PRISM-Physics: Causal DAG-Based Process
Evaluation for Physics Reasoning

Wanjia Zhao*! Qinwei Ma*?> Jingzhe Shi*?> Shirley Wu' Jiaqi Han' Yijia Xiao®
Si-Yuan Chen* Xiao Luo® Ludwig Schmidt' James Zou'
!Stanford University 2Tsinghua University 3University of California Los Angeles
4Harvard University ®University of Wisconsin-Madison

Abstract

Benchmarks for competition-style reasoning have advanced evaluation in math-
ematics and programming, yet physics remains comparatively explored. Most
existing physics benchmarks evaluate only final answers, which fail to capture
reasoning processes, while recent stepwise methods rely on heuristic LLM-as-
judge scoring or restrictive linear assumptions, limiting reliability and diagnostic
validity. We introduce PRISM-PHYSICS, a process-level evaluation framework
and benchmark for complex physics reasoning problems. Solutions are repre-
sented as directed acyclic graphs (DAGs) of formulas, explicitly encoding causal
dependencies among intermediate steps to enable fine-grained, interpretable, and
theoretically grounded scoring. We prove the optimality of the DAG represen-
tation and the corresponding scoring policy. Combining with a fully rule-based
method for symbolic formula equivalence matching that we developed, we ensure
consistent validation across diverse formulations without heuristic judgments. Re-
sults show that our evaluation framework is more aligned with human experts’
scoring. Experiments on state-of-the-art LLMs reveal persistent reasoning fail-
ures in physics, while step-level scoring offers both diagnostic insight and rich
signals for later training. By combining structural rigor, theoretical guarantees,
and symbolic validation, PRISM-PHYSICS provides a principled foundation for
advancing process-level evaluation and guiding the development of models with
deeper scientific reasoning capabilities.

Project Page: https://open-prism.github.io/PRISM-Physics/

1 Introduction

Benchmarks for competition-style reasoning have advanced rapidly in mathematics [44, 16, 9]
and programming [35, 46, 8], providing comprehensive testbeds for LLM evaluation. In contrast,
physics competitions remain comparatively underserved, despite requiring deep domain knowledge,
advanced modeling, multi-step derivations, and precise computation—skills fundamental to scien-
tific reasoning [18]. Developing fine-grained benchmarks in physics is thus essential for systemat-
ically assessing and advancing LLM capabilities in this critical domain [4, 36]. Existing physics
benchmarks mostly use multiple-choice or short-answer formats [37, 34], evaluating only final an-
swers and often relying on LLM-as-judge scoring [16, 40], which is prone to hallucinations, prompt
sensitivity, and inconsistent grading. While recent work has attempted process-based scoring [43],
such methods depend on restrictive linear step assumptions or shallow expression matching, limiting
robustness and generalizability, and leaving systematic reasoning failures insufficiently exposed.

To address these limitations, we introduce PRISM-Physics, a process-level evaluation framework
and benchmark that represents physics solutions as directed acyclic graphs (DAGs) of formulas. This

*Equal contribution. Correspondence to wanjiazh @cs.stanford.edu

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: MATH-AL

https://open-prism.github.io/PRISM-Physics/
mailto:wanjiazh@stanford.edu.cn

Diagram e Context b DAG

Consi " length 4 donal area
s, o llel to applied force), shear the block's material
and density $\\rhoS. A tangential shearing force SFS is applied to one face, causing a tangential

i and For the

i , let Su(x, 9 i $yS-directi i
$xS and time $t5. You should use SFS for the shearing force, SAS for the arca, $nS for the i
modulus, SIS for the block length, Su$ for the tangential displacement, §\\varphi$ for the shear
7)\ angle, $\thoS for the density, and $\upsilons for the speed of the transverse elastic wave.)
Sub-questions) 0
ig. Find, within clasti 3 i the o
force SFS.
® 0 the S <heection;

‘motion for s s,

_©Find

Final answer form: slgebraic Final answer instructions: Yo ind wse ony.

Difficulty |
Medium

Physics Domain
Mechanics.

par i {iparial 255 The speed of

=essa2) ‘x..mudp Concepts |

Figure 1: Left: Statistics of PRISM-PHYSICS hierarchical topics and difficulty level across 1,344
problems. Right: A data example with the proposed DAG structure.

graph-based structure explicitly encodes causal dependencies among intermediate steps, enabling
fine-grained scoring that is theoretically grounded and interpretable. To ensure consistency, we
further develop a fully rule-based symbolic equivalence checker, which provides robust validation
across diverse formulations and removes dependence on heuristic judgments.

Our main contributions are summarized as follows: 1. We construct a large-scale benchmark of
competition-level physics problems with carefully curated, DAG-structured solutions. 2. We pro-
pose a DAG-based scoring policy that explicitly models causal dependencies among formulas, en-
abling fine-grained and interpretable process-level evaluation. We further provide a theoretical proof
of its optimality, showing that it minimizes evaluation ambiguity and aligns naturally with the logi-
cal structure of physics derivations. 3. We develop a fully rule-based symbolic formula equivalence
checker to reliably validate diverse mathematical expressions, ensuring consistent comparison across
alternative formulations and eliminating reliance on heuristic LLM-as-judge scoring. 4. We con-
duct extensive experiments on a broad range of LLMs, revealing persistent challenges in sustaining
coherent reasoning chains and in correctly applying physical principles. Furthermore, we system-
atically compare our evaluation framework with existing approaches, demonstrating its superior
reliability, interpretability, and diagnostic power for evaluating process-level reasoning capabilities.

Taken together, PRISM-Physics establishes the first principled foundation for process-level evalua-
tion in physics, bridging structural rigor, theoretical guarantees, and symbolic validation.

2 Preliminary and Formulation

A crucial component that distinguishes our evaluation framework from most LLM-as-judge counter-
parts is its reliance on Formula Equivalence Matching, also called Formula Matching. Two formulas
are considered matched if they are mathematically equivalent. Section 3.1 introduces our matching
mechanism and DAG-based scoring policy. We prove the optimality of the DAG representation and
scoring policy, with full formal definitions provided in Appendix B.

2.1 DAG Representation of Solutions.

Motivation. Naive process-scoring policies present inherent limitations: strict matching fails to
recognize correct outcomes obtained through alternative derivations, whereas prefix credit overes-
timates performance by indiscriminately assigning credit to all prior steps once a single formula is
matched. To address these issues, we represent the reference solution as a directed acyclic graph
(DAG) of formulas, where the edges encode explicit prerequisite relations. With this structure,
credit propagates only along causal chains from matched nodes to their ancestors. This avoids harsh
strict matching, prevents prefix over-crediting, offers a representation intuitive for human reasoning,
reliable for LLM annotation, and theoretically complete under mild assumptions.

Formally, a directed acyclic graph (DAG) is a pair G = (V, E), where V is a finite set of nodes and
E CV x V isaset of directed edges such that there is no directed cycle in GG. That is, there is no
sequence of distinct nodes vy, va, . .., v with k > 2 satisfying (v;, v;41) € E forall 1 < i < k and

(vk,v1) € E. A DAG thus encodes a partial order over its nodes, which is particularly suitable for
representing stepwise logical or computational dependencies.

In our setting, each solution is systematically converted into such a DAG: 1. Nodes (formulas).
Each v € V denotes a canonicalized I5TEX expression representing a mathematically key step .
Canonicalization guarantees syntactic and semantic consistency across solutions. 2. Edges (de-
pendencies). For (u,v) € E, formula v is derived from formula w. By construction, the edges
reference only prior nodes, thereby ensuring temporal causal consistency and a valid topological
ordering aligned with natural reasoning. 3. Minimality. Redundant algebraic steps are removed,
retaining only essential formulas, thereby yielding a concise yet sufficient structure that captures the
core reasoning trajectory. 4. Completeness. Every node must connect by a directed path to at least
one designated final answer node, ensuring that all preserved formulas causally contribute to the
solution without dangling or irrelevant steps.

The resulting DAG thus captures the logical skeleton of the solution, where nodes formalize rea-
soning steps and edges encode causal dependencies, making the derivation machine-interpretable
and enabling correctness to be evaluated both locally (per node) and globally (across dependency
chains). This structure provides the foundation for our scoring mechanics.

2.2 Ancestor Closure Scoring

Definition 1 (Ancestor Closure). Let M C F be the set of matched reference formulas, and let
Anc(S):={A e F/S:3B € Sandapath A < --- < B}. Define the ancestor closure of M as:

Ach(M) = M U Anc(M),
i.e., all matched nodes and all their DAG ancestors (reverse reachability).

Definition 2 (Ancestor Closure Scoring Policy). Let M be the set of formulas in the reference DAG
that are directly matched by the submission (student solution), then Ancestor Closure Scoring gives
the final score as

_ |Ach(M)]

S
|7

M
where F is the set of all formulas in the DAG.

Intuition. In a solution DAG, edges direct from prerequisites formulas to dependents. Once a dependent formula
is matched, all formulas on any path leading into it are also credited, since they are logically required. Thus,
the score is the fraction of reference formulas covered by the union of matched nodes and their prerequisites.

We construct a scalable autonomous pipeline to construct DAG for each problem with LLMs. This
rewriting pipeline includes three key stages: Formula normalization, context clarification and
DAG construction. In the first stage, notations and expressions are normalized into canonical forms,
and significant figures of numeric answers are obtained. For the context clarification stage, each
problem is rewritten targeting soundness and clarity. Finally, the solution is converted into DAG of
formulas. We employ LLM as verifier after each stage for soundness, and especially we employ a
rule-based verifier for the DAG construction stage to make sure the graph generated follows pre-
defined properties. More data curation details can be found in Appendix D.

3 Evaluation Framework: PRISM-DAG

3.1 Rule-based Physics Formula Equivalence Matching

A key component of our PRISM-DAG is to decide whether two formulas are equivalent. However,
checking equivalence between physics formulas presents three key challenges: (1) Equivalence of
equations; (2) Constant substitutions; and (3) Unit conversion. Prior work often avoids these is-
sues by checking only final expressions, enforcing specific formats, or relying on LLM-as-Judge for
comparison, but such approaches either miss process-level evaluation or suffer from hallucination.
To enable fine-grained and rigorous process-based scoring, we propose a two-stage algorithm for
physics formula equivalence checking:

[Stage 1] Constant Substitution. We substitute certain variables with their expressions. Variables,
constants, and units are normalized into predefined form for consistency.

[Stage 2] Solution Set Equivalence Check. For two equations with NV variables, one variable cho-
sen randomly is the solving target, the rest ones are assigned random values: solution set equivalence
serves as a proxy for equation equivalence. This process is repeated for multiple iterations.

Please refer to Algorithm 1, Appendix C.1 and C.2 for more detailed discussions.

3.2 Scoring Pipeline

Given a student solution and a problem with annotated DAG, we can summarize our evaluation
process PRISM-DAG as three steps, details shown in Algorithm 2 in Appendix C.3.

1. Formula Extraction and Normalization. Given a student’s solution, all mathematical expres-
sions are first extracted and rewritten into our dataset’s standardized canonical form, discarding
invalid expressions such as syntactically malformed formulas or irrelevant numerical fragments. 2.
Formula Matching. Each standardized student formula is compared against the reference DAG
of the solution according to Section 3.1, which outputs a set of matched formulas in the DAG. 3.
Scoring. Finally, we score the student solution according to the Ancestor Closure Scoring Policy in
Section 2.2 with the DAG and the set of matched formulas.

4 Experiments

We evaluate PRISM-DAG on our benchmark. See Appendix F.1 for experimental settings.

m= Final-Answer Accuracy [500
Step-level Accuracy
Response Time (s)

IS
5
3

w
8
3

Accuracy (%)

3
8
Response Time (ms)

o
S
3

D &) & & BN »
o & < < "~ 3 &
& @ B 295 o

N
o
S
&
S

o 5
2 &

Figure 2: Model performance on PRISM-Physics. We reported both Final-Answer Accuracy, Step-
level Accuracy and Response Time.

Step-level vs. Answer-level Evaluation. Table 2 reports step-level and final-answer accuracy across
difficulty levels. As problem difficulty rises, performance declines and response time increases, re-
flecting LLMs’ sensitivity to longer reasoning chains, more demanding modeling, and higher com-
putational effort. Final-answer and step-level evaluations diverge sharply with problem difficulty:
final-answer accuracy drops by over 40% from easy to medium and below 10% on hard problems,
while step-level scoring reveals that models still earn partial credit by applying key principles or
deriving valid intermediate equations before failing at later stages.

These results demonstrate that final-answer scoring alone severely underestimates reasoning ability,
whereas step-level evaluation provides a more faithful measure of process competence under com-
plex tasks. Moreover, step-level signals open promising avenues for training and data curation: If
evaluation relies solely on final answers, rewards on difficult problems become extremely sparse.
Instead, step-level scoring provides rich intermediate reward signals, offering valuable guidance
for reinforcement learning and a principled basis for constructing higher-quality training data.

Additional results on Physics Domain Category Analysis, Modality and Reasoning-Level Compar-
isons, Error Analysis, and Evaluation Framework Analysis are provided in the Appendix F.2, G, H

5 Conclusion and Future Work

We introduced PRISM-PHYSICS, a benchmark and a process-level evaluation framework that en-
codes physics solutions as DAGs and employs rule-based symbolic equivalence checking for reli-
able, fine-grained scoring.

Experiments reveal persistent reasoning failures in frontier LLMs, underscoring the challenge of
sustaining coherent derivations in physics. PRISM-PHYSICS establishes a principled and inter-
pretable foundation for process-level evaluation, enabling more robust benchmarks and advancing
LLMs toward deeper scientific reasoning, while its step-level signals provide both training guidance
and a principled basis for higher-quality data.

Although PRISM-PHYSICS currently focuses on physics, our evaluation framework is domain-
agnostic and can be readily extended to other subjects such as mathematics, chemistry, and biology.
In future work, we also plan to use the benchmark for post-training LLMs, particularly to study the
benefits of incorporating process-level signals during RL-based fine-tuning.

Furthermore, our framework is designed to be easily adapted to existing datasets. We therefore
encourage both current and future benchmark developers to adopt our framework alongside their
original evaluation methods, in order to provide more comprehensive and consistent assessments.

References

[1] Meta AL Llama 3.1 8b. https://huggingface.co/meta-1lama/Llama-3.1-8B, 2024.
Accessed: 2025-05-15. 27

[2] Anthropic. Claude 3.7 Sonnet. https://www.anthropic.com/claude/sonnet, 2025. An-
thropic model card. 27

[3] Jure Brence, Saso Dzeroski, and Ljupco Todorovski. Dimensionally-consistent equation dis-
covery through probabilistic attribute grammars. Inf. Sci., 2023. 10

[4] Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xi-
aoyuan Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language
models. ACM transactions on intelligent systems and technology, 15(3):1-45, 2024. 1

[5] Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts
prompting: Disentangling computation from reasoning for numerical reasoning tasks. Trans.
Mach. Learn. Res., 2023. 10

[6] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. 2021. 10

[7] DeepSeek-Al. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement
learning, 2025. 27

[8] Ahmed El-Kishky, Alexander Wei, Andre Saraiva, Borys Minaiev, Daniel Selsam, David Do-
han, Francis Song, Hunter Lightman, Ignasi Clavera, Jakub Pachocki, et al. Competitive pro-
gramming with large reasoning models. arXiv preprint arXiv:2502.06807, 2025. 1

[9] Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Cheng-
hao Ma, Liang Chen, Runxin Xu, et al. Omni-math: A universal olympiad level mathematic
benchmark for large language models. arXiv preprint arXiv:2410.07985, 2024. 1

[10] Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao
Ma, Liang Chen, Runxin Xu, Zhengyang Tang, Benyou Wang, Daoguang Zan, Shanghaoran
Quan, Ge Zhang, Lei Sha, Yichang Zhang, Xuancheng Ren, Tianyu Liu, and Baobao Chang.
Omni-MATH: A universal olympiad level mathematic benchmark for large language models.
In The Thirteenth International Conference on Learning Representations (ICLR), 2025. 10

[11] Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan,
and Graham Neubig. PAL: Program-aided language models. In ICML, 2023. 10

https://huggingface.co/meta-llama/Llama-3.1-8B
https://www.anthropic.com/claude/sonnet

[12] Google DeepMind. Gemini 2.5 Flash. https://cloud.google.com/vertex—ai/
generative-ai/docs/models/gemini/2-5-flash, 2025. Vertex Al model card. 27

[13] Google DeepMind. Gemini 2.5 Pro. https://deepmind.google/technologies/gemini/
pro/, 2025. Google DeepMind model card. 27

[14] Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Ying-
han Shen, Shengjie Ma, Honghao Liu, Yuanzhuo Wang, and Jian Guo. A survey on llm-as-a-
judge. 2024. 10

[15] Aryan Gulati, Brando Miranda, Eric Chen, Emily Xia, Kai Fronsdal, Bruno de Moraes Du-
mont, and Sanmi Koyejo. Putnam-AXIOM: A functional and static benchmark for measuring

higher level mathematical reasoning. In The 4th Workshop on Mathematical Reasoning and Al
at NeurlPS’24, 2024. 10

[16] Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi
Hu, Xu Han, Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun.
Olympiadbench: A challenging benchmark for promoting agi with olympiad-level bilingual
multimodal scientific problems, 2024. 1, 10

[17] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset.
In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Bench-
marks Track (Round 2), 2021. 10

[18] Raj Jaiswal, Dhruv Jain, Harsh Parimal Popat, Avinash Anand, Abhishek Dharmadhikari,
Atharva Marathe, and Rajiv Ratn Shah. Improving physics reasoning in large language models
using mixture of refinement agents. arXiv preprint arXiv:2412.00821, 2024. 1

[19] Xiaoyuan Li, Wenjie Wang, Moxin Li, Junrong Guo, Yang Zhang, and Fuli Feng. Evalu-
ating mathematical reasoning of large language models: A focus on error identification and
correction. arXiv preprint arXiv:2406.00755, 2024. 10

[20] Junnan Liu, Hongwei Liu, Linchen Xiao, Ziyi Wang, Kuikun Liu, Songyang Gao, Wenwei
Zhang, Songyang Zhang, and Kai Chen. Are your llms capable of stable reasoning? arXiv
preprint arXiv:2412.13147,2024. 10

[21] Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-eval:
NLG evaluation using gpt-4 with better human alignment. In EMNLP, 2023. 10

[22] Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao
Cheng, Kai-Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathemati-
cal reasoning of foundation models in visual contexts. In The Twelfth International Conference
on Learning Representations (ICLR), 2024. 10

[23] Yujun Mao, Yoon Kim, and Yilun Zhou. CHAMP: A competition-level dataset for fine-grained
analyses of LLMs’ mathematical reasoning capabilities. In Findings of the Association for
Computational Linguistics: ACL 2024, pages 1325613274, Bangkok, Thailand, 2024. Asso-
ciation for Computational Linguistics. 10

[24] Meta Platforms, Inc. Llama-4-Scout-17B-16E. https://huggingface.co/meta-1lama/
Llama-4-Scout-17B-16E, 2025. Hugging Face model card; accessed 2025-05-12. 27

[25] OpenAl GPT-40 mini. https://openai.com/index/
gpt-4o-mini-advancing-cost-efficient-intelligence/, 2024. OpenAl blog
post. 27

[26] OpenAl. GPT-4.1. https://openai.com/index/gpt-4-1/, 2025. OpenAl model an-
nouncement. 27

[27] OpenAl. GPT-5. https://openai.com/index/introducing-gpt-5/, 2025. OpenAl
model announcement. 27

https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-flash
https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-flash
https://deepmind.google/technologies/gemini/pro/
https://deepmind.google/technologies/gemini/pro/
https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E
https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4-1/
https://openai.com/index/introducing-gpt-5/

[28] OpenAl. GPT-OSS. https://openai.com/index/introducing-gpt-oss/, 2025. Ope-
nAl model announcement. 27

[29] OpenAl OpenAl o4-mini. https://openai.com/index/
introducing-o3-and-o4-mini/, 2025. OpenAl official announcement. 27

[30] Ivo Petrov, Jasper Dekoninck, Lyuben Baltadzhiev, Maria Drencheva, Kristian Minchev, Mis-
lav Balunovié, Nikola Jovanovié, and Martin Vechev. Proof or bluff? evaluating llms on 2025
usa math olympiad. arXiv preprint arXiv:2503.21934, 2025. 10

[31] Shi Qiu, Shaoyang Guo, Zhuo-Yang Song, Yunbo Sun, Zeyu Cai, Jiashen Wei, Tianyu Luo,
Yixuan Yin, Haoxu Zhang, Yi Hu, Chenyang Wang, Chencheng Tang, Haoling Chang, Qi Liu,
Ziheng Zhou, Tianyu Zhang, Jingtian Zhang, Zhangyi Liu, Minghao Li, Yuku Zhang, Boxuan
Jing, Xianqi Yin, Yutong Ren, Zizhuo Fu, Jiaming Ji, Weike Wang, Xudong Tian, Anqi Lv,
Laifu Man, Jianxiang Li, Feiyu Tao, Qihua Sun, Zhou Liang, Yushu Mu, Zhongxuan Li, Jing-
Jun Zhang, Shutao Zhang, Xiaotian Li, Xingqi Xia, Jiawei Lin, Zheyu Shen, Jiahang Chen,
Qiuhao Xiong, Binran Wang, Fengyuan Wang, Ziyang Ni, Bohan Zhang, Fan Cui, Changkun
Shao, Qing-Hong Cao, Ming xing Luo, Yaodong Yang, Muhan Zhang, and Hua Xing Zhu.
Phybench: Holistic evaluation of physical perception and reasoning in large language models,
2025. 10, 12

[32] Qwen Team. Qwen2.5-72B. https://huggingface.co/Qwen/Qwen2.5-72B, 2024. Hug-
ging Face model card. 27

[33] Qwen Team. Qwen3-235B-A22B. https://huggingface.co/Qwen/Qwen3-235B-A22B,
2025. Hugging Face model card. 27

[34] David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R Bowman. Gpqga: A graduate-level google-proof q&a
benchmark. In First Conference on Language Modeling, 2024. 1

[35] Quan Shi, Michael Tang, Karthik Narasimhan, and Shunyu Yao. Can language models solve
olympiad programming? arXiv preprint arXiv:2404.10952, 2024. 1

[36] Peiyang Song, Pengrui Han, and Noah Goodman. A survey on large language model reasoning
failures. In 2nd Al for Math Workshop@ ICML 2025, 2025. 1

[37] Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, Jieyu Zhang, Satyen Subramaniam, Arjun R.
Loomba, Shichang Zhang, Yizhou Sun, and Wei Wang. Scibench: Evaluating college-level
scientific problem-solving abilities of large language models. In ICML. 1, 10

[38] xXAL Grok 4. https://x.ai/news/grok-4, 2025. xAl official announcement. 27

[39] Shijie Xia, Xuefeng Li, Yixin Liu, Tongshuang Wu, and Pengfei Liu. Evaluating mathematical
reasoning beyond accuracy. CoRR, abs/2404.05692, 2024. 10

[40] Kun Xiang, Heng Li, Terry Jingchen Zhang, Yinya Huang, Zirong Liu, Peixin Qu, Jixi He,
Jiaqi Chen, Yu-Jie Yuan, Jianhua Han, Hang Xu, Hanhui Li, Mrinmaya Sachan, and Xiaodan
Liang. Seephys: Does seeing help thinking? — benchmarking vision-based physics reasoning,
2025. 1, 10, 27

[41] Xin Xu, Qiyun Xu, Tong Xiao, Tianhao Chen, Yuchen Yan, Jiaxin Zhang, Shizhe Diao, Can
Yang, and Yang Wang. Ugphysics: A comprehensive benchmark for undergraduate physics
reasoning with large language models. 2025. 10

[42] Jiayi Ye, Yanbo Wang, Yue Huang, Dongping Chen, Qihui Zhang, Nuno Moniz, Tian Gao,
Werner Geyer, Chao Huang, Pin-Yu Chen, Nitesh V. Chawla, and Xiangliang Zhang. Justice
or prejudice? quantifying biases in llm-as-a-judge. In ICLR, 2025. 10

[43] Xinyu Zhang, Yuxuan Dong, Yanrui Wu, Jiaxing Huang, Chengyou Jia, Basura Fernando,
Mike Zheng Shou, Lingling Zhang, and Jun Liu. Physreason: A comprehensive benchmark
towards physics-based reasoning, 2025. 1, 10, 27

https://openai.com/index/introducing-gpt-oss/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://huggingface.co/Qwen/Qwen2.5-72B
https://huggingface.co/Qwen/Qwen3-235B-A22B
https://x.ai/news/grok-4

[44] Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. Minif2f: a cross-system benchmark
for formal olympiad-level mathematics. arXiv preprint arXiv:2109.00110, 2021. 1

[45] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao
Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez,
and Ion Stoica. Judging llm-as-a-judge with mt-bench and chatbot arena. In NeurIPS, 2023.
10

[46] Yaoming Zhu, Junxin Wang, Yiyang Li, Lin Qiu, ZongYu Wang, Jun Xu, Xuezhi Cao, Yuhuai
Wei, Mingshi Wang, Xunliang Cai, et al. Oibench: Benchmarking strong reasoning models
with olympiad in informatics. arXiv preprint arXiv:2506.10481, 2025. 1

Supplementary Materials for
PRISM-Physics: Causal DAG-Based Process
Evaluation for Physics Reasoning

Related Work

DAG Structure Details
B.1 Justification System and Optimality of DAG
B.2 Admissibility of Ancestor Closure Scoring

Evaluation Framework Details

C.1 Equivalence Matching Details
C.2 Algorithm of Equivalence Matching
C.3 Algorithm of Scoring Pipeline
C4 Scoring Example e e

Dataset Curation Details

D.1 DataSource and Collection
D.2 Three-Step Rewriting Pipeline Details
D.3 Prompts for Three-Step Rewriting Pipeline
D.4 Rewriting Examples. e

Dataset Statistics
E.1 Difficulty Annotation Details

E.2 Domain Categorization Details

Experimental Details for PRISM-PHYSICS
F.1 Experimental Setups
F2 Additionalresults L

Evaluation Framework Analysis Details
G.1 Evaluation Framework Analysis
G.2 Kendall’s Tau-band p-test it

G.3 Failure Analysis for Evaluation Framework

Error Analysis Details
H.1 Prompts for Error Analysis
H.2 Error Taxonomy Definitions oo

H.3 Model Failure Solution Examples

A Related Work

Physics Benchmark. Physics problems, as a proxy of how LLMs understand Physics, have been
used as benchmarks for LLMs in recent years. Especially, previous work has been using Physics
Olympiad problems for benchmarking LLM reasoning and problem solving abilities. For instance,
OlympiadBench [16] aggregates problems from multiple Olympiads; SeePhys [40] incorporates
visual problems to study how visual ability improves LLM performance; PhyBench [31] focuses
on rigor and originality. While such benchmarks propose metrics (e.g., EED score [31]), they still
focus primarily on final answers and fail to represent or provide more fine-grained process scores.
More recently, process-based evaluation of LLM reasoning has become a focus. PhysReason [43]
evaluates intermediate steps by checking correctness of expressions and assigning linear scores, but
this approach is restricted to expressions (rather than equations) and cannot represent the dependency
logic among steps.

LLM-as-Judge for Problem Solving. Reliable evaluation of physics problem solving requires
assessing not only final answer correctness, but also the validity of intermediate reasoning steps.
Human expert annotation, while generally reliable, is costly and unscalable in large-scale [14, 21,
42, 30, 23]. Automated LLM-as-judge methods have shown potential in mathematical and physics
tasks, but are still susceptible to errors from implicit assumptions, symbolic manipulation errors,
and misinterpretation of domain concepts [45, 14, 42, 17, 15, 20, 22]. This challenge is amplified in
physics, where various physical concepts, constants, and equivalent formulations create many valid
variations of the same expression, making judgment more difficult [37, 41, 43].

To address these issues, we introduce a formula-based verification framework that directly compares
symbolic expressions for physical and mathematical consistency, offering a faster and more reliable
alternative to costly human annotation [3, 11, 5, 6, 17, 39, 10, 19].

B DAG Structure Details

B.1 Justification System and Optimality of DAG

We formulate a good formula-based scoring policy under the following intuition: a scoring policy
should first verify which formulas in the reference solution are matched by the student solution,
then see if some other formulas can be justified by the matched reference formulas. We restrict
attention to complete justifications; partial or approximate justifications are outside the scope of this
formulation. Under such a formulation, we can formally discuss the optimality of our provided DAG
structure as a representation of the formula relations, as well as our scoring policy.

Definition 3 (Justification System). Let F be the set of reference formulas. A justification relation
is a relation =C 27 x F, where X = B means: once every formula in X is matched, the formula
B is automatically warranted, or in other words, adding formula B into the student solution will
not make any further progress to the final answer. The set F' and all justification relations within it
form the justification system (F,=).

We define the minimal justification relation - by
AFB <= A= B andno proper subsetY C A satisfiesY = B.

In this case, A is called a minimal justifier of B.

The minimal justification kernel of a justification system (F,=>) is the set
K={(A,B)e2” xF:AF B}.
Two justification systems (F,=-1) and (F,=>2) are said to be equivalent if they have the same
minimal justification kernel, i.e.
{(A,B): A+1 B} = {(A,B): A+, B}.

Assumption 1 (Singleton Minimal Justifiers). For every B € F, every minimal justifier of B has
size 1. Equivalently, the justification system can be represented with a binary relation < C F x F
such that A < B iff { A} is a minimal justifier of B.

10

Remark. Intuitively, A < B means A is a prerequisite of B: if B is awarded, A must also be
awarded. Scoring thus flows upward in the DAG: from every scored node B, all <-ancestors A are
also scored.

Assumption 2 (Causality). If A < B, then A occurs earlier than B in the reference solution’s
logical order.

Theorem 1 (Bijection between order-keeping justifications and DAGs). Fix F = {Fy,...,Fy}
with the index order 1 < --- < N. Let Just be the class of justification kernels FC F x F that
satisfy Assumptions 1 and 2 (so F; = F; = i < j). Let DAG be the class of directed acyclic graphs
G = (F, E) whose edges point forward in the index order (i.e., (F;, F;) € E =i < j).

Define the maps
@ : Just — DAG, ®(F) = (F, E- :=={(A,B) : A+ B}),
U : DAG — Just, U((F,E)) =kg where At B < (A,B) € E.
Then:
(i) @ isinjective: if D(1) = O(F2), then F1=F-s.
(ii) W is injective: if W(G1) = V(G3), then G1 = Ga.

~

Consequently, ® and VU are mutual inverses and yield a bijection Just = DAG.

Proof. (i) If ®(1) = ®(I2), then their edge sets coincide: Ei, = Ei,. By definition of E|, this
is equivalent to
{(A,B): Aty B} ={(A,B) : A3 B},

hence 1 =F>.

(i) If ¥(G;1) = ¥(G>), then their kernels coincide: + g, =F g,. Unwinding the definition,
(A,B) € By <= Atp, B < Atpg, B < (A,B) € E,,
so F1 = E5 and thus G7 = Gs.

Order-keeping ensures that (=) € DAG (acyclic by Assumption 2; all edges point forward), and
that ¥(G) € Just (singletons and forward edges by construction). Finally,

U(®(H)) =k and P(¥(G)) =G
hold by definition of E and 5. O

Remark. By Theorem 1, we can see that the DAG representation is precisely the minimal encoding
of a justification system: it records only the minimal justification kernel and thus contains no redun-
dant rules. At the same time, its closure recovers the full justification system, so the DAG captures
exactly the necessary structure with no loss of information and no superfluous complexity.

B.2 Admissibility of Ancestor Closure Scoring

Intuitively, a good scoring policy would map each formula in the DAG to 1 (achieved) or 0 (not
achieved), then provide score accordingly. More formally, we define an admissable scoring policy
as follows:

Definition 4 (Admissible Scoring Policy). A mapping S : 27 < 2%, where S(M) is the set of
scored formulas for matched set M, is admissible if it satisfies:

1.Matched Inclusion: M C S(M).

2.Ancestor Closure: If B € S(M) and A < B, then A € S(M).(“B justifies A” = back-credit A)
3.Soundness: S(M) C Ach(M). (no over-credit beyond justified ancestors)

Theorem 2 (Exact Characterization of Scored Formulas). For any matched set M C F and any
admissible scoring policy S,

S(M) = Ach(M) = M U Anc(M).

11

Proof. (C). Soundness gives
S(M) C Ach(M).

(2). Matched Inclusion gives

M CS(M).
By Ancestor Closure, if B € S(M) and A < B, then A € S(M). Applying this repeatedly from
every B € M along all reverse paths implies

Anc(M) C S(M).

Hence
Ach(M) C S(M).

Combining both directions yields the equality:
S(M) = Ach(M).
O

Remark. Theorem 2 shows our Ancestor Closure Scoring is equivalent to any admissible policy.

C Evaluation Framework Details

C.1 Equivalence Matching Details

Given a standard solution (composed of multiple formulas in a DAG structure) and an LLM solution
(composed of multiple formulas), we compare every possible pair of one solution-formula and one
LLM-formula. In practice, this process runs on CPUs can be efficiently parallelized, hence its time
consumption is very small compared to other steps in our benchmarking pipeline (e.g. serialized
generation of tokens with LLMs). The rest of this section discusses in detail how we compare two
physics formulas.

As described, checking whether two physics formulas are equivalent faces several critical difficul-
ties, where we provide a more detailed discussionn:

1. Equivalence of equations. Formula Matching (i.e. checking equivalence of two formulas)
is harder than Expression Matching (i.e. checking equivalence of two expressions). Previ-
ous work for expression matching mainly use tree-based formula parsing [31]. However,
such tree-based parsing is not powerful enough to compare formulas.

For result-based judges or expression-based judges, one could check equivalent expressions
only, but checking equivalent formulas is critical for more fine-grained process-based score.

2. Constant substitutions. In physics two equivalent variables might be written in different
forms. For example, the coulomb force F' = kQq/r? can be written as F' = Qq/(4megr?):
these two expressions are equivalent, but they are in different forms. Sometimes universe
constants can be expressed in detailed numbers, for example: £ = mc? = m x (3.0 x
108m/s)?

3. Unit conversion. Values can be expressed in different units. For example, f = 50 Hz =
50 s~1, using different units results in equivalent but seemingly different formulas.

We show our proposed algorithm for formula equivalence matching (i.e., comparing whether two
equations are equivalent) in Algorithm C.2.

First, we conduct substitution of certain variables: this includes Math constants (e.g. m,e,etc.),

Physics constants (e.g. k = g7, ¢0 = ﬁ,ete.), constants or values provided in the problem

(e.g. provided length, etc.), described as ‘Stage 1’ in the algorithm.

After unifying all variables across formulas, we move forward to the iterated process of choosing
a target variable — randomly assign values to other variables — solving for the target variable. The
equivalence of solution sets are used as proxy for comparing equivalence of these two equations. In
practice, we conduct at most N,,,, = 40 iterations. In each iteration, one target variable is selected
randomly, and other variables are assigned random values in [2, 20]. Each iteration would generate

12

one out of three possible outcomes: (1) not-rejecting equivalence trial; (2) rejecting equivalence
trial; and (3) failure trial (in cases when both equations have no solutions). For each iteration,
if both equations have solutions and their solution sets are equal within some tolerance threshold
(relevant difference e = 1079%), it is classified as (1) not-rejecting equivalence trial; if their solution
number is different or their solution sets are not equal within certain threshold, this trial is classified
as (2) rejecting equivalence trial; while if both equations provide no solutions, such trial is classified
as (3) failure trial. We continue to run iterations until we have enough successful solutions (at least
Ngyee = 10) or we reach the maximum number of iterations (NV,,,, = 40). Then we reject the
equivalence if the number of successful trials is less than Ng,.. = 10 or there exists a trial that is a
rejection equivalence trial. 2.

Here we discuss some of these design choices.

More-than-one Iterations. In common cases, given sufficient tolerance, the p — value of one
iteration is small enough to reject the equivalence of non-equivalent equations. In practice, the
tolerance is set to 10~% considering possible computing errors. However, this would lead to false
non-rejecting in special cases, when using only one iteration. Consider these two formulas: f1 :
x=Ag+Ait?6and f2: 2 = Ay + 24,126 where Ag ~ Ay ~ 1,t ~ 1,0 ~ 1078, If we select =
or Ay as target variable and randomly assign values to other variables, the difference in solutions of
these two formulas would lie within the tolerance, and hence it cannot reject nonequivalence of these
two formulas. In this case, using A; or ¢ as the target variable would reject the equivalence, making
false non-rejecting rate of one iteration be around 0.5, which is way larger than what we expect. In
our multi-iteration settings, the false non-rejecting rate of the 10-iteration examine process would
be around 10~ in this case, which is satisfactory enough.

Positive Sampling Intervals. Here we randomly sample most variables in a positive interval, i.e.,
[2, 20]. This is because most variables in physics problems are provided as positive ones, and using
negative intervals for sampling may lead to false rejections. For example, T = 27w+/a3/GM and
T = 2ma\/a/GM (Kepler’s Third Law) are considered equivalent in most physics settings: the
semi-major axis a of planet orbits should always be positive. Here, we simply set our sampling
interval to be positive to avoid false rejections caused by similar reasons.

2Some optimizations for reducing time consumption are also used in practice (e.g. rejecting equivalence of
formulas once after the first rejecting equivalence trial), which are trivial and have no impact to the output of
this algorithm, hence we omit them here for clarity

13

C.2 Algorithm of Equivalence Matching

Algorithm 1: Equivalence Check for Two Physics Equations

Input : Two equations E1, E5 (symbolic); constants map C (symbol — symbol or value);
sampling range R = [a, b]; tolerance ¢; limits Tpax (time), Niax (trials), Nyyee (min
successful trials), Neq (min equalities).

Output: Equivalent € EQUIVALENT, INEQUIVALENT; diagnostics (1eq, Mneq, Mfail)-

Stage 1: Constant Variable Substitution; Procedure SUBSTITUTECONSTANTS(E, C)

Substitute all string-valued entries in C into £/; // units/expressions; one pass,
no recursion
Substitute all numeric-valued entries in C into E ; // e.g., e, co, Tf

return updated E
E; < SUBSTITUTECONSTANTS(E1,C); Ea < SUBSTITUTECONSTANTS(E>,C);

Stage 2: Equivalent Check by Solving in Random Conditions;

Neq <= 0,3 NMneq < 0,3 Ngait <= 0,3k < 0; V' < free variables appearing in £} U Fy;

Function SOLVETARGET(FE, x*, 0, Tihax)

| return solution set S of F for target x* under assignment 6 to V' \ z* within time T}y
Function ALLCLOSE(S;, Ss,¢€)

| return TRUE iff the two finite sets match pairwise within relative/absolute tolerance €
while £ < Ny, do

k « k+ 1; pick * ~ Unif(V) ; // random target variable
sample 6(v) ~ Unif(R) foreachv € V' \ z* ; // random values for non-target
variable

81 < SOLVETARGET(E1, 2%, 0, Tinax) ;
Sy < SOLVETARGET(Es, z*, 0, Tinax) ;
if S1 or Ss is nonempty then

if ALLCLOSE(S1, 52, ¢) then
| Teq ¢ Neq + 13 // current trial does not reject equivalence
else
\ Nneq < Mneq + 13 // current trial rejects equivalence
end
else
Nfail < Ngail + 1 // current trial fails and cannot be used for
judging equivalence
end
if (Neq + Mneq) > Nuce and k > Nyye then
| break
end
end
Decision; if n.q > N, and n,.q = 0 then
return EQUIVALENT ; // Enough valid trials and no trial rejects
equivalence
end
else

return INEQUIVALENT ; // Exists trial rejecting equivalence or no enough
valid trials

end

14

C.3 Algorithm of Scoring Pipeline

Algorithm 2: PRISM-DAG: Evaluation via DAG-Structured Rubric (3 Steps)

Input : Reference DAG G = (V, E); each node v € V has formula ¢(v) and prerequisite set
Pred(v); student solution text S.
Output: Score s € [0, 1]; matched set M C V; achieved set A C V.

Step 1: Extract and Normalize Student Formulas;

F + ExtractFormulas(S) ; // raw math expressions
F « 0
foreach f € F' do

g < Canonicalize(f) ;

if IsValid(g) then

| F+ FU{g}

end

end

Step 2: Match to Reference DAG (Reference Nodes Only);
M « 0;
foreach v € V do
if 3g € F s.t. Equivalent(¢(v), g) then
| M+~ MU{v}
end
end

Step 3: Dependency Tracing and Scoring;
A« 0
Procedure MARKANCESTORS ()
if u ¢ A then
A+ Au{u};
foreach p € Pred(u) do
| MARKANCESTORS(p)
end
end
foreach v € M do
| MARKANCESTORS(v)
end
s |Al/ V]

return (s, M, A);

C.4 Scoring Example

Figure 3 illustrates an example of how a student’s (or LLM’s) solution is scored using formula
matching and DAG-based back-propagation scoring.

Step A (Formula Matching): each formula in the student’s solution is aligned one-to-one with the
reference solution, with equivalent formulas connected by green lines. For clarity, not all formula
pairs are drawn. Grey arrows denote the dependency relations (DAG) between formulas in the
reference solution.

Step B (Back-Propagation scoring): once a derived formula in the DAG is matched, correctness
is propagated backwards along the dependency graph, allowing upstream formulas to be credited
as well. Correctly credited formulas are highlighted in orange, and the back-propagation path is
indicated by orange arrows.

Step C (Score Calculation): the final score is calculated by adding the points of correctly credited
formulas. In this example, the student achieves a score of 90/100.

15

A. Formula Matching B. Back-Propagation Scoring C. Score

Student solution Reference solution
2 2
s =(Ex+m,) —pk O — s=(Ex+m,) —pk (20") 20'
WSER ’
Ve Ss o ’
LSRN ~o ‘
SN RS
L T Tk = Ex —mg (20 +20'
2 2 \ SO 4
2m, Ty = (mg + 2my)? — (m, + my)’ N " .
2 <,
A
\\ ’ AN 2
n . N 7. = (ma+2mo? = (my + my) (20) +20'
RV . i
—— RN .
e AR <
votcosd; + (B2)) 7.7 P
B 7] ’ ’ N
’ P sind!
. 1 .
. ., Y tanf =—— & + 30
S . A S (1) (30)
/I/ - AY
o .
3 [m —4m,2 o’ \\ +0

O merctan(——p—) [T T T T s -eoao Otmax =T (10) Oymar=m (10 | | ====1

907100

Figure 3: Scoring pipeline example. A) Formula matching aligns student and reference formulas.
B) Back-propagation grading highlights correctly credited formulas along the dependency DAG. C)
The final score is computed as the sum of credited points, yielding 90/100 in this case.

D Dataset Curation Details

D.1 Data Source and Collection

Our primary source of questions and detailed step-by-step solutions is the book Major American
Universities Ph.D. Qualifying Questions and Solutions. The problems were extracted from PDF
format, reorganized in Markdown for readability, and further converted into JSON for structured
storage. Notably, this book has been widely adopted as a training resource for advanced physics
competitions, ensuring both the difficulty and the pedagogical value of the collected problems.
Problems requiring purely textual answers (e.g., “Describe ...”, “Is ... stable?”) were set aside
in a separate collection and are excluded from the current framework.

D.2 Three-Step Rewriting Pipeline Details
To ensure consistency and evaluability, each sample is processed through a three-stage pipeline:

1. Formula normalization. All mathematical expressions are rewritten into a uniform canon-
ical format in I&TEX. This normalization supports precise symbolic equivalence checking,
preventing mismatches due to notational variation. For numerical problems, explicit rules
on the number of significant figures are enforced, ensuring consistent standards across all
answers.

2. Context clarification. Each problem statement is rewritten to make all variable definitions
and final answer requirements explicit. Where the original text leaves meanings implicit
(e.g., undefined symbols or missing constants), clarifications are added to resolve ambi-
guities. The result is a self-contained problem statement that can be understood without
external assumptions.

3. DAG construction. Each worked-out solution is converted into a directed acyclic graph
(DAG) of formulas according to the requirement in Section 2.1. We first verify if it satisfies
the requirements via rule-based methods before the LLM-based verification.

Verification and Quality Control At the end of each stage, we employ an LLM-based verifica-
tion module to check compliance with formatting, clarity, and dependency rules. If the verifica-
tion fails—such as when ambiguities persist in variable definitions or the DAG contains extraneous
steps—the stage is repeated with targeted corrective feedback. This iterative loop of generation and
verification ensures robustness, yielding uniformly high-quality results across the dataset.

Fine-Grained Enhancements Beyond the main pipeline, several additional refinements were sys-
tematically applied:

16

* Numerical precision. For problems with numerical answers, explicit enforcement of
significant-figure rules was introduced in the problem statement.

» Explicit constants. All physical constants and context-dependent variables appearing in
either the problem or the solution were explicitly defined in the rewritten version.

* Answer formatting. Uniform formatting standards for final answers were applied to the
problem context, including required units and symbolic representations.

Individually, these refinements may appear minor; collectively, they substantially improve the
machine-actionability, reliability, and pedagogical clarity of the dataset.

Formula Normalization Context Clarification DAG Construction
Pass Verifier Pass Verifier

e Iy, > 1. Convert solutions into DAGs
2. Specify final answer requirements

 E—
2. Enable symbolic equivalence checking 3. Add clarifications for ambiguities 2. Verify DAGs via rule-based checks
3. Enforce significant-figure rules 4. Make statements fully self-contained 3. Cross-check with LLM verification
Rejected by Verifier Rejected by Verifier Rejected by Verifier

Figure 4: Overview of the Three-Step Rewriting Pipeline

1. Rewrite expressions into \LaTeX{} format.

D.3 Prompts for Three-Step Rewriting Pipeline

Here are all the prompts we adopt for rewriting.

Format Instructions

1) One Formula Per Block

- Each formula must be wrapped in its own $$. . . $$ block.

-Avoid chaining multiple equalities or expressions in a single block.

-Exception: Chained variable comparisons in inequalities are allowed only if explicitly required.
2) No Terminal Punctuation

-Do not end any formula block with punctuation marks (e.g. ,, ., ;).
3) SI Unit Format

-Always write units using \unit{} to ensure proper parsing (e.g., \unit{m}, \unit{m/s}). Notice
that the numbers should be put outside the unit, i.e. use $3\unit{km/h}$ instead of $\unit{3km/s}$.
4) Strip Extra Formatting Commands
REMOVE the following:

-Delimiters: \left, \right

-Fonts/Styles: \mathrm, \mathit, \mathbf, \text

-Spacing: \,, \;, \!, 7, \quad, \qquad

-Multi-line: \begin{aligned}...\end{aligned}
5) Standard Calculus Notation
Use canonical forms for all calculus expressions:

-Derivatives: \frac{dy}{dx}

-Partial derivatives: \frac{\partial f}{\partial x}

-Integrals: \int_0"t v dt (omit spacing commands)

-Summations: \sum_{i=1}"n x_i

Rewriting Prompt - First Stage

You are an expert in Physics, and you are going to rewrite a given problem and solution into a standard
form. The formatting requirements are below:

Format Instructions

Moreover, you should make sure that the answers can be graded correctly, you should make sure the
written form of the final answer is unified, which means: 1) You should make sure all variables needed
in the solution, no matter in the final answer or in the intermediate steps, are defined or specified in the
problem, either in the context or in the subproblems. e.g. ’You should use E}, for kinetic energy, E, for
potential energy, E for total energy, M for the mass of the central body, m for the mass of the satellite, R
for the radius of the orbit.’

2) You should make sure all variables and concepts are defined clearly in the problem.

17

3) For all accurate values, don’t write them in decimals but fractions instead. For example instead of
y = 2.25x you should write y = %ac. However if you believe the value is approximate (for example you
think 2.25 is not an accurate value) then you should leave it as decimals.

4) You should try to avoid putting a representation in a formula block, but instead use equations or inequal-
ities. For example instead of writing ”The maximum energy is 2FE”, you should write F,,q.. = 2FEp and
put the definition of Ey,q. in the problem context. Even if it is hard to represent it with a single vari-
able, you should write ans = - - -, and mention that the final answer should be written in this form in the
problem context.

Now according to the requirements, please rewrite the problem and solution below.

The sample

Your output should be in the same json format, keeping all entries even if unmodified. Don’t
forget any single entry or your output would be invalid. Your response should be formatted as
¢ ¢“json\n<your_rewritten_json>\n‘‘‘, and nothing other than the rewritten json should be in your
output.

Rewriting Prompt - Second Stage

You are an expert in Physics, and you are going to rewrite a given problem to make it clearer. More
specifically, we wish to clarify the requirement for the final answer of each problem, which means:

1) You should add an entry ’final_answer_form’ which has three options ’algebraic’, *numerical’ and
’text-based’ representing the form of the final answer. ’text-based’ means the final answer is not a cal-
culation result or a derived formula, but instead a text description or statement. Notice that this only
depends on the final answer in the standard solution, therefore each subquestion can only have one fi-
nal_answer_form. If this is the same for all subproblems, you may write it as an entry of the whole
problem, else you may add an entry for each subproblem separately. In any way, this should be a separate
entry as item[’final_answer_form’] for the whole problem or item[’subquestions’][i][final_answer_form’]
for the i-th subquestion.

A hint on how to decide if an answer is algebraic or numerical: if the answer is a formula with mul-
tiple variables and each side of the formula has variables, it is algebraic; if there is only one vari-
able or variables only exist in one side, it is numerical (e.g. $v_s=3\times 10°7\unit{m/s}$,
$\rho_{min}\approx 1.5\times 107°3 \unit{kg/m~3}$ are both numerical answers.) Only the fi-
nal formula would decide if it is algebraic or numerical.

2) You should add an entry ’final_answer_instructions’ based on the final answer form. Similar to ’fi-
nal_answer_form’, it should be either an entry of the whole problem (if the instruction is suitable for the
whole problem) or separate entries for each subquestion. The instruction should contain the following
information based on the final answer form:

a) If the final answer is algebraic, you should specify the format of the final answer in the problem, e.g.,
’Your final answer should be given in the form of v,,in, = ..., and your response should be written with
H,T,m,g’. The variable requirement for the final answer should fully match the final answer in the
standard solution and make there’s no redundant variables (for example, if Fy = %mvz, then you should
at most provide two variables among Ey, m, v for the final answer)

b) If the final answer is numerical, you should instead write ’Your final answer should express ... as a
numerical value’, and if the final answer is an approximate value, you should also specify the number
of significant figures needed according to the standard answer. Moreover you should add an entry like
’significant_figures’: 3 to the problem or subproblem.

¢) If the final answer is text-based, you should try to restrict the form of final statement, for example you
should write *Your final answer should be *The equilibrium is stable/unstable.”, so that we can seek for
the sentence to judge the correctness of the student answer. Now according to the requirements, please
rewrite the problem and solution below.

The sample

Your output should be in the same json format, keeping all entries even if unmodified, and add your new
entries as required. Don’t forget any single entry or your output would be invalid. Make sure you output
a valid json. DO NOT put any hint for the final answer in the instruction! Only give some information to
regularize the format!

Your response should be formatted as json\n<your_rewritten_json>\n
than the rewritten json should be in your output.

[ccc

, and nothing other

18

Rewriting Prompt - Third Stage

You are an expert in Physics, and you are setting up a grading standard for a given problem. More
specifically, your job is to find the ’core formulas’ in the solution. These core formulas should reflect some
significant progress in solving the problem and thus you think they are worth some credit. Moreover, you
have to organize them in a given format to set up a grading standard.

1) You should organize the core formulas in a list, each formula represented by a dict including the
following entries:

”index”: the index of the formula, counting from 1.

“formula”: the content of the formula, which should be a string
wrapped with double—dollar ($$) symbols.

”dependency ”: this is the crucial part of the grading standard. The
dependency should be a list of indices showing which previous
formulas this one depends on, which indicates without those
previous formulas this formula can’t be derived. Notice that only
direct causalities should be considered, for example if A leads to
B and B leads to C, you don’t need to put A in the dependency of
C. A formula can never depend on another formula after it.

“is_final_answer”: (optional) this is true if this formula is the
final answer of a subproblem or the whole problem. The last
formula among all should always be a final answer.

}

2) Every formula in the grading standard must exist in the original solution, you should not create any new
formula in the grading standard, and you should not make any modification to the formulas: just directly
copy them from the solution.

3) You should ensure that for an isolated question or subquestion, if the final answer is correct, the student
should receive full score for it. That means, any formula should be 'reachable’ from the final answer (or
at least the final answer of one subproblem) in the dependency graph. If the final answer contains more
than one formuls, you may simply mark multiple formulas as final answers.

Below are some examples for you to better understand the requirement.

Now, according the requirement, please write the grading standard for the problem and solution below.
The sample

Reviewing Prompt - First Stage

You are a professor, and now you should review whether your assistant correctly rewrote the problem and
solution into a standard form. More specifically, he should make sure the written form of the final answer
is unified, so that the student answers can be graded correctly. Below was your instruction to him which
he should satisfy:

Problem Requirement as in the rewriting prompt

Moreover, the formulas should also satisfy the following formatting requirements:

Format Instructions

You should return something like ’<judge>valid</judge><reason>...</reason>’ or
’<judge>invalid</judge><reason>...</reason>’. You may think before your final output.
Keep the reason concise.

Below are some examples for you to understand it better:

Now, according to the instructions, you should decide if your assistant has rewritten the problem and
solution correctly. Below is the problem and solution rewritten by your assistant:
The Sample

The reviewing prompt for the second and third stage are basically the same with the first stage, only
changing the requirement according to that in the rewriting prompt.

19

D.4 Rewriting Examples

PRISM-PHYSICS Rewriting Example - Stage 1

Problem: A bucket of mass M (when empty) initially at rest and containing a mass of water
is being pulled up a well by a rope exerting a steady force P The water is leaking out of the
bucket at a steady rate such that the bucket is empty after a time 7 .Find the velocity of the
bucket at the instant it becomes empty.

Original OCR Solution:
Let the total mass of the bucket and water be M’ . Then
mt
M =M - —
+m T

where m is the initial mass of the water. As the leaking water has zero velocity relative to the
bucket,the equation of motion is

dv

M—=P—-M
dt 9,
or
P— My P
Y M (M tm—mzt J)
The velocity of the bucket at the instant it becomes empty is
Pdt PT M+m
)j= | ——— —gT = —1 - g7 .
! /OM'+m%”t g m n(M) g
Error:

1. The problem statement uses 7, but the recognized solution incorrectly shows 7'
2. In the final equation, the minus sign — was misrecognized as a multiplication symbol .

Rewritten Solution :

Let the total mass of the bucket and water at time ¢ be M.

t
M =M —|—m—ﬁ
-

The equation of motion for the bucket (plus remaining water) is

dv
M==pP—-M
dt J

Rearranging gives

P
d”—<m‘g>dt

The velocity v of the bucket at time ¢ = 7 (when empty) starting from rest is

/T Pdt
Vempty = - —gT
emety = M t+m— =t Y

Evaluating the integral yields

Pr M+m
Vempty = g In U — g7

where Ve pty 18 the velocity of the bucket at the instant it becomes empty.

20

PRISM-PHYSICS Full Sample Example

”id”: 1001,

“context”: A static charge distribution produces a radial electric field given by\n$$\n\
mathbf{E} = A \frac{e*{-b r}}{r} \mathbf{e} _r\n$$\nwhere $AS is a constant with
units \unit{V\cdot m}, b is a constant with units \unit{m*{-1}}, and r is the radial
distance from the origin in \unit{m}. You should use ρ for the charge density in \
unit{C/m"3}, ε_0 for the vacuum permittivity in \unit{C"2/(N\,m"2)}, $\
delta(\ mathbf{r})$ for the Dirac delta function, and Q for the total charge in \unit{C}.
When asked for the total charge, provide your answer as\n$$\nQ=...\n$$\nwhere Q
denotes the total charge.”,

“source”: 7,

“images”: [

“caption”: “Fig. 1.17,
99, 9% 9

”location’: ”..

}
I;
”subquestions”: [

“letter”: a”,

”subproblem”: ”’Find the charge density ρ (in \unit{C/m"3}) that produces the
given electric field, including both the regular part as a function of r and any singular (
delta function) contributions at the origin. State your result for ρ explicitly. You may
sketch its form with reference to Fig. 1.1.7,

solution”: ”The charge density ρ is given by Gauss’s law in differential form:\
n$$\n\rho = \varepsilon_0 \nabla \cdot \mathbf{E}\n$$\nThe electric field is\n$$\n\
mathbf{E} = A \frac{e"{-b r}}{r} \mathbf{e}_r\n$$\nThe divergence in spherical
coordinates for a radial function $f(r) \mathbf{e} r$ is\n$$\n\nabla \cdot (f(r) \mathbf{
e}.r) = \frac{1}{r"2} \frac{d}{dr} (r"2 f(r))\n$$\nFor $f(r) = A \frac{e*{-b r}}{r}$, we
compute\n$$\nf(r) = A \frac{e {-b r} }{r}\n$$\n$$\nr*2 f(r) = A r e*{-b r}\n$$\n$$\
n\frac{d}{dr}(Are’{-br}) = A \frac{d}{dr}(r e*{-b r})\n$$\n$$\n\frac{d}{dr}(re
{-br}) =e{-br} —bre{-br}\n$$\n$$\n\frac{d}{dr}(Are’{-br})=Ae{-br} -
Abre {-br}\n$$\n$$\n\nabla \cdot \mathbf{E} = \frac{1}{r"2} (Ae*{-br}-Abr
e*{-b r})\n$$\n$$\n\nabla \cdot \mathbf{E} = \frac{A e*{-br}}{r"2} — \frac{Abe
“{-br}}{r}\n$$\nHowever, the Laplacian of $\frac{1}{r}$ in three dimensions also
gives a delta function:\n$$\n\nabla"2 \left(\frac{1}{r} \right) = -4 \pi \delta(\mathbf{
r}\n$$\nSo the divergence, including the singularity at the origin, is\n$$\n\nabla \cdot
\mathbf{E} = —A b \frac{e*{-b r} }{r"2} + 4 \pi A \delta(\mathbf{r})\n$$\nTherefore,
the charge density is\n$$\n\rho = —\varepsilon_0 A b \frac{e"{-br} }{r"2} + 4 \pi \
varepsilon_0 A \delta(\mathbf{r})\n$$\nThe final answer should be written as\n$$\n\
rho = —\varepsilon_0 A b \frac{e"{-b r} }{r"2} + 4 \pi \varepsilon_0 A \delta(\ mathbf{r
H\n$$”,

”final_answer_form”: "algebraic”,

”final_answer _instructions”: ”Your final answer should be given in the form $\rho = ...
$, and your response should be written only with $A, b, r, \varepsilon_0, \delta(\mathbf{r
Ds.

)

“letter”: ’b”,

”subproblem”: ”What is the total charge Q (in \unit{C}) present for the above
charge density? Express Q using the variables defined. Write the final answer using the
form $Q=...$”,

solution”: ”The total charge Q is given by\n$$\nQ = \int_{\mathbb{R}"3} \rho
dV\n$$\nWith $\rho = —\varepsilon_0 A b \frac{e"{-b 1} }{r"2} + 4 \pi \varepsilon_0 A
\delta(\mathbf{r})$, we have\n$$\nQ = \int_{\mathbb{R}"3} \Bigl[-\varepsilon_0 A b

21

\frac{e"{-b r}}{r"2} \Bigr] dV + \int_{\mathbb{R}"3} 4 \pi \varepsilon_0 A \delta(\
mathbf{r}) dV\n$$\nThe first term becomes (working in spherical coordinates):\n$$\n\
int_{\mathbb{R}"3} —\varepsilon_0 A b \frac{e"{-b r}}{r"2} dV = —\varepsilon.0 A b \
int_{0}"{\infty} \int_{0}*{\pi} \int_{0}"{2\pi} \frac{e"{-b r} }{r"2} r"2 \sin\theta d\
phi d\theta dr\n$$\n$$\n= —\varepsilon_0 A b \int_{0}"{\infty} e"{-b r} dr \int_{0}"{\
pi} \sin\theta d\theta \int_{0}"{2\pi} d\phi\n$$\n$$\n\int_{0}"{\infty} e’ {-br} dr=\
frac{1}{b}\n$$\n$$\n\int_{0}"{\pi} \sin\theta d\theta = 2\n$$\n$$\n\int_{0}"{2\pi}
d\phi = 2\pi\n$$\n$$\n—\varepsilon_0 A b \cdot \frac{1}{b} \cdot 2 \cdot 2\pi = -4\
pi \varepsilon_0 A\n$$\nThe second term is\n$$\n\int_{\mathbb{R}"3} 4 \pi \
varepsilon_0 A \delta(\mathbf{r}) dV =4 \pi \varepsilon_0 A\n$$\nTherefore,\n$$\nQ
= —4\pi \varepsilon_0 A + 4\pi \varepsilon_0 A\n$$\n$$\nQ = 0\n$$”,
“final_answer_form’: “numerical”,
”final_answer_instructions”: ’Your final answer should be $Q=0%.”
}
I
”grading_standard”: [

“index”: 1,
“formula”: ”$$\rho = \varepsilon_0 \nabla \cdot \mathbf{E}$$”,
”dependency”: []

b}

“index”: 2,
“formula”: ”$$\mathbf{E} = A \frac{e*{-b r}}{r} \mathbf{e} r$$”,
“dependency’: []

)

”index’”: 3,

”formula”: ’$$\nabla \cdot (f(r) \mathbf{e} r) = \frac{1}{r"2} \frac{d}{dr} ("2 f(r
)S”,

”dependency”: []

b}

“index”: 4,
“formula”: "$$f(r) = A \frac{e"{-b 1} } {r}$$”,
“dependency’: [

2

]
}7
{
“index”: 5,
“formula™: "$$r°2 f(r) = Are™{-br}$$”,
“dependency’: [
4

]
b
{

”index’’: 6,
“formula”: ”$$\frac{d}{dr}(A re’{-br}) = A \frac{d}{dr}(r e’ {-br})$$",
“dependency”’: [

5

1
|7
{
”index’: 7,
“formula”: "$$\frac{d}{dr}(re*{-br})=e{-br} —bre’ {-br}$$”,
”dependency”’: []

22

b
{
”index”: 8,
“formula”: "$$\frac{d}{dr}(Are’{-br})=Ae{-br} —Abre{-br}$$”,
“dependency’: [
7
1
}
{
”index”: 9,
“formula”: ”$$\nabla \cdot \mathbf{E} = \frac{1}{r"2} (Ae*{-br} —Abre*{-br
H$$”,
“dependency’: [
s
8
1
3
{
”index’”: 10,
“formula”: ”$$\nabla \cdot \mathbf{E} = \frac{A e"{-br}}{r"2} - \frac{A b e"{-
br}}H{r}$$”,
“dependency’: [
9
]
b
{
”index™: 11,
”formula”: ”$$\nabla*2 \left(\frac{1}{r} \right) = —4 \pi \delta(\ mathbf{r})$$”,
“dependency’: []

)

”index’: 12,
“formula”: ”$$\nabla \cdot \mathbf{E} = —A b \frac{e"{-br}}{r"2} + 4 \pi A \
delta(\mathbf{r})$$”,
“dependency’: [
10, 11
]
b
{
”index”: 13,
”formula”: ’$$\rho = —\varepsilon_0 A b \frac{e"{-b r} }{r"2} + 4 \pi \varepsilon_0
A \delta(\mathbf{r})$$”,
”dependency”: [

s

12

”is_final_answer”: true
b
{
”index’’: 14,
“formula”: ”$$Q = \int_{\mathbb{R}"3} \rho dV$$”,
”dependency”: []

b}

”index’: 15,

23

“formula”: ”$$Q = \int_{\mathbb{R}"3} \Bigl[—\varepsilon_0 A b \frac{e*{-b r} }{
"2} \Bigr] dV + \int_{\mathbb{R}"3} 4 \pi \varepsilon_0 A \delta(\mathbf{r}) dV$$”,

“dependency’: [

13,
14
1
1
{

”index’: 16,

“formula”: ”$$\int_{\mathbb{R}"3} —\varepsilon_0 A b \frac{e*{-br}}{r"2} dV =
—\varepsilon_0 A b \int_{0}*{\infty} \int_-{0}"{\pi} \int_{0}"{2\pi} \frac{e"{-br}}{r
"2} 12 \sin\theta d\phi d\theta dr$$”,

”dependency”: [

15

1

b
{

”index’: 17,

“formula”: ”$$= —\varepsilon_-0 A b \int_{0}"{\infty} e"{-b r} dr \int_{0}"{\pi} \
sin\theta d\theta \int_{0}"{2\pi} d\phi$$”,

“dependency’: [

16

]

b
{

”index’”: 18,
“formula”: ”$$\int_{0}"{\infty} e*{-b r} dr = \frac{1}{b}$$",
“dependency”’: []

]

”index”: 19,
“formula”: ”$$\int_{0}"{\pi} \sin\theta d\theta = 2$$”,
”dependency”: []

b}

”index’’: 20,
“formula”: ”$$\int_{0}"{2\pi} d\phi = 2\pi$$”,
“dependency’: []

)

”index”: 21,
”formula”: ”$$—\varepsilon_0 A b \cdot \frac{1}{b} \cdot 2 \cdot 2\pi = —4\pi \
varepsilon_0 A$$”,
”dependency”: [
17,
18,
19,
20
]
b
{
”index”: 22,
“formula”: ’$$\int_{\mathbb{R}"3} 4 \pi \varepsilon_0 A \delta(\mathbf{r}) dV =
4 \pi \varepsilon_0 A$$”,
”dependency”: [
15
]

24

b
{

”index’: 23,
“formula”: "$$Q = —4\pi \varepsilon_0 A + 4\pi \varepsilon_0 A$$”,
“dependency’: [
21,
22
1
}
{

”index’’: 24,
“formula”: ”$$Q = 0$$”,
”dependency”: [
23
1,
”is_final_answer’’: true
}
]
}

E Dataset Statistics

E.1 Difficulty Annotation Details

We assign a composite difficulty label by combining LLLM-based annotations and structural DAG
complexity:

LLM-Labelled Conceptual and Computational Scores. Each problem is evaluated along two
dimensions using an LLM: C7, which measures conceptual depth (the underlying physical principles
and modeling complexity), and Cs, which captures the computational burden (the extent of algebraic
or numerical effort required). Both dimensions are rated on a three-level ordinal scale (1-3), with
higher values indicating greater complexity.

Prompt for Difficulty Annotation

You are an experienced Physics Olympiad coach and grader.

Classify Olympiad-level physics problems using TWO dimensions (1-3 each):
C1 Conceptual depth (principles & modeling complexity)

C2 Computation burden (algebra/numeric length, error-prone)

Rules:

- Do NOT solve or judge correctness; only estimate difficulty.

- Use the provided SOLUTION only to estimate step depth/concepts.
- Do not use outside tools or knowledge beyond the given text.

- Keep outputs concise.

Output STRICT JSON:

{
"scores": {"Ci": 1-3, "C2": 1-3},
"rationales": {"C1i": " <= 20 words", "C2": " <= 20 words"},
"reasoning": "2-3 concise sentences",

"confidence": 0.0-1.0

}
PROBLEM: {problem}

SOLUTION (only for estimating steps/concepts; do NOT grade correctness): {solution}

25

Entropy complexity of the solution DAG. We compute an entropy-based structural complexity by
treating the branching at each layer as the search space:

Depth

e =) log(Widthy).
=1

This value is discretized into C3 € {1, 2, 3} using thresholds 7y, 7o.

Composite difficulty. We define a composite score S = C; + Cy 4+ C3, and map it into three
difficulty levels: Easy, Medium, and Hard. This composite annotation captures both physics/content
difficulty and structural reasoning complexity, providing a stratified view of model performance.

E.2 Domain Categorization Details

The dataset covers a wide range of topics, organized hierarchically into 7 key physics domains and
28 subtopics:
* Mechanics: Newtonian Mechanics, Analytical Mechanics, Special Relativity

* Electromagnetism: Electrostatics, Magnetostatics and Quasi-Stationary Fields, Electro-
magnetic Waves

* Optics: Geometrical Optics, Wave Optics, Quantum Optics

* Atomic, Nuclear, and Particle Physics: Atomic and Molecular Physics, Nuclear Physics,
Particle Physics, Other

* Thermodynamics and Statistical Physics: Thermodynamics, Statistical Physics

* Quantum Mechanics: Basic Principles and One-Dimensional Motions, Central Poten-
tials, Spin and Angular Momentum, Motion in Electromagnetic Fields, Perturbation The-
ory, Scattering and Transitions, Many-Particle Systems, Other

* Solid State Physics and Miscellaneous Topics: Solid State Physics, Relativity, Other

26

F Experimental Details for PRISM-PHYSICS

F.1 Experimental Setups

We consider two experimental settings: a text-only setting, where the problem statement is presented
as plain text, and a multimodal setting, where relevant diagrams or figures are included alongside
the text.

Models. We evaluate a diverse set of 17 leading LLMs, as listed in Table 1. Each model is ac-
cessed via its official API using standardized decoding parameters. By default, we set the maximum
token output to 8096, temperature to 0.0, for all models where these settings are applicable. For
reasoning models, the default reasoning effort is chosen as medium. Model-specific parameters are
specified in the table.

Model Reasoning Model Engine Name Source

Open-source Chat LLMs

1 Deepseek-V3 [7] F deepseek-v3 Link
2 Qwen2.5-72B-Instruct-Turbo [32] F Qwen2.5-72B-Instruct-Turbo Link
3 Llama-4-Scout-17B-16E [24] F Llama-4-Scout-17B-16E-Instruct Link
4 Llama-3.3-70B-Instruct-Turbo [1] F Llama-3.3-70B-Instruct-Turbo Link
Open-source Reasoning LLMs
5 Deepseek-R1 [7] T DeepSeek-R1 Link
6 GPT-OSS-20B [28] T GPT-0SS-20B Link
7 GPT-OSS-120B [28] T GPT-0SS-120B Link
8 Qwen3-235B-A22B-Instruct [33] T Qwen3-235B-A22B-Instruct Link
Proprietary Chat LLMs
9 Claude-sonnet-4 [2] T claude-sonnet-4-20250514 Link
10 GPT-40-mini [25] F gpt-4o-mini Link
11 GPT-4.1 [26] F gpt-4.1 Link
Proprietary Reasoning LLMs
12 Gemini-2.5-Flash [12] T gemini-2.5-flash Link
13 Gemini-2.5-Pro [13] T gemini-2.5-pro Link
14 GPT-5 [27] Low/Medium/High gpt-5 Link
15 GPT-5-mini [27] Low/Medium/High gpt-5-mini Link
16 Grok-4 [38] T grok-4 Link
17 o04-mini [29] T o4-mini Link
Multimodal Large Language Models
18 Gemini-2.5-Pro [13] T gemini-2.5-pro Link
19 Gemini-2.5-Flash [12] T gemini-2.5-flash Link
20 GPT-5[27] Medium gpt-5 Link
21 GPT-5-mini [27] Medium gpt-5-mini Link

Table 1: List of LLMs evaluated in our experiments.

Evaluation Framework Baselines. For comparison, we evaluate against: (1) LLM-as-Judge
Scoring, where an LLM evaluates both the final answer and the solution process given grading
prompts(following the evaluation setting of SeePhys [40]); (2) PSAP-S [43], an existing process-
based framework with strong step-format and ordering assumptions, replicated per its original im-
plementation for fair comparison.

27

https://huggingface.co/deepseek-ai/deepseek-v3
https://huggingface.co/Qwen/Qwen2.5-72B-Instruct
https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://huggingface.co/deepseek-ai/DeepSeek-R1
https://huggingface.co/open-source/GPT-OSS-20B
https://huggingface.co/open-source/GPT-OSS-120B
https://huggingface.co/Qwen/Qwen3-235B-A22B-Instruct
https://www.anthropic.com/news/claude-4
https://platform.openai.com/docs/models/gpt-4o-mini
https://platform.openai.com/docs/models/gpt-4.1
https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-flash
https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-pro
https://platform.openai.com/docs/models/gpt-5
https://platform.openai.com/docs/models/gpt-5-mini
https://x.ai/news/grok-4
https://platform.openai.com/docs/models/o4-mini
https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-pro
https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-flash
https://platform.openai.com/docs/models/gpt-5
https://platform.openai.com/docs/models/gpt-5-mini

Inference Prompt. To guide the models in generating reasoning-augmented responses, we design
zero-shot COT prompts that encourage step-by-step derivations. Below is the prompt we use for
inference:

Inference Prompt

You are a Physics expert. You are going to solve a physics problem and be graded accordingly. Here are
some instructions you should follow to make sure your answer is graded correctly: 1. You answer should
be written in markdown format. 2. You should provide your key steps and final answer in a clear and
concise manner using double-dollar signs for formulas (e.g.,

Eo =mgH + %mwg
). However, put your definitions or uncrucial steps in single dollar signs (e.g., 'E is the energy of the
system’, or ’according to Newton§ second law, F' = ma’). 3. Use less text and more formulas to
explain your reasoning. 4. Your answer should satisfy the format below: Format Instructions Here is the
problem context: the problem Please provide your solution step by step, and then give your final answer.
You should try to use the variables given in the problem and avoid using new variables unless necessary.
You should strictly follow the formatting requirements introduced in the problem for the final answer.

F.2 Additional results

F.2.1 Main results

Table 2: Step-level Accuracy and Final-Answer Accuracy across difficulty levels (Easy, Medium,
Hard, and Avg.) for evaluated models.
Model Reasoning Easy Medium Hard Avg.

Final Step Time Final Step Time Final Step Time Final Step Time
Open-source Chat LLMs

3142 484 4522 21.12 3984 67.87 15.6 33.99 84.02 234 4136 64.04
21.34 3517 2376 7.19 1992 2992 3.07 1353 3254 1132 23.81 28.36
18.38 31.84 8.61 899 19.73 10.79 435 1647 11.63 11.18 2335 10.21
19.72 30.54 57.22 8.16 1583 5836 413 1033 5999 1135 19.78 58.40

Deepseek-chat
Qwen2.5-72B-Instruct-Turbo
Llama-3.3-70B-Instruct-Turbo
Llama-4-Scout-17B-16E

jesBesleslies]

Open-source Reasoning LLMs

Deepseek-Reasoner T 3043 48.68 200.93 21.57 4279 26244 1586 37.22 311.34 23.25 4339 253.49
GPT-0SS-20B T 15.61 252 1021 6.52 1446 12.17 23 679 1263 872 1627 11.57
GPT-0SS-120B T 17.39 2849 16.07 854 20.13 2340 435 134 2601 1066 21.32 21.39
Qwen3-235B-A22B-Instruct T 21.74 337 2229 831 18.07 2995 3.07 945 3425 1185 2145 2831
Proprietary Chat LLMs
Claude-sonnet-4 F 247 3894 2388 1371 2841 2695 @ 9.21 20.88 27.32 16.54 30.19 25.90
GPT-40-mini F 1779 3645 1341 7.64 2352 1525 3.07 19.1 1631 10.14 27.11 14.86
GPT-4.1 F 2451 408 18.14 11.69 2336 2895 435 14.67 3556 1439 274 26.80
Proprietary Reasoning LLMs

Gemini-2.5-Flash T 2352 365 41.08 14.61 27.52 5840 10.74 2472 7286 16.84 30.09 56.08
Gemini-2.5-Pro T 3241 494 6033 19.1 37.63 7737 18.67 34.61 88.82 23.99 41.19 7428
GPT-5 Low 33.0 5476 2677 2292 44.67 3386 1586 36.76 40.25 24.66 46.17 33.05

GPT-5 Medium 30.83 48.03 50.12 173 3492 6696 1049 2697 83.67 2042 37.55 6548
GPT-5 High 37.75 58.36 103.59 2629 52.7 127.59 21.99 50.28 15332 29.36 54.13 126.04
GPT-5-mini Low 253 43.15 2078 1798 38.1 27.10 11.0 27.85 30.30 1871 37.02 25.65

GPT-5-mini Medium 3043 49.51 4541 16.63 36.46 6085 946 2645 73.56 19.74 3846 58.73

GPT-5-mini High 3478 56.82 14947 23.82 48.64 178.56 17.14 38.53 210.08 26.01 48.78 176.78
Grok-4 T 30.63 5248 181.66 2247 4691 23558 1487 41.0 281.62 23.34 4729 228.63
04-mini T 253 3877 2673 14.16 2932 3320 844 23.08 36.50 16.69 31.07 31.72

Multimodal Large Language Models

Claude-sonnet-4 F 2772 4732 1946 16.06 37.02 2277 11.63 32.85 2337 19.19 39.71 21.69
Gemini-2.5-Flash T 35.18 5596 45.19 2427 4841 6565 1995 39.7 8196 27.12 48.72 62.69
Gemini-2.5-Pro T 36.96 57.66 63.03 2539 4888 80.71 21.74 43.03 93.58 28.69 5049 77.79
GPT-4.1 F 32.02 5541 23.10 209 4455 33.15 1125 3636 40.82 2228 46.26 31.60
GPT-5 Medium 3745 6024 6329 26.02 5246 87.70 21.56 49.12 10499 29.05 5443 83.49
GPT-5-mini Medium 299 48.06 48.88 1991 41.6 6430 1395 344 7542 2196 4196 61.69
Grok-4 T 31.55 52.73 180.19 21.8 47.73 231.76 15.13 43.64 316.77 23.53 4842 237.11

Physics Domain Category Analysis. We analyze LLM performance across physics domains and
difficulty levels, as shown in Figure 5. Models exhibit varying accuracy across different types,
with the highest performance observed in Thermodynamics and Statistical Physics and the lowest

28

in Quantum Mechanics. Step-level evaluation further exposes weaknesses in reasoning coherence,
and accuracy consistently drops from Easy to Hard problems across all domains.

Final (E/M/H) Step (E/M/H)

W GPT-5 (High) B DeepSeek-R1 Easy (E)

60 GPT-5-mini (High) ~ Wl DeepSeek-V3 Medium (M)
W Gemini-2.5-Pro W Grok-4 = Hard (H)
E - Gemini-2.5-Flash Claude-Sonnet-4
. H H H mﬁ \ \

s s .
o Wd\av“ Qe

5
e A
o' ‘(\3 3% ot é \

o\\ \rﬁ Qu o O‘st“‘a

(ﬁ\ el Wi 20"
« o PRt o
W Nﬁ‘ ‘5\@' Qe (X\E‘d’z‘zs\(ﬁ »“’aﬁd\xs\é Qe

I

O Xe o
£ s

S ‘3°\‘<\i 15@ Q\lad\,o(\\(-

<o ds@‘ > ® W

Figure 5: Step-level and final-answer accuracy across Physics Domain Categories and Difficulty Levels.

F.2.2 Modality and Reasoning-Level Comparisons

Text Models vs. Multimodal Models. We compute the performance gap between multimodal and
text-only settings and visualize the differences in Figure 6. The effect of multimodal input varies
across model families. In general, adding images provides stronger gains at the step level than at the
final-answer level, highlighting its role in supporting intermediate reasoning. However, for smaller
or weaker models, multimodal input can even be detrimental, as diagrams in physics problems often
serve a presentational rather than informational role, with the critical content already conveyed in
text.

Gemini-2.5-Pro Gemini-2.5-Flash Grok-4. GPTS GPT-5-mini Claude-sonnet-4
1T
- Final Step mmm Negative diff

w

v

2

srs2. rrrss

74

ez

Easy Medium Hard Easy Medium Hard Easy Medium Hard Easy Medium Hard Easy Medium Hard Easy Medium Hard

Figure 6: Performance differences between multimodal and text-only settings across models and
difficulty levels.

Across Different Reasoning Level. As shown in Figure 7, we observe that reasoning-oriented
models exhibit consistently higher accuracy than chat-oriented models, but this improvement comes
with substantially longer response times. We further evaluate GPT-5 and GPT-5-mini for three
reasoning modes (low, medium, high). In general, results indicate an improvement in accuracy with
increasing reasoning effort, along with reasoning latency. For GPT-5-mini, we observe performance
improvement in final-accuracy and step-accuracy when increasing reasoning budget; meanwhile,
the average latency of medium mode is 129.0% higher than the low mode, and the high mode is
589.2% higher. GPT-5 shows similar trend, though the medium mode performance drops below the
low mode: this might be caused by over-thinking that is not thorough enough, while the high mode
shows higher and more consistent performance. Notably, while 04-mini was previously claimed to
be a good reasoning model, its performance here is relatively poor; one possible explanation is that,
as a distilled model, it suffers from limited generalization and thus struggles with complex reasoning
tasks beyond its training distribution.

29

Final-Acc (GPT-5-mini) Final-Acc (GPT-5)
Step-Acc (GPT-5-mini) Step-Acc (GPT-5)
B Response Time (GPT-5-mini) —& Response Time (GPT-5) X 175

Accuracy (%)
\
\
s
8
Response Time (s)

Low Medium High

Figure 7: Comparison of accuracy and response time across reasoning levels.

G Evaluation Framework Analysis Details

G.1 Evaluation Framework Analysis

We further evaluated PRISM-DAG with human annotations to assess effectiveness.

Annotation Setup. We randomly sampled 70 problems (10 from each domain) along with their
corresponding DeepSeek-V3 (text-only) solutions. Each problem—solution pair was independently
evaluated by two human experts to reduce variance In cases where the two experts’ scores differed
substantially, a third annotator was invited to adjudicate and determine the final score.

Results. We quantified the agreement between framework-generated scores and human annotations
using Kendall’s 73, correlation coefficient, along with statistical significance testing via both asymp-
totic and permutation-based p-values (see Appendix G.2 for details). Higher 7, values indicate
stronger concordance, with significance levels verifying the robustness of the observed correlations.

Table 3: Comparison of annotation alignment.

Method T T Asymptotic p-value | Permutation p-value |
LLM-as-Judge 0.294 6.90x1073 6.00x1073
PSAS-S 0.213 2.20x1072 2.09x1072
PRISM-DAG 0.346 1.31 x 10~* 1.00 x 10—

Table 3 demonstrates the clear superiority of PRISM-DAG. LLM-as-Judge is purely outcome-
based, assigning only binary 0/1 scores, while PSAS-S, though process-based, evaluates steps in-
dependently without modeling causal dependencies. Both baselines are LLM-based, whereas our
non-LLM PRISM-DAG explicitly accounts for causality across steps, leading to stronger align-
ment with human judgments. We analyzed failure cases from our evaluator and two baselines to
understand strengths and limitations. Details are provided in Appendix G.3.

G.2 Kendall’s Tau-b and p-test

We evaluate the agreement between model-derived scores and human annotations using Kendall’s T
correlation coefficient, a nonparametric rank-based statistic that extends Kendall’s 7 by correcting
for ties. Let {(x;,y;)}_, be a set of paired observations, where x; represents the score assigned by
the model and y; the corresponding human annotation. Kendall’s 7, measures the degree to which
the rankings induced by x and y agree.

Definition. Consider all unordered pairs of distinct indices (¢, j) with 1 < ¢ < j < n. For each
pair, define:

e concordant if (z; — x;)(y; — y;) > 0,

* discordant if (x; — x;)(y; — y;) <0,

* tiedin x if z; = x; but y; # v,

e tied iny if y; = y; but z; # x5,

* tied in both if z; = x; and y; = y;.

30

Let n. and ng denote the number of concordant and discordant pairs, respectively. Define
no=sn(n—1), ny= Z stp(ty — 1), no= Z sui(w — 1),
k 1

where ¢, is the size of the k-th tie group in = and w; is the size of the [-th tie group in y. Then

Kendall’s 7 is
Ne — N4

V(o —n1)(ng —na)’
By construction, 7, € [—1,1], with 7, = 1 indicating perfect agreement (all pairs concordant),
7, = —1 perfect disagreement (all pairs discordant), and 7, = O representing no association beyond
what would be expected by chance.

2

Ty =

Statistical significance. To assess whether the observed correlation is statistically significant, we
test the null hypothesis Hy : 7, = 0 against the two-sided alternative H; : 7, # 0. Two approaches
are employed:

1. Asymptotic test. Under Hj, the sampling distribution of 7, is approximately normal for
large n, with variance given by a closed-form expression that accounts for ties. A standard-
ized statistic Z = - is used to compute an asymptotic p-value.

b

2. Permutation test. To avoid reliance on asymptotic approximations, we perform a nonpara-
metric randomization procedure: one ranking (e.g., y) is permuted uniformly at random
while x remains fixed, and 73, is recomputed. Repeating this procedure yields an empirical
null distribution for 73, from which a p-value is estimated. This approach is robust to small
sample sizes and ties.

Together, 73, provides a rigorous, tie-adjusted measure of ordinal association, and the combination of
asymptotic and permutation-based tests ensures robust inference on the agreement between model
predictions and human judgments.

G.3 Failure Analysis for Evaluation Framework

We analyzed failure cases from our evaluator and two baselines to understand strengths and limita-
tions. When scoring strictly by formula matching, causality-aware evaluation is essential: requir-
ing every reference formula to match is overly rigid and penalizes otherwise correct reasoning. We
observe three recurrent failure modes:

* Contextual vs. literal equivalence. Two expressions can be equivalent given the problem
context but not algebraically identical (e.g., re-parameterized integrals or vector identities).

» Textual answers. Description- or text-only responses fall outside the scope of strict sym-
bolic matching.

* Parsing gaps. Some I4TEX symbols/commands are not reliably recognized as operators,
yielding spurious mismatches (e.g., integrals with differentials, vector/tensor notation).

In order to solve these issues, we propose the following roadmap:

1. Context-aware matching. We plan to develop a context-sensitive equivalence checker;
this is left for future work.

2. Text evaluation. We will integrate lightweight LLM “helpers” to assess description-based
answers, making the framework more complete while keeping the core scorer deterministic.

3. Robust parsing. Despite many fixes, long-tail IZTEX idiosyncrasies remain. We will re-
lease the formula matcher first and iteratively expand operator coverage based on commu-
nity feedback.

31

H Error Analysis Details

We perform error analysis on the first incorrect step detected in each solution as shown in Figure 8,
using a unified taxonomy that integrates process-level physics reasoning errors with formula-level
derivation errors. The classification covers seven categories (detailed definitions are provided in
Appendix H.2): (1) Diagram Analysis Error (DAE), (2) Physics Theorem Application Error (PTAE),
(3) Modeling and Process Understanding Error (MPUE), (4) Condition or Assumption Error (CAE),
(5) Variable Relationship Error (VRE), (6) Derivation and Computation Error (DCE), and (7) Unit
Dimension Error (UDE).

The dominant error types across models are Condition/Assumption Errors (CAE), which arise when
models set up inconsistent or incorrect physical assumptions; Derivation & Computation Errors
(DCE), which occur when models make mistakes in algebraic manipulation or calculation; and
Modeling & Process Understanding Errors (MPUE), which reflect failures in mapping the problem
into the correct physical model or reasoning process. This indicates that LLMs often fail both in
establishing consistent physical conditions and in executing algebraic reasoning.

35

= Diagram Analysis Error (DAE) === Physics Theorem/Application Error (PTAE) Modeling & Process Understanding Error (MPUE) ~ BEE Unit/Dimension Error (UDE)
== Condition/Assumption Error (CAE) ~ EE Variable Relationship Error (VRE) W Derivation & Computation Error (DCE)

Error Percentage (%)
[N
o v o wu
L | ! |

5
L

o
'

Gemini-2.5-Pro GPT-5 (High) Grok-4 DeepSeek-V3 Claude-Sonnet-4 Qwen3-235B-Instruct

Figure 8: Distribution of primary error types across models

H.1 Prompts for Error Analysis

Prompt for Error Analysis

You are a Physics Olympiad grader. Your task is to analyze a student’s solution against a standard solution,
using the provided detailed scoring breakdown, and determine the PRIMARY error cause (and optional
secondary causes) from the taxonomy below. You do NOT need to align or map steps — the scored
expressions already indicate where the solution is correct or incorrect. Focus on WHY the incorrect parts
are wrong.

Error taxonomy (choose labels exactly):

- DAE: Diagram Analysis Error — incorrect interpretation of diagrams/figures/schematics.

- PTAE: Physics Theorem/Application Error — misuse/misapplication of physical laws/principles.

- MPUE: Modeling & Process Understanding Error — incorrect/incomplete physical model or process
understanding.

- CAE: Condition/Assumption Error — invalid/unjustified/misapplied conditions, including bound-
ary/initial conditions.

- VRE: Variable Relationship Error — incorrect relationships between physical quantities (e.g., con-
straints, kinematic relations).

- DCE: Derivation & Computation Error — algebraic/symbolic manipulation mistakes, arithmetic/sign/-
substitution errors.

- UDE: Unit/Dimension Error — unit inconsistency or dimensional mismatch.

General guidance: 1) Use the scoring breakdown to identify which expressions are incorrect.

2) For the incorrect expressions, determine the earliest fundamental cause from the taxonomy.

3) If multiple causes apply, select ONE primary label and list the rest as secondary.

4) If diagrams are referenced but missing, do not assume their content; judge only from given text/expres-
sions.

Output STRICT JSON (no extra text, no markdown):

32

"primary_error": "DAE|PTAE|MPUE|CAE|VRE|DCE|UDE",
"secondary_errors": ["DAE|PTAE|MPUE|CAE|VRE|DCE|UDE"],
"incorrect_expressions":

[

] E
"related_correct_expressions":
[

] k]

"rationale": "2-5 concise sentences explaining the diagnosis",
"confidence": 0.0-1.0

PROBLEM CONTEXT: {problem}
STUDENT ANSWER: {student_answer}
AUTO-GRADER EQUATION MATCHES: {matches}

SCORE: {score:.3f} (out of 1.0)

"strings of the incorrect student expressions"

"strings of correct related student expressions if any"

H.2 Error Taxonomy Definitions

We provide detailed definitions of the seven error categories used in our error analysis:

Diagram Analysis Error (DAE) — incorrect interpretation of diagrams, figures, or
schematic representations.

Physics Theorem Application Error (PTAE) — incorrect or inappropriate use of physical
laws, theorems, or principles.

Modeling and Process Understanding Error (MPUE) — incorrect or incomplete con-
struction of the physical model, including misunderstanding of the physical process being
analyzed.

Condition or Assumption Error (CAE) — invalid, unjustified, or misapplied physical
conditions, including boundary or initial conditions.

Variable Relationship Error (VRE) — incorrect establishment or use of relationships be-
tween physical quantities.

Derivation and Computation Error (DCE) — incorrect algebraic manipulation, symbolic
transformation, arithmetic mistakes, sign errors, or incorrect numerical substitutions.

Unit Dimension Error (UDE) — inconsistency in physical units or failure to maintain
dimensional correctness.

H.3 Model Failure Solution Examples

PRISM-PHYSICS Failure Example: Condition or Assumption Error

Problem: A particle of mass m moves under the influence of an attractive central force f(r).
The potential energy associated with this force is V/(r), defined so that f(r) = —4%. The
angular momentum of the particle is J. The effective potential is denoted by V*(r). The total
mechanical energy is E. The instantaneous radial coordinate of the particle is 7, and the radial
velocity is 7 = %. The radius of the circular orbit is o. For the stability analysis, the student

should write their answer for the maximum n as ans = ..., where n is the exponent in the force
law f(r) = — £, with K a positive constant.
(c) Determine the maximum value of n for which the circular orbit is stable under the force law
f(r) = =&, where K is a positive constant.

33

GroundTruth Solution:

For f(r) = — &, we have

of K

or nr"‘“

From the equilibrium condition,

o _p
or mr3
Also, %—‘; = —f(r), so
J2
—fr)=—>3
which gives
K J?
o omr3

Thus,
J? = mKr3 ™"

Insert this value for J2 into the stability condition:

3J2 of
= sy
mrt Or -
Substitute J2 = mK7r>~" and 9L = n-K
3K nkK
Tn+l _-Tn+1 >0
So
3—n>0
Therefore,
ans=n <3
Student Solution Snippet:
(c): Maximum Value of n For the force law f(r) = — £
of nK
Or pntl

Substituting into the stability condition:
nK 3(—K/r")
e T
nk 3K
Tn+1 _>Tn+1
K(n —3)
rn+1

<0

<0

<0
Since K > 0 and 7! > 0, we need:
n—3<0

n <3
The maximum value of n for stability is therefore n = 3.

ans = 3

Error Analysis Output:

34

{

"primary_error": "CAE",
"incorrect_expressions": [
"The maximum value of n for stability is therefore n = 3.",
ans= 3"
1,
"related_correct_expressions": [
n < 3,
K(n — 3)
—mr <0
1,
"rationale": "All algebra and the stability condition were derived

correctly, yielding n < 3. The student then incorrectly interpreted
this strict inequality as allowing n = 3 as the maximum stable value.
This is an assumption/boundary-condition mistake: n = 3 is the
marginal (neutral) case, not a stable one, so the conclusion ans = 3
is unjustified."

}

PRISM-PHYSICS Failure Example: Diagram Analysis Error

Problem: An aquarium is being filled with water of refractive index n > 1. A stationary
fish inside the aquarium looks vertically upward through the rising surface of the water at a
stationary monochromatic plane wave light source outside the aquarium. The water surface
rises upward at constant speed V' relative to both the fish and the source, while the rest of the
water and the fish are stationary with respect to the aquarium. The fish observes the incoming
light through the moving water interface as the aquarium fills. Use the following variable
definitions:- n is the refractive index of water- V' is the upward speed of the rising water surface
with respect to both fish and light source- c is the speed of light in vacuum- w is the frequency
of light as emitted by the source in vacuum- v’ is the frequency of light as observed by the fish
inside the water- u is the speed of light in water as measured by the fish- \,, is the wavelength
of light in waterExpress your answer for u/ in terms of u, V, n, and c. Also state, using an
equation, whether v’ is less than, greater than, or equal to .

GroundTruth Solution:
The speed of light in water as measured by the fish is

@ 1
= — — 1——
u - V(n2>

The wavelength of the light in water is

A = —
nv

The observed frequency by the fish is
v
v = N

Substituting for u yields
V= % -V (1 — %)

Aw

Substituting for \,, yields

35

This simplifies to
Expanding the terms gives

Forn>1landV > 0,

vV <v

Therefore, the fish observes the light source to be red-shifted.

Student Solution Snippet:

We analyze the scenario using the Doppler effect for light at a moving interface. The light
source is stationary in air (refractive index ~ 1), emitting light of frequency u and speed c. The
water surface rises at speed V' upward, and the fish is stationary in water of refractive index n.
The fish observes the frequency ' of light that has entered the water.
The speed of light in water as measured by the fish is

c

u=—.

n
The incident light in air approaches the moving water surface. Since the interface is moving
toward the source (upward, while light comes from above), the frequency perceived just after
crossing into water is Doppler shifted.
Let the incident plane wave in air be

E; = Eycos(wt — kz), w=2mu, k= 2
c
At the interface z = V¢, the phase is

i) = wt — k(VE) = wt(l _ V) .

c

The transmitted wave in water is

nw'

E; = Eicos(w't—K'z), Kk = :
€
At z = V', its phase is
e(t) = W't — KVt

Continuity of phase requires ¢;(t) = ¢:(t), hence

w(l — V) =uw —K'V.
¢

. . / _ nw, .
Substituting k' = *=- gives

Thus,

36

Equivalently, in terms of frequency:

Now compare v’ and u:

N (il A NN (214
“ u_u<ch 1>_uch'

Sincen > 1,V > 0, and ¢ — nV > 0 (non-relativistic case), we have v’/ — u > 0. Therefore,

u' > u.

Final result:

1-Y

/ c !
u = [av; u > u
(6]
Error Analysis Output:
{
"primary_error": "DAE",

"incorrect_expressions": [
E; = Egcos(wt — kz), w=27v, k=%,
$i(t) = wt — k(Vt) =wt — £Vt =wt(l — ¥),
w/—k,V:w(l—%),

o
1 ’!LC
1—- Y
/ c
U=
A%
1— ol
1, .
"related_correct_expressions": [
(&
W= =,
n
’ ’
L= w o nw
u C ’
Continuity of phase at the moving interface: ¢;(z = Vt)= ¢i(z = Vi)
1
"rationale": "The student wrote the incident wave as wt — kz, which

corresponds to a wave propagating upward; for light coming from above
toward the interface (downward propagation) the sign of the spatial
term is wrong. This incorrect sign gives the wrong expression for the

incident phase at 2 = V¢ and therefore leads to the incorrect algebraic
relation and final formula for v/. The use of phase continuity and
k' = nw'/c and u = c¢/n are otherwise appropriate, so the error is an

incorrect interpretation of the wave propagation direction (diagram/sign
error) ."

3

PRISM-PHYSICS Failure Example: Derivation and Computation Error

Error Analysis Output:
{

"primary_error": "DCE",

37

"incorrect_expressions": [

oL FEONL. K
i —— Lk
or r2 r3’
o kK
mi = mré? + PR
1,
"related_correct_expressions": [
oL P
=R

. k K’
. 2
mrfmrefﬁJrT—a

1,

"rationale": "The student made a sign/algebra error when
differentiating the potential terms in L with respect to r,
flipping the signs of the k and k’ contributions. This is a pure
derivation/computation mistake (not a misapplication of physics), since
the correct radial equation has the opposite signs and follows from the
correctly differentiated Lagrangian or directly from Newton’s form. The
later orbit derivation uses the correct form of F(r), so the error is
localized to the symbolic differentiation step."

}

PRISM-PHYSICS Failure Example: Modeling and Process Understanding Error

Problem: A particle of mass m moves under a restoring force —Kx and a resistive force
—Rv, where z is the displacement from equilibrium and v is the particle’s velocity. Here,
m is the mass of the particle, K is the spring constant, R is the damping coefficient, = is
the displacement from equilibrium, and v is the velocity. For fixed K and arbitrary initial
conditions, find the value R = R, that gives the most rapid approach to equilibrium. Also,
state whether it is possible to choose initial conditions (other than 2 = 0 and v = 0) such that
the approach to equilibrium is more rapid for R > R. or R < R.. Specifically, R. should be
defined in terms of K and m. Express the rate of approach and clearly specify all variables
throughout. The final answer for the most rapid approach value should be given as R. = in
terms of K and m.

GoundTruth Solution:
The equation of motion for the particle can be written as
d*x dx
— +R— +Kz=0
e e TR

Thus, for certain special (non-generic) initial conditions, the approach to equilibrium may be
even faster than in the critically damped case.If R < R,, the roots are complex:

_ —R*i\/RI—R?

2m

«

The general solution is

2 _ P2 /P2 _ 2
= Aexp (—2Rt> cos <R;Rt> + Bexp (—2Rt> sin (“t)
m m m

38

The rate of decay towards equilibrium is determined by the exponential factor
R R.

2m 2m

Thus, the approach to equilibrium is always slower than for critical damping when R < R.. In
summary, the value of R that gives the most rapid approach to equilibrium for arbitrary initial

conditions is
R.=2VKm

For R > R., in principle, one can choose initial conditions such that the approach is even
more rapid, but this occurs only for special initial conditions (such as setting A = 0 in the
overdamped general solution). In general, for arbitrary initial conditions, critical damping
(R = R.) gives the most rapid approach. For R < R., the approach to equilibrium is always
slower than for critical damping.

Student Solution Snippet:

The equation of motion for a damped harmonic oscillator is:

d*x dz
- _Kr-— R—
e T
Rearranging to standard form:
d’x Rdr K
— +—x=0

@ Tmd m
Let wg = % and 2y = %, so the equation becomes:
d’z dz 9
Pl + 275 +wozr =0
The characteristic equation is:
2+ 2yr + w% =0

r=—yx4/7? — wk

The behavior depends on the discriminant y? — w3:

Case 1: Underdamped (7 < wp or R < 2/ Km)
z(t) = e~ (A cos(wgt) + Bsin(wgt))

The roots are:

where wg = /w3 — 2.

Case 2: Critically damped (7 = wg or R = 2v/ Km)
z(t) = e "'(A + Bt)

Case 3: Overdamped (y > wg or R > 2v/Km)
z(t) = Ae™' 4 Be™!

where 11 = —y + /72 —w? and 2 = —y — /72 — wi.For the most rapid approach to
equilibrium, we need to minimize the time for z(¢) — 0.

In the underdamped case, the envelope decays as e~¢.In the critically damped case, the de-
cay is e 7.In the overdamped case, the slowest decay rate is determined by 7, = —vy +
V72 — wi.Since \/72 — w? > 0 when v > wp, we have |r;| < 7, making overdamped systems
slower than critically damped.

For underdamped systems, the envelope decay rate is v = %.For critically damped systems,
the decay rate is also v = %.However, the critically damped case has no oscillations and
provides the fastest approach without overshoot.Therefore, the critical damping condition gives

the most rapid approach:
R.=2VKm

39

Regarding initial conditions: For any given R, the approach rate is determined by the system
parameters, not the initial conditions. The initial conditions only affect the amplitude coeffi-
cients A and B, but not the fundamental decay rates. Therefore, it is not possible to choose
initial conditions to make R > R. or R < R. approach equilibrium more rapidly than R = R..

R.=2vVKm

Error Analysis Output:
{
"primary_error": "MPUE",

"incorrect_expressions": ["Therefore, it is not possible to choose
initial conditions to make R > R, or R < R, approach equilibrium more
rapidly than R = R..", "However, the critically damped case has no
oscillations and provides the fastest approach without overshoot."],

"related correct_expressions": [

d*z dx
m =—Kzx— R—,

dt? dt
R. =2VKm,

r=—y+4/72 — Wi,
Underdamped: x(t) = e (A cos(wgt) + Bsin(wat)),
Critically damped: x(t) =e "'(A+ Bt),

Overdamped: z(t) = Ae"l" + Be™", 1| = —y 4 /42 — w?
e

"rationale": "The student correctly derived the equation of motiomn ,
root structure, and critical damping value R., but then asserted that
initial conditions cannot alter which R gives the fastest approach.

That is a modelling process misunderstanding: transient approach time
can depend on initial conditions (e.g. certain initial displacements or
velocities can make overdamped underdamped responses reach zero sooner
for some measures). The blanket statement that critical damping is
always fastest for every initial condition is therefore incorrect."

}

PRISM-PHYSICS Failure Example: Physics Theorem Application Error

Problem: A bucket of mass M (when empty) initially at rest and containing a mass of water
is being pulled up a well by a rope exerting a steady force P The water is leaking out of the
bucket at a steady rate such that the bucket is empty after a time 7 .Find the velocity of the
bucket at the instant it becomes empty.

GroundTruth Solution :

Let the total mass of the bucket and water at time ¢ be M.
t
M=M+m-"2

-

The equation of motion for the bucket (plus remaining water) is

dv
M==P-M
dt g

Rearranging gives

P
dv=(-—" _g)at
! <M+m—’ft g)

40

The velocity v of the bucket at time ¢ = 7 (when empty) starting from rest is
T Pdt
Vempty = /0 m —gT
Evaluating the integral yields

Pr M+m
Vempty = H In T — gTr

where Vepmpty 18 the velocity of the bucket at the instant it becomes empty.

Student Solution Snippet:

I need to find the velocity of the bucket when it becomes empty at time ¢ = 7. Setting up the
problem The mass of water decreases linearly from m to 0 over time 7:

t
mwater(t) = m(l - ;)
The total mass of the system at time ¢ is:
t
Miotar(t) = M +m(1 — ;)

The rate of mass loss is:
dmwater _ _m

dt T
Applying Newton’s Second Law
Since the leaked water has zero velocity relative to the bucket, when it leaves the bucket, it has
the same velocity v as the bucket. The forces acting on the system are:
- Upward force: P - Weight: (M + muyater(t))g
Using Newton’s second law for variable mass systems:

t t . dv dMyater
P—(M+m(l-2))g=(M+ml— =)= +v—"
T T/ dt dt
Error Analysis Output:
\begin{verbatim}
{
"primary_error": "PTAE",
"incorrect_expressions": [

P — (M +m(l—£))g=(M+m(l - £))§ +vupte

T/)dt
1,

"related correct_expressions": [

dmayater/dt = —m/T (student’s expression, correct),
(M +m(1—t/7)% = P~ (M +m(l—t/7))g,

(since escaping water has zero velocity relative to the bucket,the thrust term vanishes)
M
Vempty = ST ln(%) — 97

1,
"rationale": "The student misapplied the variable-mass form of Newton’s
second law: the net external force equal to d/dt(Mv) and thus kept
a v dM/dt term on the RHS (or equivalently omitted the momentum-flux
term on the RHS), which is incorrect bookkeeping for mass leaving
with zero velocity relative to the bucket. For escaping water with
velocity equal to the bucket, the relative-velocity term vanishes and
the correct ODE is M(t) dv/dt = P - M(t) g, leading to a different
integral (logarithmic) result. All subsequent algebra and the final
numeric expression therefore follow from this incorrect application."

3

41

PRISM-PHYSICS Failure Example: Unit Dimension Error

Error Analysis Output:

"primary_error": "UDE",
"incorrect_expressions": [
— 1
A=
— 1
N = A3o2T’
3
= 12 . T1/2 .eAt
10-12N, (n2)307T ?
= 12-(5730)3 . ¢(1n2):5000/5730
T 10—12.6.023x1023.(1n 2)3-2500 ’
NoITA? —A— Ap =0,
4 1+(/1+4X202TAp
2X202T ’
N - 1+(/1+4X202T AR
2X302T ?
10—12N 4 2X32T
1,
"related correct_expressions": [
A= AN,
dA _
T = A
_ In2
Ty/2°
=2
N = Nge ',
_ 1n—12zN4x
No =10 e
1,
"rationale": "The student mixed time units: A\ and o, are in years

while the counting time 7 was used in hours, so formulas combining A\
and T (e.g. A = 1/(\%0?T) and subsequent N and x expressions) are
dimensionally inconsistent. The algebraic manipulations themselves are
otherwise coherent, but the unit mismatch renders the numerical/physical
results incorrect. The same unit inconsistency propagates into the
background-case quadratic and its solutioms.",

}

PRISM-PHYSICS Failure Example: Variable Relationship Error

Error Analysis Output:

{
"primary_error": "VRE",
"incorrect_expressions": [
d=6(R+h),
d=1.22%(R+h),
d=1.22 X 155 X 4.217 x 107,
d =~ 5.145 x 10* m,
d = 51450 m
1,

42

"related_correct_expressions": [
~ A
0~ 1.223,
_ (em\'/3
R+r=(S¥)",
h =3.580 x 10" m

1

"rationale": "The student used R + h (distance from Earth’s center
to the satellite) as the propagation distance for the beam instead of
the correct path length from satellite to ground (the height h). That
is an incorrect relationship between physical quantities (distance to
apply diffraction). The diffraction formula and numerical algebra are

otherwise applied correctly, so the error is conceptual about which
length variable to use.",

}

43

