
EFFICIENT TROJAN INJECTION: 90% ATTACK SUC-
CESS RATE USING 0.04% POISONED SAMPLES

Anonymous authors
Paper under double-blind review

ABSTRACT

This study focuses on reducing the number of poisoned samples needed when
backdooring an image classifier. We present Efficient Trojan Injection (ETI), a
pipeline that significantly improves the poisoning efficiency through trigger de-
sign, sample selection, and exploitation of individual consistency. Using ETI, two
backdoored datasets, CIFAR-10-B0-20 and CIFAR-100-B0-30, are constructed
and released, in which 0.04% (20/50,000) and 0.06% (30/50,000) of the training
images are poisoned. Across 240 models with different network architectures and
training hyperparameters, the average attack success rates on these two sets are
92.1% and 90.4%, respectively. These results indicate that it is feasible to inject a
Trojan into an image classifier with only a few tens of poisoned samples, which is
about an order of magnitude less than before.

1 INTRODUCTION

Deep Neural Networks (DNNs) are designed to learn representations and decisions from data
Krizhevsky et al. (2012); Simonyan et al. (2013); LeCun et al. (2015); Li et al. (2022). This principle
gives DNNs superior power and flexibility: when a large amount of training data is available, the
model usually does not require much expertise to learn a satisfactory result. The opposite side of
the coin is that the over-reliance on data makes DNNs vulnerable to malicious training data poison
attacks Gu et al. (2017); Koh & Liang (2017); Carlini & Terzis (2021); Xia et al. (2022b). As the
number of parameters in DNNs scales Brown et al. (2020); Ramesh et al. (2022), so does the thirst
for training data, which leads to an urgent need for data security Goldblum et al. (2022).

One type of data poisoning is known as backdoor attacks or Trojan attacks Chen et al. (2017);
Gu et al. (2017); Liu et al. (2017). Specifically, an attacker releases a training set that claims to
be “clean” but has a small number of poisoned samples mixed in. If a user trains a DNN on this
set, then a hidden Trojan can be implanted. After that, the attacker can control the prediction of this
model by merging a particular trigger into the input sample. Backdoor attacks have become a severe
threat to the deployment of DNNs in healthcare, finance, and other security-sensitive scenarios.

From the attacker’s perspective, a good Trojan injection process not only needs to accomplish the
malicious goal, but also should be undetectable by the user, i.e., remain strongly stealthy Li et al.
(2020b). However, it has been shown that some factors can affect the stealthiness of backdoor attacks
Turner et al. (2019); Tan & Shokri (2020); Zhong et al. (2020); Nguyen & Tran (2021); Xia et al.
(2022a). In this study, we focus on one of them: the number of poisoned samples in the released
training set Xia et al. (2022a). Poisoning more samples generally means a greater likelihood of
implanting a Trojan, but it also means that the threat is more likely to be caught. Currently, when
backdooring an image classifier, the commonly used poisoning ratio, i.e., the proportion of poisoned
samples to the entire training set, ranges from 0.5% to 10% Gu et al. (2017); Li et al. (2020a); Zhong
et al. (2020); Li et al. (2021). This is not a large number, but we wonder if it is possible to implant a
backdoor at a much lower ratio, say 0.1% or 0.05%.

Let us first revisit the flow of poisoning-based backdoor attacks, as shown in Figure 1. Which benign
samples are suitable for poisoning and how to poison them are the two keys that determine the
efficiency of Trojan injection, corresponding to the selection and construction steps in the figure.
In previous work Zhao et al. (2020); Zhong et al. (2020); Xia et al. (2022a); Zeng et al. (2022),
these two keys were explored separately. For example, Zhao et al. (2020) proposed to improve the
poisoning efficiency by optimizing the trigger. Xia et al. (2022a) found that each poisoned sample

1

PoisoningSelection Construction

Benign Training Set Mixed Training Set

Figure 1: The brief flow of poisoning-based backdoor attacks. The attacker uses the three steps of
selection, construction, and poisoning to build the mixed training set and releases it. The user gets
this set and uses it to train a DNN. Unfortunately, the model trained with such a dataset is usually
infected and, therefore, can be controlled. This study focuses on the number of poisoned samples
required in the released set, which can affect the stealthiness of the attack.

contributes differently to the backdoor injection and suggested reducing the number of poisoned
samples required through important sample selection. However, are there any other factors besides
the selection and construction that can affect the poisoned sample efficiency? More importantly,
when the attacker can consider these factors simultaneously, what is the limit of poisoning efficiency
that the constructed backdoor attack can achieve? These questions have not been well answered.

In this study, we investigate the effect of an unexplored factor, randomness, on the poisoning effi-
ciency of backdoor attacks and identify a good characteristic of this factor (for attackers) that can
be used to reduce the number of poisoned samples further. We then synthesize the existing and our
research to present Efficient Trojan Injection (ETI) for probing the capability limit that is currently
achievable. ETI improves the poisoning efficiency of the generated samples through three parts:

• Construction: using the inherent flaw of models as the trigger. Deep models are inher-
ently flawed Szegedy et al. (2013); Moosavi-Dezfooli et al. (2017). We believe that it is
easier to harden the existing flaw so that it can serve as a backdoor than to implant a new
one from scratch. Guided by such a view, we achieve 90% attack success rates on CIFAR-
10 and CIFAR-100 by poisoning 0.103% and 0.178% of the clean data. As a comparison,
the ratios are 0.603% and 0.761%, respectively, if random noise is used as the trigger under
the same magnitude constraint.

• Selection: selecting those samples that contribute more to the backdoor injection. We
agree with Xia et al. (2022a) that each sample is of different importance for the backdoor
injection and employ their proposed Filtering-and-Updating Strategy (FUS) to improve the
poisoning efficiency. We observe a drawback of this strategy when the poisoned sample
size is very small and make a simple but effective improvement. This technique can help
to reduce the poisoning ratios to 0.058% and 0.093% on CIFAR-10 and CIFAR-100.

• Randomness: valuing the individual differences and consistency. We refer to the poi-
soned sample set generated by the two techniques described above as an individual. Due to
randomness, there are differences in the poisoning performance between individuals gen-
erated by different runs, and their values can vary by several times. A good characteristic
we observe is that the performance of these individuals can be highly consistent across dif-
ferent models. That is, when an individual performs well on one model, it usually does so
on other ones, and vice versa. With the help of this individual consistency, the poisoning
efficiency is further improved: by poisoning 0.036% and 0.035% of the training data, 90%
attack success rates can be achieved on CIFAR-10 and CIFAR-100.

Using ETI, two backdoored datasets, CIFAR-10-B0-20 and CIFAR-100-B0-30, are constructed,
where 0.04% (20/50,000) and 0.06% (30/50,000) of the training images are polluted. To validate
the performance of poisoning, we train a total of 240 DNN models on each dataset using different
architectures, optimizers, initial learning rates, and batch sizes. The average attack success rates on
these two datasets are 92.1% and 90.4%, respectively. Besides, if 10 more samples are poisoned,
then the attack success rates would exceed 95% for both.

Contribution. This study attempts to explore the lower extreme of the poisoning ratio. To achieve
this goal, we investigate the effect of randomness on the poisoning efficiency, an unexplored factor

2

beyond the selection and construction. One good characteristic we observe coming with randomness
is that its effect on attack performance is usually consistent across models. Building on the existing
and our research, we present a pipeline called ETI to thoroughly improve the data efficiency of
backdoor attacks and show empirically that injecting a Trojan into an image classifier with only a
few tens of poisoned samples is practical.

2 BACKGROUND, RELATED WORK, AND SETUP

2.1 BACKDOOR ATTACKS

Backdoor attacks aim to inject a hidden Trojan into a model, causing it to assign any input sample
with a specific trigger t to a particular attacker-defined target y′. As shown in Figure 1, given a
benign training set Db, the attacker builds the mixed training set Dm in three steps. First, a subset
Ds is selected from Db. This selection can be either random Gu et al. (2017); Chen et al. (2017) or
intentional Xia et al. (2022a). Second, the poisoned set Dp = {(x′, y′)|x′ = F (x, t), (x, y) ∈ Ds}
is constructed, where F (·, ·) denotes a fusion function. Last, Dm is built by mixing Dp with the
remaining benign training set, i.e., Dm = (Db \ Ds) ∪ Dp. After completing the above steps, the
attacker will release Dm, and any model trained on this set can be infected.

The stealthiness of Dp has been one of the major interests in this field. For example, several re-
searchers Li et al. (2020a); Zhong et al. (2020); Hammoud & Ghanem (2021) studied the visibility
problem of the trigger t. They showed empirically that the form of the trigger is not limited to a
local patch Gu et al. (2017) or a selected image Chen et al. (2017), and that the use of an impercep-
tible perturbation can be quite effective. Some others Barni et al. (2019); Turner et al. (2019); Zhao
et al. (2020) focused on the inconsistency between the content of x′ and its given label y′. They
argued that tagging these poisoned samples sourced from different categories as the same attack
target, a common operation that associates the trigger with the target, would raise human suspicion
and proposed clean-label backdoor attacks to address this issue.

2.2 POISONING EFFICIENCY

We concentrate here on the poisoning ratio r = |Dp|/|Dm|, which also affects the stealthiness of the
attack. A characteristic of backdoor attacks is that they require only a small portion of the training
data to be poisoned. Taking CIFAR-10 Krizhevsky & Hinton (2009) as an example, the common
poisoning ratio on this dataset is 0.5% to 10% to achieve an attack success rate of 95% or more Li
et al. (2020a); Zhong et al. (2020); Li et al. (2021); Wang et al. (2021). Some efforts Zhao et al.
(2020); Zhong et al. (2020); Xia et al. (2022a); Zeng et al. (2022) attempt to improve the poisoning
efficiency and can be divided into two categories.

Optimizable Triggers. How to design an efficient trigger that is easier for DNNs to learn? The
existing studies Zhao et al. (2020); Zhong et al. (2020); Zeng et al. (2022) address this issue in terms
of the relationship between Universal Adversarial Perturbations (UAPs) Moosavi-Dezfooli et al.
(2017) and backdoor triggers, which are highly correlated Pang et al. (2020). On the one hand, a
UAP is an inherent flaw in a clean model and can be considered as a natural trigger. On the other
hand, when the Trojan injection is complete, the backdoor trigger is actually an attacker-defined
UAP for that infected model. Therefore, optimizing a UAP on a pre-trained clean model as the
trigger to construct poisoned samples is an effective practice to improve the poisoning efficiency.

Important Sample Selection. Xia et al. (2022a) improved the poisoning efficiency by focusing on
the selection step. They characterized the learning difficulty of each poisoned sample by recording
the number of times it was forgotten during the backdoor injection. In general, poisoned samples
with higher forgetting counts are the ones that should be more concerned and contribute more to
the backdoor injection. The authors Xia et al. (2022a) confirmed this through data removal and
proposed a Filtering-and-Updating Strategy (FUS) to find these high-contribution samples.

2.3 THREAT MODEL

Our threat model considers the situation where a user needs to train a DNN model on data scraped
from the Internet or provided by a third party. This model is becoming increasingly common as the

3

0.02 0.05 0.1 0.5 0.2 1.0

Poisoning Ratio r (%)

0.0

0.5

0.9
1.0

A
tt

ac
k

S
u

cc
es

s
R

a
te

Blended

RT

OT

OT + FUS

ETI (Ours)

(a) CIFAR-10, V-13

0.02 0.05 0.1 0.5 0.2 1.0

Poisoning Ratio r (%)

0.0

0.5

0.9
1.0

A
tt

ac
k

S
u

cc
es

s
R

a
te

Blended

RT

OT

OT + FUS

ETI (Ours)

(b) CIFAR-10, V-16

0.02 0.05 0.1 0.5 0.2 1.0

Poisoning Ratio r (%)

0.0

0.5

0.9
1.0

A
tt

ac
k

S
u

cc
es

s
R

a
te

Blended

RT

OT

OT + FUS

ETI (Ours)

(c) CIFAR-10, P-18

0.02 0.05 0.1 0.5 0.2 1.0

Poisoning Ratio r (%)

0.0

0.5

0.9
1.0

A
tt

ac
k

S
u

cc
es

s
R

a
te

Blended

RT

OT

OT + FUS

ETI (Ours)

(d) CIFAR-10, R-18

0.02 0.05 0.1 0.5 0.2 1.0

Poisoning Ratio r (%)

0.0

0.5

0.9
1.0

A
tt

ac
k

S
u

cc
es

s
R

a
te

Blended

RT

OT

OT + FUS

ETI (Ours)

(e) CIFAR-100, V-13

0.02 0.05 0.1 0.5 0.2 1.0

Poisoning Ratio r (%)

0.0

0.5

0.9
1.0

A
tt

ac
k

S
u

cc
es

s
R

a
te

Blended

RT

OT

OT + FUS

ETI (Ours)

(f) CIFAR-100, V-16

0.02 0.05 0.1 0.5 0.2 1.0

Poisoning Ratio r (%)

0.0

0.5

0.9
1.0

A
tt

ac
k

S
u

cc
es

s
R

a
te

Blended

RT

OT

OT + FUS

ETI (Ours)

(g) CIFAR-100, P-18

0.02 0.05 0.1 0.5 0.2 1.0

Poisoning Ratio r (%)

0.0

0.5

0.9
1.0

A
tt

ac
k

S
u

cc
es

s
R

a
te

Blended

RT

OT

OT + FUS

ETI (Ours)

(h) CIFAR-100, R-18

Figure 2: Attack success rates on CIFAR-10 and CIFAR-100, where RT, OT, FUS, and ETI denote
Random Trigger, Optimized Trigger, Filtering-and-Updating Strategy, and Efficient Trojan Injec-
tion, respectively. Blended Chen et al. (2017) is a common backdoor attack method as a comparison.
All curves (except ETI) are averaged over 10 independent runs.

demand for data grows Goldblum et al. (2022). Therefore, we assume that the attacker only has
control over the training set: which samples are poisoned and how; he or she has no knowledge of
the network architecture and hyperparameters employed by the user.

2.4 EXPERIMENTAL SETUP

We try to construct efficient poisoned samples for CIFAR-10 and CIFAR-100 Krizhevsky & Hinton
(2009) and specify the attack target t as category 0. Our work is organized into two parts. In the
part introducing ETI, to verify its effectiveness, we use VGG-13 (V-13) Simonyan & Zisserman
(2014), VGG-16 (V-16) Simonyan & Zisserman (2014), PreActResNet-18 (P-18) He et al. (2016b),
and ResNet-18 (R-18) He et al. (2016a) as the DNN architectures and Adam Kingma & Ba (2014)
as the optimizer to train the infected models. The total training duration is set to 70, and the batch
size is set to 512. The learning rate is initially set to 0.001 and is dropped by 10 after 40 and 60
epochs. It is important to note that since ETI also involves training deep models when generating
poisoned samples, here we assume that the attacker can only use V-13.

In the second part, we build two backdoored datasets using ETI, namely CIFAR-10-B0-20 and
CIFAR-100-B0-30, where only 0.04% (20/50,000) and 0.06% (30/50,000) of the training samples
are polluted. To match the threat model, we simulate the user’s usage scenario by training the
infected models with 10 DNN architectures, 3 optimizers, 4 batch sizes, and 4 initial learning rates.
The specific settings can be found in Appendix A. In total, we train 240 models on each dataset to
test its attack performance. All experiments are implemented with PyTorch Paszke et al. (2017) and
run on an NVIDIA Tesla V100 GPU.

3 EFFICIENT TROJAN INJECTION

We now introduce ETI in terms of trigger design, important sample selection, and the exploitation
of individual consistency.

3.1 OPTIMIZING AN EFFICIENT TRIGGER

A backdoor attack is the process of crafting a loophole for a deep model that causes it to malfunc-
tion. The very first step is to create a suitable trigger, either fixed or optimized, which shows great

4

Table 1: Poisoning ratios r (%) needed to achieve
90% attack success rates on CIFAR-10 using op-
timized triggers generated with or without image
transformations T (·).

V-13 V-16 P-18 R-18

w/ trans. 0.104 0.126 0.105 0.075
w/o trans. 0.125 0.134 0.119 0.104

diff. 0.021 0.012 0.014 0.029

0 20 40 60

Number of Iterations

0.0

0.5

1.0

A
tt

ac
k

S
u

cc
es

s
R

at
e

RT

OT

Figure 3: Attack success rate curves using RT and
OT on CIFAR-10 and V-13.

importance, especially for poisoning-based backdoor attack methods. But one question arises, what
kind of triggers are the most effective?

As mentioned in Section 1, in this study, we mainly focus on reducing the number of poisoned sam-
ples in the released training set without compromising the effectiveness of the attack. Conceivably,
our ultimate goal is to achieve a so-called zero-shot backdoor attack, i.e., not poisoning any data
during the training phase, but still having a stable and effective trigger. Previous studies Szegedy
et al. (2013); Goodfellow et al. (2014); Moosavi-Dezfooli et al. (2017); Hu et al. (2022) have demon-
strated that deep models are naturally flawed, so the most intuitive way to implement zero-sample
backdoor attacks is to find triggers that can activate these inherent flaws. However, the major prob-
lem is that these flaws usually do not qualify as reliable model backdoors, manifested in two ways.
On the one hand, the best attack success rate that can be achieved falls far short of what we expected.
On the other hand, finding an identical defect that can be perfectly applied to all models is difficult.
Therefore, it is still very hard to achieve zero-shot backdoor attacks at this moment.

We turn to pursue backdoor attacks with few samples. The discussion above gives a hint: perhaps
we can strengthen and consolidate an existing flaw with a small number of poisoned samples to
make it eligible as a backdoor, rather than injecting a new one from scratch. Guided by this idea,
our attack can be divided into two parts: (1) optimizing a trigger that can activate an inherent flaw in
the model, and (2) using this trigger to construct poisoned samples to strengthen the existing flaw.
Finding the trigger can be formulated as:

minimize
C(t)≤ε

∑
(x,y)∈Db

L(fθ(T (F (x, t))), y
′), (1)

where fθ denotes a trained benign model and L(·) denotes the loss function. C(·) generally indicates
a kind of constraint, while ε defines the upper limit value of C(t). For example, if C(·) represents
the area of t, the formulation will be reduced to a local pattern-based trigger design. Meanwhile, if
C(·) is a norm constraint type, the trigger will cover the whole image, and ε will restrict the pixel
changes to ensure the invisibility to some extent. We consider the second case in this study where
C(t) := ‖v‖∞, F (x, t) := x+ t, and ε = 8/255.

T (·) is a series of transformations performed on the input image, including random cropping and
random flipping. We include the transformations to improve the generalization of the optimized trig-
ger, and the same approach has been shown to be effective in adversarial examples Xie et al. (2019).
Table 1 shows the poisoning ratios over 4 different models when achieving 90% attack success
rates on CIFAR-10. It can be seen that using triggers generated with transformations requires fewer
poisoned samples to reach the same attack strength than using triggers generated without transfor-
mations. The ratio is even less than 0.1% on R-18. These results indicate that image transformations
help improve the trigger’s deformation robustness, thus enhancing its generalization.

Now let us go back to Equation 1. We solve this optimization using the projected gradient descent
with the l∞-norm constraint Madry et al. (2017), which updates the trigger t along the direction of
the gradient sign for multiple iterations. The detailed algorithm is given in Appendix B.

To verify the effectiveness of the triggers devised from the above technique, we implant backdoors
on 4 DNN models with different poisoning ratios on CIFAR-10 and CIFAR-100, and the attack
success rates are shown in Figure 2. As a comparison, we also test the attack performance when

5

using Randomly generated perturbations as Triggers (RT) under the same constraint, i.e., l∞-norm
and ε = 8/255. It can be seen that the poisoning ratio required for the Optimized Trigger (OT)
is much lower than that of RT for obtaining the same attack strength. Concretely, when the attack
success rate reaches 90%, we need to poison 0.103% and 0.178% using OT on CIFAR-10 and
CIFAR-100, respectively, whereas 0.603% and 0.761% are required regarding RT.

In addition, we plot the learning curves of injection on CIFAR-10 using RT and OT at different
poisoning ratios, as shown in Figure 3. Note that the number of poisoned samples ranges from 20
to 180 for OT and from 100 to 900 for RT, respectively. The green and blue lines highlighted are
the results of 80 and 300. As can be seen, in spite of the similar final values after convergence,
the learning processes are completely distinct. Specifically, neural networks manage to learn the
features of OT at the beginning of the training, but gradually gain information of RT only after
several epochs. This observation explains to some extent why OT is more efficient: strengthening
the inherent flaw and learning the decision of the original task overlap considerably in direction.

3.2 SELECTING IMPORTANT SAMPLES

After optimizing an efficient trigger, picking which benign samples to poison is also an essential
step. In almost all previous work, the samples to be poisoned are chosen randomly, based on the
assumption that each adversary contributes equally to the backdoor injection. But that is not how it
works. In regular classification tasks, several studies Katharopoulos & Fleuret (2018); Toneva et al.
(2018) have shown that some hard or forgettable samples are more important for forming the deci-
sions of DNNs. Recently, Xia et al. (2022a) suggested that forgettable poisoned samples – whose
predictions are prone to change during the training cycle – are more significant than unforgettable
ones with regard to the poisoning efficiency. We agree with their conclusion and apply the algorithm
named FUS proposed in that paper to further satisfy our need for a smaller amount of poisoned data.
The detailed algorithm of FUS is given in Appendix C.

0.02 0.06 0.10 0.14 0.18

Poisoning Ratio r (%)

0

5

10

15

N
u

m
b

er
o
f

It
er

a
ti

on
s

0.00

0.05

0.10

0.15

D
iff

er
en

ce

Figure 4: Experimental results of FUS on CIFAR-
10 at very small poisoning ratios. We set the total
number of iterations of the algorithm to 15. The
blue line is the number of iterations to achieve the
best attack, and the green line is the difference be-
tween the best attack success rate and the last at-
tack success rate achieved.

The main idea of FUS is to find poisoned sam-
ples with large forgetting events by filtering and
updating the sample pool. This process is usu-
ally iterated 10 to 15 times, and the last in-
dex of selected samples is saved. The specific
algorithm can be found in Xia et al. (2022a).
Through simple experiments, we find that this
algorithm is indeed effective in promoting sam-
ple efficiency. However, randomness becomes
influential on the FUS outcome when the poi-
soning ratio plummets to a fairly small amount,
such as only a few tens of poisoned samples
(less than 0.1%). We conduct a validation ex-
periment to describe this impact, and the results
are shown in Figure 4. The blue dots repre-
sent the average number of iterations when the
best backdoor attack accuracy occurs, and the
green dots provide the average difference be-
tween the best and last attack success rates. We
can see that if the poisoning ratio is set to 0.02%
(merely 10 samples), the best result is obtained
at around the 5th iteration, and the difference is very large. But as the ratio increases, the difference
gradually decreases to 0, which means that the last result is almost equal to the best result.

Based on the above observation, we make a simple improvement to the original FUS algorithm for
small size of poisoned samples, that is, to save the best instead of the last sample index result. Next,
we combine FUS with Optimized Trigger (OT) generated in Section 3.1 to obtain the corresponding
curves in Figure 2. It is apparent that the poisoning ratios required to reach 90% attack success
rates decrease further, with the exact numbers dropping to 0.058% and 0.093% on CIFAR-10 and
CIFAR-100, respectively.

6

Table 2: Poisoning ratios r (%) needed to achieve 90% attack success rates for the poisoned sample
sets generated from 10 independent runs using OT + FUS

0 1 2 3 4 5 6 7 8 9

V-13 0.069 0.058 0.053 0.042 0.054 0.069 0.067 0.047 0.053 0.058
V-16 0.074 0.075 0.056 0.034 0.047 0.068 0.072 0.041 0.068 0.068
P-18 0.070 0.082 0.057 0.047 0.070 0.073 0.069 0.047 0.065 0.056
R-18 0.058 0.059 0.050 0.020 0.039 0.045 0.053 0.039 0.032 0.054

Mean 0.068 0.069 0.054 0.036 0.053 0.064 0.065 0.044 0.055 0.059

3.3 UTILIZING THE INDIVIDUAL CONSISTENCY

In the first two parts, we design optimized triggers that exploit the natural flaws of deep models, as
well as select tens of samples that contribute more to the backdoor injection process. Since these
techniques involve randomness, e.g., the initial sample pool in FUS is randomly sampled, the results
above are the average of 10 independent runs. Statistical analysis is beneficial when comparing
different approaches; however, when practically injecting a Trojan, we usually need to focus on a
specific individual. Our concern in this section is to analyze the differences between individuals.

0.5 1.0 1.5

Poisoning Ratio r (%)

0.0

0.5

0.9
1.0

A
tt

a
ck

S
u

cc
es

s
R

a
te

0

1

2

3

4

5

6

7

8

9

(a) RT, V-13

0.5 1.0 1.5

Poisoning Ratio r (%)

0.0

0.5

0.9
1.0

A
tt

a
ck

S
u

cc
es

s
R

a
te

0

1

2

3

4

5

6

7

8

9

(b) RT, V-16

0.5 1.0 1.5

Poisoning Ratio r (%)

0.0

0.5

0.9
1.0

A
tt

a
ck

S
u

cc
es

s
R

a
te

0

1

2

3

4

5

6

7

8

9

(c) RT, P-18

0.5 1.0 1.5

Poisoning Ratio r (%)

0.0

0.5

0.9
1.0

A
tt

a
ck

S
u

cc
es

s
R

a
te

0

1

2

3

4

5

6

7

8

9

(d) RT, R-18

0.05 0.10 0.15

Poisoning Ratio r (%)

0.0

0.5

0.9
1.0

A
tt

a
ck

S
u

cc
es

s
R

a
te

0

1

2

3

4

5

6

7

8

9

(e) OT + FUS, V-13

0.05 0.10 0.15

Poisoning Ratio r (%)

0.0

0.5

0.9
1.0

A
tt

a
ck

S
u

cc
es

s
R

a
te

0

1

2

3

4

5

6

7

8

9

(f) OT + FUS, V-16

0.05 0.10 0.15

Poisoning Ratio r (%)

0.0

0.5

0.9
1.0

A
tt

a
ck

S
u

cc
es

s
R

a
te

0

1

2

3

4

5

6

7

8

9

(g) OT + FUS, P-18

0.05 0.10 0.15

Poisoning Ratio r (%)

0.0

0.5

0.9
1.0

A
tt

a
ck

S
u

cc
es

s
R

a
te

0

1

2

3

4

5

6

7

8

9

(h) OT + FUS, R-18

Figure 5: Attack success rates for the poisoned sample sets generated from 10 independent runs
using RT and OT + FUS on CIFAR-10.

Some experiments are conducted to observe the performance of individuals. First, we define the
poisoned sample setDp created by OT and FUS as an individual. Next, we run these two techniques
independently 10 times to obtain D0

p, D1
p, · · · , D9

p. Last, we use these 10 individuals for poisoning
and train 4 models to evaluate their attack performance. The corresponding results on CIFAR-10 are
shown in Figure 5 and Table 2. As a comparison, we do the same experiments with RT and RSS.
The results on CIFAR-100 are similar and can be seen in Appendix D.

From the above figures, the existence of individual differences can be demonstrated. We can ob-
serve that with the same number of poisoned data, the attack success rates are reported differently
for different runs, even by a factor of several if the poisoning ratio is minor. Despite this common
feature, we identify a unique characteristic only for OT, namely that the performance of these in-
dividuals exhibits a great consistency across models. For example, in the OT results in Figure 5,
the red line (run 3) is always on the top, while the blue line (run 0) performs the worst all the time.
Other lines, such as green and pink, basically show moderate performance. However, we can not
find such correlations from the RT results.

7

Besides, to quantify this individual consistency, we perform Pearson correlation analysis of the 4
models on both RT and OT + FUS, and the p-value matrices and correlation coefficient matrices are
shown in Figure 6. For OT + FUS, almost all p-values are below 0.05, and the correlation coefficients
are above 0.7, revealing that there are significant and positive correlations between the models. In
contrast, for RT, the p-values become fairly large, and the coefficients decline to about 0.15 or even
turn negative.

V
-1

3
V
-1

6
P-1

8
R
-1

8

V-13

V-16

P-18

R-18

0.000 0.495 0.665 0.605

0.495 0.000 0.688 0.180

0.665 0.688 0.000 0.633

0.605 0.180 0.633 0.000

p-value Matrix

V
-1

3
V
-1

6
P-1

8
R
-1

8

V-13

V-16

P-18

R-18

1.000 -0.245 0.157 -0.187

-0.245 1.000 0.146 -0.461

0.157 0.146 1.000 -0.173

-0.187 -0.461 -0.173 1.000

Correlation Coefficient Matrix

(a) RT

V
-1

3
V
-1

6
P-1

8
R
-1

8

V-13

V-16

P-18

R-18

0.000 0.002 0.022 0.017

0.002 0.000 0.014 0.009

0.022 0.014 0.000 0.074

0.017 0.009 0.074 0.000

p-value Matrix

V
-1

3
V
-1

6
P-1

8
R
-1

8

V-13

V-16

P-18

R-18

1.000 0.838 0.710 0.729

0.838 1.000 0.744 0.772

0.710 0.744 1.000 0.588

0.729 0.772 0.588 1.000

Correlation Coefficient Matrix

(b) OT + FUS

Figure 6: Pearson correlation analysis on both RT and OT + FUS on CIFAR-10.

Overall, these results collectively provide an important insight to the individual consistency of OT +
FUS, i.e., if an individual performs well on one model, it is more likely to achieve high accuracy on
others. As shown in the corresponding lines (ETI) in Figure 2, we use this characteristic to select an
individual with the best performance and further reduce the poisoning ratios to 0.036% and 0.035%
on CIFAR-10 and CIFAR-100, respectively.

4 CIFAR-10-B0-20 AND CIFAR-100-B0-30

In this section, we use ETI to build two datasets named CIFAR-10-B0-20 and CIFAR-100-B0-30,
corresponding to the backdoored versions of CIFAR-10 and CIFAR-100, respectively. In the names,
“B” represents “Backdoor”, “0” represents that the attack target y′ is set to category 0, and “20”
or “30” represent the number of poisoned samples. The poisoned images in CIFAR-10-B0-20 are
shown in Figure 7. As we can see, these images maintain a large visual similarity to the original
ones. In the same way, we list the poisoning images in CIFAR-100-B0-30, see Appendix D.

We test the attack performance of CIFAR-10-B0-20 on 240 models with different network struc-
tures and training hyperparameters, recorded in Table 3. The average attack success rate that can
be achieved using 20 poisoned samples on CIFAR-10 is 92.1%. 78 out of 240 models are greater
than 95%, and 198 out of 240 models are greater than 90%. However, the poisoning is not always
successful either. For example, 10 out of 240 models are less than 80%, accounting for approxi-
mately 4.2%. We even got a 25.8% attack success rate in row 19, column 1, where ResNet-50, SGD
optimizer, initial learning rate 0.03 and batch size 512 are used. Similarly, as to CIFAR-100-B0-30,
we achieve an average backdoor accuracy of 90.4%. 201 out of 240 models are greater than 90%,
yet 27 out of 240 are less than 80%. The detailed results are shown in Appendix E.

We also constructed CIFAR-10-B0-30 and CIFAR-100-B0-40, with 10 more poisoned samples, and
the results can be seen in Appendix F. In these cases, we achieve an average attack success rate of
95.2% and 95.1%, respectively, where only 4 and 13 out of 240 models are less than 80%.

Taken together, these results above indicate that it is practical to achieve a high success rate by
contaminating only a few tens of samples out of 50,000 clean data, without access to the structure
and hyperparameters of the model used by the user.

5 CONCLUSION AND FUTURE WORK

Our study illustrates that there is still great potential for data-efficient backdoor attacks. We achieve
over 90% attack success rates on CIFAR-10 and CIFAR-100 with just 0.04% and 0.06% poisoned

8

00617, 1 01288, 2 03737, 9 05718, 6 07265, 6 08872, 6 15416, 8 17331, 1 18423, 9 22158, 5

26173, 5 26450, 1 31916, 4 32643, 4 37793, 9 37941, 2 39452, 6 41327, 6 43317, 1 48486, 7

Figure 7: Poisoned samples in CIFAR-10-B0-20. The two numbers above each image represent its
sequential position in the training set and its original label, respectively.

Table 3: Attack success rates of models trained on CIFAR-10-B0-20. The horizontal numbers repre-
sent the numbering of different DNN architectures and the vertical numbers represent the numbering
of different training hyperparameters. See Appendix A for the specific meaning of each number.

0 1 2 3 4 5 6 7 8 9

0 0.959 0.972 0.965 0.982 0.981 0.951 0.937 0.908 0.974 0.934
1 0.971 0.973 0.961 0.984 0.974 0.973 0.951 0.936 0.965 0.931
2 0.952 0.907 0.924 0.886 0.939 0.877 0.949 0.950 0.950 0.922
3 0.958 0.772 0.900 0.927 0.885 0.898 0.928 0.890 0.953 0.875
4 0.938 0.948 0.945 0.960 0.965 0.979 0.928 0.928 0.956 0.938
5 0.968 0.931 0.888 0.955 0.969 0.968 0.944 0.905 0.949 0.928
6 0.944 0.949 0.930 0.969 0.966 0.969 0.954 0.918 0.950 0.941
7 0.971 0.968 0.959 0.976 0.964 0.964 0.945 0.902 0.966 0.935
8 0.960 0.932 0.906 0.955 0.969 0.952 0.959 0.929 0.953 0.911
9 0.952 0.912 0.884 0.914 0.939 0.923 0.917 0.937 0.946 0.954

10 0.930 0.948 0.886 0.940 0.972 0.968 0.903 0.908 0.941 0.856
11 0.926 0.944 0.796 0.939 0.942 0.948 0.913 0.928 0.961 0.897
12 0.918 0.949 0.800 0.961 0.937 0.962 0.898 0.924 0.956 0.949
13 0.949 0.967 0.611 0.968 0.960 0.969 0.929 0.926 0.956 0.934
14 0.952 0.951 0.926 0.945 0.977 0.964 0.952 0.934 0.940 0.910
15 0.935 0.959 0.852 0.946 0.931 0.946 0.946 0.944 0.947 0.922
16 0.943 0.966 0.843 0.963 0.934 0.947 0.817 0.863 0.930 0.865
17 0.938 0.953 0.754 0.949 0.916 0.947 0.908 0.937 0.929 0.922
18 0.818 0.827 0.569 0.895 0.926 0.926 0.918 0.870 0.910 0.840
19 0.930 0.258 0.578 0.876 0.948 0.953 0.856 0.899 0.944 0.924
20 0.960 0.934 0.904 0.945 0.962 0.973 0.925 0.919 0.938 0.860
21 0.936 0.956 0.904 0.964 0.965 0.920 0.938 0.928 0.955 0.923
22 0.934 0.938 0.884 0.932 0.921 0.958 0.792 0.875 0.916 0.640
23 0.934 0.954 0.588 0.946 0.876 0.972 0.925 0.915 0.937 0.893

Mean: 0.921, STD: 0.074

samples through efficient trigger design, important sample selection, and the exploitation of individ-
ual consistency. It is a considerable improvement compared to previous work.

Much work remains to be explored in the future. The first is the pursuit of more extreme sample
volumes. Is it possible to complete a backdoor attack with a few samples, or even one sample?
Second, our experimental results show lower attack success rates under some training conditions.
Why do these situations occur? How to enhance the generalization of the poisoned samples? Third,
We focus on the most basic image classification tasks, what form should efficient poisoned samples
take for other tasks? And so on.

REFERENCES

Mauro Barni, Kassem Kallas, and Benedetta Tondi. A new backdoor attack in cnns by training set
corruption without label poisoning. In 2019 IEEE International Conference on Image Processing

9

(ICIP), pp. 101–105. IEEE, 2019.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Nicholas Carlini and Andreas Terzis. Poisoning and backdooring contrastive learning. arXiv preprint
arXiv:2106.09667, 2021.

Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on deep
learning systems using data poisoning. arXiv preprint arXiv:1712.05526, 2017.

Micah Goldblum, Dimitris Tsipras, Chulin Xie, Xinyun Chen, Avi Schwarzschild, Dawn Song,
Aleksander Madry, Bo Li, and Tom Goldstein. Dataset security for machine learning: Data
poisoning, backdoor attacks, and defenses. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2022.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in the
machine learning model supply chain. arXiv preprint arXiv:1708.06733, 2017.

Hasan Abed Al Kader Hammoud and Bernard Ghanem. Check your other door! establishing back-
door attacks in the frequency domain. arXiv preprint arXiv:2109.05507, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European conference on computer vision, pp. 630–645. Springer, 2016b.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 7132–7141, 2018.

Zichao Hu, Heng Li, Liheng Yuan, Zhang Cheng, Wei Yuan, and Ming Zhu. Model scheduling
and sample selection for ensemble adversarial example attacks. Pattern Recognition, pp. 108824,
2022.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Angelos Katharopoulos and François Fleuret. Not all samples are created equal: Deep learning with
importance sampling. In International conference on machine learning, pp. 2525–2534. PMLR,
2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International conference on machine learning, pp. 1885–1894. PMLR, 2017.

A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Master’s
thesis, Department of Computer Science, University of Toronto, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep con-
volutional neural networks. Advances in neural information processing systems, 25:1097–1105,
2012.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

10

Shaofeng Li, Minhui Xue, Benjamin Zi Hao Zhao, Haojin Zhu, and Xinpeng Zhang. Invisible back-
door attacks on deep neural networks via steganography and regularization. IEEE Transactions
on Dependable and Secure Computing, 18(5):2088–2105, 2020a.

Yiming Li, Baoyuan Wu, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. Backdoor learning: A survey.
arXiv preprint arXiv:2007.08745, 2020b.

Yuezun Li, Yiming Li, Baoyuan Wu, Longkang Li, Ran He, and Siwei Lyu. Invisible backdoor
attack with sample-specific triggers. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 16463–16472, 2021.

Ziqiang Li, Xintian Wu, Beihao Xia, Jing Zhang, Chaoyue Wang, and Bin Li. A comprehensive
survey on data-efficient gans in image generation. arXiv preprint arXiv:2204.08329, 2022.

Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and Xiangyu
Zhang. Trojaning attack on neural networks. 2017.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Universal
adversarial perturbations. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1765–1773, 2017.

Anh Nguyen and Anh Tran. Wanet–imperceptible warping-based backdoor attack. arXiv preprint
arXiv:2102.10369, 2021.

Ren Pang, Hua Shen, Xinyang Zhang, Shouling Ji, Yevgeniy Vorobeychik, Xiapu Luo, Alex Liu,
and Ting Wang. A tale of evil twins: Adversarial inputs versus poisoned models. In Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications Security, pp. 85–99,
2020.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. Designing
network design spaces. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 10428–10436, 2020.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks: Vi-
sualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034, 2013.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural net-
works. In International conference on machine learning, pp. 6105–6114. PMLR, 2019.

Te Juin Lester Tan and Reza Shokri. Bypassing backdoor detection algorithms in deep learning. In
2020 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 175–183. IEEE, 2020.

11

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio,
and Geoffrey J Gordon. An empirical study of example forgetting during deep neural network
learning. arXiv preprint arXiv:1812.05159, 2018.

Alexander Turner, Dimitris Tsipras, and Aleksander Madry. Label-consistent backdoor attacks.
arXiv preprint arXiv:1912.02771, 2019.

Tong Wang, Yuan Yao, Feng Xu, Shengwei An, and Ting Wang. Backdoor attack through frequency
domain. arXiv preprint arXiv:2111.10991, 2021.

Pengfei Xia, Ziqiang Li, Wei Zhang, and Bin Li. Data-efficient backdoor attacks. In Proceedings
of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22, pp. 3992–
3998, 2022a.

Pengfei Xia, Hongjing Niu, Ziqiang Li, and Bin Li. Enhancing backdoor attacks with multi-level
mmd regularization. IEEE Transactions on Dependable and Secure Computing, 2022b.

Cihang Xie, Zhishuai Zhang, Yuyin Zhou, Song Bai, Jianyu Wang, Zhou Ren, and Alan L Yuille.
Improving transferability of adversarial examples with input diversity. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2730–2739, 2019.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual trans-
formations for deep neural networks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 1492–1500, 2017.

Yi Zeng, Minzhou Pan, Hoang Anh Just, Lingjuan Lyu, Meikang Qiu, and Ruoxi Jia. Narcissus: A
practical clean-label backdoor attack with limited information. arXiv preprint arXiv:2204.05255,
2022.

Shihao Zhao, Xingjun Ma, Xiang Zheng, James Bailey, Jingjing Chen, and Yu-Gang Jiang. Clean-
label backdoor attacks on video recognition models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 14443–14452, 2020.

Haoti Zhong, Cong Liao, Anna Cinzia Squicciarini, Sencun Zhu, and David Miller. Backdoor
embedding in convolutional neural network models via invisible perturbation. In Proceedings of
the Tenth ACM Conference on Data and Application Security and Privacy, pp. 97–108, 2020.

12

A DNN ARCHITECTURES AND TRAINING HYPERPARAMETERS

10 DNN architectures and 24 training hyperparameters that we use in testing the poisoning perfor-
mance of CIFAR-10-B0-20 and CIFAR-100-B0-30 are shown in Table 4 and Table 5. It should be
noted that the attacker builds these datasets using only VGG-13.

Table 4: 10 DNN Architectures.

No. Model Name No. Model Name

0 ResNet-34 He et al. (2016a) 1 ResNet-50 He et al. (2016a)
2 PreActResNet-34He et al. (2016b) 3 PreActResNet-50 He et al. (2016b)
4 SENet-18 Hu et al. (2018) 5 ResNeXt-29 (2x64d) Xie et al. (2017)
6 RegNetX-200MF Radosavovic et al. (2020) 7 MobileNetV2 Sandler et al. (2018)
8 DenseNet-121 Huang et al. (2017) 9 EfficientNet-B0 Tan & Le (2019)

Table 5: 24 training hyperparameters. OPT: Optimizer. ILR: Initial Learning Rate. BS: Batch Size.

No. OPT ILR BS No. OPT ILR BS

0 SGD 0.02 64 12 SGD 0.02 256
1 SGD 0.03 64 13 SGD 0.03 256
2 Adam 0.001 64 14 Adam 0.001 256
3 Adam 0.002 64 15 Adam 0.002 256
4 AdamW 0.001 64 16 AdamW 0.001 256
5 AdamW 0.002 64 17 AdamW 0.002 256
6 SGD 0.02 128 18 SGD 0.02 512
7 SGD 0.03 128 19 SGD 0.03 512
8 Adam 0.001 128 20 Adam 0.001 512
9 Adam 0.002 128 21 Adam 0.002 512
10 AdamW 0.001 128 22 AdamW 0.001 512
11 AdamW 0.002 128 23 AdamW 0.002 512

13

B OPTIMIZED TRIGGER GENERATION ALGORITHM

The optimized trigger generation algorithm is shown in Algorithm 1. In this study, we set Not =
300.

Algorithm 1: Optimized Trigger Generation Algorithm
Input: Number of iterations Not; Benign training dataset Db; Attack target y′; Fusion fuction

F ; Input transformation T ; Clean pretrained model fθ; Trigger constraint C; Bound
value ε; Step size α

Output: Optimized trigger t
Sample random initial value t ∼ U(−1, 1), with C(t) ≤ ε;
for n← 1 to Not do

for X ∈ Db do
η = sign(∇L(fθ(T (F (X, t))), y′);
t = t− α · η, with C(t) ≤ ε;

end
end

14

C FILTERING-AND-UPDATING STRATEGY

The procedure of FUS is shown in Algorithm 2. In this study, we set Nfus = 15 and α = 0.2.

Algorithm 2: Filtering-and-Updating Strategy
Input: Number of iterations Nfus; Benign training dataset Db; Attack target y′; Fusion fuction

F ; Backdoor trigger t; Poisoning ratio r; Filtration ratio α
Output: Constructed poisoned training set Dp
Initialize the sample pool D′s by randomly sampling r · |D| samples from Db;
for n← 1 to Nfus do

Filtering step:
Build the corresponding poisoned set D′p = {(F (x, t), y′)|(x, y) ∈ D′s};
Train an infected model fθ from scratch on Dm = (Db \ D′s) ∪ D′p, and record the
forgetting events for each sample in D′p;

Filter out α · r · |D| samples in D′s according to the order of corresponding forgetting
events from small to large in D′p;

Updating step:
Update D′s by randomly sampling α · r · |D| samples from Db and adding to the sample
pool;

end
Return the constructed poisoned sample set Dp = {(F (x, t), y′)|(x, y) ∈ D′s}

15

D INDIVIDUAL DIFFERENCES AND CONSISTENCY ANALYSIS ON
CIFAR-100

We similarly perform the individual differences and consistency analysis on CIFAR-100. The re-
sults of 10 runs on CIFAR-100 are shown in Figure 8 and Table 6. We perform Pearson correlation
analysis of the 4 models on both RT and OT + FUS, and the p-value matrices and correlation coeffi-
cient matrices are shown in Figure 9. For OT + FUS, all p-values are below 0.05, and the correlation
coefficients are above 0.88, revealing that there are significant and positive correlations between the
models. In contrast, for RT, the p-values become fairly large, and the coefficients decline to about 0
or even turn negative.

0.5 1.0 1.5

Poisoning Ratio r (%)

0.0

0.5

0.9
1.0

A
tt

ac
k

S
u

cc
es

s
R

a
te

0

1

2

3

4

5

6

7

8

9

(a) RT, V-13

0.5 1.0 1.5

Poisoning Ratio r (%)

0.0

0.5

0.9
1.0

A
tt

ac
k

S
u

cc
es

s
R

a
te

0

1

2

3

4

5

6

7

8

9

(b) RT, V-16

0.5 1.0 1.5

Poisoning Ratio r (%)

0.0

0.5

0.9
1.0

A
tt

ac
k

S
u

cc
es

s
R

a
te

0

1

2

3

4

5

6

7

8

9

(c) RT, P-18

0.5 1.0 1.5

Poisoning Ratio r (%)

0.0

0.5

0.9
1.0

A
tt

ac
k

S
u

cc
es

s
R

a
te

0

1

2

3

4

5

6

7

8

9

(d) RT, R-18

0.05 0.10 0.15

Poisoning Ratio r (%)

0.0

0.5

0.9
1.0

A
tt

a
ck

S
u

cc
es

s
R

a
te

0

1

2

3

4

5

6

7

8

9

(e) OT + FUS, V-13

0.05 0.10 0.15

Poisoning Ratio r (%)

0.0

0.5

0.9
1.0

A
tt

a
ck

S
u

cc
es

s
R

a
te

0

1

2

3

4

5

6

7

8

9

(f) OT + FUS, V-16

0.05 0.10 0.15

Poisoning Ratio r (%)

0.0

0.5

0.9
1.0

A
tt

a
ck

S
u

cc
es

s
R

a
te

0

1

2

3

4

5

6

7

8

9

(g) OT + FUS, P-18

0.05 0.10 0.15

Poisoning Ratio r (%)

0.0

0.5

0.9
1.0

A
tt

a
ck

S
u

cc
es

s
R

a
te

0

1

2

3

4

5

6

7

8

9

(h) OT + FUS, R-18

Figure 8: Attack success rates for the poisoned sample sets generated from 10 independent runs
using RT and OT + FUS on CIFAR-100.

Table 6: Poisoning ratios r (%) needed to achieve 90% attack success rates for the poisoned sample
sets generated from 10 independent runs using OT + FUS on CIFAR-100.

0 1 2 3 4 5 6 7 8 9

V-13 0.084 0.118 0.102 0.128 0.034 0.079 0.038 0.063 0.075 0.097
V-16 0.072 0.131 0.155 0.180 0.033 0.113 0.020 0.107 0.087 0.174
P-18 0.078 0.146 0.137 0.159 0.052 0.114 0.052 0.061 0.077 0.133
R-18 0.052 0.087 0.090 0.110 0.022 0.093 0.034 0.056 0.072 0.092

Mean 0.072 0.121 0.121 0.144 0.035 0.100 0.036 0.072 0.078 0.124

16

V
-1

3
V
-1

6
P-1

8
R
-1

8

V-13

V-16

P-18

R-18

0.000 0.081 0.399 0.689

0.081 0.000 0.860 0.856

0.399 0.860 0.000 0.187

0.689 0.856 0.187 0.000

p-value Matrix

V
-1

3
V
-1

6
P-1

8
R
-1

8

V-13

V-16

P-18

R-18

1.000 0.577 -0.300 -0.145

0.577 1.000 0.064 -0.066

-0.300 0.064 1.000 0.454

-0.145 -0.066 0.454 1.000

Correlation Coefficient Matrix

(a) RT

V
-1

3
V
-1

6
P-1

8
R
-1

8

V-13

V-16

P-18

R-18

0.000 0.001 0.000 0.000

0.001 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

p-value Matrix

V
-1

3
V
-1

6
P-1

8
R
-1

8

V-13

V-16

P-18

R-18

1.000 0.888 0.941 0.902

0.888 1.000 0.900 0.924

0.941 0.900 1.000 0.922

0.902 0.924 0.922 1.000

Correlation Coefficient Matrix

(b) OT + FUS

Figure 9: Pearson correlation analysis on both RT and OT + FUS on CIFAR-100.

17

E CIFAR-100-30-B0

03595, 25 05023, 24 11523, 18 14393, 71 15188, 61 15232, 89 16220, 62 16843, 29 19011, 43 20241, 85

23560, 65 24218, 32 26800, 91 27620, 73 28218, 59 28313, 29 29764, 14 30007, 54 31457, 46 33817, 94

35212, 08 36059, 86 37498, 89 38010, 93 40972, 22 41627, 82 45134, 64 45642, 26 47708, 58 49644, 50

Figure 10: Poisoned samples in CIFAR-100-B0-30. The two numbers above each image represent
its sequential position in the training set and its original label, respectively.

Table 7: Attack success rates of models trained on CIFAR-100-B0-30. The horizontal numbers
represent the numbering of different network structures and the vertical numbers represent the num-
bering of different training hyperparameters.

0 1 2 3 4 5 6 7 8 9

0 0.996 0.996 0.997 0.997 0.995 0.994 0.994 0.997 0.996 0.859
1 0.997 0.995 0.996 0.996 0.996 0.997 0.998 0.990 0.997 0.984
2 0.994 0.986 0.993 0.978 0.997 0.988 0.993 0.985 0.994 0.572
3 0.987 0.979 0.979 0.981 0.990 0.987 0.995 0.984 0.983 0.933
4 0.944 0.992 0.004 0.981 0.615 0.998 0.978 0.958 0.973 0.956
5 0.901 0.966 0.186 0.954 0.075 0.994 0.986 0.990 0.940 0.982
6 0.986 0.993 0.989 0.993 0.985 0.993 0.985 0.992 0.992 0.976
7 0.991 0.994 0.991 0.998 0.991 0.993 0.995 0.987 0.997 0.958
8 0.988 0.979 0.991 0.987 0.985 0.985 0.983 0.977 0.992 0.811
9 0.995 0.987 0.989 0.962 0.962 0.995 0.989 0.973 0.984 0.822

10 0.735 0.983 0.014 0.961 0.635 0.992 0.958 0.963 0.975 0.908
11 0.300 0.972 0.162 0.955 0.018 0.977 0.967 0.949 0.988 0.897
12 0.491 0.987 0.961 0.967 0.941 0.984 0.960 0.972 0.976 0.894
13 0.982 0.983 0.988 0.990 0.983 0.988 0.971 0.988 0.982 0.952
14 0.978 0.992 0.964 0.976 0.988 0.994 0.974 0.969 0.986 0.978
15 0.989 0.986 0.987 0.977 0.983 0.977 0.992 0.985 0.982 0.936
16 0.915 0.988 0.666 0.964 0.956 0.988 0.886 0.956 0.964 0.339
17 0.682 0.974 0.013 0.972 0.539 0.979 0.969 0.964 0.958 0.956
18 0.082 0.325 0.684 0.866 0.838 0.976 0.766 0.960 0.963 0.956
19 0.971 0.939 0.939 0.958 0.929 0.974 0.931 0.954 0.960 0.970
20 0.986 0.984 0.945 0.982 0.988 0.990 0.943 0.971 0.943 0.890
21 0.979 0.979 0.838 0.960 0.982 0.984 0.980 0.971 0.981 0.951
22 0.927 0.977 0.083 0.905 0.918 0.983 0.857 0.944 0.832 0.686
23 0.303 0.969 0.349 0.698 0.576 0.975 0.915 0.949 0.971 0.929

Mean: 0.904, STD: 0.205

18

F CIFAR-10-B0-30 AND CIFAR-100-B0-40

Table 8: Attack success rates of models trained on CIFAR-10-B0-30. The horizontal numbers repre-
sent the numbering of different network structures and the vertical numbers represent the numbering
of different training hyperparameters.

0 1 2 3 4 5 6 7 8 9

0 0.981 0.983 0.970 0.984 0.986 0.983 0.984 0.961 0.978 0.978
1 0.987 0.987 0.978 0.983 0.988 0.986 0.976 0.967 0.980 0.969
2 0.977 0.955 0.955 0.972 0.980 0.938 0.958 0.967 0.974 0.937
3 0.964 0.918 0.932 0.861 0.944 0.874 0.951 0.947 0.978 0.861
4 0.970 0.980 0.959 0.985 0.985 0.979 0.970 0.958 0.966 0.928
5 0.983 0.968 0.978 0.974 0.971 0.981 0.946 0.967 0.972 0.959
6 0.980 0.978 0.894 0.979 0.984 0.979 0.970 0.964 0.986 0.962
7 0.976 0.972 0.963 0.981 0.989 0.977 0.972 0.953 0.982 0.971
8 0.980 0.970 0.976 0.951 0.967 0.978 0.964 0.965 0.964 0.958
9 0.942 0.940 0.952 0.907 0.951 0.940 0.943 0.932 0.955 0.964

10 0.971 0.971 0.929 0.977 0.968 0.971 0.939 0.950 0.979 0.952
11 0.972 0.979 0.920 0.981 0.974 0.969 0.946 0.965 0.968 0.958
12 0.965 0.919 0.930 0.970 0.987 0.978 0.967 0.960 0.975 0.960
13 0.966 0.950 0.728 0.973 0.981 0.977 0.953 0.953 0.968 0.951
14 0.976 0.979 0.971 0.958 0.972 0.983 0.955 0.967 0.977 0.927
15 0.950 0.970 0.963 0.952 0.983 0.974 0.956 0.958 0.962 0.955
16 0.975 0.967 0.947 0.970 0.968 0.978 0.903 0.922 0.966 0.893
17 0.932 0.977 0.873 0.974 0.980 0.957 0.956 0.954 0.970 0.968
18 0.942 0.893 0.799 0.960 0.959 0.968 0.926 0.912 0.955 0.855
19 0.964 0.955 0.064 0.972 0.975 0.973 0.949 0.944 0.956 0.913
20 0.977 0.966 0.954 0.954 0.980 0.972 0.943 0.950 0.959 0.957
21 0.970 0.947 0.953 0.968 0.983 0.957 0.965 0.972 0.976 0.962
22 0.967 0.968 0.881 0.980 0.972 0.983 0.871 0.927 0.925 0.785
23 0.941 0.952 0.832 0.966 0.962 0.981 0.920 0.954 0.936 0.907

Mean: 0.952, STD: 0.067

19

Table 9: Attack success rates of models trained on CIFAR-100-B0-40. The horizontal numbers
represent the numbering of different network structures and the vertical numbers represent the num-
bering of different training hyperparameters.

0 1 2 3 4 5 6 7 8 9

0 0.998 0.998 0.998 0.998 0.997 0.997 0.994 0.996 0.995 0.816
1 0.999 0.998 0.999 0.996 0.984 0.994 0.998 0.996 0.999 0.954
2 0.998 0.993 0.996 0.990 0.997 0.997 0.992 0.997 0.996 0.902
3 0.983 0.974 0.995 0.996 0.998 0.982 0.997 0.992 0.993 0.686
4 0.939 0.997 0.003 0.983 0.948 0.992 0.990 0.986 0.987 0.977
5 0.679 0.981 0.975 0.982 0.034 0.990 0.993 0.989 0.989 0.987
6 0.995 0.996 0.997 0.997 0.996 0.994 0.993 0.993 0.992 0.928
7 0.997 0.996 0.999 0.998 0.991 0.997 0.995 0.992 0.997 0.993
8 0.998 0.998 0.995 0.991 0.998 0.992 0.992 0.995 0.994 0.937
9 0.993 0.993 0.995 0.992 0.994 0.996 0.984 0.974 0.993 0.949

10 0.977 0.994 0.941 0.984 0.974 0.992 0.974 0.988 0.991 0.952
11 0.704 0.989 0.928 0.986 0.980 0.992 0.983 0.971 0.991 0.983
12 0.983 0.985 0.982 0.994 0.970 0.993 0.986 0.993 0.981 0.971
13 0.985 0.992 0.990 0.997 0.995 0.995 0.989 0.990 0.992 0.992
14 0.994 0.995 0.993 0.991 0.992 0.991 0.989 0.997 0.992 0.978
15 0.990 0.996 0.984 0.993 0.997 0.987 0.992 0.997 0.990 0.975
16 0.627 0.992 0.946 0.980 0.974 0.988 0.950 0.974 0.982 0.969
17 0.947 0.986 0.027 0.979 0.800 0.989 0.986 0.981 0.977 0.959
18 0.950 0.217 0.957 0.918 0.967 0.986 0.950 0.976 0.983 0.364
19 0.971 0.722 0.945 0.988 0.977 0.993 0.954 0.982 0.984 0.960
20 0.993 0.993 0.988 0.989 0.979 0.998 0.977 0.979 0.977 0.974
21 0.978 0.981 0.963 0.986 0.990 0.993 0.986 0.990 0.991 0.972
22 0.951 0.985 0.599 0.975 0.989 0.993 0.950 0.946 0.912 0.935
23 0.659 0.980 0.913 0.980 0.296 0.995 0.947 0.977 0.967 0.922

Mean: 0.951, STD: 0.142

20

G CLEAN ACCURACY ON CIFAR-10 AND CIFAR-10-B0-20

Clean accuracy of 240 models trained on CIFAR-10 and CIFAR-10-B0-20 are shown in Table 10
and Table 11, respectively. It can be seen that the ETI-generated poisoned samples have almost no
effect on the clean accuracy.

Table 10: Clean accuracy of models trained on CIFAR-10. The horizontal numbers represent the
numbering of different network structures and the vertical numbers represent the numbering of dif-
ferent training hyperparameters.

0 1 2 3 4 5 6 7 8 9

0 0.951 0.948 0.948 0.950 0.948 0.949 0.946 0.937 0.945 0.916
1 0.952 0.944 0.949 0.953 0.946 0.952 0.948 0.928 0.940 0.906
2 0.924 0.917 0.919 0.913 0.921 0.904 0.927 0.922 0.923 0.904
3 0.909 0.879 0.912 0.886 0.902 0.881 0.911 0.906 0.903 0.890
4 0.945 0.939 0.933 0.936 0.935 0.934 0.933 0.926 0.933 0.911
5 0.941 0.938 0.933 0.934 0.934 0.930 0.934 0.925 0.926 0.908
6 0.947 0.948 0.944 0.949 0.945 0.947 0.942 0.938 0.935 0.910
7 0.947 0.946 0.942 0.951 0.944 0.947 0.946 0.939 0.940 0.911
8 0.929 0.923 0.927 0.921 0.925 0.913 0.933 0.929 0.927 0.904
9 0.913 0.902 0.922 0.904 0.914 0.895 0.919 0.914 0.919 0.898

10 0.940 0.939 0.934 0.939 0.936 0.930 0.933 0.924 0.928 0.909
11 0.937 0.939 0.927 0.937 0.937 0.926 0.935 0.930 0.925 0.911
12 0.940 0.939 0.936 0.943 0.937 0.936 0.933 0.924 0.927 0.907
13 0.943 0.937 0.919 0.944 0.938 0.943 0.929 0.936 0.933 0.907
14 0.934 0.932 0.933 0.931 0.928 0.925 0.933 0.923 0.926 0.904
15 0.920 0.916 0.927 0.920 0.924 0.906 0.930 0.920 0.923 0.904
16 0.937 0.942 0.932 0.938 0.936 0.932 0.928 0.920 0.925 0.901
17 0.938 0.935 0.932 0.939 0.933 0.925 0.933 0.924 0.928 0.911
18 0.933 0.927 0.932 0.933 0.928 0.928 0.914 0.908 0.916 0.889
19 0.935 0.926 0.917 0.940 0.936 0.930 0.921 0.918 0.923 0.901
20 0.939 0.931 0.935 0.932 0.931 0.930 0.931 0.922 0.926 0.897
21 0.929 0.926 0.929 0.927 0.924 0.917 0.932 0.923 0.926 0.904
22 0.934 0.938 0.930 0.935 0.932 0.929 0.921 0.915 0.921 0.885
23 0.936 0.936 0.916 0.934 0.930 0.921 0.931 0.920 0.925 0.899

Mean: 0.9273, STD: 0.0144

21

Table 11: Clean accuracy of models trained on CIFAR-10-B0-20. The horizontal numbers represent
the numbering of different network structures and the vertical numbers represent the numbering of
different training hyperparameters.

0 1 2 3 4 5 6 7 8 9

0 0.948 0.951 0.948 0.951 0.947 0.953 0.950 0.939 0.944 0.913
1 0.951 0.949 0.949 0.952 0.949 0.950 0.949 0.931 0.942 0.910
2 0.926 0.913 0.925 0.909 0.921 0.907 0.928 0.926 0.926 0.906
3 0.905 0.881 0.904 0.887 0.895 0.882 0.909 0.900 0.910 0.892
4 0.941 0.938 0.935 0.935 0.935 0.929 0.933 0.927 0.928 0.913
5 0.939 0.934 0.927 0.929 0.936 0.929 0.936 0.927 0.926 0.914
6 0.945 0.945 0.944 0.947 0.941 0.946 0.945 0.935 0.937 0.910
7 0.949 0.944 0.944 0.949 0.945 0.948 0.949 0.938 0.937 0.913
8 0.931 0.924 0.930 0.920 0.925 0.914 0.930 0.924 0.926 0.904
9 0.914 0.904 0.915 0.910 0.917 0.895 0.919 0.915 0.912 0.900

10 0.941 0.941 0.931 0.938 0.933 0.931 0.935 0.924 0.929 0.909
11 0.939 0.933 0.924 0.936 0.933 0.928 0.937 0.927 0.928 0.907
12 0.940 0.937 0.932 0.942 0.935 0.939 0.929 0.924 0.929 0.905
13 0.942 0.938 0.935 0.943 0.940 0.944 0.935 0.933 0.933 0.909
14 0.932 0.931 0.930 0.926 0.930 0.927 0.931 0.927 0.925 0.905
15 0.920 0.921 0.926 0.915 0.917 0.909 0.926 0.919 0.921 0.905
16 0.937 0.938 0.929 0.934 0.935 0.933 0.928 0.917 0.924 0.899
17 0.941 0.937 0.926 0.935 0.931 0.926 0.935 0.924 0.929 0.911
18 0.934 0.930 0.928 0.937 0.929 0.930 0.917 0.909 0.918 0.891
19 0.935 0.918 0.919 0.939 0.929 0.930 0.921 0.922 0.922 0.902
20 0.936 0.934 0.934 0.927 0.930 0.930 0.931 0.920 0.922 0.898
21 0.933 0.927 0.929 0.926 0.926 0.912 0.930 0.924 0.927 0.901
22 0.935 0.939 0.931 0.937 0.931 0.931 0.923 0.912 0.920 0.890
23 0.935 0.934 0.921 0.935 0.931 0.929 0.930 0.921 0.924 0.903

Mean: 0.9272, STD: 0.0141

22

H EXPERIMENTAL RESULTS ON CIFAR-10 WHEN y′ = 5

Here we consider the effectiveness of ETI when the attack target y′ is 5. We perform the exact
same steps as y′ = 0, and the experimental results are shown in Figure 11. It can be seen that it is
more difficult to attack a target of 5 on CIFAR-10 than to attack a target of 0. The overall poisoning
ratios required to achieve 90% attack success rates increase. Among these methods, ETI-generated
poisoned samples are still the most efficient, with a ratio of about 0.069.

0.02 0.05 0.1 0.5 0.2 1.0

Poisoning Ratio r (%)

0.0

0.5

0.9
1.0

A
tt

ac
k

S
u

cc
es

s
R

a
te

Blended

RT

OT

OT + FUS

ETI (Ours)

(a) CIFAR-10, V-13

0.02 0.05 0.1 0.5 0.2 1.0

Poisoning Ratio r (%)

0.0

0.5

0.9
1.0

A
tt

ac
k

S
u

cc
es

s
R

a
te

Blended

RT

OT

OT + FUS

ETI (Ours)

(b) CIFAR-10, V-16

0.02 0.05 0.1 0.5 0.2 1.0

Poisoning Ratio r (%)

0.0

0.5

0.9
1.0

A
tt

ac
k

S
u

cc
es

s
R

a
te

Blended

RT

OT

OT + FUS

ETI (Ours)

(c) CIFAR-10, P-18

0.02 0.05 0.1 0.5 0.2 1.0

Poisoning Ratio r (%)

0.0

0.5

0.9
1.0

A
tt

ac
k

S
u

cc
es

s
R

a
te

Blended

RT

OT

OT + FUS

ETI (Ours)

(d) CIFAR-10, R-18

Figure 11: Attack success rates on CIFAR-10 when y′ = 5.

Similarly, we verify that the individual consistency still holds when the target is 5, and the results
are shown in Table 12 and Figure 12.

Table 12: Poisoning ratios r (%) needed to achieve 90% attack success rates for the poisoned sample
sets generated from 10 independent runs using OT + FUS when y′ = 5.

0 1 2 3 4 5 6 7 8 9

V-13 0.126 0.096 0.061 0.090 0.095 0.100 0.093 0.101 0.092 0.116
V-16 0.147 0.105 0.073 0.089 0.103 0.129 0.104 0.108 0.104 0.118
P-18 0.141 0.103 0.080 0.093 0.111 0.140 0.079 0.113 0.099 0.123
R-18 0.101 0.086 0.060 0.070 0.074 0.096 0.071 0.097 0.089 0.100

Mean 0.129 0.098 0.069 0.086 0.096 0.116 0.087 0.105 0.096 0.114

V
-1

3
V
-1

6
P-1

8
R
-1

8

V-13

V-16

P-18

R-18

0.000 0.135 0.360 0.674

0.135 0.000 0.431 0.135

0.360 0.431 0.000 0.707

0.674 0.135 0.707 0.000

p-value Matrix

V
-1

3
V
-1

6
P-1

8
R
-1

8

V-13

V-16

P-18

R-18

1.000 0.506 0.325 -0.152

0.506 1.000 0.281 -0.507

0.325 0.281 1.000 0.137

-0.152 -0.507 0.137 1.000

Correlation Coefficient Matrix

(a) RT

V
-1

3
V
-1

6
P-1

8
R
-1

8

V-13

V-16

P-18

R-18

0.000 0.000 0.007 0.002

0.000 0.000 0.001 0.002

0.007 0.001 0.000 0.002

0.002 0.002 0.002 0.000

p-value Matrix

V
-1

3
V
-1

6
P-1

8
R
-1

8

V-13

V-16

P-18

R-18

1.000 0.904 0.782 0.845

0.904 1.000 0.880 0.841

0.782 0.880 1.000 0.839

0.845 0.841 0.839 1.000

Correlation Coefficient Matrix

(b) OT + FUS

Figure 12: Pearson correlation analysis on both RT and OT + FUS on CIFAR-10 when y′ = 5.

23

I EXPERIMENTAL RESULTS ON CIFAR-10 WHEN ε = 10/255 AND
ε = 12/255

The constraint of the trigger considered in this paper isC(t) := ‖v‖∞. One parameter that may have
a significant impact on the results is ε. In the above experiments, the results given are in the case
where ε = 8/255, here we test two additional cases, i.e. ε = 10/255 and ε = 12/255, the results are
as shown Table 13. It can be seen that just poisoning 10 images, ETI can achieve an attack success
rate of 0.935 when ε = 10/255 and 0.971 when ε = 12/255.

Table 13: Attack success rates on CIFAR-10 with different ε when the poisoning ratio set to 0.02%
(10/50,000).

V-13 V-16 P-18 R-18 Mean

ε = 8/255, OT + FUS 0.705 0.685 0.681 0.806 0.719
ε = 8/255, ETI 0.798 0.816 0.804 0.906 0.831
ε = 10/255, OT 0.799 0.827 0.788 0.871 0.821
ε = 10/255, OT + FUS 0.885 0.878 0.868 0.915 0.886
ε = 10/255, ETI 0.895 0.942 0.951 0.952 0.935
ε = 12/255, OT 0.903 0.906 0.903 0.936 0.912
ε = 12/255, OT + FUS 0.948 0.952 0.953 0.969 0.956
ε = 12/255, ETI 0.980 0.963 0.955 0.987 0.971

24

J IN-DISTRIBUTION GENERALIZATION ANALYSIS

All the experiments above assume that the attacker has complete access to the clean dataset. Here,
we assume that the attacker has access to only a portion of the dataset to verify the in-distribution
generalization of the ETI-generated poisoned samples. We divide the training data of CIFAR-10 into
two randomly disjoint subsets, CIFAR-10A and CIFAR-10B. Subsequently, we generate poisoned
samples in these two subsets independently using the ETI method. Finally, we poison CIFAR-10A
and CIFAR-10B with the generated poisoned data and test the performance of attacks. We define
some symbols here. A2A means that the poisoned samples are generated on CIFAR-10A, and are
used again to poison CIFAR-10A. A2B means that the poisoned samples are generated on CIFAR-
10A, but are used to poison CIFAR-10B.

We first observe whether the individual consistency can exist across subsets. This is important
because the attacker can only select individuals based on what he has on hand and expects the
outstanding individual to still perform well on a different subset. Here, we conduct 10 independent
runs with OT + FUS on the CIFAR-10A subset and calculate the correlation coefficients among
different models, and the results are shown in Figure 13. It can be seen that the individual consistency
is still maintained very well even across different subsets, which is a very good characteristic for
attackers.

V
-1

3,
A
2A

V
-1

6,
A
2A

P-1
8,

A
2A

R
-1

8,
A
2A

V
-1

3,
A
2B

V
-1

6,
A
2B

P-1
8,

A
2B

R
-1

8,
A
2B

V-13, A2A

V-16, A2A

P-18, A2A

R-18, A2A

V-13, A2B

V-16, A2B

P-18, A2B

R-18, A2B

0.000 0.001 0.002 0.000 0.000 0.000 0.001 0.004

0.001 0.000 0.002 0.001 0.000 0.000 0.000 0.000

0.002 0.002 0.000 0.001 0.001 0.000 0.000 0.000

0.000 0.001 0.001 0.000 0.000 0.000 0.001 0.003

0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.001

0.004 0.000 0.000 0.003 0.000 0.000 0.001 0.000

p-value Matrix

V
-1

3,
A
2A

V
-1

6,
A
2A

P-1
8,

A
2A

R
-1

8,
A
2A

V
-1

3,
A
2B

V
-1

6,
A
2B

P-1
8,

A
2B

R
-1

8,
A
2B

V-13, A2A

V-16, A2A

P-18, A2A

R-18, A2A

V-13, A2B

V-16, A2B

P-18, A2B

R-18, A2B

1.000 0.863 0.846 0.982 0.926 0.932 0.890 0.814

0.863 1.000 0.842 0.862 0.980 0.949 0.894 0.922

0.846 0.842 1.000 0.872 0.889 0.906 0.935 0.905

0.982 0.862 0.872 1.000 0.925 0.935 0.862 0.836

0.926 0.980 0.889 0.925 1.000 0.989 0.920 0.938

0.932 0.949 0.906 0.935 0.989 1.000 0.912 0.951

0.890 0.894 0.935 0.862 0.920 0.912 1.000 0.887

0.814 0.922 0.905 0.836 0.938 0.951 0.887 1.000

Correlation Coefficient Matrix

Figure 13: Pearson correlation analysis on OT + FUS on CIFAR-10 under cross-subset conditions.

Finally, we test the performance of the A2B attacks, as shown in Figure 14. We use the results of
B2B attacks as comparisons. It can be seen that the poisoned samples generated by ETI have a fairly
good in-distribution generalization: there is almost no difference between the performance of A2A
attacks and B2B attacks.

0.02 0.05 0.1 0.5 0.2 1.0

Poisoning Ratio r (%)

0.0

0.5

0.9
1.0

A
tt

ac
k

S
u

cc
es

s
R

at
e

OT + FUS (B2B)

ETI (B2B)

OT + FUS (A2B)

ETI (A2B)

(a) V-13

0.02 0.05 0.1 0.5 0.2 1.0

Poisoning Ratio r (%)

0.0

0.5

0.9
1.0

A
tt

ac
k

S
u

cc
es

s
R

at
e

OT + FUS (B2B)

ETI (B2B)

OT + FUS (A2B)

ETI (A2B)

(b) V-16

0.02 0.05 0.1 0.5 0.2 1.0

Poisoning Ratio r (%)

0.0

0.5

0.9
1.0

A
tt

ac
k

S
u

cc
es

s
R

at
e

OT + FUS (B2B)

ETI (B2B)

OT + FUS (A2B)

ETI (A2B)

(c) P-18

0.02 0.05 0.1 0.5 0.2 1.0

Poisoning Ratio r (%)

0.0

0.5

0.9
1.0

A
tt

ac
k

S
u

cc
es

s
R

at
e

OT + FUS (B2B)

ETI (B2B)

OT + FUS (A2B)

ETI (A2B)

(d) R-18

Figure 14: Attack success rates on CIFAR-10B. All curves (except ETI) are averaged over 10 inde-
pendent runs.

25

	Introduction
	Background, Related Work, and Setup
	Backdoor Attacks
	Poisoning Efficiency
	Threat Model
	Experimental Setup

	Efficient Trojan Injection
	Optimizing an Efficient Trigger
	Selecting Important Samples
	Utilizing the Individual Consistency

	CIFAR-10-B0-20 and CIFAR-100-B0-30
	Conclusion and Future Work
	DNN Architectures and Training Hyperparameters
	Optimized Trigger Generation Algorithm
	Filtering-and-Updating Strategy
	Individual Differences and Consistency Analysis on CIFAR-100
	CIFAR-100-30-B0
	CIFAR-10-B0-30 and CIFAR-100-B0-40
	Clean Accuracy on CIFAR-10 and CIFAR-10-B0-20
	Experimental Results on CIFAR-10 when y'=5
	Experimental Results on CIFAR-10 when =10/255 and =12/255
	In-Distribution Generalization Analysis

