
Under review as a conference paper at ICLR 2021

UNIFYING GRAPH CONVOLUTIONAL NEURAL NET-
WORKS AND LABEL PROPAGATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Label Propagation (LPA) and Graph Convolutional Neural Networks (GCN) are
both message passing algorithms on graphs. Both solve the task of node classifi-
cation but LPA propagates node label information across the edges of the graph,
while GCN propagates and transforms node feature information. However, while
conceptually similar, it is unclear how LPA and GCN can be combined under a
unified framework to improve node classification. Here we study the relationship
between LPA and GCN in terms of feature/label influence, in which we char-
acterize how much the initial feature/label of one node influences the final fea-
ture/label of another node in GCN/LPA. Based on our theoretical analysis, we
propose an end-to-end model that combines GCN and LPA. In our unified model,
edge weights are learnable, and the LPA serves as regularization to assist the GCN
in learning proper edge weights that lead to improved classification performance.
Our model can also be seen as learning the weights for edges based on node
labels, which is more task-oriented than existing feature-based attention models
and topology-based diffusion models. In a number of experiments on real-world
graphs, our model shows superiority over state-of-the-art graph neural networks
in terms of node classification accuracy.

1 INTRODUCTION

Consider the problem of node classification in a graph, where the goal is to learn a mappingM :
V → L from node set V to label set L. Solution to this problem is widely applicable to various
scenarios, e.g., inferring income of users in a social network or classifying scientific articles in a
citation network. Different from a generic machine learning problem where samples are independent
from each other, nodes are connected by edges in the graph, which provide additional information
and require more delicate modeling. To capture the graph information, researchers have mainly
designed models on the assumption that labels/features are correlated over the edges of the graph.
In particular, on the label side L, node labels are propagated and aggregated along edges in the
graph, which is known as Label Propagation Algorithm (LPA) (Zhu et al., 2005; Zhou et al., 2004;
Zhang & Lee, 2007; Wang & Zhang, 2008; Karasuyama & Mamitsuka, 2013; Gong et al., 2017;
Liu et al., 2019a); On the node side V , node features are propagated along edges and transformed
through neural network layers, which is known as Graph Convolutional Neural Networks (GCN)1

(Kipf & Welling, 2017; Hamilton et al., 2017; Li et al., 2018; Xu et al., 2018; Liao et al., 2019; Xu
et al., 2019b; Qu et al., 2019).

GCN and LPA are related in that they propagate features and labels on the two sides of the mapping
M, respectively. Prior work Li et al. (2019) has shown the relationship between GCN and LPA in
terms of low-pass graph filtering. However, it is unclear how the discovered relationship benefits
node classification. Specifically, can GCN and LPA be combined to develop a more accurate model
for node classification in graphs?

Here we study the theoretical relationship between GCN and LPA from the viewpoint of fea-
ture/label influence, where we quantify how much the initial feature/label of node vb influences

1There are methods in statistical relational learning Rossi et al. (2012) also using feature propaga-
tion/diffusion techniques. In this work, we focus on GCN, but the analysis and the proposed model can be
easily generalized to other feature diffusion methods.
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the output feature/label of node va in GCN/LPA by studying the Jacobian/gradient of node vb with
respect to node va. We also prove the quantitative relationship between feature influence and label
influence, i.e., the label influence of vb on va equals the cumulative discounted feature influence of
vb on va in expectation (Theorem 1).

Based on the theoretical analysis, we propose a unified model GCN-LPA for node classification.
We show that the key to improving the performance of GCN is to enable nodes of the same class
to connect more strongly with each other by making edge weights/strengths trainable. Then we
prove that increasing the strength of edges between the nodes of the same class is equivalent to
increasing the accuracy of LPA’s predictions (Theorem 2). Therefore, we can first learn the optimal
edge weights by minimizing the loss of predictions in LPA, then plug the optimal edge weights into a
GCN to learn node representations. In GCN-LPA, we further combine the above two steps together
and train the whole model in an end-to-end fashion, where the LPA part serves as regularization
to assist the GCN part in learning proper edge weights that benefit the separation of different node
classes. It is worth noticing that GCN-LPA can also be seen as learning the weights for edges based
on node label information, which requires less handcrafting and is more task-oriented than existing
attention models that learn edge weights based on node feature similarity (Veličković et al., 2018;
Thekumparampil et al., 2018; Zhang et al., 2018; Liu et al., 2019b) or diffusion models that learn
adjacency matrix based on graph topology (Klicpera et al., 2019a; Xu et al., 2019a; Abu-El-Haija
et al., 2019; Klicpera et al., 2019b).

We conduct extensive experiments on five datasets, and the results indicate that our model outper-
forms state-of-the-art graph neural networks in terms of classification accuracy. The experimental
results also show that combining GCN and LPA together is able to learn more informative edge
weights thereby leading to better performance.

2 OUR APPROACH

In this section, we first formulate the node classification problem and briefly introduce LPA and
GCN. We then prove their relationship from the viewpoints of feature influence and label influence.
Based on the theoretical finding, we propose a unified model GCN-LPA, and analyze why our model
is theoretically superior to vanilla GCN.

2.1 PROBLEM FORMULATION AND PRELIMINARIES

Consider a graph G = (V, A,X, Y ), where V = {v1, · · · , vn} is the set of nodes, A ∈ Rn×n is the
adjacency matrix, X is the feature matrix of nodes and Y is labels of nodes. aij (the ij-th entry of
A) is the weight of the edge connecting vi and vj . N (v) denotes the set of first-order neighbors of
node v in graph G. Each node vi has a feature vector xi which is the i-th row of X , while only the
first m nodes (m� n) have labels y1, · · · , ym from a label set L = {1, · · · , c}. The goal is to learn
a mappingM : V → L and predict labels of unlabeled nodes.

Label Propagation Algorithm. LPA (Zhu et al., 2005) assumes that two connected nodes are
likely to have the same label, and thus it propagates labels iteratively along the edges. Let Y (k) =

[y
(k)
1 , · · · , y(k)n ]> ∈ Rn×c be the soft label matrix in iteration k > 0, in which the i-th row y

(k)>
i

denotes the predicted label distribution for node vi in iteration k. When k = 0, the initial label
matrix Y (0) = [y

(0)
1 , · · · , y(0)n ]> consists of one-hot label indicator vectors y(0)i for i = 1, · · · ,m

(i.e., labeled nodes) or zero vectors otherwise (i.e., unlabeled nodes). Then LPA in iteration k is
formulated as the following two steps:

Y (k+1) = Ã Y (k), (1)

y
(k+1)
i = y

(0)
i , ∀ i ≤ m. (2)

In the above equations, Ã is the normalized adjacency matrix, which can be the random walk tran-
sition matrix Ãrw = D−1A or the symmetric transition matrix Ãsym = D−

1
2AD−

1
2 , where D is

the diagonal degree matrix for A with entries dii =
∑

j aij . Without loss of generosity, we use
Ã = Ãrw in this work. In Eq. (1), all nodes propagate labels to their neighbors according to nor-
malized edge weights. Then in Eq. (2), labels of all labeled nodes are reset to their initial values,
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because LPA wants to persist labels of nodes which are labeled, so that unlabeled nodes do not
overpower the labeled ones as the initial labels would otherwise fade away.

Graph Convolutional Neural Networks. GCN Kipf & Welling (2017) is a multi-layer feedfor-
ward neural network that propagates and transforms node features across the graph. The feature
propagation scheme of GCN in layer k is:

X(k+1) = σ
(
ÃX(k)W (k)

)
, (3)

where W (k) is trainable weight matrix in the k-th layer, σ(·) is an activation function, and
X(k) = [x

(k)
1 , · · · ,x(k)

n ]> are the k-th layer node representations with X(0) = X . By setting the
dimension of the last layer to the number of classes c, the last layer can be seen as (unnormalized)
label distribution predicted for a given node. The whole model can thus be optimized by minimizing
the discrepancy between predicted node label distributions and ground-truth labels Y .

2.2 FEATURE INFLUENCE AND LABEL INFLUENCE

Consider two nodes va and vb in a graph. Inspired by Koh & Liang (2017) and Xu et al. (2018), we
study the relationship between GCN and LPA in terms of influence, i.e., how the output feature/label
of va will change if the initial feature/label of vb is varied slightly. Technically, the feature/label
influence is measured by the Jacobian/gradient of the output feature/label of va with respect to the
initial feature/label of vb. Denote x

(k)
a as the k-th layer representation vector of va in GCN, and xb

as the initial feature vector of vb. We quantify the feature influence of vb on va as follows:

Definition 1 (Feature influence) The feature influence of node vb on node va after k layers of GCN
is the L1-norm of the expected Jacobian matrix ∂x(k)

a /∂xb: If (va, vb; k) =
∥∥E[∂x(k)

a /∂xb

]∥∥
1
. The

normalized feature influence is then defined as Ĩf (va, vb; k) = If (va, vb; k)/
∑

vi∈V If (va, vi; k).

We also consider the label influence of node vb on node va in LPA (this implies that va is unlabeled
and vb is labeled). Since different label dimensions of y(·)i do not interact with each other in LPA,
we assume that all yi and y(·)i are scalars within [0, 1] (i.e., this is a binary classification task) for
simplicity. Label influence is defined as follows:

Definition 2 (Label influence) The label influence of labeled node vb on unlabeled node va after k
iterations of LPA is the gradient of y(k)a with respect to yb: Il(va, vb; k) = ∂y

(k)
a /∂yb.

The following theorem shows the relationship between feature influence and label influence:

Theorem 1 (Relationship between feature influence and label influence) Assume the activation
function used in GCN is ReLU. Denote va as an unlabeled node, vb as a labeled node, and β as the
fraction of unlabeled nodes. Then the label influence of vb on va after k iterations of LPA equals, in
expectation, to the cumulative normalized feature influence of vb on va after k layers of GCN:

E
[
Il(va, vb; k)

]
=
∑k

j=1
βj Ĩf (va, vb; j). (4)

Proof of Theorem 1 is in Appendix A. Intuitively, Theorem 1 shows that if vb has high label influence
on va, then the initial feature vector of vb will also affect the output feature vector of va greatly.
Theorem 1 provides the theoretical guideline for designing our unified model in the next subsection.

2.3 THE UNIFIED MODEL

Before introducing the proposed model, we rethink the GCN method and see what an ideal set of
node representations should be like. Since we aim to classify nodes, the perfect node representation
would be such that nodes with the same label are embedded closely together, which would give a
large separation between different classes. Intuitively, the key to achieve this goal is to enable nodes
within the same class to connect more strongly with each other, so that they are pushed together by
GCN (more discussion is presented in Section 2.4). We can therefore make edge strengths/weights
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trainable, then learn to increase the intra-class feature influence:
∑

i∈L
∑

va,vb:ya=i,yb=i Ĩf (va, vb)
(L is the label set), by adjusting edge weights. However, this requires operating on Jacobian ma-
trices with the size of d(0) × d(K) (d(0) and d(K) are the dimensions of input and output in GCN,
respectively), which is impractical if initial node features are high-dimensional. Fortunately, we
can turn to optimizing the intra-class label influence instead, i.e.,

∑
i∈L

∑
va,vb:ya=i,yb=i Il(va, vb),

according to Theorem 1. Note that
∑

i∈L
∑

va,vb:ya=i,yb=i Il(va, vb) =
∑

va

∑
vb:yb=ya

Il(va, vb).
We further show, by the following theorem, that the term

∑
vb:yb=ya

Il(va, vb) (the total intra-class
label influence on a given node va) is proportional to the probability that va is classified correctly
by LPA:

Theorem 2 (Relationship between label influence and LPA’s prediction) Consider a given node
va and its label ya. If we treat node va as unlabeled, then the total label influence of nodes with
label ya on node va is proportional to the probability that node va is classified as ya by LPA:∑

vb:yb=ya

Il(va, vb; k) ∝ Pr
(
ŷlpaa = ya

)
, (5)

where ŷlpaa is the predicted label of va using a k-iteration LPA.

Proof of Theorem 2 is in Appendix B. Theorem 2 indicates that, if edge weights {aij} maximize
the probability that va is correctly classified by LPA, then they also maximize the intra-class label
influence on node va. We can therefore first learn the optimal edge weights A∗ by minimizing the
loss of predicted labels by LPA:2

A∗ = argmin
A

Llpa(A) = argmin
A

1

m

∑
va:a≤m

J(ŷlpaa , ya), (6)

where J is the cross-entropy loss, ŷlpaa and ya are the predicted label distribution of va using LPA and
the true one-hot label of va, respectively. a ≤ m means va is labeled. The optimal A∗ maximizes
the probability that each node is correctly labeled by LPA, thus also maximizes the intra-class label
influence (according to Theorem 2) and intra-class feature influence (according to Theorem 1). Since
A∗ increases the connection strength within each class, it is expected to improve the performance
of GCN compared with the original adjacency matrix A. Therefore, we can plug A∗ into GCN to
predict labels:

X(k+1) = σ(A∗X(k)W (k)), k = 0, 1, · · · ,K − 1. (7)
We use ŷgcna , the a-th row of X(K), to denote the predicted label distribution of va using the GCN
specified in Eq. (7). Then the optimal transformation matrices in the GCN can be learned by
minimizing the loss of predicted labels by GCN:

W ∗ = argmin
W

Lgcn(W,A
∗) = argmin

W

1

m

∑
va:a≤m

J(ŷgcna , ya), (8)

It is more elegant (and empirically better) to combine the above two steps together into a multi-
objective optimization problem, and train the whole model in an end-to-end fashion:

W ∗, A∗ = argmin
W,A

Lgcn(W,A) + λLlpa(A), (9)

where λ is the balancing hyper-parameter. In this way, Llpa(A) serves as a regularization term that
assists the learning of edge weightsA, since it is hard for GCN to learn bothW andA simultaneously
due to overfitting. The proposed GCN-LPA approach can also be seen as learning the importance of
edges that can be used to reconstruct node labels accurately by LPA, then transferring this knowledge
from label space to feature space for GCN.

It is also worth noticing how the optimalA∗ is configured. The principle here is that we do not mod-
ify the basic structure of the original graph (i.e., not adding or removing edges) but only adjusting
weights of existing edges. This is equivalent to learning a positive mask matrix M for the adjacency
matrix A and taking the Hadamard product M ◦ A = A∗. Each element Mij can be set as either a
free variable or a function of the two nodes, for example, Mij = log

(
exp(x>i Hxj) + 1

)
where H

is a learnable kernel matrix for measuring feature similarity.
2Here the optimal edge weights A∗ share the same topology as the original graph G, i.e., we do not add or

remove edges from G but only learning the weights of existing edges. See the end of this subsection for more
discussion.
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2.4 ANALYSIS OF GCN-LPA MODEL BEHAVIOR

In this subsection, we show benefits of our unified model compared with GCN by analyzing proper-
ties of embeddings produced by the two models. We first analyze the update rule of GCN for node
vi: x

(k+1)
i = σ

(∑
vj∈N (vi)

ãijx
(k)
j W (k)

)
, where ãij = aij/dii is the normalized weight of edge

(j, i). This formula can be decomposed into the following two steps: (1) In aggregation step, we cal-
culate the aggregated representation h

(k)
i of all neighborhoods N (vi): h

(k)
i =

∑
vj∈N (vi)

ãijx
(k)
j .

(2) In transformation step, the aggregated representation h
(k)
i is mapped to a new space by a transfor-

mation matrix and nonlinear function: x(k+1)
i = σ

(
h
(k)
i W (k)

)
. We show by the following theorem

that the aggregation step reduces the overall distance in the embedding space between the nodes that
are connected in the graph:

Theorem 3 (Shrinking property in GCN) LetD(x) = 1
2

∑
vi,vj

ãij‖xi−xj‖22 be a distance met-
ric over node embeddings x. Then we have D(h(k)) ≤ D(x(k)).

(a) A graph with two
classes of nodes

(b) Potential intra-class
edges (bold links)

Figure 1: A graph with two classes of nodes,
while white nodes are unlabeled (Figure 1a). To
classify nodes, our model will increase the con-
necting strength among nodes within the same
class, thereby increasing their feature/label influ-
ence on each other. In this way, our model is able
to identify potential intra-class edges (bold links
in Figure 1b) and strengthen their weights.

Proof of Theorem 3 is in Appendix C. Theo-
rem 3 indicates that the overall distance among
connected nodes is reduced after taking one ag-
gregation step, which implies that connected
components in the graph “shrink” and nodes
within each connected component get closer
to each other in the embedding space. In an
ideal case where edges only connect nodes with
the same label, the aggregation step will push
nodes within the same class together, which
greatly benefits the transformation step that acts
like using a hyperplane W (k) for classification.
However, two connected nodes may have dif-
ferent labels. These “noisy” edges will impede
the formation of clusters and make the inter-
class boundary less clear.

Fortunately, in GCN-LPA, edge weights are
learned by minimizing the difference between
ground-truth labels and labels reconstructed
from local neighbors. This will force the model to increase the weight/bandwidth of possible paths
that connect nodes with the same label, so that labels can “flow” easily along these paths for the
purpose of label reconstruction. In this way, GCN-LPA is able to identify potential intra-class edges
and increase their weights to assist learning clustering structures ( see Figure 1 for an illustrating
example).

To empirically justify our claim, we apply a two-layer untrained GCN with randomly initialized
transformation matrices to the well-known Zachary’s karate club network (Zachary, 1977) as shown
in Figure 2a, which contains 34 nodes of 2 classes and 78 unweighted edges (grey solid lines). We
then increase the weights of intra-class edges by ten times to simulate GCN-LPA. We find that GCN
works well on this network (Figure 2b), but GCN-LPA performs even better than GCN because
the node embeddings are completely linearly separable as shown in Figure 2c. To further justify
our claim, we randomly add 20 “noisy” inter-class edges (grey dotted lines) to the original network,
from which we observe that GCN is misled by noise and mixes nodes of two classes together (Figure
2d), but GCN-LPA still distinguishes the two clusters (Figure 2e) because it is better at “denoising”
undesirable edges based on the supervised signal of labels.

3 CONNECTION TO EXISTING WORK

Edge weights play a key role in graph-based machine learning algorithms. In this section, we discuss
three lines of related work that learn edge weights adaptively.

5



Under review as a conference paper at ICLR 2021

(a) Karate club network
with noisy edges

(b) GCN on the
original network

(c) GCN-LPA on the
original network

(d) GCN on the
noisy network

(e) GCN-LPA on the
noisy network

Figure 2: Node embeddings of Zachary’s karate club network trained on a node classification task
(red vs. blue). Figure 2a visualizes the graph. Node coordinates in Figure 2b-2e are the embedding
coordinates. Notice that GCN does not produce linearly separable embeddings (Figure 2b vs. Figure
2c), while GCN-LPA performs much better even in the presence of noisy edges (Figure 2d vs. Figure
2e). Additional visualizations are included in Appendix D.

Locally Linear Embedding. Locally linear embedding (LLE) (Roweis & Saul, 2000) and its vari-
ants (Zhang & Wang, 2007; Kong et al., 2012) learn edge weights by constructing a linear de-
pendency between a node and its neighbors, then use the learned edge weights to embed high-
dimensional nodes into a low-dimensional space. Our work is similar to LLE in the aspect of trans-
ferring the knowledge of edge importance from one space to another, but the difference is that LLE
is an unsupervised dimension reduction method that learns the graph structure based on local prox-
imity only, while our work is semi-supervised and explores high-order relationship among nodes.

Label Propagation Algorithm. Classical LPA (Zhu et al., 2005; Zhou et al., 2004) can only make
use of node labels rather than node features. In contrast, adaptive LPA considers node features
by making edge weights learnable. Typical techniques of learning edge weights include adopting
kernel functions (Zhu et al., 2003; Liu et al., 2019a) (e.g., aij = exp(−

∑
d(xid − xjd)

2/σ2
d)

where d is dimensionality of features), minimizing neighborhood reconstruction error (Wang &
Zhang, 2008; Karasuyama & Mamitsuka, 2013), using leave-one-out loss (Zhang & Lee, 2007), or
imposing sparseness on edge weights (Hong et al., 2009). However, in these LPA variants, node
features are only used to assist learning the graph structure rather than explicitly mapped to node
labels, which limits their capability in node classification. Another notable difference is that adaptive
LPA learns edge weights by introducing the regularizations above, while our work takes LPA itself
as regularization to learn edge weights.

Attention and Diffusion on Graphs. Our method is also conceptually connected to attention mech-
anism on graphs, in which an attention weight αij is learned between node vi and vj . For example,
αij = LeakyReLU(a>[Wxi||Wxj ]) in GAT (Veličković et al., 2018), αij = a · cos(Wxi,Wxj)
in AGNN (Thekumparampil et al., 2018), αij = (W1xi)

>W2xj in GaAN (Zhang et al., 2018),
and αij = a> tanh(W1xi +W2xj) in GeniePath (Liu et al., 2019b), where a and W are trainable
variables. Our method is also similar to diffusion-based methods (Klicpera et al., 2019a; Xu et al.,
2019a; Abu-El-Haija et al., 2019; Klicpera et al., 2019b; Jiang et al., 2019; Yang et al., 2019). Graph
diffusion uses extended neighborhoods for aggregation in GNNs, which can be seen as learning a
new adjacency matrix for a given graph. A significant difference between attention/diffusion mech-
anisms and our work is that attention/diffusion is learned based on feature similarity/graph topology,
while we propose that edge weights should be consistent with the distribution of labels on the graph,
which requires less handcrafting of the attention/diffusion function and is more task-oriented.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Datasets. We use the following five datasets in our experiments. Cora, Citeseer, and Pubmed
(Sen et al., 2008) are citation networks, where nodes correspond to documents, edges correspond
to citation links, and each node has a sparse bag-of-words feature vector as well as a class label.
We also use two co-authorship networks (Shchur et al., 2018), Coauthor-CS and Coauthor-Phy,
where nodes are authors and an edge indicates that two authors co-authored a paper. Node features
represent paper keywords for each author’s papers, and class labels indicate most active fields of
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Method Cora Citeseer Pubmed Coauthor-CS Coauthor-Phy
LR 57.1 ± 2.3 61.0 ± 2.2 64.1 ± 3.1 86.4 ± 0.9 86.7 ± 1.5

LPA 74.4 ± 2.6 67.8 ± 2.1 70.5 ± 5.3 73.6 ± 3.9 86.6 ± 2.0
GCN 81.4 ± 1.3 71.9 ± 1.9 77.5 ± 2.9 91.1 ± 0.5 92.4 ± 1.0
GAT 80.7 ± 1.3 71.4 ± 1.9 76.7 ± 2.3 90.5 ± 0.6 92.2 ± 0.9

JK-Net 81.3 ± 1.4 70.2 ± 1.3 77.6 ± 0.9 90.3 ± 0.4 91.0 ± 0.7
GIN 74.5 ± 1.5 60.7 ± 1.3 73.4 ± 1.2 84.1 ± 1.9 87.3 ± 1.7
GDC 83.2 ± 0.9 72.2 ± 1.4 77.8 ± 0.8 91.4 ± 1.0 92.0 ± 0.7

GCN+LPA 78.4 ± 0.7 69.8 ± 1.4 74.1 ± 0.9 84.5 ± 1.0 89.7 ± 0.8
GCN-LPA 83.0 ± 1.4 72.6 ± 0.9 78.4 ± 1.5 91.9 ± 0.9 93.4 ± 1.6

Table 1: Mean and the 95% confidence intervals of test set accuracy for all methods and datasets.
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study for each author. Statistics of the five datasets are shown in Appendix E. We also calculate
the intra-class edge rate (the fraction of edges that connect two nodes within the same class), which
is significantly higher than inter-class edge rate in all networks. The finding supports our claim in
Section 2.4 that node classification benefits from intra-class edges in a graph.

Baselines. We compare against the following baselines in our experiments. Logistic Regression
(LR) is feature-based methods that do not consider the graph structure. Label Propagation (LPA)
(Zhu et al., 2005), on the other hand, only consider the graph structure and ignore node features.
We also compare with several GNNs: Graph Convolutional Network (GCN) (Kipf & Welling,
2017), Graph Attention Network (GAT), Jumping Knowledge Network (JK-Net) (Xu et al.,
2018), Graph Isomorphism Network (GIN) (Xu et al., 2019b), and Graph Diffusion Convolution
(GDC) (Klicpera et al., 2019b) (with GCN as the base model). In addition, we propose another
baseline GCN+LPA, which simply adds predictions of GCN and LPA together.

Experimental Setup. Our experiments focus on the transductive setting where we only know labels
of part of nodes but have access to the entire graph as well as features of all nodes.3 We randomly
sample 20 nodes per class as training set, 50 nodes per class as validation set, and the remaining
nodes as test set. The weight of each edge is treated as a free variable during training. We train
our model for 200 epochs using Adam (Kingma & Ba, 2015) and report the test set accuracy when
validation set accuracy is maximized. Each experiment is repeated five times and we report the
mean and the 95% confidence interval. We initialize weights according to Glorot & Bengio (2010)
and row-normalize input features. During training, we apply L2 regularization to the transformation
matrices and use the dropout technique (Srivastava et al., 2014). The settings of all other hyper-
parameters can be found in Appendix F.

4.2 RESULTS

Comparison with Baselines. The results of node classification are summarized in Table 1. Table
1 indicates that only using node features (LR) or graph structure (LPA) will lead to information
loss and cannot fully exploit datasets. The results demonstrate that our proposed GCN-LPA model
surpasses state-of-the-art GNN baselines. We notice that GDC is a strong baseline on Cora, but it

3Our method can be easily generalized to inductive setting if implemented using minibatch training like
GraphSAGE (Hamilton et al., 2017).
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Labeled node rate 5% 10% 20% 50% 80%
LPA 67.9 ± 2.1 68.1 ± 1.3 70.5 ± 1.5 72.5 ± 1.2 76.4 ± 1.1
GCN 72.1 ± 1.9 72.5 ± 1.8 74.3 ± 0.9 76.8 ± 0.6 80.2 ± 1.5

GCN-LPA 72.7 ± 1.2 73.2 ± 1.1 75.4 ± 1.5 78.2 ± 1.3 82.3 ± 0.9

Table 2: Accuracy of LPA, GCN, and GCN-LPA on Citeseer with different labeled node rate.

does not perform consistently well on other datasets. In addition, GCN+LPA does not perform well,
since it utilizes the prediction of LPA directly, making its performance limited by LPA.

Efficacy of LPA Regularization. We investigate the influence of the number of LPA iterations and
the training weight of LPA loss term λ on the performance of classification. The results on Citeseer
dataset are plotted in Figures 3 and 4, respectively, where each line corresponds to a given number of
GCN layers in GCN-LPA. From Figure 3 we observe that the performance is boosted at first when
the number of LPA iterations increases, then the accuracy stops increasing and decreases since a
large number of LPA iterations will include more noisy nodes. Figure 4 shows that training without
the LPA loss term (i.e., λ = 0) is more difficult than the case where λ = 1 ∼ 5, which justifies our
aforementioned claim that it is hard for the GCN part to learn both transformation matrices W and
edge weights A simultaneously without the assistance of LPA regularization.

Influence of Labeled Node Rate. To study the influence of labeled node rate on the performance
of our model, we vary the ratio of labeled node rate on Citeseer from 5% to 80% while keeping
the validation and test set fixed, and report the result in Table 2. From Table 2 we observe that
GCN-LPA outperforms GCN and LPA consistently, and the improvement achieved by GCN-LPA
increases when labeled node rate is larger (from 0.6% to 2.1% compared with GCN). This is because
GCN-LPA requires node labels to calculate edge weights. Therefore, a larger labeled node rate will
provide more information for identifying noisy edges.

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

Figure 6: Visualization
of learned edge weights
in Coauthor-CS dataset.

Visualization of Learned Edge Weights. To intuitively understand
what our model learns about edge weights, we split nodes in Coauthor-
CS dataset into 15 groups according to their labels, and calculate the
average weights of edges connecting every pair of node groups as well
as the average weights of edges within every group. The results are
shown in Figure 6, where darker color indicates higher average weights
of edges. It is clear that values along the diagonal (intra-class edges
weights) are significantly larger than off-diagonal values (inter-class
edge weights) in general, which demonstrates that GCN-LPA is able to
identify the importance of edges and distinguish inter-class and intra-
class edges. The visualization results are similar for other datasets.

Time Complexity. We study the training time of GCN-LPA on random
graphs. We use the one-hot identity vector as feature and 0 as label for
each node. The size of training set and validation set is 100 and 200,
respectively, while the rest is test set. The average number of neighbors for each node is set as 5,
and the number of nodes is varied from one thousand to one million. We run GCN-LPA and GCN
for 100 epochs on a Microsoft Azure virtual machine with 1 NVIDIA Tesla M60 GPU, 12 Intel
Xeon CPUs (E5-2690 v3 @2.60GHz), and 128GB of RAM, using the same hyper-parameter setting
as in Cora. The training time per epoch of GCN-LPA and GCN is presented in Figure 5. Our result
shows that GCN-LPA requires only 9.2% extra training time on average compared to GCN.

5 CONCLUSION

We studies the theoretical relationship between two types of well-known graph-based algorithms
for node classification, label propagation algorithm and graph convolutional neural networks, from
the perspectives of feature/label influence. We then propose a unified model GCN-LPA, which
learns transformation matrices and edge weights simultaneously in GCN with the assistance of LPA
regularizer. We also analyze why our unified model performs better than traditional GCN in terms
of node classification. Experiments on five datasets demonstrate that our model outperforms state-
of-the-art baselines, and it is also highly time-efficient with respect to the size of a graph.
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APPENDIX

A PROOF OF THEOREM 1

Before proving Theorem 1, we first give two lemmas that demonstrate the exact form of feature
influence and label influence defined in this paper. The relationship between feature influence and
label influence can then be deduced from their exact forms.

Lemma 1 Assume that the nonlinear activation function in GCN is ReLU. Let Pa→b
k be a path

[v(k), v(k−1), · · · , v(0)] of length k from node va to node vb, where v(k) = va, v(0) = vb, and
v(i−1) ∈ N (v(i)) for i = k, · · · , 1. Then we have

Ĩf (va, vb; k) =
∑
Pa→b

k

1∏
i=k

ãv(i−1),v(i) , (10)

where ãv(i−1),v(i) is the normalized weight of edge (v(i), v(i−1)).

Proof. See Xu et al. (2018) for the detailed proof. �

The product term in Eq. (10) is the probability of a given path Pa→b
k . Therefore, the right hand side

in Eq. (10) is the sum over probabilities of all possible paths of length k from va to vb, which is the
probability that a random walk starting at va ends at vb after taking k steps.

Lemma 2 Let Ua→b
j be a path [v(j), v(j−1), · · · , v(0)] of length j from node va to node vb, where

v(j) = va, v(0) = vb, v(i−1) ∈ N (v(i)) for i = j, · · · , 1, and all nodes along the path are unlabeled
except v(0). Then we have

Il(va, vb; k) =

k∑
j=1

∑
Ua→b

j

1∏
i=j

ãv(i−1),v(i) , (11)

where ãv(i−1),v(i) is the normalized weight of edge (v(i), v(i−1)).

To intuitively understand this lemma, note that there are two differences between Lemma 1 and
Lemma 2: (1) In Lemma 1, Ĩf (va, vb; k) sums over all paths from va to vb of length k, but in
Lemma 2, Il(va, vb; k) sums over all paths from va to vb of length no more than k. The is because in
LPA, vb’s label is reset to its initial value after each iteration, which means that the label of vb serves
as a constant signal that begins propagating in the graph again and again after each iteration. (2) In
Lemma 1 we consider all possible paths from va to vb, but in Lemma 2, the paths are restricted to
contain unlabeled nodes only. The reason here is the same as above: Since the labels of labeled nodes
are reset to their initial values after each iteration in LPA, the influence of vb’s label will be absorbed
in labeled nodes, and the propagation of vb’s label will be cut off at these nodes. Therefore, vb’s
label can only flow to va along the paths with unlabeled nodes only. See Figure 7 for an illustrating
example showing the label propagation in LPA.

Proof. As mentioned above, a significant difference between LPA and GCN is that all labeled
nodes are reset to its original labels after each iteration in LPA. This implies that the initial label
yb of node vb appears not only as y(0)b , but also as every y(j)b for j = 1, · · · , k − 1. Therefore, the
influence of yb on y(k)a is the cumulative influence of y(j)b on y(k)a for j = 0, 1, · · · , k − 1:

Il(va, vb; k) =
∂y

(k)
a

∂yb
=

k−1∑
j=0

∂y
(k)
a

∂y
(j)
b

. (12)

According to the updating rule of LPA, we have

∂y
(k)
a

∂y
(j)
b

=
∂
∑

vz∈N (va)
ãazy

(k−1)
z

∂y
(j)
b

=
∑

vz∈N (va)

ãaz
∂y

(k−1)
z

∂y
(j)
b

. (13)

12



Under review as a conference paper at ICLR 2021

𝒗𝒂

𝒗𝒃

𝑣%

𝑣&

𝑣'

𝑣(

(a) Iteration 1

𝒗𝒂

𝒗𝒃

𝑣%

𝑣&

𝑣'

𝑣(

(b) Iteration 2

𝒗𝒂

𝒗𝒃

𝑣%

𝑣&

𝑣'

𝑣(

(c) Iteration 3

𝒗𝒂

𝒗𝒃

𝑣%

𝑣&

𝑣'

𝑣(
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Figure 7: An illustrating example of label propagation in LPA. Suppose labels are propagated for
three iterations, and no self-loop exists. Blue nodes are labeled while white nodes are unlabeled. (a)
va’s label propagates to v1 (yellow arrows). Note that the propagation of va’s label to v3 is cut off
since v3 is labeled thus absorbing va’s label. (b) va’s label that propagated to v1 further propagates
to v2 and vb (yellow arrows). Meanwhile, va’s label is reset to its initial value then propagates from
va again (green arrows). (c) Label propagation in iteration 3. Purple arrows denote the propagation
of va’s label starting from va for the third time. (d) All possible paths of length no more than three
from va to vb containing unlabeled nodes only. Note that there is no path of length one from va to
vb.

In the above equation, the derivative ∂y(k)
a

∂y
(j)
b

is decomposed into the weighted average of ∂y(k−1)
z

∂y
(j)
b

,

where vz traverses all neighbors of va. For those vz’s that are initially labeled, y(k−1)z is reset to
their initial labels in each iteration. Therefore, they are always constant and independent of y(j)b ,
meaning that their derivatives w.r.t. y(j)b are zero. So we only need to consider the terms where vz is
an unlabeled node:

∂y
(k)
a

∂y
(j)
b

=
∑

vz∈N (va),z>m

ãaz
∂y

(k−1)
z

∂y
(j)
b

, (14)

where z > m means vz is unlabeled. To intuitively understand Eq. (14), one can imagine that we
perform a random walk starting from node va for one step, where the “transition probability” is the
edge weights ã, and all nodes in this random walk are restricted to unlabeled nodes only. Note that
we can further decompose every y(k−1)z in Eq. (14) in the way similar to what we do for y(k)a in
Eq. (13). So the expansion in Eq. (14) can be performed iteratively until the index k decreases to j.
This is equivalent to performing all possible random walks for k − j steps starting from va, where
all nodes but the last in the random walk are restricted to be unlabeled nodes:

∂y
(k)
a

∂y
(j)
b

=
∑
vz∈V

∑
Ua→z

k−j

 1∏
i=k−j

ãv(i−1),v(i)

 ∂y
(j)
z

∂y
(j)
b

, (15)

where vz in the first summation term is the end node of a random walk, Ua→z
k−j in the second summa-

tion term is an unlabeled-nodes-only path from va to vz of length k − j, and the product term is the
probability of a given path Ua→z

k−j . Consider the last term ∂y(j)
z

∂y
(j)
b

in Eq. (15). We know that ∂y(j)
z

∂y
(j)
b

= 0

for all z 6= b and ∂y(j)
z

∂y
(j)
b

= 1 for z = b, which means that only those random-walk paths that end

exactly at vb (i.e., the end node vz is exactly vb) count for the computation in Eq. (15). Therefore,
we have

∂y
(k)
a

∂y
(j)
b

=
∑
Ua→b

k−j

1∏
i=k−j

ãv(i−1),v(i) , (16)

where Ua→b
k−j is a path from va to vb of length k − j containing only unlabeled nodes except vb.

Substituting the right hand term of Eq. (12) with Eq. (16), we obtain that

Il(va, vb; k) =

k−1∑
j=0

∑
Ua→b

k−j

1∏
i=k−j

ãv(i−1),v(i) =

k∑
j=1

∑
Ua→b

j

1∏
i=j

ãv(i−1),v(i) . (17)

�
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Now Theorem 1 can be proved by combining Lemma 1 and Lemma 2:

Proof. Suppose that whether a node is labeled or not is independent of each other for the given
graph. Then we have

E
[
Il(va, vb; k)

]
=E

 k∑
j=1

∑
Ua→b

j

1∏
i=j

ãv(i−1),v(i)

 =

k∑
j=1

E

∑
Ua→b

j

1∏
i=j

ãv(i−1),v(i)


=

k∑
j=1

∑
Pa→b

j

Pr
(
Pa→b
j is an unlabeled-nodes-only path

) 1∏
i=j

ãv(i−1),v(i)

=

k∑
j=1

∑
Pa→b

j

βj
1∏

i=j

ãv(i−1),v(i) =

k∑
j=1

βj Ĩf (va, vb; j).

(18)

�

B PROOF OF THEOREM 2

Proof. Denote the set of labels as L. Since different label dimensions in y(·)a do not interact with
each other when running LPA, the value of the ya-th dimension in y(·)a (denoted by y(·)a [ya]) comes
only from the nodes with initial label ya. It is clear that

y(k)a [ya] =
∑

vb:yb=ya

k∑
j=1

∑
Ua→b

j

1∏
i=j

ãv(i−1),v(i) , (19)

which equals
∑

vb:yb=ya
Il(va, vb; k) according to Lemma 2. Therefore, we have

Pr(ŷa = ya) =
y
(k)
a [ya]∑

i∈L y
(k)
a [i]

∝ y(k)a [ya] =
∑

vb:yb=ya

Il(va, vb; k) (20)

�

C PROOF OF THEOREM 3

In this proof we assume that the dimension of node representations is one, but note that the conclu-
sion can be easily generalized to the case of multi-dimensional representations since the function
D(x) can be decomposed into the sum of one-dimensional cases. In the following of this proof, we
still use bold notations x(k)

i and h
(k)
i to denote node representations, but keep in mind that they are

scalars rather than vectors.

We give two lemmas before proving Theorem 3. The first one is about the gradient of D(x):

Lemma 3 h
(k)
i = x

(k)
i − ∂D(x(k))

∂x
(k)
i

.

Proof. x
(k)
i − ∂D(x(k))

∂x
(k)
i

= x
(k)
i −

∑
vj∈N (vi)

ãij(x
(k)
i − x

(k)
j ) =

∑
vj∈N (vi)

ãijx
(k)
j = h

(k)
i . �

It is interesting to see from Lemma 3 that the aggregation step in GCN is equivalent to running
gradient descent for one step with a step size of one. However, this is not able to guarantee that
D(h(k)) ≤ D(x(k)) because the step size may be too large to reduce the value of D.

The second lemma is about the Hessian of D(x):

Lemma 4 ∇2D(x) � 2I , or equivalently, 2I −∇2D(x) is a positive semidefinite matrix.
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Proof. We first calculate the Hessian of D(x) = 1
2

∑
vi,vj

ãij‖xi − xj‖22:

∇2D(x) =


1− ã11 −ã12 · · · −ã1n
−ã21 1− ã22 · · · −ã2n

...
...

. . .
...

−ãn1 −ãn2 · · · 1− ãnn

 = I −D−1A. (21)

Therefore, 2I − ∇2D(x) = I + D−1A. Since D−1A is Markov matrix (i.e., each entry is non-
negative and the sum of each row is one), its eigenvalues are within the range [-1, 1], so the eigen-
values of I + D−1A are within the range [0, 2]. Therefore, I + D−1A is a positive semidefinite
matrix, and we have ∇2D(x) � 2I . �

We can now prove Theorem 3:

Proof. Since D is a quadratic function, we perform a second-order Taylor expansion of D around
x(k) and obtain the following inequality:

D(h(k)) =D(x(k)) +∇D(x(k))>(h(k) − x(k)) +
1

2
(h(k) − x(k))>∇2D(x)(h(k) − x(k))

=D(x(k))−∇D(x(k))>∇D(x(k)) +
1

2
∇D(x(k))>∇2D(x)∇D(x(k))

≤D(x(k))−∇D(x(k))>∇D(x(k)) +∇D(x(k))>∇D(x(k))

=D(x(k)).

(22)

�

D MORE VISUALIZATION RESULTS ON KARATE CLUB NETWORK

Figure 8 illustrates more visualization of GCN and GCN-LPA on karate club network. In each
subfigure, we vary the number of layers from 1 to 4 to examine how the learned representations
evolve. The initial node features are one-hot identity vectors, and the dimension of hidden layers
and output layer is 2. The transformation matrices are uniformly initialized within range [-1, 1]. We
use sigmoid function as the nonlinear activation function. Comparing the four figures in each row,
we conclude that the aggregation step and transformation step in GCN and GCN-LPA do benefit the
separation of different classes. Comparing Figure 8a and 8c (or Figure 8b and 8d), we conclude that
more inter-class edges will make the separation harder for GCN (or GCN-LPA). Comparing Figure
8a and 8b (or Figure 8c and 8d), we conclude that GCN-LPA is more noise-resistant than GCN,
therefore, GCN-LPA can better differentiate classes and identify clustering substructures.

E DATASETS DETAILS

The statistics of all datasets are shown in Table 3.

Cora Citeseer Pubmed Coauthor-CS Coauthor-Phy
# nodes 2,708 3,327 19,717 18,333 34,493
# edges 5,278 4,552 44,324 81,894 247,962

# features 1,433 3,703 500 6,805 8,415
# classes 7 6 3 15 5

Intra-class edge rate 81.0% 73.6% 80.2% 80.8% 93.1%
Labeled node rate 5.2% 3.6% 0.3% 1.6% 0.3%

Table 3: Statistics for all datasets.

F HYPER-PARAMETER SETTINGS

The detailed hyper-parameter settings for all datasets are listed in Table 4. In GCN-LPA, we use
the same dimension for all hidden layers. Note that the number of GCN layers and the number of
LPA iterations can actually be different since GCN and LPA are implemented as two independent
modules. We use grid search to determine hyper-parameters on Cora, and perform fine-tuning on

15



Under review as a conference paper at ICLR 2021

1-layer 2-layer 3-layer 4-layer

(a) GCN on the original network
1-layer 2-layer 3-layer 4-layer

(b) GCN-LPA on the original network
1-layer 2-layer 3-layer 4-layer

(c) GCN on the noisy network
1-layer 2-layer 3-layer 4-layer

(d) GCN-LPA on the noisy network

Figure 8: Visualization of GCN and GCN-LPA with 1 ∼ 4 layers on karate club network.

Cora Citeseer Pubmed Coauthor-CS Coauthor-Phy
Dimension of hidden layers 32 16 32 32 32

# GCN layers 5 2 2 2 2
# LPA iterations 5 5 1 2 3

L2 weight 1× 10−4 5× 10−4 2× 10−4 1× 10−4 1× 10−4

LPA weight (λ) 10 1 1 2 1
Dropout rate 0.2 0 0 0.2 0.2
Learning rate 0.05 0.2 0.1 0.1 0.05

Table 4: Hyper-parameter settings for all datasets.

other datasets, i.e., varying one hyper-parameter per time to see if the performance can be further
improved. The search spaces for hyper-parameters are as follows:

• Dimension of hidden layers: {8, 16, 32};
• # GCN layers: {1, 2, 3, 4, 5, 6};
• # LPA iterations: {1, 2, 3, 4, 5, 6, 7, 8, 9};
• L2 weight: {10−7, 2 × 10−7, 5 × 10−7, 10−6, 2 × 10−6, 5 × 10−6, 10−5, 2 × 10−5, 5 ×

10−5, 10−4, 2× 10−4, 5× 10−4, 10−3};
• LPA weight (λ): {0, 1, 2, 5, 10, 15, 20};
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• Dropout rate: {0, 0.1, 0.2, 0.3, 0.4, 0.5};
• Learning rate: {0.01, 0.02, 0.05, 0.1, 0.2, 0.5}.
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