model, and φk is the centroid feature vector representing the
kth cluster stored in the memory. φ+ is the centroid feature
vector representing the cluster which xq belongs to. τ is the
temperature hyperparameter, C is the number of the clusters
and N1 is the number of samples evolved in the cluster contrast
loss in a batch. Similar with [5], the centroid feature vector
stored in the memory dictionary sets can be updated in the
following way:

φk = mφk + (1 − m) fθ (xq) (4)

where k is the index of the cluster query sample belongs to
and m is the momentum updating factor, which is set to 0.1 as
the same as [5]. To further explore the information of the
annotations, a triplet loss is used to mine the relationship
among these samples. Specifically, we use samples belong to
the same cluster to form the triplet as follows:

L tr i =
1

N2

∑
(xi ,yi ),(x j ,y j)∈�+

(xk ,yk )∈�−

yi =y j =yk

max
{
d
(
xi , x j

)
+ m − d(xi , xk), 0

}
(5)

where xi and xi are sampled from the positive dataset while xk

is sampled from the negative dataset, and these three samples
belong to the same cluster. m is the margin of the triplet loss
and N2 is the number of triplets in a batch. The triplet consists
of samples from the same cluster, thus the model can fully
explore the correlations of these hard samples and learn more
discriminative feature representations.

D. Selective Knowledge Distillation

As the model is trained with the generated pseudo-labels,
the label noise will be accumulated in the training process
as the model is initialized with parameters pretrained on
ImageNet dataset at the beginning, which has the significant
discrepancy with person ReID datasets. To relieve the issue,
we propose the SKD module. Our motivation is that although
the structure of the teacher model has no superiority over the
student model, the trained model can achieve more accurate
retrieval results than the initialized model, thus the feature
representation of the teacher model can be utilized to guide
the student model toward a more robust representation by
converging fast. Some existing works also apply knowledge
distillation in person ReID and achieved great progress [25],
[53]. However, these methods directly align the probability
distribution or the feature representations of the teacher model
with the student model, which may hinder the learning process
of the student model by excessively mimicking the behavior
of the teacher model. If the teacher model is trained with
the false pseudo-labels, then it will learn the biased feature
representation, which will degenerate the performance of the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on July 08,2024 at 07:24:53 UTC from IEEE Xplore.  Restrictions apply. 



TENG et al.: HIGHLY EFFICIENT ACTIVE LEARNING WITH TRACKLET-AWARE CO-COOPERATIVE ANNOTATORS 7

student model through knowledge distillation. To conquer the
limitation while guiding the training process of the student
model, we propose to select some confident samples to learn
from the teacher model by combining knowledge distillation
with our active learning framework as follows:

Ldis =
1

N1

∑
(xq ,yq)∈�+

∣∣∣∣∣ fθ (xq)∥∥ fθ (xq)
∥∥ −

fθ ′(xq)∥∥ fθ ′(xq)
∥∥
∣∣∣∣∣
2

2

(6)

where fθ (xq) and fθ ′(xq) are the feature vectors of xq

extracted by the student model and the teacher model, respec-
tively, N1 is the number of samples evolved in the knowledge
distillation in a batch. As those samples in �− which are
conflict with the previous clustering may also exist in the
learning process of the teacher model and lead to biased
feature representation. Thus, we only take samples in �+

for more confident knowledge distillation to expedite the
convergence process of the student model.

E. Final Objective Function

Given the unlabeled dataset X , pseudo-labels Ỹ can be
obtained using DBSCAN [37] clustering algorithm. Then,
we can use our proposed method to divide the whole dataset
into positive dataset �+

= (X+, Ỹ +) and negative dataset
�−

= (X−, Ỹ −), where the former set contains samples whose
annotations are consistent with the previous cluster, while the
latter set contains samples whose annotations conflict with the
previous cluster. To make the model fully explore the inherent
structure of the unlabeled samples and utilize annotations,
we propose the hybrid loss, which consists of the cluster
contrast loss, triplet loss, and the knowledge distillation loss
as follows:

Lclu =
1

N1

∑
(xq ,yq)∈�+

− log
exp

(
fθ (xq) · φ+/τ

)∑C
k=0 exp

(
fθ (xq) · φk/τ

)
+

λ1

N1

∑
(xq ,yq)∈�+

∣∣∣∣∣ fθ (xq)∥∥ fθ (xq)
∥∥ −

fθ ′(xq)∥∥ fθ ′(xq)
∥∥
∣∣∣∣∣
2

2

+
λ2

N2

∑
(xi ,yi ),(x j ,y j)∈�+

(xk ,yk )∈�−

yi =y j =yk

max
{
d
(
xi , x j

)
+ m−d(xi , xk), 0

}

(7)

where λ1 and λ2 are balancing factors, N1 and N2 are numbers
of individual samples and triplets of the dataset. To make it
practical with the training batch manner, for each batch we
sample 160 individual samples and 32 triplets, thus the batch
size is 256, which is the same with [5], i.e., N1 = 160 and
N2 = 32 for each batch. More training details can refer
to Section V-B. The teacher model is trained in advance
following existing CCL framework, due to limited page we
omit the description of this part and interested readers can refer
to [5] for more details. In the experiment, we also regard CCL
as the baseline for fair comparison. It is noteworthy that we
assume that the trained teacher model is more accurate than
the initialized student model. Thus, our proposed SKD module
aims to utilize the trained teacher model to guide the student

model to relieve label noise. Although the teacher model
performs worse than the student model and may even hinder
the student model learning in the latter period of the training
process, we add the hyperparameter λ1 in (7) to determine the
weight of the guidance of the teacher model. While learning
from the teacher model, the student model is also encouraged
to explore by itself. These two phases are balanced by the
hyperparameter λ1 to relieve the negative influence of the
teacher model to some extent. Therefore, it is reasonable that
the student model will perform better than the teacher model
when it converges. On the other hand, as those samples whose
annotations conflict with the previous clustering may also
exist in the learning process of the teacher model and lead to
biased feature representation, we only take confident samples
for more reliable knowledge distillation to guide the student
model toward faster convergence in the training process. As it
is hard to determine the turning point from which the teacher
model disturbs the student model due to lack of annotated
labels, we leave it in the future work, e.g., by designing some
measures in the unsupervised setting [54].

Besides, our proposed framework utilizes a clustering
algorithm to generate pseudo-labels, which serves as the
primary supervision signal in the optimization process.
To improve the quality of the pseudo-labels, we employ the
cooperative annotators’ framework to provide annotations for
center candidate pairs, and any samples whose annotations
conflict with the previous clusters are treated as negative
samples. To leverage these negative samples, we incorporate
them into the triplet loss of the final objective function. Given
the limited annotation budget, we choose not to reassign these
samples to the new cluster as it would result in additional
annotation costs. Although further exploiting the labels of
these negative samples would be beneficial, it is challenging
due to the budget constraints, and we leave it in the future
work.

IV. THEORETICAL ANALYSIS

The aim of person ReID aims to learn a feature classifier f
with the dataset to minimize the following risk:

R( f ) := E(x,y)∼D
[
ℓ( f (x), y)

]
(8)

where ℓ is the loss function and D is the distribution of the
dataset, ∇ℓ is bounded. In our proposed approach, although
the number of clusters varies before each epoch, we can obtain
cluster centers by computing the average of feature vectors in
every cluster. This process enables us to use the model as a
classifier by combining the encoder and cluster centers. More
specifically, when presented with a query sample, the class
distribution can be obtained by applying a softmax activation
function to the dot-product between the feature vector of the
query sample and the cluster centers. Thus, even though the
model fθ is primarily a feature extractor that maps input
images to feature vectors, it can be considered a classifier f
due to the use of cluster centers. In the unsupervised person
ReID, the ground-truth of the dataset is unavailable, thus the
pseudo-labels are generated to construct the noisy dataset and
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the actual learning objective becomes

min
f ∈F

E(x,ỹ)∼D̃
[
ℓ
(

f (x), ỹ
)]

. (9)

Due to the existence of the pseudo-labels, the distribution
of the dataset has been corrupted from D to D̃. Let δ and
δ̃ : X → 1K denote the class probability functions of clean
dataset distribution and noisy dataset distribution, respectively,
where 1K denotes the K−simplex. Then, f (x) = arg max

1≤i≤K
δi

and f̃ (x) = arg max
1≤i≤K

δ̃i can be easily obtained. Assume a

transition matrix T exists which works as Ti j (x) = P(ỹ =

j | y = i, x), ∀x ∈ X , we have

δ̃i (x) = P
(
Ỹ = i | X = x

)
=

∑
j

P
(
Ỹ = i | Y = j, X = x

)
P(Y = j | X = x)

=

∑
j

T j i (x)δ j (x)

= T ⊤

i (x)δ(x) ∀x ∼ X. (10)

Thus, we have δ̃(x) = T ⊤(x)δs(x) and it can be directly
derived that

δ(x) =
(
T ⊤(x)

)−1
δ̃(x) (11)

if T ⊤(x) is non-invertible, the Moore–Penrose pseudo-left
inverse (T (x)T ⊤(x))−1T (x) can be used here. Then, we will
provide a risk bound on clean dataset distribution for cor-
rected model f (x) = arg max

1≤i≤K
((T ⊤(x))−1δ̃(x))i , which is

learned on noisy dataset distribution. For simplicity, we define
I(δ(x), y) := ℓ( f (x), y) = ℓ(arg max

1≤i≤K
δi (x), y). In our active

learning setting, for each learning iteration, we relabel the
examples depend on the human annotations and teacher
model’s outputs, and the assumed transition matrix changed
accordingly. We thus interest in how our active learning strat-
egy influencing the student model learning process. We first
give a regret risk of the learned model about the transition
matrix.

Theorem 1: Let f ∗
= arg min

f ∈F
E(x,y)∼D[ℓ( f (x), y)] with

∥∇I∥2 ≤ L . For any f = arg max
1≤i≤K

δi ∈ F learned on noisy

dataset distribution, we have

R( f ) ≤ R
(

f ∗
)
+ L · EDX

∥∥T ⊤(x)−1
∥∥

2

∥∥δ̃(x) − δ̃∗(x)
∥∥

2

(12)

where δ̃(x) = T ⊤(x)δ(x) and δ̃∗(x) = T ⊤(x)δ∗(x).
Proof:

R( f ) −R
(

f ∗
)

= ED
[
ℓ( f (x), y) − ℓ

(
f ∗(x), y

)]
= ED

[
I(δ(x), y) − I

(
δ∗(x), y

)]
= ED

[
I
((

T ⊤(x)
)−1

δ̃(x), y
)

− I
((

T ⊤(x)
)−1

δ̃∗(x), y
)]

= ED

[
∇I(ξ, y)

((
T ⊤(x)

)−1
δ̃(x)

−
(
T ⊤(x)

)−1
δ̃∗(x)

)]

TABLE III
STATISTICS OF THREE PERSON REID DATASETS

USED IN OUR EXPERIMENTS

≤ ED∥∇I(ξ, y)∥2
∥∥T ⊤(x)−1

∥∥
2

∥∥δ̃(x)−δ̃∗(x)
∥∥

2

≤ L · EDX

∥∥T ⊤(x)−1
∥∥

2

∥∥δ̃(x) − δ̃∗(x)
∥∥

2 (13)

where ξ ∈ [0, 1]
K is the intermediate value. Hence, we prove

this theorem.
Remark 1: Theorem 1 indicates that the regret risk of the

learned corrected model on clean dataset distribution D is
bounded by L · EDX ∥T ⊤(x)−1

∥2∥δ̃(x) − δ̃∗(x)∥2. The model
is pretrained on ImageNet dataset, which has the significant
discrepancy with ImageNet dataset. Thus, it suffers from
severe label noise in the start training stages. Our carefully
designed active learning module selects hard image pairs for
accurate annotations that those most confusing samples are
sent to human experts while relatively easier samples are
resorted to the trained teacher model. Thus, reliable annota-
tions could be obtained in this way. By taking advantage of
them in the training process, the student model could obtain
more discriminative feature representations for these confusing
samples. Therefore, the probabilistic value of the transition
matrix can be more concentrated on the certain possible
classes, ∥T ⊤(x)∥2 will increase and ∥T ⊤(x)−1

∥2 will decrease
as those irrelevant classes will bother less in the transition
matrix T . As a result, the regret risk of the learned model on
clean dataset distribution will also decrease accordingly.

V. EXPERIMENT

A. Datasets and Evaluation Protocol

We conduct our experiments on three public benchmarks,
including Market-1501 [63], DukeMTMC-reID [64], and
MSMT17 [65]. Market-1501 dataset includes 32 668 images
of 1501 IDs captured by six different cameras. DukeMTMC-
reID dataset is another large-scale person ReID dataset, which
includes 36 441 images of 702 IDs captured by eight different
cameras. While MSMT17 dataset includes 126 441 images
of 1041 IDs captured by 15 different cameras. These three
datasets are widely used the person ReID task and the details
of these datasets are described in Table III.

Following existing person ReID works [4], [5], [63],
we adopt the mean average precision (mAP) and cumulated
matching characteristics (CMC) as the evaluation metrics.
In the CMC evaluation metrics, we report Top-1, Top-5, and
Top-10 in the result. For fair comparison, no post-processing
technique is adopted in our experiment. Similar with other per-
son ReID works, in the unsupervised setting, only unlabeled
target dataset is used to train our model. While in the active
learning setting, the amount of manual pairwise annotations is
calculated as the budget.
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TABLE IV
COMPARISON WITH STATE-OF-THE-ART METHODS ON MARKET-1501 AND DUKEMTMC-REID. TA AND PA REPRESENT OUR PROPOSED

TRACKLET-AWARE FREE TEACHER MODEL ANNOTATOR AND HUMAN ANNOTATOR. N IS THE SIZE OF THE DATASET,
WHICH IS 12 936 AND 16 522 IN MARKET-1501 AND DUKEMTMC-REID, RESPECTIVELY

B. Implementations Details
We use the Resnet-50 [66] initialized with the parameters

pretrained on the ImageNet [67] as the backbone encoder.
Following existing ReID framework [5], all sub-module layers
after layer-4 are removed and a GEM pooling is added fol-
lowed by batch normalization layer [68] and L2-normalization
layer. During training, we use the DBSCAN [37] as clustering
algorithm to generate pseudo-labels before each epoch.

For training, each mini-batch contains 256 images, which
includes 160 individual samples and 32 triplets, which are
resized as 256 × 128. For input images, random horizontal
flipping, padding, random cropping, and random erasing [69]
are applied. To train our model, Adam optimizer with weight
decay 5e-4 is adopted. We set the initial learning rate as 3.5e-4,
and reduce it every 20 epochs for a total of 50 epochs. The
balancing factors λ1 and λ2 in (7) are set to 0.5 and 0.2,
respectively. To select the appropriate annotator, ω in (2) is set
to 0.4 for Market-1501 and DukeMTMC-reID while 0.8 for
MSMT17, δ is set to 0.15 for all these datasets. For DBSCAN
clustering algorithm, the minimal number of neighbors is set
to 4 and the maximum distance d is set to 0.6 for Market-1501

and DukeMTMC-reID while 0.7 for MSMT17. To associate
adjacent images into the same tracklet, we set λ in (1)
to 300 in the experiment. As the frame number information is
not provided in the MSMT17 dataset, we regard each image
as a single tracklet. To make full use of the annotations of
the human expert, we begin to provide manual annotations
after ten epochs, and the triplets in (7) are sampled from
images annotated by the human expert. As the student model
is initialized with parameters pretrained on ImageNet, it may
produce low-quality center pair candidates for annotation due
to the large discrepancy between ImageNet and person ReID
datasets. If we apply manual annotations on these candidates
at the beginning of the training procedure, less informative
samples can be mined, and some of the valuable manual
annotation budget may be wasted. Therefore, to make better
use of the valuable annotations of the human expert, we utilize
them after ten epochs to mine more informative image pairs.
By this way, the student model can leverage the knowledge
learned from the unsupervised training stage to generate higher
quality center pair candidates, which can be further refined
with the manual annotations.
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TABLE V
COMPARISON WITH STATE-OF-THE-ART METHODS ON MSMT17.
TA AND PA REPRESENT OUR PROPOSED TRACKLET-AWARE FREE

TEACHER MODEL ANNOTATOR AND HUMAN ANNOTATOR. N IS
THE SIZE OF THE DATASET, WHICH IS 32 621 IN MSMT17

In our proposed co-cooperative annotators’ framework,
the issue of redundant annotations may arise due to the
appearance of hard samples annotated by the human expert
in the subsequent rounds. Our approach to address this issue
involves two strategies. First, we incorporate the samples
annotated by human experts into the training process and
use them to construct the triplet loss in the final objective
function. By doing so, the model can learn the main patterns
from these samples, guided by the accurate annotations, which
may result in these samples being regarded as more confident
samples. Second, we use annotations from human experts only
every five epochs, to generate different results and reduce the
possibility of redundant annotations.

C. Comparison With State-of-the-Arts

We compare our proposed method with the state-of-the-art
fully unsupervised person ReID methods and active learning
person ReID methods on three public person ReID datasets
in Tables IV and V. Fully unsupervised methods include
SSL [55], JVTC [56], MMCL [57], HCT [58], CycAs [59],
GCL [19], SPCL [4], HCD [20], ICE [21], CCL [5],
MCRN [23], SECRET [22], PPLR [24], and HDCPD [25].
By taking advantage of our proposed tracklet-aware free
teacher model (TA), our method can achieve the best results on
these three datasets in the fully unsupervised setting. Specifi-
cally, compared with CCL, we can achieve the improvements

TABLE VI
ABLATION STUDY ON MARKET-1501

of 3.6%, 2.3%, and 1.9% in terms of mAP on Maret-1501,
DukeMTMC-reID, and MSMT17, respectively.

Compared with the state-of-the-art active learning person
ReID methods, our method also achieves better performance.
These methods include QIC [60], QBC [61], GD [62],
HVIL [38], DRAL [26], MASS [18], and AE [39]. As shown
in Tables IV and V, our method can outperform all of them
on these three datasets in the active learning setting with
fewer annotations. Compared with the fully unsupervised
setting, we can further improve the performance of our method
with very limited annotations. Compared with the state-of-
the-art active learning ReID framework AE [39], we can
achieve competitive performance with fewer labels annotated
by human experts. The reason is probably that existing active
learning frameworks utilize their designed criteria to select
uncertain samples and send all of them to the human expert
for annotations. Thus, these methods have to afford extensive
annotation cost as those relatively hard samples but with less
uncertainty will also consume the annotation budget equally.
Unlike these active learning frameworks, our proposed method
further distinguishes these samples by our carefully designed
selection criteria. For those hard samples, we will send them to
the human expert for more accurate but expensive annotations.
For those relatively hard but with less uncertainty, we will
resort to the trained teacher model for relatively accurate but
free annotations. In this way, we can improve the performance
of the model with very limited annotation budget. Furthermore,
we acknowledge that our proposed method achieved sur-
prising improvements on Market-1501 and DukeMTMC-reID
datasets, but the performance on MSMT17 dataset is relatively
limited compared with state-of-the-art methods. The reason for
this could be attributed to the fact that the MSMT17 dataset
does not provide frame numbers, which limits our ability
to associate adjacent images and produce robust tracklets.
Instead, we have to treat each image as a single tracklet, which
could lead to reduced performance. Nonetheless, we found that
our proposed method can still achieve significant improve-
ment on the MSMT17 dataset without the frame number
information.

D. Ablation Studies

In this section, we study effectiveness of different com-
ponents and hyperparameters in our proposed method. Our
method is implemented based on the CCL baseline [5], and
hyperparameters introduced in our work include hyperparam-
eters λ1, λ2, m in (7), and ω, δ in (2).

1) Different Combinations of the Components: Our method
can be regarded as a combination of three modules, including
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TABLE VII
ABLATION STUDY ON MSMT17

TABLE VIII
IMPACT OF HYPERPARAMETER λ1 ON MARKET-1501

TABLE IX
IMPACT OF HYPERPARAMETER λ2 ON MARKET-1501

tracklet-aware teacher model annotator (TA), tracklet-aware
human expert annotator (PA), and SKD. As our work is
implemented on the CCL [5], we take CCL as a baseline in
our experiment and the result is shown in Tables VI and VII.
As shown in tables, the first line means the performance of
CCL on Market-1501 and MSMT17 datasets, CCL can achieve
good performance by taking advantage of contrastive learning
and cluster memory, but it is still limited by the label noise
introduced in the clustering stage. The second line is the result
of the combination of CCL and our proposed TA module,
compared with the first line we can find that our proposed TA
module can improve the baseline by 2.7%, 2.1% in terms of
mAP on Market-1501 and MSMT17 datasets, which indicates
that our introduced trained teacher model can serve as a free
annotator and help the student model relieve the severe label
noise. The third line is the result of the combination of CCL,
TA, and our proposed PA modules, compared with the first
line, improvements of 3.3% and 2.7% in terms of mAP on
Market-1501 and MSMT17 datasets can be further achieved
by taking advantage of free teacher model and very limited
human annotations. The last line denotes the result of the
combination of CCL, TA, PA, and SKD modules, compared
with the first line, improvements of 3.8% and 3.5% can be
achieved by our proposed three modules. The result shows
that our proposed three modules can work in a mutual benefit

TABLE X
IMPACT OF HYPERPARAMETER m ON MARKET-1501

Fig. 3. Impact of hyperparameter ω on Market-1501 and MSMT17.
(a) Hyperparameter ω on Market-1501. (b) Hyperparameter ω on MSMT17.

Fig. 4. Impact of hyperparameter δ on Market-1501 and MSMT17.
(a) Hyperparameter δ on Market-1501. (b) Hyperparameter δ on MSMT17.

TABLE XI
PERFORMANCE OF OUR METHOD ON MARKET-1501 AND

DUKEMTMC-REID WITH DIFFERENT SOURCE
DATASETS PRETRAINED MODELS

way and the baseline with these three modules can achieve
the best performance.

2) Impact of Hyperparameters in the Objective Function:
We analyze the effect of hyperparameters λ1, λ2, and m
in (7). Tables VIII–X show the performance of our method
over different values of λ1, λ2, and m on Market-1501,
respectively. Specifically, when λ1 increases, the performance
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Fig. 5. Top 6 retrieval results of some hard queries on Market-1501 dataset. Note that the green/red boxes denote true/false retrieval results, respectively.

of our method degenerates slightly as it relies more on the
output of the trained teacher model. When hyperparameters λ2
and m change, our method shows similar performance, which
shows our method is robust against these two hyperparameters.
In the experiment, we set λ1, λ2, and m to 0.5, 0.2, and 0.3 for
all three datasets and both unsupervised and active learning
settings.

3) Impact of Hyperparameters in the Sample Selection:
ω and δ in (2) are two hyperparameters determining which
samples are selected as positive/negative or hard/simple sam-
ples for annotation. As shown in Fig. 3, ω is a key factor
which determines the performance of our method. When ω

increases/decreases, less/more samples will be regarded as
positive samples for training, and our method shows different
patterns with different values of ω. In the experiment, we set
ω to 0.4 for Market-1501 and DukeMTMC-reID while 0.8 for
MSMT17. As shown in Fig. 4, our method achieves similar
results on Market-1501 and MSMT17 when δ changes in the
appropriate range, which shows our method is robust against δ.
In the experiment, we set δ to 0.15 for all datasets.

4) Pretrain the Model With Different Source Datasets:
Due to lack of ground truth, most active learning/unsupervised
person ReID methods utilized clustering algorithm to generate
pseudo-labels for the dataset. Then the generated pseudo-labels
are used to train the model. Pretraining on ImageNet is the key
to the success of unsupervised person ReID methods, which
can guarantee that the model can discover general patterns
in the pseudo-labels generation process. If the encoder is
initialized randomly, then it is hard to train the model as the
generated pseudo-labels are very noisy.

As pretraining is significant for active learning/unsupervised
person ReID, a better pretrained model can also boost the
performance of the trained model. Recently, some works [70],

[71], [72] use larger person ReID dataset, such as LUPerson
and LUPerson-NL, to pretrain the model and achieve better
performance on downstream ReID tasks than the model pre-
trained on ImageNet. We believe that using more advanced
pretrained model can further improve our proposed method.
We also add the experiment to replace the initial model
with the ResNet50 pretrained on LUPerson-NL, which is
released in [70]. As shown in Table XI, our model can also
benefit from the initialization of model weights pretrained
on the large-scale LUPerson-NL dataset and outperforms the
ImageNet-initialized counterpart significantly.

5) Qualitative Analysis of Visualization: We present some
retrieval examples with top 6 retrieved images in Fig. 5.
Our proposed method can achieve great improvements of
the baseline CCL. In the first two rows, CCL gets some
false results for the query due to the high similarity between
different persons, in terms of clothes, gender, and bicycle.
However, our proposed method can find the true retrieval
results with limited annotations from the free teacher model
and the human annotator, which indicates that our method
can learn more discriminative representations for differing
different persons. In the last two rows, CCL could suffer from
accumulation of label noise in the training process due to the
similarity of different persons. As a result, these similar images
could be easily merged to the same cluster and make the model
biased. But our method can deliver true retrieval results, which
verifies the necessity of our proposed modules to relieve the
accumulation of label noise.

VI. LIMITATION AND FUTURE WORK

Although our proposed method can achieve great improve-
ments with very limited annotation budget, our method still has
two main limitations. On the one hand, our method requires
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the frame number information. Although it is easy to obtain
such information in the data collection stage, the frame number
information is still unavailable in some public person ReID
datasets. On the other hand, our proposed SKD module relies
on a fixed trained teacher model. Although it can help the
student model relieve the severe label noise in the early period,
it may also hinder the student model learning in the latter
period of the training process. As these problems are hard to
be solved, we leave how to improve them as future directions,
for examples, by replacing the frame number information with
neighbor information, or designing a better iterative knowledge
distillation mechanism.

VII. CONCLUSION AND DISCUSSION

In the article, we propose a highly efficient active learning
framework for person ReID. To possibly reduce the demand of
annotations from the human expert, we introduce the trained
teacher model to serve as a free annotator and propose the
tracklet-aware co-cooperative framework by taking advantage
of frame number of hybrid annotators. To further relieve the
influence of label noise, we propose the SKD module to guide
the model to learn from the unlabeled data in a more stable
way. Extensive experiments on three popular datasets demon-
strate that our approach can achieve competitive performance
compared with state-of-the-art methods in both USL and active
learning settings with very limited annotations.

Compared with unsupervised person ReID, existing active
learning person ReID methods typically require a large number
of human annotations, which can limit scalability in real-
world applications. We believe that designing efficient active
learning frameworks is essential for advancing the field, and
our proposed method could facilitate future research in this
direction.
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