Published as a conference paper at ICLR 2026

EGG-SR: EMBEDDING SYMBOLIC EQUIVALENCE
INTO SYMBOLIC REGRESSION VIA EQUALITY GRAPH

Nan Jiang Ziyi Wang, Yexiang Xue

University of Texas - El Paso Purdue University

njiang@utep.edu {wang4538, yexiang}@purdue.edu
ABSTRACT

Symbolic regression seeks to uncover physical laws from experimental data by
searching for closed-form expressions, which is an important task in Al-driven
scientific discovery. Yet the exponential growth of the search space of expression
renders the task computationally challenging. A promising yet underexplored di-
rection for reducing the search space and accelerating training lies in symbolic
equivalence: many expressions, although syntactically different, define the same
function — for example, log(z?x3), log(z?) + log(x3), and 2 log(z1) + 3log(x2).
Existing algorithms treat such variants as distinct outputs, leading to redundant
exploration and slow learning. We introduce EGG-SR, a unified framework that
integrates symbolic equivalence into a class of modern symbolic regression meth-
ods, including Monte Carlo Tree Search (MCTS), Deep Reinforcement Learn-
ing (DRL), and Large Language Models (LLMs). EGG-SR compactly represents
equivalent expressions through the proposed EGG module (via equality graphs),
accelerating learning by: (1) pruning redundant subtree exploration in EGG-
MCTS, (2) aggregating rewards across equivalent generated sequences in EGG-
DRL, and (3) enriching feedback prompts in EGG-LLM. Theoretically, we show
the benefit of embedding EGG into learning: it tightens the regret bound of MCTS
and reduces the variance of the DRL gradient estimator. Empirically, EGG-SR
consistently enhances a class of symbolic regression models across several bench-
marks, discovering more accurate expressions within the same time limit.

Project page is at: https://nan-Jjiang-group.github.io/egg-srl

1 INTRODUCTION

Symbolic regression aims to automatically discover physical knowledge from experimental data and
has been widely used in scientific domains (Schmidt & Lipson, |2009; |Udrescu & Tegmark, 2020;
Cory-Wright et al.| 2024} |[Yu & Wang] 2024} |LaFollette et al., [2025)). Many contemporary methods
for symbolic regression formulate the search for optimal expressions as a sequential decision-making
process. In literature, existing methods learn to predict the sequence of grammar rules (Sun et al.|
2023)), the traversal sequence of expression trees (Petersen et al., 2021} [Kamienny et al., [2022), or
executable strings that follow Python syntax (Shojaee et al., [2025; [Zhang et al.l 2025). This task
remains computationally challenging due to its NP-hard nature (Virgolin & Pissis,|2022), that is, the
search space of candidate expressions grows exponentially with the data dimension.

A promising yet underexplored direction for reducing the search space and accelerating discovery
is the integration of symbolic equivalence into learning algorithms. For example, these expressions
log(x223), log(z?) + log(23), and 2log(x1) + 3log(x) all represent the same math function and
are therefore symbolically equivalent. Ideally, a well-trained model would recognize such equiv-
alence and assign identical goodness-of-fit, rewards, or losses to the corresponding predicted ex-
pressions (Allamanis et al.,[2017), since these expressions produce identical functional outputs and
attain the same prediction error on the dataset. In the literature, existing SR algorithms treat these
expressions as distinct outputs, leading to redundant exploration of the search space and slow train-
ing. The main challenge of this direction is: how to represent symbolically-equivalent expressions
and embed them into modern learning frameworks in a unified and scalable manner?

https://nan-jiang-group.github.io/egg-sr

Published as a conference paper at ICLR 2026

Since the number of equivalent variants grows exponentially with expression length, explicitly main-
taining the set of equivalent expressions is not time and memory scalable. To mitigate this scalability
challenge, a line of recent works introduced the Equality graph (e-graph), a data structure that com-
pactly encodes the set of equivalent variants by storing shared sub-expressions only once (Nandi
et al.l |2021; Willsey et al., 2021; [Kurashige et al., 2024). e-graphs have been applied to tasks,
including program optimization (Barbulescu et al.| |2024), dataset generation of equivalent expres-
sions (Zheng et al} 2025). In genetic programming-based symbolic regression, e-graphs have been
used for duplicate detection (de Franca & Kronberger, 2025), expression simplification (de Franca
& Kronberger, [2023), and expression template pattern matching (de Franca & Kronberger, [2025).
Despite the empirical successes, we find that a unified framework that enables diverse symbolic
regression algorithms to interact with e-graphs to accelerate learning has room for improvement.

We present a unified framework, EGG-SR, that integrates symbolic equivalence into a class of learn-
ing algorithms via e-graphs. Our framework encompasses EGG-MCTS, EGG-DRL, and EGG-LLM.
The core idea is to leverage EGG to efficiently sample equivalent variants of expressions predicted
by SR algorithms and compute a new equivalence-aware learning objective. Specifically, (1) EGG-
MCTS prunes redundant exploration over equivalent subtrees; (2) EGG-DRL aggregates rewards
over equivalent expressions, stabilizing training; (3) EGG-LLM enriches the feedback prompt with
multiple equivalent expressions to better guide next round predictions. Under mild theoretical as-
sumptions, we show the benefit of embedding symbolic equivalence into learning: (1) EGG-MCTS
offers a tighter regret bound than standard MCTS (Sun et al., |2023)), and (2) the gradient estimator
of EGG-DRL exhibits a lower variance than that of standard DRL (Petersen et al.,[2021).

In experiments, we evaluate EGG-SR with several representative symbolic regression baselines
across several challenging benchmarks. We demonstrate its advantages over existing approaches
using EGG than without. EGG consistently improves performance across diverse frameworks, dis-
covering more accurate expressions than baseline within a fixed time budget.

2 PRELIMINARIES

Symbolic Expression. Let x = (z1,...,,) denote input variables and ¢ = (cy,..., ¢y) be co-
efficients. A symbolic expression ¢ connects these variables and coefficients using mathematical
operators such as addition, multiplication, and logarithm. For example, ¢ = 3logz; + 2logxs is
a symbolic expression composed of variables {x1, 22}, operators {+,log}, and coefficients {¢; =
3,co = 2}. In literature, symbolic expressions have been represented as binary trees (de Franca
& Kronberger, 2025)), pre-order traversal sequences of the binary tree (Petersen et al., [2021)), topo-
logical traversal sequences of the expression graph (Kahlmeyer et al., [2024; |Xiang et al., [2025)), or
sequences of production rules defined by a context-free grammar (Sun et al.|[2023).

To handle all symbolic objects in this work, a context-free grammar is adopted to represent symbolic
expressions (Brence et all 2021). The grammar is defined by a tuple (V, X, R, S) where (1) V is
a set of non-terminal symbols representing arbitrary sub-expressions, i.e., V = {A4}; (2) ¥ is a set
of terminal symbols, including input variables and coefficients, i.e., {z1,...,2,} U {c}; 3) R is
a set of production rules representing mathematical operations. For example, A — A x A denotes
multiplication, and the semantics is to replace the left-hand side with the right-hand side; (4) S is
the start symbol, typically set to S = A. Given a sequence of production rules, an expression is
constructed by sequentially applying each rule to the leftmost nonterminal, starting from S. If the
resulting string contains no nonterminals, it corresponds to a valid expression.

Figure|6|(in appendix) shows the expression construction with sequence (A -+ AXx A;A — ¢, A —
log(xy)). The firstrule A — A x A expands the start symbol ¢ = A to ¢ = A x A. Applying the
nextrule A — cyields ¢ = ¢; X A. An index is assigned to the coefficient symbol c, to differentiate
multiple coefficients. Finally, applying A — log(z1) to ¢ = ¢1 x A yields ¢ = ¢; log(z1).

Symbolic Equivalence under a Rewrite System. Rewrite rules are widely used to simplify, re-
arrange, and reformulate expressions in tasks such as code optimization and automated theorem
proving (Huet & Oppen, 1980; Nandi et al., 2021). A rewrite system provides a principled proce-
dure for transforming expressions by replacing sub-expressions according to predefined patterns.

Formally, a rewrite rule r; is written as “LHS ~~» RHS”, where the left-hand side (LHS) specifies a
pattern to be matched, and the right-hand side (RHS) specifies the substitution applied upon a match.

Published as a conference paper at ICLR 2026

Given a set of rewrite rules R = {ry,r9,73, ...}, the symbolic equivalence relation =% induced by
'R is defined as follows: for two symbolic expressions ¢; and ¢g,

¢1=r ¢ ifandonlyif ¢ =" ¢2 or ¢ =" ¢1, (1)
where ¢1 =" ¢2 means that ¢; can be transformed into ¢ by applying a finite sequence of rewriting
using R. In other words, two expressions are equivalent under R if one can be transformed into the
other via repeated rewriting.

For example, consider the rewrite rule log(a x b) ~~ log(a) + log(b) (denoted as r1), where a and
b are placeholders for arbitrary sub-expressions. Since ¢; = log(z3x3) can be transformed into

¢ = log(z3) + log(x2) by applying 1 once, ¢; and ¢y are symbolically equivalent under 7.

In this work, the known mathematical identities listed in Table [3] (in the appendix) are encoded as
rewrite rules in R. Section applies these rewrite rules over the e-graph to generate a batch of
symbolically equivalent expressions via matching (Figure [Tb) and substitution (Figure [I¢) opera-
tions. Implementation details of rewrite rules are provided in Appendix

Symbolic Regression (SR) posits that experimental data are generated by an underlying closed-
form expression, an assumption that is widely adopted across the sciences (Ma et al.| 2022)). Given
a dataset D = {(x;, ;) } Y, the goal is to find an optimal expression ¢* that minimizes the loss:

N
¢ «— argm(;n N;£(¢(Xl7c)ayi)7

where function £ measures the discrepancy between the prediction ¢(x;, ¢) and the ground truth y;.
The coefficients c in ¢ are typically optimized on the training data D using numerical optimizers
such as BFGS (Fletcher, 2000). This problem is NP-hard (Virgolin & Pissis| [2022)), posing a major
challenge for SR algorithms. Recent efforts to mitigate this challenge are reviewed in Section]

3 METHODOLOGY

3.1 EGG: EQUALITY GRAPH FOR GRAMMAR-BASED SYMBOLIC EXPRESSION

Enumerating all equivalent variants of a symbolic expression is combinatorially expensive. Storing
these variants explicitly is time-consuming and memory-inefficient. To mitigate this scalability chal-
lenge, we adopt the recently proposed Equality graph (i.e, E-graph) data structure (Willsey et al.,
2021 Waldmann et al., [2022)), which compactly represents the set of equivalent expressions by shar-
ing common subexpressions. We extend E-graphs to support grammar-based symbolic expressions,
noted as EGG, facilitating unified integration with symbolic regression algorithms.

Definition. An e-graph consists of a collection of equivalence classes, called e-classes. Each e-class
contains a set of e-nodes representing symbolically equivalent sub-expressions (Willsey et al.|[2021).
Each e-node encodes a mathematical operation and references a list of child e-classes corresponding
to its operands. Edges always point from an e-node to e-classes.

Figure [T(d) shows an example e-graph. The color-highlighted part is an e-class (in dashed box)
containing two e-nodes (in solid boxes): A — log(A) and A — A + A. The two e-nodes represent
logarithmic operation and addition, respectively. The e-node A — log(A) has a single outgoing
edge to its child e-class A — A x A, because log(-) operator is unary.

Construction. In this work, an e-graph is initialized with a sequence of production rules, repre-
senting an input expression. Each rewrite rule (as defined in section [2)) is applied by matching its
left-hand side (LHS) pattern against the current e-graph, which involves traversing all e-classes to
identify subexpressions that match LHS. For every successful match, new e-classes and e-nodes
corresponding to the right-hand side (RHS) of the rule are created. A merge operation is applied
to incorporate the new e-class with the matched e-class, thereby preserving the structure of known
equivalences. This process, known as equality saturation, iteratively applies pattern matching and
merging until either no further rules can be applied or a maximum number of iterations is reached.

Example 3.1. Figure|l|shows an example e-graph construction with the rewrite rule log(a X b) ~
log(a) + log(b), where a and b are placeholders for arbitrary sub-expressions. The e-graph is ini-
tialized with an expression ¢ = log(z$22) in Figure a). The LHS is matched against the color-

highlighted e-classes in Figure [[[b) with @ = 2} and b = 23. The substitution step constructs

Published as a conference paper at ICLR 2026

(a) Initialization. (b) Matchlng (c)Subst|tut|on (d) Mergmg

Figure 1: Example e-graph construction by applying rewrite rule log(a x b) ~ log(a) + log(b) to
an e-graph representing the expression log(z3x3). (a) The initialized e-graph consists of e-classes
(dashed boxes), each containing equivalent e-nodes (solid boxes). Edges connect e-nodes to their
child e-classes. (b) The matching step identifies the e-nodes that match the LHS of the rule. (c¢) The
substitution step adds new e-classes and edges corresponding to the RHS to the e-graph. (d) The
merging step consolidates equivalent e-classes. See Example @for a detailed explanation.

e-classes and e-nodes that represent RHS, which are color-highlighted in Figure [T[c). The newly
created e-class is merged with the matched e-class in Figure[I{d). The resulting e-graph represents
two equivalent expressions: log(xla:Q) and log(z3$) + log(x3). The e-graph in Figure d) saves
memory by storing two sub-expressions 3 and x3 only once. Additional EGG visualizations on
more complex expressions are provided in Appendix [D.T]

Extraction. After the e-graph is saturated, an extraction step is performed to obtain K representative
expressions (Goharshady et al.,[2024). Because an e-graph encodes up to an exponential number of
equivalent expressions, exhaustive enumeration is computationally infeasible. We therefore adopt
two practical strategies: (1) cost-based extraction, which selects several simplified expressions by
minimizing a user-defined cost function over operators and variables (de Franca & Kronberger,
2025)), and (2) random-walk sampling, which generates a batch of expressions by stochastically
traversing the e-graph. A detailed explanation of extraction is provided in Appendix [B:3:2]

Interaction with SR algorithms. Prior research has leveraged e-graphs, based on the principle
of Occam’s razor, to obtain the most simplified and least-cost equivalent form (de Franca & Kro-
nberger} 2025). In this study, however, equivalence-aware learning (detailed in Section [3.2) is en-
couraged by explicitly exposing SR algorithms to an extra subset of equivalent variants.

The EGG module is primarily used to generate a subset of equivalent variants—i.e., expressions that
represent the same mathematical function under a set of math identities. Given a sequence of produc-
tion rules predicted by an SR algorithm, EGG constructs the e-graph and then performs extraction
(via random-walk sampling) to return a batch of equivalent sequences. EGG is implemented for
grammar-based symbolic expressions in pure Python, following the original e-graph paper (Willsey.
et al, [2021)). Implementation of EGG is provided in Appendix [B]

3.2 EMBEDDING SYMBOLIC EQUIVALENCE INTO SYMBOLIC REGRESSION VIA EGG

Embedding EGG into Monte Carlo Tree Search. MCTS (Sun et al., [2023; |Ruan et al., [2025)
maintains a search tree to explore an optimal sequence of decisions, here corresponding to a se-
quence of production rules. Each edge is labeled with a production rule, and each node is labeled by
the sequence of edge labels from the root. By the grammar definition, this node label corresponds
to a partially completed (or complete) expression.

During learning, MCTS iterates the following four steps (Brence et al.,[2021)): (1) Selection. Starting
from the root node, successively select the edge of node s (noted as a) with the highest Upper
Confidence Bound for Trees (UCT) (Kocsis & Szepesvari, [2006):

UCT(s, a) = reward(s, a) + ay/log(visits(s))/visits(s,a) (2)

where reward(s, a) is the average reward obtained by selecting edge a at node s, visits(s) is the
number of visits to node s, and visits(s, a) is the number of times rule a has been selected at node
5. The constant « (often set to v/2 in theory) balances between exploration and exploitation. (2)

Published as a conference paper at ICLR 2026

(a) Selection (b) Expansion (c) Simulation (d) EGG-based Propagation
A A A A
R / T
log(A) log(A) log(4) log(A) Ata

~
g / / / log(4) + A
log(A X A) log(4 x 4) log(A X A) N
A

S AXA \ /’\\ log(A) + log(A)
log(A x A) | L

el xl
log(x; X A) log(x,) + log(A)
log(x; X A) (il) (‘]
reward=0.8, visits=10 rewards=0.8, visits+=10

Figure 2: The EGG-MCTS pipeline consists of: (a) Starting at the root node, MCTS selects the child
with the highest UCT score (in equation [2) until reaching a leaf. (b) The selected leaf produces new
child nodes by applying all applicable production rules. (¢) For each child, run several rollouts to
complete the expression template by sampling additional rules. The resulting expressions are fitted
to the data to estimate their coefficients. (d) Rewards and visit counts from the selected leaf are
back-propagated to the root. In addition to updating the selected path (blue), we also update those
equivalent paths () identified by our EGG module.

Expansion. When reaching a leaf node s, expand the search tree by generating its child nodes using
all production rules. (3) Simulation. Perform several rollouts for each child to evaluate the average
reward of node s. In each rollout, generate a valid expression ¢ by randomly applying production
rules until completion. Then, estimate the optimal coefficients in ¢ and evaluate its reward. A
common reward function is 1/(1 4+ NMSE(¢)). (4) Backpropagation. Update the reward estimates
and visit counts for node s and all its parents up to the root node. After the final iteration, MCTS
returns the expression with the highest reward encountered during training as its prediction.

EGG-based Backpropagation.Our backpropagation strategy is motivated by transposition ta-
bles (Childs et al.l [2008; Leurent & Maillard, 2020), which use a table to cache identical nodes
(e.g., via hashing) in a search tree and share their statistics during training. This mechanism propa-
gates information as if the search had visited all identical nodes. Such tables are effective in domains
such as Go and Hearthstone, where nodes that are identical can be easily determined. In symbolic
regression, however, two nodes may be identical only up to symbolic equivalence induced by rewrite
rules, so a hashing-based transposition table is not directly applicable. To address this, EGG is used
to identify equivalent paths and nodes.

Concretely, the path—representing a partially completed expression—is first converted into an initial
e-graph. The e-graph is then saturated by repeatedly applying the set of rewrite rules. From this
saturated e-graph, we sample several distinct equivalent sequences and check if the tree contains
corresponding paths. If so, we apply backpropagation to all of them. In this way, we avoid redundant
exploration by sharing the rewards and visit counts of equivalent paths and nodes.

This modification in EGG-MCTS changes the interpretation of equation (2. visits(s) no longer
counts how many times the specific tree node s appears on simulated paths; instead, it counts visits
to any representative within the associated equivalence class. Conceptually, this mirrors the trans-
position table that shares statistics across identical tree nodes.

In Theorem [3.1] we show that EGG-MCTS accelerates learning by reducing the search tree’s ef-
fective branching factor relative to standard MCTS. It prevents redundant exploration of equivalent
subtrees and concentrates sampling on genuinely distinct (and potentially near-optimal) paths.
Example 3.2. Figure 2| shows an example execution pipeline of EGG-MCTS. Specifically, Fig-
ure [2d) highlights two distinct root-to-node paths in the search tree:

Path1: (A — log(A),A - A x A A — 1), Node s1: log(z1 x A).
Path2: (A — A+ A A — log(A4), A — x1, A — log(A4)), Node so: log(z1) + log(A).
Here, each path is a sequence of edge labels from the root to the leaf node s;. Based on the grammar

definition in section [2| node s; corresponds to the partially completed expression log(xz; x A),
while node sy represents log(z1) + log(A). The two nodes are equivalent under the rewrite rule

Published as a conference paper at ICLR 2026

log(ab) ~ loga + logb. Consequently, their rewards, estimating the averaged goodness-of-fit of
expressions on the training data, should be approximately equal:

reward(si,a) &~ reward(ss, a), Va € the set of production rules

Standard MCTS would explore the subtrees rooted at s; and s, independently, because it is unaware
of their equivalence. This results in redundant computation and slows down learning. With EGG-
MCTS, the visit counts and reward estimates of both paths are updated simultaneously, eliminating
the need for extra iterations on the orange leaf in Figure[2Jd). See Example [B.T]for the case of other
rewrite rules, e.g., sin®(a) + cos?(a) ~ 1 and a/a ~ 1.

Embedding EGG into Deep Reinforcement Learning. DRL typically employs a neural sequential
decoder to predict an expression by sampling a sequence of production rules from the model dis-
tribution. The reward assigns higher values to expressions that better fit the training data (Petersen
et al., [2021; [Landajuela et al., 2022; Jiang et al., 2024). The pipeline of DRL and EGG-DRL is
presented in Figure|]

At every step, the sequential decoder samples the next production rule from a distribution over
all available rules, conditioned on the previously generated sequence. The decoder thus induces a
distribution pg (7) over the rule sequence 7. The reward function is typically defined as reward(7) =
1/(1 + NMSE(¢)), where ¢ is the expression constructed by 7 following grammar definition (in
section [2). The learning objective is to maximize the expected reward of generated expressions
on the training data: E..,, [reward(r)], whose gradient is E,.,, [reward(r)Vglog ps(7)]. In
practice, the gradient is approximated via Monte Carlo. Sampling N sequences {71, ..., 7y} from
the decoder, the policy gradient estimator computes:

| X
g(0) =~ N Z(reward(n) —b)Vylogpe(Ti), 3)

i=1

where b is a baseline used to reduce variance (Weaver & Taol [2001). Recent work (Petersen et al.,
2021)) further proposes using a top-quantile subset of samples, rather than the sample mean.

EGG-based Policy Gradient Estimator. For each sampled sequence 7;, we construct an e-graph that
compactly encodes all of its equivalent expressions. From this e-graph, we sample K — 1 equivalent

sequences {Ti(Z), e ,Ti(K) }. We then revise the policy-gradient estimator as
1 K
k
Gegg(0) = ¥ Z (reward(r;) — b')Vylog [Z pe(Ti())] , 4)
i=1 k=1
where Ti(l) is the original sequence 7; and b’ is the corresponding baseline, and Zszl pQ(Ti(k))

aggregates the probabilities of all equivalent sequences that share the same reward. In Theorem 3.2]
we show that EGG improves DRL training by yielding a lower-variance gradient estimator than
standard DRL (Petersen et al.,[2021).

Embed EGG into Large-Language Model. LLM is applied to search for optimal symbolic expres-
sions with prompt tuning (Merler et al.} 2024} Shojaee et al.,|2025). The procedure consists of three
key steps: (1) Hypothesis Generation: The LLM generates multiple candidate expressions based on
a prompt describing the problem background and the definitions of each variable. (2) Data-Driven
Evaluation: Each candidate expression is evaluated based on its fitness on the training dataset. (3)
Experience Management: In subsequent iterations, the LLM receives feedback in the form of pre-
viously predicted expressions and their corresponding fitness scores, allowing it to refine future
generations. High-fitness expressions are retained and updated over multiple rounds of iteration.

EGG-based Feedback Prompt. Since LLMs typically generate Python functions rather than symbolic
expressions directly, we introduce a wrapper that parses the generated Python code into symbolic
expressions. These expressions are then transformed into e-graphs using a set of rewrite rules. From
each e-graph, we extract semantically equivalent expressions and summarize them into a similar
feedback message, which is incorporated into the prompt for the next round. This augmentation
enables the LLM to observe a richer set of functionally equivalent expressions, potentially improving
the quality and accuracy of predictions in future iterations.

Published as a conference paper at ICLR 2026

3.3 CONNECTION TO EXISTING METHODS

Prior work has explored alternative expression representations based on layer-wise symbolic net-
works (SymNet) (Sahoo et al., 2018 |Li et al., [2024), which are not directly compatible with our
grammar-based formulation. Recent studies on SymNet further show that many learned coefficients
can be aggregated or merged (Wu et al.| [2024). Extending this notion of coefficient equivalence to
sub-expression equivalence within SymNet remains an interesting open problem.

For DRL-based approaches, several extensions of the original method (Petersen et al., [2021)) have
been proposed, including (Mundhenk et al., 2021; |[Landajuela et al [2022). An important open
question is whether symbolic-equivalence can be integrated into these extensions in a compatible
and effective manner, and whether doing so can further improve overall performance.

Finally, Kamienny et al.| (2022); |Shojaee et al.| (2023)) encode data directly with a Transformer and
predict an expression traversal sequence end-to-end under a cross-entropy objective. A natural way
to incorporate EGG is to use it during training to generate multiple equivalent, correct target se-
quences. How to best leverage EGG at inference time, however, remains an open problem.

3.4 THEORETICAL JUSTIFICATION ON EGG-SR ACCELERATING LEARNING

Theorem [3.1] shows that EGG-MCTS achieves an asymptotically tighter regret bound than standard
MCTS, as the effective branching factor satisfies ko, < x. Intuitively, by identifying symbolically
equivalent nodes and sharing their search statistics, EGG prevents redundant exploration of equiva-
lent subtrees and concentrates sampling on genuinely distinct (and potentially near-optimal) paths.
After many iterations, EGG-MCTS concentrates more quickly on the near-optimal region of the
search space, which is captured by a smaller effective branching factor.

Also, Theorem [3.2] shows that embedding EGG into DRL produces an unbiased gradient estimator
while strictly reducing gradient variance, ensuring more stable and efficient policy updates.

Theorem 3.1. Consider embedding EGG into the MCTS framework. Given Definitions|[I]and 3] (in
appendix), let n denote the total number of learning iterations, v € (0, 1) the discount factor of the
corresponding Markov decision process, « be the near-optimal branching factor of standard MCTS,
and Ko the corresponding branching factor of EGG-MCTS. Then the regret bounds satisfy

_log(1/v)

~ _log(1/v) A =) :
regret(n) = O (n Tog) , regret,,(n) = O (n Tog oo) , with koo < K.

Proof Sketch. |Leurent & Maillard| (2020) analyze MCTS on a graph obtained by merging identical
tree nodes and sharing their statistics. Their analysis unrolls the graph into a tree that contains all
graph-traversable paths. The search tree in EGG-MCTS behaves identically to the unrolled tree. Our
final results follow their regret analysis on the unrolled tree. A detailed proofis in Appendix[A.2} [

Theorem 3.2. Consider embedding EGG into the DRL framework. Let 7 ~ pg denote trajectories
sampled from the distribution py, and consider the two estimators defined in Equations (3) and (@).
(1) Unbiasedness. The expectation of the standard estimator g(#) equals that of the EGG-based
estimator gegg (0): Erp, [9(0)] = Ervp, [gegg(0)]. (2) Variance Reduction. The variance of the
proposed estimator is smaller than that of the standard estimator:

Var:p, [gegg(0)] < Varrp, [9(0)]-

Proof Sketch. For (I), unbiasedness can be obtained by expanding the definitions of ¢(#) and
Jegg(0). For (2), the key observation is that EGG groups together equivalent trajectories that share
the same reward. Averaging over sequences with identical rewards reduces within-group variability,
which yields a smaller variance. A full proof is provided in Appendix O

4 RELATED WORKS

Knowledge-Guided Scientific Discovery. Recent efforts have explored incorporating physical and
domain-specific knowledge to accelerate symbolic discovery. Al-Feynman (Udrescu & Tegmark,
2020; \Udrescu et al.|, [2020; |[Keren et al., 2023 (Cornelio et al., 2023) constrained the search space to

Published as a conference paper at ICLR 2026

expressions that exhibit compositionality, additivity, and generalized symmetry. Similarly, [Tenachi
et al.|(2023) encoded physical unit constraints into learning to eliminate physically impossible solu-
tions. Other works further constrained the search space by integrating user-specified hypotheses and
prior knowledge, offering a guided approach to symbolic regression (Bendinelli et al.| 2023} [Kami-
enny, |2023}; |Shojaee et al., [2025}; [Taskin et al., 2026; [Zhang et al., [2025). Our EGG-SR presents a
new idea in knowledge-guided learning that is orthogonal to existing approaches.

Symbolic Equivalence is a central concept in program synthesis and mathematical reason-
ing (Willsey et all |2021). In SQL query optimization, it rewrites queries into time-efficient
forms (Barbulescu et al.| [2024). In hardware synthesis, it supports cost-aware rewrites such as
optimized matrix multiplication (Ustun et al., 2022)). In formal methods, it accelerates automated
theorem proving through normalization and equivalence checking (Kurashige et al.,2024). In math-
ematical reasoning, it is used to generate paraphrases of math expressions (Zheng et al., 2025)).

In symbolic regression, |de Franca & Kronberger| (2023) leverages e-graphs to mitigate over-
parameterization in candidate expressions. de Franca & Kronberger|(2025);|de Franca & Kronberger
(2025) further incorporates e-graphs into genetic programming (GP) to detect and eliminate redun-
dant individuals, encouraging GP to explore novel expressions. A recent follow-up work (de Franca
& Kronberger, 2025)) provides a richer API for interacting with GP. This study advances existing
work by offering a unified interface for encoding known mathematical equalities as e-graphs, en-
abling equivalence-aware learning across several modern symbolic regression algorithms, together
with theoretical guarantees.

Equivalence-aware Learning. Equivalence and symmetry have long been recognized as crucial
for improving efficiency in search and learning. In MCTS, transposition tables exploit equivalence
by merging nodes that represent the same underlying state, avoiding redundant rollouts and accel-
erating convergence (Childs et al., |2008). More recent extensions explicitly leverage symmetries to
prune symmetric branches of the search space (Saffidine et al., [2012} [Leurent & Maillard, 2020).
In reinforcement learning, symmetries in the state—action space have been used to accelerate con-
vergence (Grimm et al.,[2020). LLMs also benefit from equivalence-awareness, particularly in code
generation (Sharma & David, 2025)).

5 EXPERIMENTS

We show that (1) EGG enhances existing learning algorithms in discovering expressions with smaller
Normalized MSEs. (2) In case studies, EGG consistently exhibits both time and space efficiency.
The detailed experimental setups and datasets used in each comparison, are provided in Appendix |[C|

5.1 OVERALL BENCHMARKS

Impact of EGG on MCTS. We conduct two analyses to evaluate the impact of integrating EGG
into standard MCTS: (1) the median normalized MSE of the TopK (K = 10) expressions identified
at the end of training, and (2) The growth of the search tree, measured by the number of explored
nodes over learning iterations.

Table [T shows that EGG-MCTS con- sok ‘
sistently discovers expressions with & 7} T Efgshlms(g
. . =G-MC ours E=l
lower normalized quantile scores z 1000 1%
compared to standard MCTS. The £ 70t 2
dataset is selected from [Jiang & & sool E
. = <
Xue| (2023) as the expressions con- © £
C : : 8 250} Z 6| EGG-DRL (ours) |
tain sin, cos operators, which contain ;3 A DAL
many symbolic-equivalence variants. 0k ‘ .
) . 0 200 400 s TR TS o0 125 150
Figure [3(Left) illustrates that EGG- Learning Iterations Learning Iteration

MCTS maintains a broader and

deeper search tree, indicating ex- Figure 3: On the “sincos(3,2,2)” dataset, we show (left)
ploration of a larger and more di- search tree size over learning iterations for MCTS and EGG-
verse search space. Across vari- MCTS, and also (right) empirical mean and standard devi-
ous datasets’ augmenting MCTS with ation of the estimated quantity for DRL and EGG-DRL.

Published as a conference paper at ICLR 2026

Table 1: On Trigonometric datasets, median NMSE values of the best-predicted expressions found
by all the algorithms. The 3-tuples at the top (-, -, -) indicate the number of free variables, singular
terms, and cross terms in the ground-truth expressions generating the dataset. The set of operators
is {sin, cos, +, —, X }. The best result in each column is underlined.

Noiseless Setting Noisy Setting

(2,1,1) (3,2,2) (4,4,6) (5,5,5) | (2,1,1) (3,2,2) (4,4,6) (5,5,5)
EGG-MTCS | <1E-6 <l1E-6 0.006 0.009 0.005 0.012 0.091 21
MTCS 0.006 0.033 0.144 0.147 0.015 0.007 0.138 0.150

EGG-DRL 0.020 0.161 2.381 2.168 0.07 0.35 5.09 9.67
DRL 0.030 0.277 2.990 2.903 0.09 0.44 2.46 14.44

Table 2: Comparison of LLM, and EGG-LLM models on different scientific benchmark problems
measured by the NMSE metric. The best result in each column is underlined.

Oscillation I Oscillation II Bacterial growth Stress-Strain
Inmpy, OOoDh) | b, OO0D| | IID{ OOD) | IID, OODJ}
EGG-LLM (GPT3.5) | <1E-6 0.0004 | <lE-6 <I1E-6 | 0.0121 0.0198 | 0.0202 0.0419

LLM-SR (GPT-3.5) | <1E-6 0.0005 | <1E-6 3.81E-5 | 0.0214 0.0264 | 0.0210 0.0516
EGG-LLM (Mistral) | <IE-6 0.0002 | 0.0021 0.0114 | 0.0101 0.0107 | 0.0133 0.0754

LLM-SR (Mistral) | <1E-6 0.0002 | 0.0030 0.0291 | 0.0026 0.0037 | 0.0162 0.0946

EGG improves symbolic expression accuracy. This improvement is primarily due to the effective-
ness of our rewrite rules, which cover a rich set of trigonometric identities and enable efficient
exploration of symbolic variants in trigonometric expression spaces.

Impact of EGG on DRL. Table [1| reports the median NMSE values of the best-predicted expres-
sions discovered by EGG-DRL and standard DRL, under identical experiment settings. Expressions
returned by EGG-DRL achieve a smaller NMSE value on noiseless and noisy settings. It shows that
embedding EGG into DRL helps to discover expressions with better NMSE. In Figure 3|(Right), we
plot the estimated objective, defined as R(7;) log pg(7;) where each trajectory 7; is sampled from
the sequential decoder with probability py(7;) (see Equation . We plot the empirical mean and
standard deviation of this objective over training iterations. The observed reduction in variance
is primarily due to the symbolic variants generated via the e-graph, which enable averaging over
multiple equivalent expressions and thus yield more stable gradients.

Impact of EGG on LLM. Following the dataset and experimental setup from the original pa-
per (Shojaee et al., 2025), we summarize the results in Table The result of LLM-SR directly
uses the reported result in [Shojaee et al.| (2025). The results show that integrating EGG enables the
LLM to discover higher-quality expressions under the same experimental conditions, as with richer
feedback prompts that incorporate equivalent expressions generated by EGG.

5.2 CASE ANALYSIS

Space Efficiency of EGG. We evaluate the space efficiency of the e-graph representation in com-
parison to a traditional array-based approach. We benchmark the memory consumption of storing
all equivalent variants of input expressions under two settings: (1) ¢ = log(z1 X ... X x,,), using the
logarithmic identity log(ab) ~+ log a+log b, and (2) ¢ = sin(xy +. ..+,), using the trigonometric
identity sin(a + b) ~ sin(a) cos(b) + sin(b) cos(a). Both settings yield 2"~! equivalent variants.
The array-based method explicitly stores each expression variant as a unique sequence, leading to
exponential memory growth. In contrast, the e-graph compactly encodes multiple equivalent ex-
pressions by sharing common sub-expressions.

Figure] reports memory consumption as a function of the number of variables n. The results show
that e-graphs use substantially less memory than the array-based representation. We also provide
additional visualizations of the constructed e-graphs for n = 2, 3, 4: case (1) in Appendix Figure
and case (2) in Appendix Figure [I5] It visualizes two representative e-graphs, illustrating how
shared sub-expressions are stored once and reused across many variants, which underlies the space
efficiency of EGG.

Published as a conference paper at ICLR 2026

—®— Array-based] —#— Array-based

—o— EGG Module]

)

—o— EGG Module

(KB

Memory Usage

10°

W 0w W 0 0w w0
#Input Variables (n) #Input Variables (n)

Figure 4: EGG uses less memory than the
array-based approach for two settings: (Left)
log (x1 X ... X x,) rewritten using log(ab) ~
log a+logb. (Right) sin (z1 + ... + =) rewrit-
ten using sin(a + b) ~» sina cos b + sina cosb.

-+ EGG construction
-4 Policy gradient update

Draw sequences from decoder

Fit expressions’ coefficients

=)
S

2

Time Consumption (ms)

o)

6 26 4‘0 - (; 1‘0 2‘0

Learning Iteration Learning Iteration
Figure 5: The EGG module is time efficient
and introduces negligible time overhead, com-

pared with four main computations in DRL.
Left: LSTM. Right: Decoder-only Transformer.

Time Efficiency of EGG with DRL. As shown in Figure 5] we benchmark the runtime of the four
main computations in EGG-DRL on the selected “sincos(3,2,2)” dataset: (1) sampling sequences
of rules from the sequential decoder, (2) fitting coefficients in symbolic expressions to the training
data, (3) generating equivalent expressions via EGG, and (4) computing the loss, gradients, and
updating the neural network parameters. We consider two settings for the sequential decoder: a
3-layer LSTM with hidden dimension 128, and a decoder-only Transformer with 6 attention heads
and hidden dimension 128.

The EGG module contributes minimal computational overhead relative to more expensive steps such
as coefficient fitting and neural network parameter updates. The runtime of EGG depends on the
size of the rewrite-rule set. As more rules are included, the e-graphs maintain increasingly large sets
of equivalent expressions. This highlights the practicality of incorporating EGG into DRL-based
symbolic regression frameworks.

Additional Visualizations of E-graph Construction. To further demonstrate the effectiveness of
the proposed EGG module, we present additional visualizations of e-graph construction generated
with our API on 7 selected complex expressions from the Feynman dataset (Udrescu & Tegmark,
2020). Each visualization highlights a different set of rewrite rules (see Appendix [D.2). These
examples further illustrate that EGG can simplify and transform complex scientific expressions in
practical settings.

6 CONCLUSION

In this paper, we introduced EGG-SR, a unified framework that integrates symbolic equivalence into
symbolic regression through equality graphs (e-graphs) to accelerate the discovery of optimal ex-
pressions. Our theoretical analysis establishes the advantages of EGG-MCTS over standard MCTS
and EGG-DRL over conventional DRL algorithms. Extensive experiments further demonstrate that
EGG consistently enhances the ability of existing methods to uncover high-quality governing equa-
tions from experimental data. Currently, many scientific publications use GP-based symbolic regres-
sion due to its ease of use. In future work, we plan to extend our more sophisticated solver, EGG-SR,
to scientifically grounded problem settings, improving the community’s computational toolkit.

Ethics Statement. All authors have read and commit to adhering to the ICLR Code of Ethics. This
work uses only publicly available datasets and open-source models, and does not involve human
subjects or human subjects data.

Reproducibility Statement. Appendix [B| describes the proposed EGG module, and the Ap-
pendix [A.3] and [A.7] include detailed proofs of theoretical justification. Appendix [C] gives the ex-
perimental setting. Appendix [D]collects extra experimental results.

Acknowledgements. We thank the reviewers for their constructive feedback, as well as Fabricio
Olivetti de Franca for his public comments. This research was supported by TACC (CCR25054)
and the U.S. Department of Energy, Office of Fusion Energy Sciences (DE-SC0024583).

10

Published as a conference paper at ICLR 2026

REFERENCES

Miltiadis Allamanis, Pankajan Chanthirasegaran, Pushmeet Kohli, and Charles Sutton. Learning
continuous semantic representations of symbolic expressions. In ICML, volume 70, pp. 80-88.
PMLR, 2017.

George-Octavian Barbulescu, Taiyi Wang, Zak Singh, and Eiko Yoneki. Learned graph rewrit-
ing with equality saturation: A new paradigm in relational query rewrite and beyond. CoRR,
abs/2407.12794, 2024.

Zachary Bastiani, Robert M Kirby, Jacob Hochhalter, and Shandian Zhe. Diffusion-based symbolic
regression. arXiv preprint arXiv:2505.24776, 2025.

Tommaso Bendinelli, Luca Biggio, and Pierre-Alexandre Kamienny. Controllable neural symbolic
regression. In ICML, volume 202, pp. 2063-2077. PMLR, 2023.

Jure Brence, Ljupco Todorovski, and Saso Dzeroski. Probabilistic grammars for equation discovery.
Knowl. Based Syst., 224:107077, 2021.

George Casella and Christian P. Robert. Rao-blackwellisation of sampling schemes. Biometrika, 83
(1):81-94, 1996.

William G. La Cava, Patryk Orzechowski, Bogdan Burlacu, Fabricio Olivetti de Franga, Marco
Virgolin, Ying Jin, Michael Kommenda, and Jason H. Moore. Contemporary symbolic regression
methods and their relative performance. In NeurIPS Datasets and Benchmarks, volume 1, 2021.

Benjamin E. Childs, James H. Brodeur, and Levente Kocsis. Transpositions and move groups in
monte carlo tree search. In CIG, pp. 389-395. IEEE, 2008.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Cristina Cornelio, Sanjeeb Dash, Vernon Austel, Tyler R Josephson, Joao Goncalves, Kenneth L
Clarkson, Nimrod Megiddo, Bachir El Khadir, and Lior Horesh. Combining data and theory for
derivable scientific discovery with ai-descartes. Nature Communications, 14(1):1777, 2023.

Ryan Cory-Wright, Cristina Cornelio, Sanjeeb Dash, Bachir El Khadir, and Lior Horesh. Evolving
scientific discovery by unifying data and background knowledge with ai hilbert. Nature Commu-
nications, 15(1):5922, 2024.

Fabricio Olivetti de Franca and Gabriel Kronberger. Reducing overparameterization of symbolic
regression models with equality saturation. In GECCO, pp. 1064—-1072. ACM, 2023.

Fabricio Olivetti de Franca and Gabriel Kronberger. Improving genetic programming for symbolic
regression with equality graphs. In GECCO, pp. 989-998. ACM, 2025.

Fabricio Olivetti de Franca and Gabriel Kronberger. Equality graph assisted symbolic regression.
arXiv preprint arXiv:2511.01009, 2025.

Fabricio Olivetti de Franca and Gabriel Kronberger. reggression: an interactive and agnostic tool for
the exploration of symbolic regression models. In GECCO, pp. 4—12. Association for Computing
Machinery, 2025.

Wei Deng, Qi Feng, Georgios Karagiannis, Guang Lin, and Faming Liang. Accelerating conver-
gence of replica exchange stochastic gradient MCMC via variance reduction. In /CLR. OpenRe-
view.net, 2021.

Roger Fletcher. Practical methods of optimization. John Wiley & Sons, 2000.

Steven Ganzert, Josef Guttmann, Daniel Steinmann, and Stefan Kramer. Equation discovery for
model identification in respiratory mechanics of the mechanically ventilated human lung. In
Discovery Science, volume 6332, pp. 296-310. Springer, 2010.

Amir Kafshdar Goharshady, Chun Kit Lam, and Lionel Parreaux. Fast and optimal extraction for
sparse equality graphs. Proc. ACM Program. Lang., 8(OOPSLA2):2551-2577, 2024.

11

Published as a conference paper at ICLR 2026

Klaus Greff, Rupesh K Srivastava, Jan Koutnik, Bas R Steunebrink, and Jiirgen Schmidhuber. Lstm:
A search space odyssey. IEEE transactions on neural networks and learning systems, 28(10):
2222-2232,2016.

Christopher Grimm, André Barreto, Satinder Singh, and David Silver. The value equivalence prin-
ciple for model-based reinforcement learning. In NeurIPS, volume 33, pp. 5541-5552, 2020.

Gérard Huet and Derek C Oppen. Equations and rewrite rules: A survey. Formal Language Theory,
pp- 349-405, 1980.

Nan Jiang and Yexiang Xue. Symbolic regression via control variable genetic programming. In
ECML/PKDD, pp. 178-195. Springer, 2023.

Nan Jiang, Md. Nasim, and Yexiang Xue. Vertical symbolic regression via deep policy gradient. In
IJCAI pp. 5891-5899. ijcai.org, 2024.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In NeurIPS, pp. 315-323,2013.

Paul Kahlmeyer, Joachim Giesen, Michael Habeck, and Henrik Voigt. Scaling up unbiased search-
based symbolic regression. In IJCAI, pp. 4264-4272. ijcai.org, 2024.

Pierre-Alexandre Kamienny. Efficient adaptation of reinforcement learning agents: from model-free
exploration to symbolic world models. Theses, Sorbonne Université, October 2023.

Pierre-Alexandre Kamienny, Stéphane d’ Ascoli, Guillaume Lample, and Frangois Charton. End-to-
end symbolic regression with transformers. In NeurIPS, volume 35, pp. 10269-10281, 2022.

Pierre-Alexandre Kamienny, Guillaume Lample, Sylvain Lamprier, and Marco Virgolin. Deep gen-
erative symbolic regression with monte-carlo-tree-search. In ICML, volume 202. PMLR, 2023.

Liron Simon Keren, Alex Liberzon, and Teddy Lazebnik. A computational framework for physics-
informed symbolic regression with straightforward integration of domain knowledge. Scientific
Reports, 13(1):1249, 2023.

Levente Kocsis and Csaba Szepesvari. Bandit based monte-carlo planning. In ECML, volume 4212
of Lecture Notes in Computer Science, pp. 282-293. Springer, 2006.

Cole Kurashige, Ruyi Ji, Aditya Giridharan, Mark Barbone, Daniel Noor, Shachar Itzhaky, Ranjit
Jhala, and Nadia Polikarpova. Cclemma: E-graph guided lemma discovery for inductive equa-
tional proofs. Proc. ACM Program. Lang., 8(ICFP):818-844, 2024.

Kyle J. LaFollette, Janni Yuval, Roey Schurr, David Melnikoff, and Amit Goldenberg. Data-driven
equation discovery reveals nonlinear reinforcement learning in humans. Proc. Natl. Acad. Sci.,
122(31), 2025.

Mikel Landajuela, Chak Shing Lee, Jiachen Yang, Ruben Glatt, Claudio P. Santiago, Ignacio Ar-
avena, Terrell Nathan Mundhenk, Garrett Mulcahy, and Brenden K. Petersen. A unified frame-
work for deep symbolic regression. In NeurIPS, volume 35, pp. 33985-33998, 2022.

Edouard Leurent and Odalric-Ambrym Maillard. Monte-carlo graph search: the value of merging
similar states. In ACML, volume 129, pp. 577-592. PMLR, 2020.

Wengiang Li, Weijun Li, Lina Yu, Min Wu, Linjun Sun, Jingyi Liu, Yanjie Li, Shu Wei, Yusong
Deng, and Meilan Hao. A neural-guided dynamic symbolic network for exploring mathematical
expressions from data. In /ICML, volume 235, pp. 28222-28242. PMLR, 2024.

He Ma, Arunachalam Narayanaswamy, Patrick Riley, and Li Li. Evolving symbolic density func-
tionals. Science Advances, 8(36), 2022.

Matteo Merler, Katsiaryna Haitsiukevich, Nicola Dainese, and Pekka Marttinen. In-context sym-
bolic regression: Leveraging large language models for function discovery. In ACL (Student
Research Workshop), pp. 589-606. Association for Computational Linguistics, 2024.

12

Published as a conference paper at ICLR 2026

T. Nathan Mundhenk, Mikel Landajuela, Ruben Glatt, Claudio P. Santiago, Daniel M. Faissol, and
Brenden K. Petersen. Symbolic regression via neural-guided genetic programming population
seeding. In NeurIPS, volume 34, pp. 24912-24923, 2021.

Rémi Munos. From bandits to monte-carlo tree search: The optimistic principle applied to opti-
mization and planning. Found. Trends Mach. Learn., 7(1):1-129, 2014.

Nico JD Nagelkerke et al. A note on a general definition of the coefficient of determination.
Biometrika, 78(3):691-692, 1991.

Chandrakana Nandi, Max Willsey, Amy Zhu, Yisu Remy Wang, Brett Saiki, Adam Anderson, Adri-
ana Schulz, Dan Grossman, and Zachary Tatlock. Rewrite rule inference using equality saturation.
Proc. ACM Program. Lang., 5S(OOPSLA):1-28, 2021.

Matteo Papini, Damiano Binaghi, Giuseppe Canonaco, Matteo Pirotta, and Marcello Restelli.
Stochastic variance-reduced policy gradient. In ICML, volume 80, pp. 4023-4032. PMLR, 2018.

Brenden K. Petersen, Mikel Landajuela, T. Nathan Mundhenk, Cldudio Prata Santiago, Sookyung
Kim, and Joanne Taery Kim. Deep symbolic regression: Recovering mathematical expressions
from data via risk-seeking policy gradients. In /CLR, 2021.

Kai Ruan, Yilong Xu, Ze-Feng Gao, Yang Liu, Yike Guo, Ji-Rong Wen, and Hao Sun. Discovering
physical laws with parallel symbolic enumeration. Nature Computational Science, pp. 1-14,
2025.

Abdallah Saffidine, Tristan Cazenave, and Jean Méhat. UCD : Upper confidence bound for rooted
directed acyclic graphs. Knowl. Based Syst., 34:26-33, 2012.

Subham S. Sahoo, Christoph H. Lampert, and Georg Martius. Learning equations for extrapolation
and control. In /ICML, volume 80, pp. 4439-4447. PMLR, 2018.

Hojjat Salehinejad, Sharan Sankar, Joseph Barfett, Errol Colak, and Shahrokh Valaee. Recent ad-
vances in recurrent neural networks. arXiv preprint arXiv:1801.01078, 2017.

Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data. Science,
324(5923):81-85, 2009.

Saul Shanabrook. Egglog python: A pythonic library for e-graphs, 2024.

Arindam Sharma and Cristina David. Assessing correctness in 1lm-based code generation via un-
certainty estimation. arXiv preprint arXiv:2502.11620, 2025.

Parshin Shojaee, Kazem Meidani, Amir Barati Farimani, and Chandan K. Reddy. Transformer-based
planning for symbolic regression. In NeurIPS, volume 36, pp. 45907-45919, 2023.

Parshin Shojaee, Kazem Meidani, Shashank Gupta, Amir Barati Farimani, and Chandan K. Reddy.
LLM-SR: scientific equation discovery via programming with large language models. In ICLR,
2025.

Fangzheng Sun, Yang Liu, Jian-Xun Wang, and Hao Sun. Symbolic physics learner: Discovering
governing equations via monte carlo tree search. In ICLR, 2023.

Bilge Taskin, Wenxiong Xie, and Teddy Lazebnik. Knowledge integration for physics-informed
symbolic regression using pre-trained large language models. Scientific Reports, 16(1):1614,
2026.

Wassim Tenachi, Rodrigo Ibata, and Foivos I Diakogiannis. Deep symbolic regression for physics
guided by units constraints: toward the automated discovery of physical laws. The Astrophysical
Journal, 959(2):99, 2023.

Ljupco Todorovski and Saso Dzeroski. Declarative bias in equation discovery. In ICML, pp. 376—
384. Morgan Kaufmann, 1997. ISBN 1558604863.

Silviu-Marian Udrescu and Max Tegmark. Ai feynman: A physics-inspired method for symbolic
regression. Science Advances, 6(16), 2020.

13

Published as a conference paper at ICLR 2026

Silviu-Marian Udrescu, Andrew K. Tan, Jiahai Feng, Orisvaldo Neto, Tailin Wu, and Max Tegmark.
Al feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity. In NeurlIPS,
volume 33, pp. 4860-4871, 2020.

Ecenur Ustun, Ismail San, Jiaqi Yin, Cunxi Yu, and Zhiru Zhang. Impress: Large integer multipli-
cation expression rewriting for FPGA HLS. In FCCM, pp. 1-10. IEEE, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, volume 30, pp.
5998-6008, 2017.

Marco Virgolin and Solon P Pissis. Symbolic regression is NP-hard. TMLR, 2022. ISSN 2835-8856.

Uwe Waldmann, Sophie Tourret, Simon Robillard, and Jasmin Blanchette. A comprehensive frame-
work for saturation theorem proving. J. Autom. Reason., 66(4):499-539, 2022.

Lex Weaver and Nigel Tao. The optimal reward baseline for gradient-based reinforcement learning.
In UAIL pp. 538-545. Morgan Kaufmann, 2001.

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel
Panchekha. egg: Fast and extensible equality saturation. Proc. ACM Program. Lang., S(POPL):
1-29, 2021.

Min Wu, Weijun Li, Lina Yu, Wenqgiang Li, Jingyi Liu, Yanjie Li, and Meilan Hao. Prunesymnet: A
symbolic neural network and pruning algorithm for symbolic regression. CoRR, abs/2401.15103,
2024.

Ziyu Xiang, Kenna Ashen, Xiaofeng Qian, and Xiaoning Qian. Graph-based symbolic regression
with invariance and constraint encoding. In NeurIPS, volume 37, 2025.

Rose Yu and Rui Wang. Learning dynamical systems from data: An introduction to physics-guided
deep learning. Proc. Natl. Acad. Sci., 121(27), 2024.

Hengzhe Zhang, Qi Chen, Bing Xue, Wolfgang Banzhaf, and Mengjie Zhang. RAG-SR: retrieval-
augmented generation for neural symbolic regression. In /CLR. OpenReview.net, 2025.

Hongbo Zheng, Suyuan Wang, Neeraj Gangwar, and Nickvash Kani. E-gen: Leveraging e-graphs
to improve continuous representations of symbolic expressions. In NAACL (Long Papers), pp.
11772-11788. Association for Computational Linguistics, 2025.

Zeyu Zheng, Junhyuk Oh, and Satinder Singh. On learning intrinsic rewards for policy gradient
methods. In NeurIPS, volume 31, pp. 4649-4659, 2018.

14

Published as a conference paper at ICLR 2026

CONTENTS

T TIntreduction|

Z Preliminacies

3 Methodology|
3.1 EGG: Equality graph for Grammar-based Symbolic Expression|

3.2 Embedding Symbolic Equivalence into Symbolic Regression via EGG|

3.3 Connection to Existing Methods| 0.

3.4 Theoretical Justification on EGG-SR Accelerating Learning|.

xXperiments

5.2 Case Analysis|

N 9 A W W

6__Conclusion

[A_ Theoretical Justification|

|A.1 Necessary Definitions of Markov Decision Process

IA.3 Proof of Theorem|3.2] e

[B~ Tmplementation Details|

IB.1 Visualization of Expression Construction via Context-free Grammar|

IB.2 Implementation of Rewrite Rules|.

IB.3 Implementation of E-Graph| 0 0.

IB.4 Implementation of EGG-embedded Symbolic Regression|

[C Experiment Settings|

|C.1 Baselines and Hyper-parameters Configurations|

15

10

16
16
17
19

21
21
21
22
25

30
30
31

Published as a conference paper at ICLR 2026

Use of Large Language Models (LLMs). A large language model (LLM) was used exclusively
for language refinement, including improvements in grammar, clarity, and readability. All research
ideas, methodology, analyses, and conclusions are entirely the authors’ own. The authors have
thoroughly reviewed the final manuscript and accept full responsibility for its content.

Availability of EGG, Baselines and Dataset. Please find our code repository at:

https://github.com/jiangnanhugo/egg—sr

* EGG. The implementation of our EGG module is located in the folder
src/equality_graph/.

* Datasets. The list of datasets used in our experiments can be found in
datasets/scibench/scibench/data/.

* Baselines. The implementations of several baseline algorithms, along with our adapted
versions, are provided in the algorithms/ folder. Execution scripts for running each
algorithm are also included.

We also provide a README . md file with instructions for installing the required Python packages
and dependencies.

We summarize the supplementary material as follows: Section [B] provides implementation details
of the proposed EGG module. Sections and present a detailed theoretical analysis of the
proposed method. Section[C]describes the experimental setup and configurations. Finally, Section[D]
presents additional experimental results.

A THEORETICAL JUSTIFICATION

A.1 NECESSARY DEFINITIONS OF MARKOV DECISION PROCESS.

Consider a deterministic, finite-horizon Markov Decision Process (MDP) with state space S and
action space A. At each stage t € {0,1,..., H — 1} the agent observes its current state s; € S,
selects an action a; € A, and deterministically transitions to the next state s;y1 = f(s¢, a;) while
receiving a bounded reward r; € [0,1]. Let H denote the maximum planning horizon. The total

discounted reward over the H-step horizon is Zf;l v're, where v € (0,1) is the discount factor.
For any state—action pair (s, a), the state—action value is defined as:

H-1

Z ’YtTt

t=0

Q(s,a) = maxE

S0 =S, ap = a]

where 7 is any policy and 7 = (so, ag,...,SH—1,am—1) is a trajectory generated by following 7.
Because the MDP is deterministic, the expectation is taken only over the agent’s policy-induced
action sequence. The optimal value of a state s is:

V(s) = max Q(s, a).

Extensions to Symbolic Regression. In our symbolic regression setting, a state corresponds to
a sequence of production rules that define a partially constructed expression, or equivalently, to
the class of mathematical expressions that can be generated by completing this partially-complete
expression. An action represents the selection of an available production rule that extends the current
expression. The state space is the set of all possible expressions of maximum length H, and the
action space is the set of production rules.

We further provide concrete instantiations of this MDP for our Monte Carlo tree search implemen-
tation in Appendix and for deep reinforcement learning in Appendix

16

https://github.com/jiangnanhugo/egg-sr

Published as a conference paper at ICLR 2026

A.2 PROOF OF THEOREM [3.1]
A.2.1 PROBLEM SETTINGS

A planning algorithm is any procedure that, given a model of the MDP and a limited computa-
tional budget, uses simulated rollouts to estimate the value of available actions and to recommend
a single action for execution. Suppose that after n simulations of a planning algorithm, the agent
recommends an action a,, to execute at the current state s. Its estimated value is (s, a,,), obtained
by evaluating the discounted return that results from first taking a,, and then following an optimal
policy for the remaining steps. The simple regret of this recommendation is

regret(n) = V(s) — Q(s, an), (5)

which quantifies the loss in discounted return incurred by choosing a,, instead of the truly opti-
mal action. A smaller regret(n) indicates that the planning algorithm used its limited simulation
Budget more effectively to identify a near-optimal action.

Planning involves selecting promising transitions to simulate at each iteration, in order to recom-
mend actions that minimize regret regret(n). A popular strategy is the optimism in the face of
uncertainty (OFU) principle, which explores actions by maximizing an upper confidence bound on
the value function V.

In the context of symbolic regression, the planning task is therefore to sequentially apply production
rules so as to construct a complete expression whose predicted outputs best match the target data,
while respecting the grammar and structural constraints of the search space.

Definition 1 (Difficulty measure). The near-optimal branching factor « of an MDP is defined as

k= limsup |T° " € [1, K], (6)

h—o0

h
where Tp° := {a eAM V¥ —V(a) < I"L—A/} is the set of near-optimal nodes at depth h.
In standard MCTS, the root of the search tree corresponds to the initial state s5 € S. A node at
depth h represents an action sequence a = (ay, ..., a;) € A", which leads to a terminal state s(a).
The search tree at iteration n is denoted tree(T,,), and its maximum expanded depth is d,,.

Historical research has shown that the UCT principle suffers from a theoretical worst case in which it
is difficult to derive meaningful regret bounds, making it unsuitable for analyzing the benefit of EGG
over standard MCTS. Therefore, we assume that MCTS operates under the Optimistic Planning for
Deterministic Systems (OPD) framework (Leurent & Maillard, [2020) rather than the UCT principle.

A.2.2 REGRET BOUND OF MCTS

Theorem A.1 (Regret bound of MCTS (Munos| (2014), chapter 5)). Let regret(n) denote the
simple regret after n iterations of OPD used in MCTS. Then, we have:

regret(n) = (5(71_ bifé/ﬂw) . @)

Here, the soft-O version of big-O notation for time complexity is defined as: f, = (’3(7@“") means
that decays at least as fast as n=%, up to a polylog factor.

When « is small, only a limited number of nodes must be explored at each depth, allowing the
algorithm to plan deeper, given a budget of n simulations. The quantity x represents the branching
factor of the subtree of near-optimal nodes that can be sampled by the OPD algorithm, serving as an
effective branching factor in contrast to the true branching factor K. Hence, « directly governs the
achievable simple regret of OPD (and its variants) on a given MDP.

The theoretical analysis of EGG-MCTS is built on top of the analysis procedure in|Leurent & Mail-
lard (2020). Unlike their analysis, which requires unrolling the graph into a tree and addressing
potentially infinite-length paths induced by cycles, our analysis starts from the unrolled tree derived
from the graph in|Leurent & Maillard| (2020).

17

Published as a conference paper at ICLR 2026

Definition 2 (Upper and Lower bounds of the Value function). Let tree(T’) be the search tree after
n expansions. Each node corresponds to an action sequence (aq, a1, . ..,apy—1) from the root, and
let s denote the MDP state reached by executing this sequence from the root state sg. The true
value associated with this node is the optimal value of the reached state, denoted by V' (s). A pair of
functions (L,,, U,,) is said to provide lower and upper bounds for V on tree(T) if

L, <V(s) < Uy, for internal node s in the tree(T)

Definition 3 (Finer Difficulty Measure). We define the near-optimal branching factor associated
with bounds (L, U,,) as

KLy, Uy) = limsup | T5° (L, Un) " € [1, K], (8)

h—o0

where T7°(L,U) = {a e A" V* —V(a) <" (U(a) - L(a))}.

Since (L, U,) tighten with n, the sequence of bounds (L", U")n is non-increasing, i.e.,

>0

OS"'SLn—lSLnSVSUnSUn—lg"'S‘/Inax

they will finally converges to a limit ko, = lim, o0 K(Ln, Uy).

A.2.3 REGRET BOUND OF EGG-MCTS

Theorem A.2 (Regret Bound of EGG-MCTS). Let x, = k(L,,U,), and define ko =
limy, 00 K(Ln, Uyp) € [1, K]. Then EGG-MCTS achieves the regret bound

~(_log(l/v)
regret,,,(n) = C’)(n Tog roc)) where foo < K 9

Proof. The analysis is similar to that of Leurent & Maillard| (2020, Theorem 16). In their approach,
the graph is unrolled into a tree to leverage the analysis of Theorem[A.T] This unrolled tree contains
every action sequence that can be traversed in GG,,. There would exist a path of infinite length if the
graph contains cycles. The behavior of the graph G, is therefore analyzed through its corresponding
unrolled tree UnrollTree(T},).

Our EGG-MCTS behaves almost identically to this unrolled tree, except that it contains no paths of
infinite length, since our algorithm cannot empirically generate or update along an infinite action
sequence. Transporting the graph-based value bounds (L, U,,) to the unrolled tree and applying
the depth-regret argument of [Leurent & Maillard| (2020, Appendix A.9) yields the rate in (©). The
detailed derivation is therefore omitted here for brevity. O

Remark 1. For a class of symbolic regression problems where a large set of mathematical iden-
tities is applicable, the resulting overlaps among action paths can be extensive. In this case, the
effective branching factor k., can be much smaller than the nominal branching factor x, leading to
substantially tighter regret guarantees.

18

Published as a conference paper at ICLR 2026

A.3 PROOF OF THEOREM[3.2]

A.3.1 NOTATION AND ASSUMPTIONS

Let 7 be a sequence of production rules sampled from a sequential decoder with probability py (7).
¢ is the expression constructed by 7 following grammar definition. Let S C II be the equivalence
class (under the rewrite system R) of sequences that deterministically construct ¢ or can be rewritten
into ¢ by applying rewrite rules in R. For notation simplicity and clarity, we define the probability

over the set of sequences Sy
> po(7). (10)
TESY

A.3.2 PROOF OF UNBIASEDNESS

Lemma 1 (Key identity). For any ¢ € ® with go(¢) > 0, E,p, [Ve logpe(T)|¢] = Vglogga(d).

Proof. By the definition of conditional probability, P(7|¢) = p o(1) for r € Sy and 0 otherwise.

o(®)’
Hence,
po(r) 1
E [Vologps(r)|¢] = D Vologps(r @)~ 00 > Vops(7) Ve > polr
TES, a6 TESy TESy
_ V@Q9(¢)
q0(o)
= Vg log gs(9).
O
Proposition 1 (Unbiasedness). E;~,, [9(6)] = Erwp, [gege(0)].
Proof. First, for the EGG-based estimator,
[Gege (0 Z reward(¢) Vg log go(¢ Z Z reward(¢) Vg log go(¢) pe(T)
Tell PEP TES,
= 3" revard(d) Vologas(6) 3 p(r)
ped TESy
—_——
=qo(®)
= 3" revard(9) Vogo(9)
PeD
=Vy Z reward(¢) qo(¢)
PP

For the standard estimator,

E [g(0)] = Z reward(7) Vg log pe(T) po(7) = Z reward(7) Vopo(T)

T€ell Tell

= Vy Z Z reward(¢) pg(7)

peP TESY

=Vy > _ reward(¢) go(¢),

PP

where we used class-invariance of the reward and (T0). This equals the expression obtained for gegg,
proving unbiasedness.

19

Published as a conference paper at ICLR 2026

A.3.3 PROOF OF VARIANCE REDUCTION
Define the o-field generated by the expression ¢ as o(¢). Consider the random variable
7 = reward(7) Vg log pg(7) = reward(¢) Vg log pe(7),
where the equality uses reward invariance within each S4. By Lemmam
E [Z|¢] = reward(¢) E [Vglogps(7)|¢] = reward(¢) Vo log qo(d) = gegg(6)-
Thus, gegg () is the Rao—Blackwellization of g(6) with respect to o(¢) (Casella & Robert, [1996).
Proposition 2 (Variance reduction). Var:p, [gegg(#)] < Var,p, [9(8)].

Proof. By the law of total variance,
Var(Z) = Var(E[Z|¢]) + E[Var(Z|¢)] > Var (E[Z|¢]).
Substituting Z = g(0) and E[Z|¢] = gegg(6) yields

Var;.p, [gegg (0)] < Varrp, [9(0)]

Combining Propositions|[I]and [2 proves Theorem [3.2]

Remark on baselines. If a baseline b(-) independent of the sampled action (sequence) is included,
both estimators remain unbiased, and the Rao—Blackwell argument applies to the centered variable
as well, so the variance reduction still holds (and can be further improved by an appropriate baseline
choice).

20

Published as a conference paper at ICLR 2026

B IMPLEMENTATION DETAILS

B.1 VISUALIZATION OF EXPRESSION CONSTRUCTION VIA CONTEXT-FREE GRAMMAR

Figure |§| further illustrates how an expression such as ¢ = ¢; log(z1) can be constructed from
the start symbol by sequentially applying grammar rules. We begin with the multiplication rule
A — A x A, which expands the initial symbol A in ¢ = A to yield ¢ = A x A. Continuing
this process, each non-terminal symbol is recursively expanded using the appropriate grammar rules
until we obtain the valid expression ¢ = ¢; log(z1).

A—->AXA A>c A—>10g(A) A — x|

.—> A><A e c]xA — clxlog(A) —{ ¢ Xlog(x))

Figure 6: Transforming a sequence of grammar rules into a valid expression. At each step, the first
non-terminal symbol inside the squared box is expanded. The expanded parts are color-highlighted.

The next step is to determine the optimal coefficient ¢ in the expression ¢ = ¢; log(z1). More gen-
erally, suppose the expression contains m free coefficients. Given training data D = {(x;, y;)} ¥,
we optimize these coefficients using a gradient-based method such as BFGS by solving

* M 1
ct «— arg min Z€(¢(Xz‘7c),yi)7
i=1

where the loss function / is typically the normalized mean squared error (NMSE), which is defined
in Equation (12).

B.2 IMPLEMENTATION OF REWRITE RULES
The following snippet defines the Python implementation of a rewrite rule from a known mathemat-

ical identity. The function rules_to_s_expr converts the input list representation into an internal
symbolic expression tree:

class Rule:
"each rule is defined as: LHS \leadsto RHS."
def _ init_ (self, 1lhs, rhs):
self.lhs = rules_to_s_expr(lhs)
self.rhs = rules_to_s_expr (rhs)

Each rule encodes one direction of applying a mathematical identity. Prior research (de Franca &
Kronberger, [2025)) has primarily used rewrite rules to simplify expressions, typically rewriting a
longer expression into a shorter one. In contrast, our work considers both directions of each identity,
enabling us to systematically generate the complete set of symbolically equivalent expressions.

We define several types of rewrite rules based on well-known mathematical identities: Let a,b
denote arbitrary variables, coefficients, or sub-expressions.

1. Commutative law. a+b = b+a or a*xb = bxa will be converted into rules: a+b ~~» b+a, axb ~
b*a.

Commutative laws
Rule (lhs=['A->(A+A)', 'A->a', 'A->b'], rhs=['A->(A+A)', 'A->b', 'A->a'l)
Rule (lhs=["'A->A%xA', 'A->a', 'A->b'], rhs=['A->AxA', 'A->b', 'A->a'l)

2. Distributive laws: (a + b)? ~ a? + 2ab + b°.
3. Factorization. Expressions can be decomposed into simpler components: a®—b2 ~ (a—b)(a+b).

4. Exponential and logarithmic identities: exp(a + b) ~~ exp(a) x exp(b), log(ab) ~~ log(a) +
log(b), and also log(a®) ~ blog a,

21

Published as a conference paper at ICLR 2026

Table 3: The list of rewrite rules for trigonometric functions, each derived from a known trigono-
metric law.

Category rewrite rules

L . sin(a) + sin(b) ~ 2sin (42) cos (252
Sum-to-Product Identities c0s(a) + cos(b) ~ 2 cos (2 2) cos (3_2)
(a—b)]
(

N sin(a) cos(b) Llsin(a + b) + sin(a —
Product-to-Sum Identities cos(a) cos(b) ~~ 3 [cos(a + b) + cos(a — b)]
sin(a) sin(b) ~- [cos(a —b) — cos(a +b)]
in(a + a) ~ 2 sm a) cos(a)

n

s 2
Double Angle Formulas + a) ~ cos () — sin“(a)

+a) ~ 2cos?(a)71
+a)
l’

a
(a
cos(a
cos(a ~ 1 — 2sin?(a)
2 tan(a)
a) 1— tanz(a)

a) + cos? ()

tan(a

)
Pythagorean Identities sec2
2
3

Half-Angle Formulas cos2 (

14cos(z) *

+
Sum and Difference Formulas | cos(a % b) ~ cos(a) cos(b) F sin(
+

5. The rewrite rules for trigonometric identities are summarized in Table 3] For example, The rule
sin(a + b) ~» sin(a) cos(b) + sin(b) cos(a) is implemented as follow:

Rule (
lhs=['A->sin(A) "', 'A->(A+A) "', 'A->a', 'A->b'],
rhs=["'A-> (A+A) ' '"A->AxA', 'A->sin(A)','A->a','A->cos(A)', 'A->b',

'A->cos (A)','A—>a','A->sin(A)"', 'A->Db'])

A visualization of this rule being applied to an expression is shown in Figure[12]

For practical reasons, we did not introduce rewrite rules that could make the e-graph exponentially
large. Rules such as a +b— b ~» a — b+ b are omitted, since they lead to infinite symbolic variants.
Such extreme cases are still beyond the capability of the current EGG module.

Note that each rewrite rule is well-defined only on its feasible domain and is not applicable in out-of-
domain cases. In our symbolic regression setting, such cases typically indicate that the completed
expression does not fit the training data and will trigger numerical errors during evaluation. For
example, the rule log(axb) log(a)+1og(b) is valid when a, b > 0, but is undefined when a < 0 or
b < 0. The expressions log(z3) + log(x3) and 1og(m1w2) evaluated on datasets containing negative
inputs will yield —oo in floating-point arithmetic, causing the NMSE evaluation to become Not-a-
Number (NaN). This indicates that such candidate expressions are incompatible with the dataset.
Systematically encoding and enforcing domain constraints for all rewrite rules requires a careful
study of the underlying mathematical identities, and we leave this as an interesting direction for
future work.

B.3 IMPLEMENTATION OF E-GRAPH

Here we provide the implementation of the EGG data structure proposed in Section An e-graph
consists of two core components: e-nodes and e-classes. The following snippet presents the skeleton
structure of these two components:

class ENode:
def _ _init__ (self, operator: str, operands: List):

22

Published as a conference paper at ICLR 2026

self.operator, self.operands = operator, operands

def canonicalize (self):
Convert to the canonical form of this ENode

class EClassID:
def _ init_ (self, id):
self.id = id
self.parent = None
def find_parent (self):
Return the representative parent ID (using union-find algorithm)
def _ _repr__ (self):
return 'e-class{}'.format (self.id)

The e-graph structure is implemented in the following class. The dictionary hashcons stores
all the edges from an e-node to an e-class. The API supports the key operations of (1) adding new
expressions to the e-graph by calling add_enode, and (2) merging two e-classes into one by calling
merge.

class EGraph:
hashcons: stores a mapping from ENode to its corresponding EClass
hashcons: Dict [ENode, EClassID] = {}

def add_enode(self, enode: ENode) :
Add an ENode into the e-graph

def eclasses(self) —> Dict[EClassID, List[ENode]]:
Return all e-classes and their associated e-nodes

def merge(self, a: EClassID, b: EClassID):
Merge two e-classes using the union-find structure

def substitute(self, pattern: Node, ...) —-> EClassID:
Construct a new expression in the e-graph from a rule RHS

B.3.1 CONSTRUCTION

The e-graph is built by repeatedly applying a set of rewrite rules to the e-graph. Each rewrite
rule consists of a left-hand side (LHS) and a right-hand side (RHS) expression. The function
apply._rewrite_rules determines which new subgraphs to construct and where to merge them
within the existing e-graph.

Specifically, the LHS pattern of each rule is matched against the e-graph using the ematch func-
tion, which identifies all subexpressions that match the pattern. For each match, the RHS is in-
stantiated using the extracted variable bindings, and the resulting expression is inserted into the
e-graph and merged with the corresponding e-class. The equality_saturation function in-
vokes apply_rewrite_rules for a fixed number of iterations until saturation is reached.

def apply_rewrite_rules(eg: EGraph, rules: List[Rule]):
eclasses = eg.eclasses|()
matches = []
for rule in rules:
for eid, env in ematch(eclasses, rule.lhs):
matches.append((rule, eid, env))
for rule, eid, env in matches:
new_eid = eg.substitute(rule.rhs, env)
eg.merge (eid, new_eid)
eg.rebuild()

def equality_saturation (fn, rules, max_iter=20):

eg = EGraph(rules_to_s_expr (fn))
for it in range (max_iter):

23

Published as a conference paper at ICLR 2026

apply_rewrite_rules(eg, rules)

We employ the Graphviz API to visualize the e-classes, e-nodes, and their connections. Several
visualization example is shown in section D]

B.3.2 EXPRESSION EXTRACTION

Cost-based extraction retrieves a simplified expression by minimizing a user-defined cost over
operators. The procedure returns an expression tree with the lowest total cost, where the cost is
computed across all operators. Each e-class is assigned a cost equal to that of its cheapest e-node,
and the cost of an e-node is defined recursively as

cost(enode) = cost(operator) + Z cost(child). (11

child e-classes

The algorithm iteratively updates costs for all e-nodes until convergence, i.e., when no further
changes occur. This strategy yields short, simplified expressions and has been used in prior
work (de Franca & Kronberger, |2025} |de Franca & Kronberger, 2025), which employed e-graphs to
simplify overly complex expressions in genetic programming. It is consistent with the philosophical
principle of Occam’s razor, which favors simpler expressions over more complex ones.

Random walk-based sampling, which draws a batch of expressions randomly from the e-graph.
Starting from an e-class with no incoming edges, we randomly select an e-node within the current
e-class and transition to the e-classes connected to that e-node. This process continues until an e-
node with no outgoing edges is reached. The obtained sequence of visited e-nodes corresponds to
drawing a valid expression from the constructed e-graph.

B.3.3 IMPLEMENTATION REMARK

Existing e-graph implementations are available in Rust (egg library, Willsey et al.| (2021)),
Haskell (Hegg or srtree library), and Julia (Metatheory.jl), or wrappers for Python (egglog-
python, [Shanabrook| (2024); [de Franca & Kronberger| (2025)). While these frameworks offer rich
APIs for diverse use cases, none is directly tailored to grammar-based symbolic expressions.

While packages such as SymPy provide APIs like simplify and factor, these functions map
expressions to a fixed canonical form and do not support the richer class of rewrites and transfor-
mations. These APIs can return a smaller set of symbolically equivalent expressions than our EGG
framework. Hence, they are not used in our implementation.

Our implementation builds upon an existing code snippet[ﬂ The most relevant prior implementation
we identified is available in Haskel the language in which e-graphs were originally developed.
However, this choice complicates integration with Python-based environments, especially when in-
terfacing with learning algorithms implemented in Python. A Python wrapper for Haskell egglog
also exist but its API is cumbersome and lacks clarity, limiting its usability for practical applica-
tions.

'"https://colab.research.google.com/drive/1tNOQijJge5tw-Pk9igd6HHb2abC5aRid
Zhttps://github.com/folivetti/eggp
*https://github.com/egraphs-good/egglog-python

24

https://colab.research.google.com/drive/1tNOQijJqe5tw-Pk9iqd6HHb2abC5aRid
https://github.com/folivetti/eggp
https://github.com/egraphs-good/egglog-python

Published as a conference paper at ICLR 2026

B.4 IMPLEMENTATION OF EGG-EMBEDDED SYMBOLIC REGRESSION

B.4.1 IMPLEMENTATION OF EGG-MCTS

Markov Decision Process Definition for MCTS. We model the search process as a finite-horizon
Markov decision process (MDP). A state corresponds to a partially constructed expression, and each
node in the MCTS search tree represents one such state. An action corresponds to the application
of a single production rule to the first non-terminal symbol in the current state. The transition
dynamics are deterministic: given a state—action pair, the successor state is uniquely determined by
the application of the selected production rule. Rewards are assigned only at terminal states (leaf
nodes of the search tree), obtained by evaluating the completed expression on the dataset according
to an evaluation metric. The episode length is thus equal to the number of applied production
rules, and we set the discount factor to 1. A trajectory is a sequence of state—action transitions
corresponding to a path from the root node to a leaf node in the search tree, resulting in either a valid
or an invalid expression. The MDP horizon is finite: each episode terminates when the path from the
root corresponds to a valid expression with no non-terminal symbols or when the maximum depth
H is reached.

Example B.1. Figure[7]illustrates an example execution pipeline of EGG-MCTS. We focus on two
distinct root-to-leaf paths in the search tree:
Path 1: (A = A+ A, A —sin®(z3), A > A+ A, A — cos*(x3)),

Node s1: sin?(zy) + cos®(x2) + A.
Path2: (A > A+ A, A— AJA, A — 21, A — x1),

Node S9: xl/xl + A.
Under the grammar in Section [2} s; corresponds to the partially specified expression sin?(z5) +
cos?(z2) + A, whereas sy corresponds to x1/z1 + A. The two nodes are symbolically equivalent

under the rewrite rules {sin®(a) + cos?(a) ~» 1, a/a ~ 1}, and both reduce to the same partially
specified form 1 + A.

A—>A+A

(g) (a+a)
~

A-A+A

A = sin(x,) A = (A)/A)

sin?(x,) + A

A-A+A

sin’(x,) + A + A

A— cosz(xz)

x/(A) +A

(a) It corresponds to an A - x

underlying function ¢p = 1 + A, (b) It corresponds to an

with the rewrite rule) 2 underlying functiongp = 1 + A
. sin“(x,) + cos“(x,) + A x/x;+A ’
sin(a) + cos*(a) w 1. (= 2 J (S) with the rewrite rule: a/a ~ 1.

Figure 7: Two distinct paths reach leaf nodes that represent the same underlying function ¢ =
14 A, where A denotes an arbitrary sub-expression. This equivalence follows from the rewrite rules
sin?(a) + cos?(a) ~» 1 and a/a ~~ 1.

Consequently, their rewards—which estimate the average goodness-of-fit on the dataset—should be
approximately identical. Exploring the subtrees rooted at s; and s, independently, therefore, incurs
redundant computation. In contrast, EGG identifies their equivalence and jointly updates the visit
counts and reward estimates along the two paths (blue and orange), eliminating the need to further
explore duplicate subtrees in subsequent iterations.

Connection to equivalence-aware learning in MCTS. In many applications, multiple action se-
quences may lead to the same state, resulting in duplicate nodes within the search tree. To mitigate
this redundancy, Saffidine et al.| (2012) proposed the use of a transposition table in the context of
Go, enabling the reuse of information from previous updates. Similarly, Leurent & Maillard! (2020)

25

Published as a conference paper at ICLR 2026

introduced Monte Carlo Graph Search (MCGS), which replaces the search tree with a graph that
merges identical states. In MCGS, nodes correspond to unique states s € S and edges represent
state transitions, with the root node corresponding to the initial state sy. At iteration n, if executing
action a from state s leads to a successor state s’ that already exists in the graph, no new node is
created.

Our EGG-MCTS adopts the same principle of detecting identical states during search, but avoids
explicit graph construction. The constructed e-graph serves as a transposition table that stores and
detects identical states. Following the same update rule used in a transposition table, EGG-MCTS
simultaneously updates all paths in the tree that lead to the selected state. This design preserves
compatibility with standard MCTS implementations while achieving a theoretical acceleration com-
parable to that of Leurent & Maillard| (2020).

B.4.2 IMPLEMENTATION OF EGG-DRL

Markov Decision Process Formulation for DRL. We model this problem as an RL agent that
searches for the optimal sequence of grammar rules. At decoding step ¢, the agent samples a rule 7
conditioned on the previously selected rules 71, ..., 7:—1. We define the state at step ¢ as the prefix
of sampled rules s; := (71,...,7¢—1), and the grammar rules in the output vocabulary constitute
the action space for the RL agent. The sequential decoder, parameterized by 6, defines a stochastic
policy

mo(ar = a’|sy) = po(re = a'|T1,. .., 7i_1).
The environment transition is deterministic: applying action 7, in state s; yields the next state
St41 = (71,...,7t). Rewards are obtained by evaluating the completed expression on the dataset

according to a chosen evaluation metric (e.g., 1/(1 4+ NMSE(¢))). The MDP has a finite horizon: an
episode terminates once the output sequence corresponds to a valid expression with no non-terminal
symbols, or when the maximum sequence length H is reached. The objective of the RL agent is to
learn a policy that selects sequences of grammar rules so as to maximize the expected reward.

Configuration of Sequential Decoder. The sequential decoder can be implemented using various
architectures, such as RNNs (Salehinejad et al., [2017), GRUs (Chung et al., 2014), LSTMs (Greff
et al.| 2016)), or decoder-only Transformers (Vaswani et al.,|2017). The input and output vocabular-
ies for the decoder consist of grammar rules that encode variables, coefficients, and mathematical
operators. Figure [§[a) illustrates an example of the output vocabulary.

At each time step, the model predicts a categorical distribution over the next rule, conditioned on
the previously generated rules. At step ¢, the decoder (denoted as “SequentialDecoder”) takes
the previously generated rules (74, ...,7;—1) and the hidden state h;_;, and computes

h; = SequentialDecoder(r;_1,h;_1),

z; = Wohy + by,
po(Te|T1, ..., Ti—1) = softmax(z,),
where W, € RIVIXd g the output weight matrix, b, € RV is the bias vector, and |V| is the size of
the vocabulary. The next rule 7; is then sampled from this distribution, 74 ~ pg(7¢|71,...,7t—1), and
fed back into the decoder as input for the next step, until the sequence is completed. After H steps,
the full sequence 7 = (74, ..., 7y) is generated with probability py(7) = HtH:l po(Te|T1, s Te—1),

with the convention that 7 is a special start symbol.

Each sequence 7 is then converted into an expression following the grammar definition in Section[2]
If the sequence terminates prematurely, grammar rules for variables or constants are appended at
random to complete the expression. Conversely, if a valid expression is obtained before the sequence
ends, the remaining rules are discarded. In both cases, the probability pg(7) is updated consistently
with the applied modifications.

Finally, the model parameters are updated using gradient-based optimization (e.g., the Adam opti-
mizer) with either the classic policy gradient estimator g(6) or the proposed EGG-based estimator
Jegg(0). The whole pipeline is visualized in Figure

Connection to equivalence-aware learning in DRL. Several techniques have been introduced to
reduce the variance of policy gradient estimates. One widely used approach is the control variate

26

Published as a conference paper at ICLR 2026

expression ¢ = log(xl2 X xg) sampled from the decoder

Output: A —logd) A—-AxA A—-A> A-=x A—A® A=x

4 4 T T T T Index |Vocabulary of rules
A—>(A+A
Categorial Lﬂ[]uu ? = 1(4 o)
distribution
T T T T T T 2 A— lO?(A)
. 3 A— A
Sequential R 3
decoder C) Q C) D D D 4 3 - A
g
2 1 : : t f s Ao
Input: A A-logd) A—>AxA A—A? A-x A= A° 7 R
(‘D (a) Predict expressions from the sequential decoder by sampling rules auto-regressively.
) s od . Equivalent expressions New policy
quuegtlal ;m_p le() ‘a“z’tfg‘)’”H Equality |_, ¢’ = Iog(,\‘f) +log(x;) _, gradient
ecoder =loglxy X x; Graphs ¢" = 2log(x,) + 3log(x,) estimator g, ()

Policy gradient estimator g(6)
(b) Learning pipeline of DRL (colored blue) and EGG-DRL(colored blue and green).

Figure 8: Framework of DRL and our EGG-DRL. (a) The sequential decoder autoregressively sam-
ples grammar rules according to the modeled probability distribution. (b) In classic DRL, the sam-
pled expressions are directly used to compute the policy gradient estimator g(#). While EGG-DRL
constructs e-graphs from the sampled expressions, extracts symbolic variants, and computes the re-
vised estimator gegg(6).

method, where a baseline is subtracted from the reward to stabilize the gradient (Weaver & Tao)
2001). Another idea is Rao-Blackwellization (Casella & Robert, [1996). Other approaches, such as
reward reshaping (Zheng et al., 2018), modify rewards for specific state-action pairs. Inspired by
stochastic variance-reduced gradient methods (Johnson & Zhang, [2013; [Deng et al., [2021), [Papini
et al.|(2018) proposed a variance-reduction technique tailored for policy gradients.

Unlike these existing methods, our proposed EGG is the first to reduce variance through the domain
knowledge of the symbolic regression application, and show a seamless integration into the learning
framework and attain reduced variance.

B.4.3 IMPLEMENTATION OF EGG-LLM

Our EGG is adopted on top of the original LLM-SR (Shojaee et al.| 2025).

(a) Hypothesis Generation. The LLM generates multiple candidate expressions based on a prompt
describing the problem background and the definitions of each variable.

(b) Data-driven Evaluation. Each candidate expression is evaluated based on its fitness on the
training dataset.

(c) EGG-based Feedback. Inferring Equivalent Expressions. For ease of integration with the
e-graph system, we convert the generated Python functions into lambda expressions. This
simplifies their manipulation and evaluation during equivalence analysis.

Original function format

def hypothesis(xl, x2, coeffs):
expr = x1 * coeffs[0] + x2 » coeffs[0]
return expr

Converted into lambda format
hypothesis = lambda x1, x2, coeffs: x1 % coeffs[0] + x2 * coeffs[0]

This conversion allows us to transform the hypothesized Python function into an expression
tree directly. For each fitted expression, we construct an e-graph and apply a predefined set of

27

Published as a conference paper at ICLR 2026

Predicted expression
- Instruction

I

</> 1. def equation(xl, x2, coeffs):
#1 =t 2 # Args:
- specification 3 # x1: position, x2: velocity
(scientific problem description) 4 # coeffs: coefficients of expression
R4 s
- evuluatign . == 6. # driving force
(Evaluation function code) .
7 y = coeffs[0] * np.sin(coeffs[1]*x1)
- ~ /> 8 # nonlinear damping
o == 9 y += coeffs[2] * x2%*2
: Experience demonstration ==
« . " 10 # linear restoring
equation_v@”: score_v0,
“equation_v1”: score_vil, #N <> 11 y += coeffs[3] * x1
“equation_v2”: score_v2, =
E— 13. return y
1 (a) Hypothesis generation i
| e ———
| #1:score = ... Fit coefficients using dataset
#1 score:...x |
A
#2:score=... #2’: score = .., | #2:score = ... k
: Ao
| : evaluate
goodness-of-fit
N: score = .. #N’: score = ., I #N:score = ...
| | O——
|

(c) EGG-based Feedback (b) Data-driven evaluation

Figure 9: Pipeline of EGG-LLM. (a) Hypothesis Generation. The LLM receives prompts derived
from the problem specification and predicts multiple candidate expressions. (b) Data-Driven Eval-
uation. The coefficients of each candidate are fitted to the dataset and then evaluated on a separate
validation set to compute a goodness-of-fit score. (¢) EGG-Based Feedback. The proposed EGG
module generates symbolically equivalent variants, which are fed back into step (a) to guide the
next round of hypothesis generation.

rewrite rules until reaching a fixed iteration limit. From the resulting e-graph, we sample K
unique equivalent expressions. Each sampled expression is then converted back into a Python
function to facilitate further interaction with the LLM.

obtained equivalent expression
equiv_seq = ["A->log(A)", "A->AxA", "A->x1", "A->x2"]
Converted function format
def equiv_hypothesis(xl, x2, coeffs):
return x1 * x2

In subsequent iterations, the LLM receives feedback consisting of previously generated ex-
pressions along with their fitness scores. Our feedback is enriched with both the original hy-
potheses and their equivalent expressions derived via EGG module, enabling the model to refine
future generations. High-performing expressions are retained and further updated over multiple
rounds.

B.4.4 FINAL REMARK

The E2E-Transformer framework (Kamienny et al., 2022) is structurally very similar to the neural
network used in the DRL model, with the main difference being that it is trained using a cross-
entropy loss function. A straightforward way to integrate the EGG module into E2E-Transformer is
through data augmentation, where additional training examples are generated using EGG.

To date, only one work has explored the use of a text-based diffusion model for symbolic regres-
sion (Bastiani et al., [2025). However, its implementation has not been released publicly. Moreover,
the proposed pipeline relies on multiple interconnected components, which makes it difficult to re-
produce or isolate for independent evaluation. For these reasons, we do not include a comparison
between the text-based diffusion approach and EGG in this paper.

Several extensions of the baseline considered in this study offer empirical improvements but lack
theoretical guarantees. For example, [Tenachi et al.| (2023 employ genetic programming to refine
the predictions of the DRL model, and [Tenachi et al.| (2023)) introduce unit constraints in physical

28

Published as a conference paper at ICLR 2026

systems to eliminate infeasible expressions. Integrating EGG with these variants is an interesting
direction that we leave for future investigation.

29

Published as a conference paper at ICLR 2026

C EXPERIMENT SETTINGS

C.1 BASELINES AND HYPER-PARAMETERS CONFIGURATIONS
The representative baselines are selected as they all regard the search for the optimal expression as
a sequential decision-making process. A detailed description of each method is provided below:

MCTS. Sun et al.|(2023)) propose to use the Monte Carlo tree search algorithm to explore the space
of symbolic expressions defined by a context-free grammar (described in Section [2) to find high-
performing expressions. Despite being implemented similarly, this method appears under various
names in previous works (Todorovski & Dzeroskil [1997; (Ganzert et al., 2010; [Brence et al.| 2021}
Sun et al., 2023} | Kamienny et al., |2023)). We choose the implementation from [Sun et al.| (2023)
and serve as a representative of this family of methods.

DRL. Petersen et al.| (2021 propose to use a recurrent neural network (RNN) trained via a (risk-
seeking) reinforcement learning objective. The RNN sequentially generates candidate expressions
and is optimized using a risk-seeking policy gradient to encourage the discovery of high-quality
expressions. We chose this implementation’} We use three types of sequential decoders for the time
benchmark setting. The major configurations are listed in Table [}

Table 4: Hyperparameters for the DRL Model with different types of neural network. This configu-
ration is also used in FigureE}

General Parameters

max length of output sequence 20

batch size of generated sequence | 1024

total learning iterations 200

Reward function WSE(@
Optimizer Hyperparameters

optimizer Adam

learning rate 0.009

entropy weight 0.03

entropy gamma 0.7

Decoder-relevant Hyperparameters

choice of decoder LSTM Decoder-only Transformer
num of layers 3 3

hidden size 128 128

dropout rate 0.5 /

number of head / 6

LLM-SR. Shojaee et al.| (2025]) proposed to use pretrained large language models, such as GPT3.5,
to generate symbolic expressions based on task-specific prompts. The expressions are evaluated and
iteratively refined over multiple rounds. We choose their implementation atﬂ

For each baseline, we adopted the most straightforward implementation. Only minimal modifica-
tions were made to ensure that all baselines use the same input data and problem configurations, and
are compatible with the proposed EGG module. We also rename the abbreviation of each method,
to clearly present the core idea in each method and uniformly present the adaptation of our EGG on
top of these baselines.

Expression-related Configurations. When fitting the values of open constants in each expression,
we sample a batch of data with batch size 1024 from the data Oracle. The open constants in the
expressions are fitted on the data using the BFGS optimizerﬂ We use a multi-processor library to fit
multiple expressions using 8 CPU cores in parallel. This greatly reduced the total training time.

4https
5https
®https
7https

://github.com/isds—neu/SymbolicPhysicsLearner
://github.com/dso-org/deep-symbolic-optimization
://github.com/deep-symbolic-mathematics/LLM-SR
://docs.scipy.org/doc/scipy/reference/optimize.minimize-bfgs.html

30

https://github.com/isds-neu/SymbolicPhysicsLearner
https://github.com/dso-org/deep-symbolic-optimization
https://github.com/deep-symbolic-mathematics/LLM-SR
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-bfgs.html

Published as a conference paper at ICLR 2026

Table 5: Hyper-parameter configurations for symbolic expression computation.

Expressions and Dataset

training dataset size 2048

validation and testing dataset size | 2048

coefficient fitting optimizer BFGS

maximum allowed coefficients 20

optimization termination criterion | error is less than 1le — 6

An expression containing a placeholder symbol A or containing more than 20 open constants is not
evaluated on the data; its fitness score is —oo.

To ensure fairness, we use an interface, called dataOracle, which returns a batch of (noisy)
observations of the ground-truth equations. To fast evaluate the obtained expression is evaluated
using the Sympy library, and the step for fitting open constants in the expression with the dataset
uses the optimizer provided in the Scipy librar

During testing, we ensure that all predicted expressions are evaluated on the same testing dataset by
configuring the dataOracle with a fixed random seed, which guarantees that the same dataset is
returned for evaluation.

We further summarize all the above necessary configurations in Table [3]

C.2 EVALUATION METRICS

We mainly consider two evaluation criteria for the learning algorithms tested in our work: 1) the
goodness-of-fit measure and 2) the total running time of the learning algorithms.

The goodness-of-fit indicates how well the learning algorithms perform in discovering unknown
symbolic expressions. Given a testing dataset Diey = {(x;,%;)}"_; generated from the ground-
truth expression ¢, we measure the goodness-of-fit of a predicted expression ¢preq, by evaluating
the mean-squared-error (MSE) and normalized-mean-squared-error (NMSE):

1 - 2 % Z?:l(yl - ¢pred(xi))2
MSE = - Z;(yi — Pprea(x:))7, NMSE = -
(12)
I 1 |1
RMSE =, | — ;(yi ~Oprea(xi))?, NRMSE = = ;(y — Govea(xi))2

. . 2 .
where the empirical variance o, = \/ % S (yz -1 S yl) . Note that the coefficient of

n

determination (R?) metric (Nagelkerke et al., |1991; |Cava et al.; 2021) is equal to (1 — NMSE) and
therefore omitted in the experiments.

$https://docs.scipy.org/doc/scipy/tutorial/optimize.html

31

https://docs.scipy.org/doc/scipy/tutorial/optimize.html

Published as a conference paper at ICLR 2026

D EXTRA EXPERIMENTAL RESULTS

D.1 VISUALIZATION OF EGG CONSTRUCTION

We summarize the list of example expressions, their symbolic-equivalent variants, and the visualized
EGG in Table

Table 6: Summary of expressions, their symbolic-equivalent variants, and the visualized o it visual-
ization of more e-graphs obtained via EGG.

ID Original equation Symbolic-equivalent variant E._ graph .
visualization

1 log(z322) 3log(z1) + 2log(z2) Figure |10

2 exp(c121 + 2) exp(c1x1) exp(xa) Figure [L

3 sin(z1 + x2) sin(z) cos(xa) + cos(z) sin(xy) | Figure|l2]

4 log(zy X ... 2p) log(z1) + .. .log(xy) Figure 14}

5 sin(zy + ...+) omitted Figure

(a) Example symbolic regressions '

ID Original equation Symbolic-equivalent variant E._ graph .
visualization

1.15.3x ﬁ ﬁ Figure |16

1303 mpim(mm/2) (S‘“ 2173 /2))2 Figure|17

e 0 sin? (22 /2) sin(z2/2) 8

1.44.4 crxoxy log(za/xs) clxoxl(log(acg) log(z3)) Figure |l

150.26 xg(cos(z1wa) + w3 cos®(z122)) | xg cos(z122) (1 + w3 cos(x122)) | Figure[19

1L6.15b 320 3coszysinay Sz sin(Ze1) Figure 20

2 2 .
3518 G ey exparaa7m) Teoh(r132775) Figure
11.3521 oz tanh(zyz2/73) Tox1 % Figure [22

(b) Selected complex symbolic regressions from Feynman Dataset.

32

Published as a conference paper at ICLR 2026

E-graph for log operator. Figure illustrates the e-graph construction for the expression
log(z$x3) using rewrite rules for log operator: log(a x b) ~ log(a) + exp(b) and also log(a®) ~~
bloga. This visualization is based on the Graphviz API. We also label each e-class with a unique
index for clarity. As shown in Figure [I0] the saturated e-graph grows significantly larger as more
rewrite rules are applied. In our full implementation, we incorporate many additional rewrite rules
beyond these basic logarithmic identities, resulting in substantially larger and more complex e-
graphs.

e-classl0
e-class?
A->log (A) . ’A7>10g<A)‘ ‘ ’A—>(A+A)‘ ‘ ‘
PEEEVEE——— /
e-classé e-class8 e-classé6 e-class9
[ioaa] | | [2>109 | | [aana i] A->1og (a)
\ v
e-class2 e-class5 e-class?2 e-classS
wew | [] [owew]] A-> (B) *% (B) .. B> (B) ** (B) ..
I\ (2 v v
e-class0 ' e-classl e-class3 | e-class4 e-class0O ' e-classl e-class3 ' e-class4
e-classl0
|A—>log(A) | | |A—> (A+A) | | }-\
<= ¥
e-classl2 e-classé6 e-classld
o] [] [omem | | [oma] [] [omem] | [or | |
e-classll e-class2 e-class5 e- classl3

|A—>log(A) | | |A—>(A)**(A)| | | |A—>(A)**(A)| | A >log (A) |
N7
e-classl e-class0 e- class3 e-class4

Figure 10: (Top left) Initialized e-graphs for expression log(z3x3). (Top Right) The saturated e-
graphs after applying one rewrite rule log(ab) ~~ loga + logb. (Bottom) The saturated e-graphs
after applying two rewrite rules: log(ab) ~ loga + log b and log(a®) ~ blog a.

E-graph for exp operator. Figure [T1] illustrates the e-graph construction for the expression
exp(c121 + x2) using the exponential rewrite rule exp(a + b) ~» exp(a) x exp(b). The input ex-
pression exp(c; X @1 + 22) is represented as a sequence of production rules: (A — exp(A), A —
A4+A A—>AXA A—=c, A=z, A— x9).

33

Published as a conference paper at ICLR 2026

e-class5 e-class8
A->exp (A) . ‘ A->exp (A) ‘ ‘ ‘ A->A*A ‘ ‘ ‘
« Vv
e-class4 e-classb6 e-class4 e-class7
A-> (A+A) .. ‘ A->exp (A) ‘ ‘ ‘ A->(A+A) ‘ ‘ ‘ ‘ A->exp (A) ‘ ‘
v
e-class?2 e-class3 e-class?2 &Q e-class3
o[1]]
e—clas;% \t—classl e-class0 | e-classl

Figure 11: (Left) Initialized e-graph for expression exp(ciz1 + x2). (Right) The saturated e-graphs
after applying one rewrite rule exp(a + b) ~~ exp(a) exp(b).

E-graph for sin, cos operators. Figure[I2]demonstrates the application of the trigonometric identity
sin(a 4 b) ~ sina cos b + sin b cos a to the input expression sin(z; + x2). The input expression is
represented by the sequence of production rules (A — sin(A), A > A+ A, A — x1, A — x9).

——————————

I
1
1 .
, A->sin(A)

Figure 12: Applying the rewrite rule sin(a+b) ~ sin a cos b+sin b cos a in an e-graph representing
expression sin(zq + x2). Left: Initialized e-graph. Right: e-graph after applying the rewrite rule.

E-graph for 9/0x, operator. Figure shows the application of the partial derivative commutativ-
2 2 2

ity rule af afx- ~ 83 afw to the input expression %. The derivation is represented by the
(3 J J (3

following production rules: (A — 9(A)/0x1, A — 0(A)/0x2, A — x1 + x2).

I
I
| a->a(a) /ox1

0
Vv
x
-
+
X
N
N -
0
Vv
x
N
+
%
N

Figure 13: Applying the rewrite rule % (ﬁ) ~ % (%) in an e-graph representing expression
i 3 i

Bm]-
62($1+I2)

970, Left: Initialized e-graph. Right: e-graph after applying the rewrite rule.

34

Published as a conference paper at ICLR 2026

E-graph visualization for case analysis in section[5.2]

e-class6
|A—>log (A) | |A—> (A+A) |
e-class4 e-class2 ! e-class5
|A7>log (A) | |A7>A*A| | A->1log (A7) |
e-classO e-classl
e-class8
|A—>log(A) | |A—> (A+A) |
— — v
e-classll e-class4 ' e-class’
|A—>(A+A) | |A—>log(A) | |A—>A*A| |A—>log (A) |
e-classl0 e-class?9 e-class2 ' e-class3
| A->log (A) | | A->log (A) | | A->A*A | | A->x3 |
e-classl A(/////stizzgggé
e-classl0
|A—>log(A)| |A—>(A+A)|
— V— v
e-classl3 e-class6 ' e-class9
A{////’J A—>(A+A)| |A—>log(A)| |A—>A*A| |A—>log(A)|
e-classlé6 e-classl2 e-class4 \\E* e-class5
oo | [roresm | [iorosm | [ona]
e-classl4 e-classl5 e-class2 ' e-class3
|A—>log(A)| |A—>log(A)| |A—>A*A| |A—>X3|

\ N ¥
e-class0 Af///;i;iassl

Figure 14: Visualization of e-graphs for expression log(z1 X ... X x,), using the rewrite rule
log(ab) ~~ log a + log b. The three figures correspond to n = 2, 3, 4 accordingly.

35

Published as a conference paper at ICLR 2026

e-classl0

A—>sin(A)| |A—>A+A|
v
e-class9 e-class6
A->A*A A->A*A
v Vo ™
e-class? e-class2 ' e-class8 e-class4 e-class5
|A7>cos(A)| A7>A+A| A7>sin(A)| A7>sin(A)| |A7>cos(A)|

\\E& v \\xt/’_dv____,,//
e-classO e-classl

e-classl2

A->sin (A)

e-classll

e-class8

A->A*A ‘ A->R*A F\
e-classl0 e-class9 e-class7 e-class4 ' e-classl9
A->sin(A) ‘ A->cos (B) ‘ |A7>cos(A) ‘ |A7>A+A‘ A->sin(A) ‘ |A7>A+A‘
e-class3 e-class2 e-classl5 e-classl8
lA—>x3l lA—>A+AI lA—>A*AI lA—>A*A L_\\\\\\\\\s
e-classl3 e-classlé e-classld e-classl?
A—>sin(A)‘ A—>cos(A)‘ A—>cos(A)‘ A—>sin(A)‘
e-class0 e-classl
e-classl4
e-classl0 e-classl3
e-class2l e-class6 | e-class9 e-classll e-classl2
‘A7>A+A‘ ‘A7>sin(Ab‘ ‘A7>A+A‘ ‘A7>cosiA)‘ ‘A7>cosiA)‘ ‘A7>sln1A)‘
) oY e
e-classl7 e-class20 e-class4 e-class5
e-class28 e-classl8 e-classlé e-classl9
‘A—>A+A‘ ‘A—>sin(A)‘ ‘A—>COS(A)‘ ‘A—>COS(A)‘ ‘A—>sln(A)‘

e-class3

e-class27 ' e-class24 \\\\EA e-class2
A->A*A ‘ ‘ A->A+A ‘

/ A->A*A ‘
N—

e-class25 e-class22 e-class26 e-class23

x3

[icosm | [rosinen | [rsinm || [roeos]

\\\\\A e-class0

e-classl

Figure 15: Visualization of e-graphs for expression sin(z; + ... +), using the trigonometric
rewrite rule sin(a + b) ~ sin(a) cos(b) 4 sin(b) cos(a). The three figures correspond to n = 2,3, 4.

36

Published as a conference paper at ICLR 2026

D.2 ADDITIONAL VISUALIZATION FOR SELECTED EXPRESSIONS IN FEYNMAN DATASET

E-graph for equation ID 1.15.3x in the Feynman dataset. Figure[T6]illustrates the application of
the rewrite rules v/ab ~ /av/b and a® — b*> = (a + b)(a — b) to the input expression %

— 2
171

e-classl0

e-class9
e-classlé

A->sqrt (A) .
] | []]
[
e-classd e-class8
¢ e-classd e-class14 e-classl3 e-class15
A’>(A’AJ‘ ‘ ‘ ‘A’>(A’A' ‘ ‘ ‘ |A*>1A*A) | | A->sqrt (&) | | |A*>1A*A) | | A->A*A | h |A7>sqr:(A)| |
VAN ¥ A\ v
e-classO | e-class3 e-class? e-classé oclassil o clase1z
A‘>X0‘ ‘A‘>A*A ‘ ‘ ‘ ‘A'>A**2‘ ‘ ‘A'>A’*2‘ ‘ | | |L7>1A+A)| | | A->A**2 | |A7>1Afé)| |

e-class2 e-classl e-classS e-class2

A->x2

e-classl

‘A—>xl

Figure 16: (Left) Initialized e-graph for the expression (zo — z122)/1/c3 — x, where the equation
ID is 1.15.3x in the Feynman dataset. (Right) Saturated e-graph after applying the rewrite rule

Vab ~ /ay/band a® — b> = (a + b)(a — b).

E-graph for equation ID 1.30.3 in the Feynman dataset. Figure [17|illustrates the application of
sin?(z122/2)

the rewrite rule a?/b? ~> (a/b)? to the input expression zo oy)
p p sin?(z2/2)

e-class6
e-class6

ll

e-class0 | e-class8
e-class0 e-class5

A->x0 ‘ l A->(A) / () l l ‘ | A->x0 | | A->(A)/ (A) | | | A->(B) **2 |
v\
e-class2 e-class4 e-class2 e-class?7 e-class4
l A=>(R) **2 ‘ l A->(R) **2 ‘ | A=>(R) **2 | | A->(R)/ (B) | | | | BA=>(R) **2 |

v v v ¥
e-classl e-class3 e-classl e-class3
A->sin(x2/2) ‘ A->sin(x1*x2/2) A->sin(x2/2)

lA—>sln(xl*x2/2)

sin?(z1x2/2)

sin?(z2/2)
1.30.3 in the Feynman dataset. (Right) Saturated e-graph after applying the rewrite rule log(a/b) ~~
loga — logb.

Figure 17: (Left) Initialized e-graph for the expression xg , where the equation ID is

E-graph for equation ID 1.44.4 in the Feynman dataset. Figure [T8]illustrates the application of
the rewrite rule log(a/b) ~» loga — logb to the input expression ¢y xox log(za/x3).

37

Published as a conference paper at ICLR 2026

e-class9 e-class9
[T]
e-class4 e-class8 e-class4 e-classl2
ol 1 [mmn]] ol 11 [omnl] [Een 1]
PR \ P E—
e-class?2 e-class3 || e-class’ e-class2 e-class3 | e-classl0 e-class7 e-classll
‘ A->A*A ‘ ‘ ‘ A->x1 ‘ A-> () / (B) ‘ ‘ ‘ |A->A"A| | | |A—>x1 | | A->log (A) | | | A->(n)/(B) | | | |A—>1og1A) | |
v N
e-class0 e-classl e-class5 | e-class6 e-class0 e-classl e-class5 e-class6

(=]

] [

Figure 18: (Left) Initialized e-graph for the expression ¢; zgx1 log(xs/x3), where the equation ID is
1.44.4 in the Feynman dataset. (Right) Saturated e-graph after applying the rewrite rule log(a/b) ~~
loga — logb.

E-graph for equation ID 1.50.26 in the Feynman dataset. Figure [T9]illustrates the application of
the rewrite rule ab + ac ~ a(b + c¢) to the input expression zo(cos(r122) + 23 cos?(z122)).

e-class6

e
e-class6
e-class0 | e-class9
EDER

o] [mam [[] [ona] 1]

e-class0 | e-class5

A->x0 A-> (A+R) l l l e-class4 e-class8
e-class4 | A->A*A | | | | A->(A+1) | |
v v
7 e-class3 e-class7
e-class2 | e-class3
omea] b [oaa] |]

o] o] |

e-class2 e-classl

e-classl

A->cos (x1*x2) A->cos (x1*x2)

Figure 19: (Left) Initialized e-graph for the expression zq(cos(x122) + w3 cos?(z172)), where the
equation ID is 1.50.26 in the Feynman dataset. (Right) Saturated e-graph after applying the rewrite
rule a + ba? ~ a(ba + 1).

E-graph for equation ID I1.6.15b in the Feynman dataset. Figure 20]illustrates the application of

. . sin(2a) . . T
the rewrite rule cos(a) sin(a) ~» = to the input expression YYD

38

Published as a conference paper at ICLR 2026

e-class9

e-class9
ENEE
7Y N
e-class2 e-class8 e-class2 e-class8
ErmERiETTINN RN RN
2V SN
e-class0 e-classl e-class6 e-class7 e-class0 e-classl e-classll e-class?
A—>3*xo‘ lA*>4*pi |A7>A*A [‘ A->x2*%*3 ‘ A->3*x0 ‘A—>4*pi ‘A->A*A ‘ ‘ ‘A—>(A)/2‘ ‘ ‘A—>x2**3
g
e-class4 e-class5 e-class4 e-class5 e-classl0

lA*>CDS(A)‘ ‘ lA*>5ln(A) ‘ ‘ ‘ A—>cos(A)‘ ‘ ‘A—>sin(A)‘ ‘ ‘A—>51n(2*A) ‘
v
e-class3 e-class3

Figure 20: (Left) Initialized e-graph for the expression

is I1.6.15b in the Feynman dataset. (Right) Saturated e-graph a2fter applying the rewrite rule
sin(2a)
—

%w, where the equation ID

cos(a) sin(a) ~

E-graph for equation ID IL35.18 in the Feynman dataset. Figure 21] illustrates the ap-
plication of the rewrite rule (exp(a) + exp(—a))/2 ~» cosha to the input expression

0
exp(xz1z2/x3)+exp(—z1z2/3)

e-class5
e-class5
o]]]
|Z—\—>(A)/(A)| | | . _ \
ArJ W e-class0 ' e-classb6
e-class0 | e-class4
[| [oam | | | [rozreomn |]
EaliErEEn A
v e-class2 e-class3
e-class2 e-class3
Emnliern oo [f[aeeen | |

e-classl A(// e-classl
A->x1*x2/x3 A->x1*x2/x3

Figure 21: (Left) Initialized e-graph for the expression P CTE) /xg)fgxp(—mlxz Ta3) where the equa-
tion ID is I1.35.18 in the Feynman dataset. (Right) Saturated e-graph after applying the rewrite rule
(exp(a) + exp(—a)) ~ 2cosha.

E-graph for equation ID I1.35.21 in the Feynman dataset. Figure[22]illustrates the application of

exp(2a)—1) he input expression zox1 tanh(zixs/3).

the rewrite rule tanh a ~~ p(2a)FT

39

Published as a conference paper at ICLR 2026

e-class5
RN
e-class5 e-class2 e-class9
.. 22| | | [potema |] (2@ []]
->
(28] V¥
w N e-class0 | e-classl e-class? e-class8

e-class2 e-class4 IA_>(A_1) ‘ ‘ IA_>(A+1)‘ ‘

v
| A->A*A | | | | A->tanh (A) | | e-class6

V \V \V A->exp (2*A) .

e-class0O | e-classl e-class3

e-class3

—_ —_ —_ *
[rowo] [] [pomaneers]

Figure 22: (Left) Initialized e-graph for the expression zgz; tanh(z1z4/x3), where the equation

ID is 11.35.21 in the Feynman dataset. (Right) Saturated e-graph after applying the rewrite rule
exp(2a)—1
exp(2a)+1-

tanh @ ~

40

	Introduction
	Preliminaries
	Methodology
	Egg: Equality graph for Grammar-based Symbolic Expression
	Embedding Symbolic Equivalence into Symbolic Regression via Egg
	Connection to Existing Methods
	Theoretical Justification on Egg-SR Accelerating Learning

	Related Works
	Experiments
	Overall Benchmarks
	Case Analysis

	Conclusion
	Theoretical Justification
	Necessary Definitions of Markov Decision Process.
	Proof of Theorem 3.1
	Proof of Theorem 3.2

	Implementation Details
	Visualization of Expression Construction via Context-free Grammar
	Implementation of Rewrite Rules
	Implementation of E-Graph
	Implementation of Egg-embedded Symbolic Regression

	Experiment Settings
	Baselines and Hyper-parameters Configurations
	Evaluation Metrics

	Extra Experimental Results
	Visualization of Egg Construction
	Additional Visualization for Selected Expressions in Feynman Dataset

