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Abstract

Foundation models, such as Latent Diffusion Models and Generative Pre-
trained Transformers, trained on broad data have shown impressive results
in various downstream applications. Fine-tuning a pre-trained foundation
model is an affordable way to customize it on small and personalized data.
However, the non-AI experts often struggle with the hyperparameter con-
figurations and sometimes encounter the overfitting issue without even re-
alizing it. To mitigate this issue, we introduce a new monitoring met-
ric (CS-Fluctuation) to facilitate early stopping the fine-tuning process.
Specifically, we leverage Low-Rank Adaptation (LoRA) to fit the small
scale of the personalized data while monitoring the cosine similarity of the
parameter changes between the LoRA branch and its corresponding layer.
When the changes become steady, we observe the onset of overfitting issue
which becomes increasingly severe as fine-tuning progresses. Empirically,
we leverage various types of personalized data to conduct customization
experiments on both vision and language foundation models, which cor-
roborates the effectiveness of CS-Fluctuation in early stopping the LoRA
fine-tuning. Our code is available at GitHub.

1 Introduction

Foundation models Bommasani et al. (2021) that are trained on broad data have demon-
strated impressive results in various downstream applications. For example, the Generative
Pre-trained Transformers (GPTs) (Brown et al., 2020) are trained from a vast amount of text
data, which fostered a powerful ChatGPT OpenAI (2023) for conversational applications.
Latent Diffusion Models (LDMs) (Rombach et al., 2022), whose encoder and decoder are
pre-trained from large-amount of images, are customized into photorealistic text-to-image
generation (CompVis, 2022), image editing (Zhang & Agrawala, 2023), etc.

For personalized AI, fine-tuning a pre-trained foundation model is an affordable way to take
advantage of its broad capabilities using a set of small and personalized data. Ruiz et al.
(2023) proposed Dreambooth which finetunes the whole LDM using a few images and then
synthesizes photorealistic images of different scenes. A more efficient finetuning technique is
Low Rank Adaption (LoRA) (Hu et al., 2021). LoRA performs the low-rank decomposition
of the transformer structure, which significantly reduces the cost of fine-tuning the large
foundation models (Dettmers et al., 2023; Cuenca & Paul, 2023). Thus, LoRA enables
small companies or individuals to customize a foundation model on a small dataset and
even fine-tune the private datasets using their local machines.

However, LoRA can easily overfit a small set of training data, causing a barrier to the
customization of foundation models by non-AI experts. As shown in Figure 1, an individual
wants to incorporate the personalized photos or texts into a foundation model, such as
a pretrained LDM or LLM, but can only provide limited references. As the finetuning
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Epoch 2 Epoch 3 Epoch 5 Epoch 6
Good results Overfitted results

"a man, shaggy layers hairstyle and chinstrap, sad smile, standing with arms crossed in front of body in WWII, 
Bombed-Out Building Interior, Exposed brickwork, rubble, damaged furniture, evidence of previous life"
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(a) Use LoRA to Fine-tune a LDM to generate personalized images according to the reference
data. In this case, an individual expects vivid photos that are consistent with the provided prompt
and contain his/her face. Generated images should preserve high quality and manifest diversity
in aspects such as hairstyles, scenes, and attire. Besides, the generated images do not exhibit
distortions or overly resemble the provided reference data. As illustrated in the figure, the overfitted
LoRA models ignore the provided prompt such as “arms crossed”, and impact image quality, leading
to blurring and loss of details.
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CS-Fluctuation

(b) Use LoRA to Fine-tune a LLM on small and personalized texts. In this case, an individual
provides a small amount of texts related to “clinical knowledge” and expects that the fine-tuned
LLM with LoRA can has good generalization performance on unseen “clinical knowledge” texts.
The Five-shot baseline accuracy comes from Touvron et al. (2023a).

Figure 1: LoRA of a LDM and LLM. As the LoRA fine-tuning progresses, the cosine similar-
ity (CS) between LoRA layer and its corresponding original layers undergoes abrupt changes
before settling into a more gradual and stable pattern. Our proposed monitoring metric—
CS-Fluctuation— monitors the fluctuations of the CS changes. When CS-Fluctuation be-
comes small, it strongly suggests early stopping the fine-tuning process. The grey dashed
line is the turning point that is located by our proposed algorithm, e.g., the Epoch 2 in red
in Fig.1(a) is where the turning point is located.

progresses, LoRA can quickly learn the small reference data, leading to overfiting. As
shown in Figure 1a, the overfitted LoRA even generated the original reference images. Even
worse, individuals often lack sufficient validation data to early stop the fine-tuning process.
In many cases, such as personalized image generation, reliable evaluation metrics are also
absent. The above issues require a validation-independent criterion to early stop the fine-
tuning process.
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To early stop the fine-tuning process, we introduce a new monitoring metric, called CS-
Fluctuation. Initially, we observe the fine-tuning process of cosine similarity (CS) of pa-
rameters between the low-rank layer (used in the LoRA branch) and its original layer (used
in a pretrained foundation model). During the LoRA fine-tuning for both LDM and LLM,
we observe that CS undergoes abrupt changes before settling into a more gradual and sta-
ble pattern, despite the different learning rate chosen. Interestingly, the turning point of
overfitting happens exactly at the transitional point of CS from “abrupt” changes to “sta-
ble” changes, as shown by blue lines in Figure 1. Thus, to aid in locating the turning point
(grey dashed lines), we propose a new metric called CS-Fluctuation (denoted as green lines),
where we calculate the variance of CS slopes across training iterations and apply moving
average techniques (Box et al., 2015) to smoothen the curve.

To verify the effectiveness of CS-Fluctuation in fine-tuning foundation models utilizing LoRA
technology, we chose several high-quality LDMs from CivitAI (Civitai, 2022) and open-
source LLaMA series (Touvron et al., 2023a) of LLMs as base models. A series of fine-
tuning experiments are conducted on multiple small-scale image and text datasets, aiming
to simulate the real situations of personalizing foundation models. The experimental results
revealed that the CS-Fluctuation can effectively identify the turning point to early stop
the process of fine-tuning, thus avoiding the issues of overfitting. In practice, the LoRA
models corresponding to these turning points demonstrated better performance in most
cases. Adopting such a strategy of early stopping the fine-tuning process before the onset
of overfitting reduces unnecessary consumption of computational resources.

2 Method

In this section, Section 2.1 reviews the preliminaries of LoRA. Section 2.2 introduces our
proposed monitoring metric, i.e., CS-Fluctuation as well as an algorithm of early stopping
the fine-tuning process.

2.1 Preliminaries of LoRA

LoRA (Hu et al., 2021) and QLoRA (Dettmers et al., 2023) are efficient fine-tuning tech-
niques that were designed for LLMs. LoRA can be also utilized in other foundation models
such as LDM (Cuenca & Paul, 2023). LoRA is a low-rank decomposition of foundation
models, which can significantly reduce the number of trainable parameters and memory
usage during the fine-tuning process of downstream tasks. Furthermore, a pre-trained foun-
dation can be used to build many small LoRA branches for different tasks. The details are
elaborated in Equation 1.

h = Wx + BAx (1)

When we use LoRA to fine-tune on a small personalized data, the original pre-trained weight
matrix W ∈ Rd×k is frozen. However, we concatenate a trainable LoRA branch, in which
the shape of the matrix BA equals that of W , where B ∈ Rd×r, A ∈ Rr×k, and the rank
r is significantly less than d or k. To fine-tune the foundation models, LoRA commonly
operates on transformer architecture. Specifically, LoRA targets each layer in the attention
block.

2.2 CS-Fluctuation: Tracking Learning Status to Avoid Overfitting

In this section, we propose a CS-Fluctuation metric to monitor the LoRA fine-tuning process.
Once CS-Fluctuation becomes steady and small, we early stop the fine-tuning process to
avoid overfitting.

CS-Fluctuation is computed based on the Cosine Similarity (CS) between frozen parameters
in a pre-trained foundation model (W ) and their counterparts in LoRA (BA). CS is defined
in Equation 2 as follows.

CS(BA,W ) =
1

N

N∑
i=1

vec(BiAi) · vec(Wi)

∥vec(BiAi)∥∥vec(Wi)∥
, (2)
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where vec(·) denotes the vectorization that flattens the matrix to a one-dimensional vector,
and i is the index of layers, in which there is a LoRA counterpart to perform a low-rank
decomposition.

To calculate CS-Fluctuation, we apply the technique of moving window average MA(·) on
CS and it slope ∇CS in the batch-wise matter.

MA(CSj) =
1

M

j+M∑
j

CSj , (3)

where j is the index of iteration steps in the fine-tuning process, and M is the size of the
moving window. Note that in order to calculate the CS of the iteration j, we need to
calculate M more iterations of fine-tuning.

Now, we calculate the smoothed version of CS slope, i.e., Xj = MA(∇(MA(CSj)). For
simplicity, we approximate the CS slope by ∇CSj = CSj − CSj−1. The CS-Fluctuation is
then the variance value of the smoothed CS slope, as shown in Equation 4.

CS-Fluctuation(CSj) =
1

lr
· 1

M

j+M∑
j

(
Xj −Xj

)2
, (4)

where lr refer the size of learning rate. We divide the variance by lr to normalize and
eliminate the effect of lr scale on CS fluctuations.

We leverage CS-Fluctuation to early stop the fine-tuning process to return a well-performing
LoRA model. Over the fine-tuning iterations, we empirically observe that the CS-
Fluctuations behave like transverse waves, exhibiting multiple peaks and valleys and grad-
ually becoming stable. The first valley of waves often happens at the very beginning of the
fine-tuning process at the time when the LoRA model is underfitted. Therefore, we take the
second valley as the turning point to signal the early stopping of the fine-tuning process. We
then return to users the LoRA checkpoint at the turning-point epoch (one or a few epochs
earlier than the current stopping epoch). Kindly note that we apply M size of the moving
window in Equation 3. Thus, the CS-Fluctuation value of the turning point is calculated
based on CS values of previous iterations and those of the subsequent M iterations. The
early-stopping LoRA is found in Algorithm 1 (Appendix B).

3 Experiment

In the experiment section of this study, we explored the impact of CS-Fluctuation in LoRA
fine-tuning process for both LDMs and LLMs. Our experiments were divided into two
sections: the first involved applying LoRA to LDMs, selecting high-quality base models and
fine-tuning them with four small-scale image datasets; the second section dealt with LLMs,
using the 7B and 13B versions of the LLaMA (Touvron et al., 2023a) series, fine-tuned
with the MMLU dataset (Hendrycks et al., 2020). The focus was on effectively integrating
user-provided references by monitoring CS-Fluctuation to early-stop the LoRA fine-tuning
process, thus avoiding overfitting.

The results demonstrate the effectiveness of our proposed CS-fluctuations in the LoRA fine-
tuning process of these models, generating high-quality images and text, similar to the results
shown in Figure 1. Specifically, the early-stopped LoRA LDMs show excellent performance
in generating images that are both prompt-compliant and diverse, while also preventing the
image blurring and detail loss associated with overfitting. For LLMs, while overfitting has a
minor impact on model performance in some cases, continued training leads to unnecessary
computational consumption. The complete experiment refers to Appendix C.

4 Conclusion

In this study, we have introduced a new monitoring metric, CS-Fluctuation, aimed at early
stopping the LoRA fine-tuning process of foundation models to avoid overfitting. This
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approach is particularly valuable in cases with limited training data or when objective test
data is either unavailable or highly subjective. Empirically, we have applied the early-
stopped LoRA to both vision models (LDMs) and language models (LLMs), respectively.
Our findings corroborate the CS-Fluctuation metric can effectively deliver well-performing,
customized vision or language models to users.
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A Related Work

A.1 Foundation Models

Foundation models (Bommasani et al., 2021) such as BERT (Devlin et al., 2018), GPT-
3 (Brown et al., 2020), CLIP (Radford et al., 2021), have demonstrated superior perfor-
mance in solving various types of complex tasks. This paper focuses on two types of foun-
dation models, i.e., text-to-image latent diffusion models (LDMs) and large language models
(LLMs), which are reviewed as follows.

Diffusion models (DMs) have displayed remarkable performance in image synthesis. Com-
pared with other generative models such as GANs (Goodfellow et al., 2014; Brock et al.,
2018), DMs can mitigate the issues of training instability and mode collapse Ho et al. (2020);
Song et al. (2020). Moreover, DMs can model highly complex distributions of natural images
without requiring large amount of parameters Razavi et al. (2019).

Notably, text-to-image diffusion models have attracted extensive attention. To generate
photo-realistic images, the GLIDE (Nichol et al., 2021) introduced text conditions during
the diffusion process, while the DALL-E2 (Ramesh et al., 2022) enhanced the precision of
text and image alignment through the integration of the CLIP (Radford et al., 2021) joint
feature space. Notably, Latent Diffusion Models (LDMs) Rombach et al. (2022) perform the
denoising processes in the latent space, which can effectively reduce computational resources
while maintaining the quality and flexibility of generated images. LDMs have facilitated
the emergence of popular image editing tools like ControlNet (Zhang & Agrawala, 2023),
Instruct-Pix2Pix (Brooks et al., 2023) and Adetailer (Bing-su, 2023), benefiting artists and
designers.

Language Models (LMs) have demonstrated their potential in solving complex tasks across
various domains (Touvron et al., 2023b). LMs adopt the transformer architecture (Devlin
et al., 2018) and the attention mechanism (Vaswani et al., 2017) and various pre-training
techniques. Then, a pre-trained LM can be fine-tuned for specific applications. Recently,
Brown et al. (2020) has shown that the large language Models (LLMs) have outstanding few-
shot learning capabilities and can adapt downstream tasks efficiently. The LLM examples
are GPT series (Radford et al., 2018; 2019; Brown et al., 2020; Floridi & Chiriatti, 2020;
OpenAI, 2023) and LLaMA series (Touvron et al., 2023a;b), which can demonstrate human-
level performance.

A.2 Personalized AI

AI has recently shifted from universal models to personalized solutions, emphasizing that AI
should meet individual needs rather than providing a ”one-size-fits-all” approach. The rapid
development of large foundation models has enabled lightweight personalized AI, which al-
lows users to obtain a high-performing AI model with just a few reference data. For example,
Gal et al. (2022) proposed a personalized text-to-image generation, which can synthesize
novel scenes of user-provided reference images. Ruiz et al. (2023) proposed Dreambooth
that allows personalized and diversified scene renderings. Besides, Kumari et al. (2023)
proposed Custom Diffusion to synthesize user-provided reference concepts. However, those
methods require smart framework designs and careful hyperparameter configurations, which
can be barriers for non-AI experts.

In contrast, Low-Rank Adaptation (LoRA) provides a unified solution for fitting a small
amount of personalized data. The LoRA technique (Hu et al., 2021) was initially developed
for the efficient fine-tuning of LLMs and has also been extended to LDMs (Cuenca & Paul,
2023). LoRA freezes the pre-trained model weights and introduces the trainable low-rank
counterparts, which can greatly reduce the number of trainable parameters. Consequently,
LoRA lessens the demand for computational resources and offers versatile customization
tailored to small and personalized data.

8



Published at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

B Algorithm

Algorithm 1 Early Stopping based on CS-Fluctuation

1: Input: A few reference data, a pre-trained foundation model W , Maximum iteration
steps J

2: Output: A LoRA model at the turning-point epoch (BA)
3: For j in J:
4: Compute CS-Fluctuationj−M based on Eq. 4, indexed at (j −M)
5: Compute ∇CS-Fluctuationj−M , i.e., the derivative of CS-Fluctuation, for identifying

valleys
6: If : ∇CS-Fluctuation experiences a second transition from “-” to “+”: ▷ second

valley
7: Return a LoRA checkpoint at the epoch corresponding to the turning point (j−M)
8: Stop LoRA fine-tuning process

C Experimental Results

C.1 Early Stopping LoRA of LDMs

In this section, we describe the experimental setup and results of using LoRA to fine-tune
the LDMs. First, we selected several high-quality LDMs in CivitAI (Civitai, 2022) as base
models for LoRA fine-tuning, refer to Table 1. These models are fine-tuned by Dreambooth
on Stable Diffusion V1.5 (SD V1.5), exhibiting superior image generation quality and artistic
effects compared with the original version, thus aligning more closely with user needs in real-
world applications.

Table 1: Selected Base Models for LDMs Experiemnts

DATASET BASE MODEL

Real portrait xxmix9realistic v40
majicmixRealistic betterV2V25

Celebrity icbinpICantBelieveIts seco
realisticVisionV51 v51VAE

Landscape realisticVisionV51 v51VAE
landscapeRealistic v20WarmColor

Architecture aargArchitecture v10
architecturerealmix v1repair

To simulate the scenario of users personalizing their private models, we confined the train set
to a small scale, i.e., 20-30 images, and did not provide the test set. The image datasets for
LDM, supplied by us, included real portraits of an individual, celebrity stills (MovieStillsDB,
2023), the landscape of Queenstown in Auckland, and the architecture of the Forbidden City.
The window size M was configured to the number of steps in an epoch, and the resolution of
training images was set to 512*512. We set the Repeat value of 50, indicating that each epoch
involves 50 complete traversals of the dataset. The tags were initially generated by the wd-
v1-4-moat-tagger-v2 model (SmilingWolf, 2023) and were subsequently adjusted manually.
For more information about datasets and hyperparameter settings, refer to Table 2.

Regarding the hyperparameter of LoRA, LoRA rank, denoted as r in Section 2.1, represents
the rank used in the decomposition of the weight matrix. Meanwhile, the α is a scaling
constant applied to the output of the low-rank decomposition, i.e., BAx in Equation 1.

We conducted fine-tuning experiments using two base models for each image dataset, as
shown in Table 1. The experimental results for the first base model are presented in Figure 1a
and Figure 2, while results for the second base model can be found in Figure 3 and Figure 4.
Each figure displays the second valley (turning point) identified by Algorithm 1, along with
the qualitative experimental results of the trained LoRA models.
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Early stop LoRA

���� ���� ���� ���� ����� �����
��������������

���

���

���

���

�
�
��
��
�
��
�
��
�
�

�� �

��������������

"photo of beautiful, a woman as a movie star sitting at the table, long blue hair, turtleneck sweater, black jacket"

"professional photo, photo of winter landscape, blue sky, snow mountain,cityscape,building,ocean"
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Figure 2: Experimental results for real portrait, landscape, and architecture datasets. Each
figure group contains five generated images, the curve of CS-Fluctuation during fine-tuning
and the second valley (turning point) marked with the gray dashed line. The first image
labelled as “Early stop LoRA” is generated using the LoRA model at the epoch correspond-
ing to the turning point. The second image is generated using the LoRA model trained
for one additional epoch after the turning point epoch. “Overfitted LoRA” refers to the
generated results of the LoRA models that continued training after the turning point. For
clarity, only part of the prompt is displayed, and non-critical tags such as “masterpiece”
and “photorealistic” have been omitted.
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Table 2: Detailed information on image datasets and LoRA fine-tuning hyperparameter
settings for LDMs. In real-world scenarios, users can only provide limited reference data for
fine-tuning and test sets are not available since evaluations are subjective.

MODELS
LORA

r
LORA

α
LR

BATCH
SIZE

REPEAT EPOCHS

Stable Diffusion V1.5 128 64 1e-5 1 50 10

DATASET TRAIN SET TEST SET

Real portrait 27 images N/A
Celebrity 23 images N/A
Landscape 20 images N/A
Architecture 22 images N/A

"professional photo, closeup portrait photo of caucasian man, wearing black suit, serious face"

���� ���� ���� ���� ����� �����
��������������

���

���

���

�
�
��
��
�
��
�
��
�
�

�� �

��������������

"1girl, smirk, long hair, pink hair, outdoors, white clothes, day, open mouth"
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Figure 3: Additional experimental results on celebrity and real portrait datasets. For the
first group of images, the overfitted LoRA model generates a character wearing a hat, even
though “hat” is not provided in the prompt. In the second, the model ignores the prompt
“day” and “pink hair”, and significantly degrades the quality and diversity of the generated
images.

The qualitative results reveal that the turning point identified based on CS-Fluctuation
can indeed locate well-performing LoRA models, thereby avoiding overfitting. Specifically,
the LoRA models corresponding to the turning point epoch and the subsequent epoch
exhibit superior performance in generating high-quality images based on the prompt while
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"cityscape, building, real world location, scenery, ocean, water, snowy mountains, ice, winter, moon, aurora, night, dark, dreamy"
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"an old east asian building by the river, reflection water, cloud, outdoors, tree, scenery, day, architecture, "
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Figure 4: Additional experimental results on celebrity and real portrait datasets. The
second base model of landscape tends to generate dreamy style images rather than pursuing
image realism. However, overfitting still impacts image quality, i.e. the auroras and snow
mountains are manifested in anomalous formations. Also for the architecture, weird and
unusual buildings are generated.

incorporating user-provided references. In contrast, the overfitted LoRA result in generated
images that are inconsistent with the prompt, and they degrade the quality of the generated
images, leading to blurry and loss of details. For example, in Figure 1a, overfitting starts
around Epoch 5, as evidenced by generating an unmentioned “hat” in the prompt. Starting
from Epoch 6, the LoRA model begins to ignore the prompts such as “arms crossed”,
“exposed brickwork”, etc., and the background becomes blurred. Similarly, the ‘blue hair”
prompt is ignored in the first row of Figure 2, the unrealistic snow mountains in the second
row, and buildings on the clouds in the third row. For a more detailed view of the image
quality, we recommend that readers zoom in on the images or refer to Appendix E for more
zoomed-in images.

In summary, the LoRA models that employ early stopping based on CS-Fluctuation can
integrate user-provided references into the model without compromising the quality and
diversity of the generated images.

C.2 Early Stopping LoRA of LLMs

This section illustrates the experimental setup and results regarding the LLMs. We chose
the 7B and 13B versions of the LLaMA series, owing to their open-source availability and

12



Published at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

Table 3: Detailed information on test datasets and LoRA fine-tuning hyperparameter set-
tings for LLMs

MODELS
LORA
RANK

LORA
ALPHA

LR
BATCH
SIZE

STEPS

LLaMA 7B 64 16 4e-6 16 1500
LLaMA 13B 64 16 2e-6 16 1500

DATASETS SUBJECT TRAIN SET Test set

Text dataset College Physics 16 102
Machine Learning 16 112
Clinical Knowledge 34 265
Business Ethics 16 100
College Biology 21 144

Anatomy 19 135
College Chemistry 13 100

College Mathematics 16 100
Computer Security 16 100
International Law 18 121

offering of multi-scale modeling options. The employed text dataset for LLMs is derived
from the MMLU dataset (Hendrycks et al., 2020), which contains multiple-choice questions
from 57 subjects. We extracted ten subjects and allocated the dev and validation set as the
train set to ensure the small size of the training dataset, similar to the LDMs experiments.
The window size M was set to 100 steps. Meanwhile, the original test set of the MMLU
dataset was utilized to calculate the zero-shot accuracy to quantitatively evaluate the LoRA
models at the turning points identified by the CS-Fluctuation. More information about the
text dataset and hyperparameter settings can be found in Table 3

We conducted LoRA fine-tuning experiments on both versions of LLaMA using train sets
from five different subjects for each. The turning points identified by the Algorithm 1 and
quantitative results are presented in Figure 5.

The quantitative results validate the effectiveness of CS-Fluctuation in identifying the turn-
ing points in the fine-tuning process. Before reaching this point, the accuracy curve fluctu-
ates notably and then stabilizes. For LLMs, the overfitted LoRA model does not significantly
affect model performance. However, continuing training after the turning point results in
unnecessary computational expenditure, especially since fine-tuning LLMs typically requires
more computational resources compared to LDMs.

Furthermore, we found that the LoRA model at the turning point is not always the instance
with the best performance. Higher accuracy may also exist near the turning points. We
compare these in Table 4 with the five-shot baseline accuracy of LLaMA (Touvron et al.,
2023a). The accuracy at the identified turning points does not differ significantly from the
peak accuracy, the latter frequently materializing near the turning points. Therefore, if the
user is not satisfied with the accuracy of the turning points, such points can serve as a
preliminary stage in a subsequent, more meticulous fine-tuning process.

Moreover, as shown in Table 4, we observe that, in some cases, the zero-shot accuracy of
the fine-tuned LoRA models is comparable to the five-shot baseline accuracy, especially
in the experiments on LLaMA 13B. This phenomenon may be due to the larger number of
parameters than the 13B model, leading to a higher susceptibility to overfitting, particularly
when fine-tuning on such a limited dataset.

D Limitations and Future Works

There are several limitations of this study. Firstly, we have to admit that currently CS-
Fluctuation only addresses the overfitting issue of LoRA fine-tuning. As far as we know,
other fine-tuning methods, such as Dreambooth, are also prone to overfitting. Secondly, as
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(b) LLaMA13B

Figure 5: Quantitative results for LLaMA 7B and 13B, including the zero-shot accuracy
calculated using the original test set of the MMLU dataset and the of CS-Fluctuation
during the fine-tuning process, along with second valley (turning point) marked with the
gray dashed line.

Table 4: Comparison of accuracy during the fine-tuning process. The table displays the
zero-shot accuracy (EARLY STOP ACC.) at the second valley (turning point), the highest
accuracy (HIGHEST ACC.) throughout the fine-tuning process, and the five-shot baseline
accuracy Touvron et al. (2023a). We find that the best accuracy is usually achieved near
the identified turning points.

MODELS SUBJECT
EARLY STOP

ACC.
HIGHEST

ACC.
FIVE-SHOT

BASELINE ACC.

LLaMA 7B College Physics 40.2 42.2 26.5
Machine Learning 31.3 33.0 23.2
Clinical Knowledge 43.2 43.2 35.1
Business Ethics 33.0 36.0 40.0
College Biology 36.1 37.5 37.5

LLaMA 13B Anatomy 48.1 51.1 45.9
College Chemistry 38.0 41.0 30.0

College Mathematics 28.0 32.0 32.0
Computer Security 64.0 67.0 65.0
International Law 63.6 63.6 62.8

demonstrated in Table 4, there are some cases which the LoRA has no significantly better
performance than five-shot baselines, in which CS-Fluctuation cannot help. In addition,
this study does not involve experiments on even larger LLMs (such as LLaMA 33B) due to
our computational constraints.

There are several areas deserving of further exploration. We plan to apply the early-stopped
LoRA in broad applications, such as generating anime characters and landscapes and modi-
fying the image art styles. Besides, we plan to investigate the effectiveness of CS-Fluctuation
larger LLMs (e.g., the 65B version of LLaMA and LLaMA2) as well as larger LDMs (e.g.,
SDXL (Stability-AI, 2023)). Besides LoRA fine-tuning, we plan to develop more robust and
generalized methods to mitigate the issue of overfitting in other fine-tuning processes.
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E Additional Qualitative Results

In Figure 6, 7, 8, and 9 we present more qualitative results for LDMs, including the
generation results of the well-performing LoRA model (Early stop LoRA) at turning point
and the overfitted results. For clarity, we have zoomed in on the images and non-critical
tags have been omitted.
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Early stop LoRA Overfitted LoRA

"a man, shaggy layers hairstyle and chinstrap, sad smile, standing with arms crossed in front of body in WWII,Bombed-
Out Building Interior, Exposed brickwork, rubble, damaged furniture, evidence of previous life"

"film grab of a young landsknecht, plate armor, black shirt, moustache, standing, simple background"

"city street, fog, closeup portrait photo of young man wearing white shirt and black jacket, white hair"

Figure 6: Additional qualitative results on celebrity dataset
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Early stop LoRA Overfitted LoRA

"a woman, flower dress, flower armor, green theme"

"20 yo woman, long straight hair, green hair, white shirt"

"RAW photo, face portrait photo of 30 y.o man, wearing white suit, happy face, blonde hair"

Figure 7: Additional qualitative results on celebrity and real portrait dataset
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Early stop LoRA Overfitted LoRA

"1girl, angel, cloud, glowing skin, white clothes"

"photo of spring landscape, blue sky,ocean,snow mountain,cloudy sky, flowers"

"1girl, curly hair, in the dark, black shirt, blonde hair"

Figure 8: Additional qualitative results on real portrait and landscape datasets
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Early stop LoRA Overfitted LoRA

"cultural style,snow, cloud, outdoors, scenery, day, cloud, statue, architecture, east asian architecture,building,day,blue sky"

"scenery, outdoors, building, day, real world location, architecture, east asian architecture, dusk, cloud, cityscape,city"

"photo of autumn landscape, dramatic lighting, gloomy, cloudy weather"

Figure 9: Additional qualitative results on landscape and architecture datasets
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