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Abstract001

The release of OpenAI’s o1 marks a signif-002
icant milestone in AI, achieving proficiency003
comparable to PhD-level expertise in mathe-004
matics and coding. While o1 excels at solving005
complex reasoning tasks, it remains a closed-006
resource model, limiting its accessibility and007
broader application in academic and industrial008
contexts. Despite numerous efforts to replicate009
o1’s results, these attempts often focus on iso-010
lated aspects of the model (e.g., training, infer-011
ence), neglecting the holistic interplay between012
components and failing to provide a global pic-013
ture of the pathways to enhance LLMs’ reason-014
ing capabilities, and replicate o1’s performance.015
Currently, there is no systematic review of these016
replication efforts, nor a clear survey of the ma-017
jor issues that must be addressed to achieve018
comparable performance to o1.019

In this survey, we provide a systematic review020
of the most up-to-date state of knowledge on021
reasoning LLMs, helping researchers under-022
stand the current challenges and advancements023
in this field. Specifically, we will (1) review the024
basic concepts and techniques behind two rep-025
resentative reasoning LLMs, o1 and DeepSeek026
R1, exploring their key components and ca-027
pabilities; (2) detail recent efforts to replicate028
o1’s performances, and more importantly, ad-029
dress the key obstacles in enhancing the rea-030
soning abilities; (3) explore the emerging class031
of LLMs designed for multi-modal reasoning,032
which extends the capabilities of traditional033
LLMs by bridging the gap between language034
understanding and sensory perception; and (4)035
summarize the current challenges and discuss036
opportunities for further improvement of rea-037
soning large language models.038

1 Introduction039

Large language models (LLMs) (Jiang et al., 2023;040

Bai et al., 2023; OpenAI, 2023; Yang et al., 2024a;041

Dubey et al., 2024; OpenAI, 2024a; Mistral AI,042

2024; Team et al., 2024; Liu et al., 2024b,a; Wake043

et al., 2024; Shao et al., 2024a; OpenAI, 2024b; 044

GLM et al., 2024) have achieved remarkable per- 045

formance in numerous language tasks (Sun et al., 046

2023b; Wang et al., 2023b; Wan et al., 2023; Sun 047

et al., 2023c,a; Wang et al., 2023a; Sun et al., 048

2023d; Liu et al., 2024c; Yao et al., 2024; Wang 049

et al., 2024d). Despite their impressive capabilities, 050

LLMs still face significant challenges in reasoning. 051

They struggle with tasks that require logical deduc- 052

tion, numerical calculations, or consistent chains of 053

thought. Errors are observed even in simple tasks 054

that demand multi-step thinking, highlighting gaps 055

in how these models acquire, represent, and apply 056

knowledge (Cobbe et al., 2021; Wei et al., 2022; 057

Wang and Lu, 2023; Shakarian et al., 2023; Shi 058

et al., 2023; Chang et al., 2024; Ahn et al., 2024). 059

The release of OpenAI o1 (OpenAI, 2024b) 060

marks a significant milestone in AI, particularly 061

in enhancing its reasoning abilities. OpenAI o1 is 062

capable of solving complex reasoning tasks and 063

demonstrates capabilities comparable to PhD-level 064

proficiency in math and coding. Unfortunately, 065

o1 is a closed-resource model, which limits its ac- 066

cessibility and potential for broader academic and 067

industrial use. This restricted access hinders col- 068

laborative efforts to further refine its abilities and 069

limits the opportunity for researchers and devel- 070

opers to build upon its foundation. Additionally, 071

the lack of transparency in the model’s underly- 072

ing architecture and training data raises concerns 073

about bias and fairness, making it difficult to fully 074

understand its decision-making processes. 075

As a result of the closed-resource nature of o1, 076

numerous efforts have emerged to replicate o1’s 077

impressive results (Shao et al., 2024a; Mistral AI, 078

2024; Team, 2024b; o1 Team, 2024; Zhao et al., 079

2024; Team, 2024a; DeepSeek-AI et al., 2024). o1, 080

however, is a highly complex system, with sub- 081

stantial improvements across multiple AI modules, 082

including training methodologies, inference mecha- 083

nisms, datasets, and evaluation processes. Existing 084

1



efforts to replicate o1 tend to focus on isolated as-085

pects of the model, often neglecting the holistic086

interplay between these components, and, as a re-087

sult, missing the full picture in enhancing LLMs’088

reasoning abilities. As a result, there is currently no089

systematic review of the efforts to replicate o1, and090

more importantly, no clear survey of the major is-091

sues that must be addressed to achieve comparable092

performance across all these dimensions.093

In this survey, we provide a systematic review094

of the most up-to-date state of knowledge on the095

challenges and opportunities involved in reason-096

ing LLMs, in particularly with OpenAI o1 (Ope-097

nAI, 2024b) and DeepSeek R1 (DeepSeek-AI et al.,098

2025). Specifically, Sec. 2 reviews the basic con-099

cepts and techniques behind two representative rea-100

soning LLMs, o1 and DeepSeek R1, exploring their101

key components and capabilities; Sec. 3 details re-102

cent efforts to replicate o1’s performances, and103

more importantly, addresses the key obstacles in104

enhancing the reasoning abilities; Sec. 4 explores105

the emerging class of LLMs designed for multi-106

modal reasoning, which extends the capabilities107

of traditional LLMs by bridging the gap between108

language understanding and sensory perception;109

Sec. 5 summarizes the current challenges and dis-110

cusses opportunities for further improvement of111

reasoning LLMs; and Sec. 6 concludes this survey.112

2 Overview of OpenAI o1 and DeepSeek113

R1114

OpenAI o1 and DeepSeek R1 represent two signif-115

icant advancements in artificial intelligence, each116

emphasizing enhanced reasoning capabilities to117

tackle complex, multi-step tasks. In this section,118

we first illustrate one of their key features: “Think-119

ing before Response Generation”, which allows120

them to produce detailed, step-by-step solutions121

that excel in domains such as science, mathematics,122

and programming. Then, we explore the speculated123

techniques in o1 and insights from R1 to enhance124

the reasoning capabilities of LLMs across three125

dimensions: (1) At the dataset level, we review126

recent efforts in constructing high-quality, diverse,127

and representative datasets that play a pivotal role128

in enhancing LLMs’ reasoning capabilities; (2) At129

the training level, we delve into different training130

techniques that harness these datasets to ensure the131

model acquires robust logical reasoning and struc-132

tured problem-solving capabilities; and (3) At the133

inference level, we provide an in-depth review of134

techniques designed to identify and execute rea- 135

soning paths during the decoding process in LLMs. 136

Additionally, since both the o1 and R1 series con- 137

sist of multiple models, each tailored with varying 138

sizes, inference speeds, and prices to meet different 139

use cases, we provide a detailed breakdown of the 140

release dates, capabilities, features of the various 141

o1 and R1 models, along with their performance 142

on benchmarks, in the Appendix A. 143

2.1 Key Feature: Thinking before Response 144

Generation 145

A hallmark of both the o1 and R1 models is the 146

deliberate allocation of additional time for “think- 147

ing” before generating responses. This extended 148

processing period allows the models to produce 149

detailed, step-by-step reasoning paths that are par- 150

ticularly effective in solving complex mathematical, 151

programming, and scientific challenges, such as: 152

The Given Question:
How many Rs are in “strawberry”?

Generated by o1:
There are three ‘R’s in the word “straw-

berry.”
Here’s the breakdown: S - T - R - A - W - B -

E - R - R - Y

• 3rd letter: R

• 8th letter: R

• 9th letter: R

So, the letter ‘R’ appears three times in
“strawberry.”

By allocating more “thinking” time, the model 153

can decompose complex, multi-step problems into 154

smaller, manageable components. On one hand, 155

this allows the model to produce well-structured 156

and coherent solutions to reasoning problems; on 157

the other, it offers transparency into the reason- 158

ing process, enabling users to understand how the 159

model reached its answers. 160

2.2 Speculated Techniques in o1 and Insights 161

from R1 162

OpenAI o1 is a closed-source model, and as a re- 163

sult, there has been much speculation regarding 164

the techniques behind its development. Various 165

blogs, reports, and technical papers have attempted 166

to deconstruct its capabilities, offering hypotheses 167
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about its underlying architecture, datasets, training168

methods, and reasoning processes. Some speculate169

that o1 leverages advanced forms of reinforcement170

learning and unsupervised learning, while others171

suggest a highly refined chain-of-thought (CoT)172

approach to enhance its multi-step reasoning. In173

parallel, the DeepSeek R1 series, detailed in the174

DeepSeek-R1 technical report (DeepSeek-AI et al.,175

2025), employs a transparent, multi-stage training176

pipeline that shares several conceptual similarities177

with the speculated techniques in o1. Below, we ex-178

plore the speculated techniques and insights from179

R1 to enhance the reasoning capabilities of LLMs180

across three levels: dataset, training and inference.181

2.2.1 Constructing Reasoning Formatted182

Datasets183

Building the training dataset is the initial step to-184

ward equipping a model with advanced reasoning185

capabilities. For reasoning LLMs, this involves186

constructing a reasoning formatted dataset that em-187

phasizes logical progression, multi-step thinking,188

and structured problem-solving. For example:189

Input: What is the sum of the first 10 posi-
tive integers?

Reasoning Path:

• Step 1: The first 10 positive integers are
1, 2, 3, · · · , 10.

• Step 2: The sum of a sequence can be
calculated using the formula (n × (n +
1))/2(n× (n+ 1))/2(n× (n+ 1))/2.

• Step 3: Substituting n = 10, we get
(10×11)/2 = 55(10×11)/2 = 55(10×
11)/2 = 55.

• Answer: The sum is 55.

In prior research (Swamy et al., 2024), OpenAI190

researchers discovered that exposing LLMs to rea-191

soning formatted data enables them to learn logical192

patterns and enhance their accuracy. To construct193

such reasoning formatted datasets, most studies194

(Qin et al., 2024; Hwang et al., 2024a; Liao et al.,195

2024b; Lu et al., 2024; Shao et al., 2024b; Bansal196

et al., 2024; Tang et al., 2024) typically focus on197

one or a combination of the following strategies:198

the machine-generated, where a trained model199

provides feedback, responses or grades, and the200

human-generated, where humans are asked to201

provide feedback. Some datasets rely on a single 202

strategy, while others combine both approaches, an 203

overview of these datasets is shown in Table 2. 204

Recently, in DeepSeek R1, thousands of cold- 205

start examples are collected with a clearly de- 206

fined output format. Each sample is designed with 207

special tokens that separate the detailed chain-of- 208

thought from a concise summary, ensuring that the 209

dataset not only promotes logical reasoning but 210

also enhances readability. This method of dataset 211

construction mirrors the idea that exposing models 212

to structured reasoning data enables them to learn 213

logical patterns and improve overall accuracy. 214

2.2.2 Training LLMs on Reasoning 215

Formatted Datasets 216

After constructing the specialized reasoning for- 217

matted datasets, it has been speculated that the next 218

step for models like o1 is to fine-tune them on 219

this data using a combination of supervised fine- 220

tuning (SFT) (Zhang et al., 2023) and reinforce- 221

ment learning (RL) (Wang et al., 2024e). SFT is 222

employed as an initial step to train the model to 223

generate complete reasoning paths in response to 224

given questions. This process teaches the model to 225

follow logical chains and produce coherent outputs, 226

thereby establishing a solid foundation for tackling 227

more advanced reasoning challenges (Gou et al., 228

2023; Tian et al., 2024; Liao et al., 2024a). RL, 229

on the other hand, is used to further refine these 230

capabilities (Saunders et al., 2022; Yu et al., 2023; 231

Liu et al., 2023; Wang et al., 2024b; Zhang et al., 232

2025; Zeng et al., 2024; Zheng et al., 2024; Song 233

et al., 2025; Zhang et al., 2024c; Chen et al., 2024c; 234

Liu et al., 2023; Hwang et al., 2024b; Putta et al., 235

2024). Techniques such as large-scale Reinforce- 236

ment Learning from Human Feedback (RLHF) and 237

alternative strategies like Monte Carlo Tree Search 238

(MCTS) are speculated to drive the exploration of 239

multiple solution paths and to optimize the model’s 240

performance by using reward models that capture 241

correctness and logical consistency. We put techni- 242

cal details on these approaches in Appendix B, and 243

a summary of each of these paradigms in Table 3. 244

In contrast, DeepSeek R1 adopts a two-phase 245

training strategy to develop its reasoning abilities: 246

(1) R1-Zero is developed through pure RL with- 247

out any SFT. This phase allows the model to self- 248

evolve its reasoning strategies and explore various 249

solution paths, although it may sometimes produce 250

outputs with challenges in readability and language 251

consistency. (2) R1 incorporates a modest amount 252
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of high-quality cold-start data to guide and stabi-253

lize the reasoning process. This phase is further254

refined through additional RL training stages and255

SFT (including rejection sampling for high-quality256

responses), which helps the model generate coher-257

ent and user-friendly chain-of-thought outputs.258

This dual approach ensures that the model learns259

to generate complete and logical reasoning paths in260

response to given questions, establishing a robust261

foundation for addressing more complex problems.262

2.2.3 Inference with Advanced Thinking263

Strategies264

At inference time, researchers speculate that o1-265

like models employ a series of advanced reasoning266

techniques, many of which are also utilized in R1.267

Below, we present examples to demonstrate these268

techniques, while additional technical details are269

provided in Appendix C, and an overview of recent270

inference methods is summarized in Table 4.271

Problem Breakdown. Deconstructing complex272

problems into smaller, manageable parts (as illus-273

trated below) to facilitate a step-by-step solution,274

an approach also central to the design of R1.275

The Given Question:
How many Rs are in “strawberry”?

Decomposition:

• Identify all the words: S - T - R - A - W -
B - E - R - R - Y

• Identify which positions are the word R:
3rd letter, 8th letter, and 9th letter.

• Calculate: The letter ‘R’ appears three
times

Mistake Recognition and Self-Correction. In276

this strategy, the model detects and rectifies errors277

in their reasoning, much like a human reassessing278

and adjusting a flawed approach. Such as when279

get a response “The area is 10× 5 = 50” by given280

a question “What is the area of a triangle with a281

base of 10 and a height of 5?”. A critic model is282

employed (McAleese et al., 2024; Xi et al., 2024;283

Kalyanpur et al., 2024), or the o1-like reasoning284

LLM itself is prompted (Kumar et al.; Gao et al.,285

2024; Li et al., 2024), to evaluate whether the re-286

sponse is accurate. If an error is identified, the287

o1-like reasoning LLM will immediately generate288

a new answer. This iterative process continues un- 289

til the critic model or the LLM determines that the 290

generated response is correct. R1 demonstrates this 291

capability through its iterative RL process, where 292

an “aha moment”, which is shown in Figure 4, oc- 293

curs as the model dynamically adjusts its reasoning. 294

Solution Exploration. o1-like reasoning LLMs 295

explore multiple potential solution paths before ar- 296

riving at a final answer, ensuring the selection of the 297

most logical and accurate outcome. This process 298

resembles a tree structure, where the input problem 299

serves as the root node, each node represents a step 300

in the solution, and the path from a leaf node to 301

the root forms a complete reasoning trajectory(Yao 302

et al., 2024; Yuan et al., 2024; Feng et al., 2023; 303

Zhang et al., 2024b; Tian et al., 2024; Xie et al., 304

2024; Chen et al., 2024b; Zhang et al., 2024a). To 305

enhance accuracy, o1-like models employ various 306

search strategies to construct this solution tree and 307

evaluate the validity of each path, leading to more 308

precise and insightful results. However, R1 does 309

not adopt this approach due to the challenges of 310

scaling token-level search, such as an exponentially 311

expanding search space and the difficulty of train- 312

ing a reliable value model. Instead, R1 leverages 313

extended test-time computation and reinforcement 314

learning to refine its reasoning process without re- 315

lying on explicit tree search algorithms. 316

3 Recent Efforts in Reproducing OpenAI 317

o1 318

Currently, many efforts have been made to replicate 319

OpenAI’s o1 or specific capabilities of o1 (such 320

as code generation and mathematical reasoning). 321

We have collected nine such works, among which 322

seven are open-source, five provide reports or pa- 323

pers, and five include comparisons with o1. For 324

detailed information, please refer to Table 5. In 325

the following section, we will focus on introduc- 326

ing three landmark works: (1) rStar-Math (Guan 327

et al., 2025), which shows that smaller language 328

models can match or even exceed the mathemati- 329

cal reasoning capabilities of OpenAI’s o1 model, 330

without requiring distillation from larger models; 331

(2) Kimi-k1.5 (Team et al., 2025), a multi-modal 332

LLM that represents a major advancement in scal- 333

ing reinforcement learning; and (3) DeepSeek-R1 334

(DeepSeek-AI et al., 2025), a state-of-the-art rea- 335

soning model that achieves performance compara- 336

ble to OpenAI’s o1 series models. For additional 337

similar works in replicating o1’s reasoning abilities, 338
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please refer to Appendix D.339

3.1 rStar-Math340

rStar-Math (Guan et al., 2025), developed by Mi-341

crosoft, demonstrates that small language models342

(SLMs) can match or surpass the mathematical rea-343

soning abilities of OpenAI’s o1 model, without344

the need for distillation from larger models. This345

is achieved through “deep thinking” via MCTS,346

where an SLM-based math policy conducts test-347

time searches, guided by a process preference348

model (PPM) also built on SLMs. The core ad-349

vancements of rStar-Math lie in three key solu-350

tions designed to overcome training challenges351

for the two SLMs: (1) a code-enhanced CoT data352

synthesis method, (2) a PPM training framework,353

and (3) a self-evolution strategy. Extensive experi-354

ments demonstrate significant improvements on the355

MATH (Hendrycks et al., 2021) benchmark. rStar-356

Math enhances the accuracy of Qwen2.5-Math-7B357

(Yang et al., 2024a) from 58.8% to 90.0% and358

Phi3-mini-3.8B (Abdin et al., 2024) from 41.4% to359

86.4%, outperforming o1-preview by +4.5% and360

+0.9%, respectively. On the American Invitational361

Mathematics Examination (AIME) (AI-MO, 2025),362

rStar-Math successfully solves an average of 53.3%363

(8/15) of the problems, placing it within the top364

20% of high school math students.365

rStar-Math trains a math policy SLM and a PPM366

integrated with MCTS for deep thinking. The367

training involves three key innovations. First, a368

code-augmented CoT data synthesis method uses369

MCTS rollouts to generate step-by-step reasoning370

trajectories annotated with self-assigned Q-values.371

The policy SLM samples candidate nodes, produc-372

ing one-step CoTs and corresponding Python code.373

Only nodes with successful code execution are re-374

tained, reducing errors. Q-values are assigned to375

each step based on its contribution, ensuring ac-376

curate reasoning trajectories. Second, a PPM to377

enable reliable prediction of reward labels for math378

reasoning steps. Rather than using noisy Q-values379

directly, the PPM distinguishes correct steps from380

incorrect ones using preference pairs and optimizes381

its scoring with a pairwise ranking loss (Ouyang382

et al., 2022). This improves the accuracy of step-383

wise reward assignment compared to traditional384

methods (Chen et al., 2024b). Finally, a four-round385

self-evolution framework refines the policy model386

and PPM. Starting with a dataset of 747k math387

word problems, each round uses the updated mod-388

els to generate better training data. This iterative389

process leads to: (1) a stronger policy SLM, (2) a 390

more reliable PPM, (3) improved reasoning trajec- 391

tories, and (4) expanded data coverage for more 392

challenging math problems. 393

3.2 Kimi-k1.5 394

Kimi-k1.5 (Team et al., 2025), developed by Moon- 395

shot AI, is a multi-modal LLM which represents 396

a significant advancement in scaling RL. The au- 397

thors introduce a novel approach by focusing on 398

long context scaling, extending the context window 399

of RL to 128k, and refining policy optimization 400

methods. Unlike traditional RL frameworks that 401

rely on complex techniques such as MCTS, value 402

functions, and process reward models, Kimi-k1.5 403

establishes a streamlined and effective RL frame- 404

work. The model achieves state-of-the-art reason- 405

ing performance across various benchmarks and 406

modalities, rivaling OpenAI’s o1. Additionally, the 407

authors introduce long2short methods that utilize 408

long-CoT techniques to enhance short-CoT mod- 409

els, significantly outperforming existing models 410

like GPT-4o (OpenAI, 2024a) and Claude Sonnet 411

3.51 by up to 550%. 412

The development of Kimi-k1.5 involves several 413

stages: pretraining, vanilla SFT, long-CoT SFT, 414

and RL. The primary innovation lies in the RL 415

phase, where the authors construct a high-quality 416

RL prompt set designed to guide the model toward 417

robust reasoning while mitigating risks such as re- 418

ward hacking and overfitting to superficial patterns. 419

This prompt set is characterized by three key prop- 420

erties: diverse coverage, balanced difficulty, and 421

accurate evaluability. During RL training, three 422

critical strategies are employed: (1) Online Pol- 423

icy Mirror Descent: A variant of this algorithm 424

is used to optimize the training process (Abbasi- 425

Yadkori et al., 2019; Mei et al., 2019; Tomar et al., 426

2020); (2) Length Penalty: A reward mechanism 427

is introduced to control the rapid growth of token 428

length, enhancing token efficiency; and (3) Sam- 429

pling Methods: Two sampling techniques are uti- 430

lized to improve training efficiency: a. Curricu- 431

lum sampling progressively trains the model from 432

simpler to more complex tasks, enhancing both 433

training efficiency and model performance. b. Pri- 434

oritized sampling focuses on areas where the model 435

underperforms by sampling problematic tasks more 436

frequently, proportional to their failure rates, accel- 437

erating learning in weaker areas. 438

1https://www.anthropic.com/news/
claude-3-5-sonnet
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While long-CoT models demonstrate strong per-439

formance, they often require more test-time tokens440

compared to standard short-CoT LLMs. To address441

this, the authors propose four methods to transfer442

the reasoning capabilities of long-CoT models to443

short-CoT models, a challenge referred to as the444

long2short problem. These methods include: (1)445

Model Merging: Combining a long-CoT model446

with a shorter model by averaging their weights.447

(2) Shortest Rejection Sampling: Using the long-448

CoT model to generate multiple responses to the449

same question and selecting the shortest correct450

response for SFT. (3) Direct Preference Optimiza-451

tion (DPO): Forming pairwise preference data us-452

ing positive (shortest correct solution) and negative453

(longer solutions) samples for DPO training. (4)454

Long2short RL: A two-phase training approach455

where, after standard RL training, a model with op-456

timal performance and token efficiency is selected457

for a second phase. In this phase, a length penalty458

is applied, and the maximum response length is459

reduced to encourage more concise responses.460

3.3 DeepSeek-R1461

DeepSeek-R1 (DeepSeek-AI et al., 2025), devel-462

oped by DeepSeek, is a state-of-the-art reasoning463

model that achieves performance comparable to464

OpenAI’s o1 series models. This work pioneers465

the use of pure RL to enhance language model466

reasoning capabilities, focusing on self-evolution467

without relying on supervised data. The authors468

first train DeepSeek-R1-Zero, a model derived469

from DeepSeek-V3-Base (Liu et al., 2024a), us-470

ing large-scale RL without SFT. This preliminary471

model demonstrates significant reasoning improve-472

ments, with the pass@1 score on AIME 2024473

(AI-MO, 2025) increasing from 15.6% to 71.0%.474

With majority voting, the score further rises to475

86.7%, matching the performance of OpenAI-o1-476

0912. To address issues such as poor readabil-477

ity, language mixing, and to further boost reason-478

ing performance, the authors introduce DeepSeek-479

R1. This enhanced model incorporates a small480

amount of cold-start data and a multi-stage train-481

ing pipeline, achieving performance on par with482

OpenAI-o1-1217, which is shown in Figure 3.483

The RL training process for DeepSeek-R1-484

Zero employs Group Relative Policy Optimization485

(GRPO) (Shao et al., 2024a), which eliminates the486

need for a critic model by estimating baselines from487

group scores. The reward system is rule-based, con-488

sisting of two main components: accuracy rewards489

and format rewards. The accuracy reward evalu- 490

ates the correctness of responses, while the format 491

reward enforces the use of ‘<think>’ and ‘</think>’ 492

tags to structure the reasoning process. During 493

training, an intermediate version of the model ex- 494

hibited an “aha moment”, which is shown in Figure 495

4, where it learned to allocate more time to reevalu- 496

ate its initial approach, demonstrating the evolving 497

reasoning capabilities facilitated by RL. 498

The training process for DeepSeek-R1 consists 499

of two alternating stages of SFT and RL: (1) Ini- 500

tial Cold Start SFT: The process begins with the 501

collection of thousands of high-quality, readability- 502

focused long CoT datasets. These datasets are used 503

to fine-tune DeepSeek-V3-Base, establishing a ro- 504

bust foundation for subsequent RL training; (2) 505

First Reasoning-oriented RL Stage: The model 506

undergoes large-scale reasoning-oriented RL, lever- 507

aging the same methodology applied in DeepSeek- 508

R1-Zero to enhance its reasoning abilities. Upon 509

convergence, the resulting checkpoint is utilized 510

to gather additional SFT data for the next stage; 511

(3) Second SFT Stage: This phase focuses on fur- 512

ther refining the model through a combination of 513

reasoning and non-reasoning data. For reasoning 514

data, specialized prompts are curated, and reason- 515

ing trajectories are generated via rejection sampling 516

using the RL checkpoint from the previous stage. 517

For non-reasoning data, such as writing, factual 518

QA, self-cognition, and translation, the DeepSeek- 519

V3 pipeline is utilized, integrating portions of the 520

DeepSeek-V3 SFT dataset. Finally, DeepSeek-V3- 521

Base is fine-tuned for two epochs using this com- 522

prehensive dataset to ensure optimal performance 523

across a wide range of tasks; and (4) Second RL 524

Stage for all Scenarios: A final RL phase is con- 525

ducted to align the model with human preferences 526

by fine-tuning the model with a combination of 527

reward signals and diverse prompt distributions, 528

enhancing its helpfulness and harmlessness while 529

further refining its reasoning abilities. 530

4 Beyond Language: Multi-modal 531

Reasoning LLMs 532

While the current key feature of the o1 mod- 533

els, “Thinking before Response Generation,”does 534

not yet support multi-modal functions, future ver- 535

sions hold significant promise for integrating them. 536

Multi-modal reasoning LLMs (MLLMs) are a class 537

of models that enhance the capabilities of tradi- 538

tional LLMs by bridging the gap between language 539
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understanding and sensory perception. These mod-540

els enable more sophisticated reasoning across var-541

ious types of data. By incorporating the ability542

to process and integrate information from differ-543

ent data modalities, such as text, images, and au-544

dio, MLLMs have the potential to greatly improve545

holistic reasoning, offering users a richer and more546

comprehensive experience. Currently, MLLMs are547

an emerging category, with many studies focus-548

ing on enhancing their multi-step visual reasoning549

capabilities (Dong et al., 2024; Hu et al., 2024;550

Team, 2024a), fewer studies addressing their spa-551

tial understanding and reasoning abilities (Carbune552

et al., 2024; Chen et al., 2024a), and ongoing ef-553

forts to improve LLMs’ reasoning with table-based554

data (Wang et al., 2024f). An overview of these555

MLLMs is provided in Figure 6, and more details556

about these works can be found in Appendix E.557

5 Evaluation & Analysis & Future558

This section explores the reasoning capabilities of559

LLMs by reviewing recent research that approaches560

the topic from various angles. It considers aspects561

such as token bias, the length of reasoning steps,562

and the reliability of CoT explanations, offering a563

thorough assessment of how reasoning influences564

model alignment, safety, and generalization. In565

addition, we provide an overview of the current566

evaluation benchmarks in use and highlight the567

need for future benchmarks specifically tailored to568

evaluate reasoning skills.569

5.1 Evaluation570

The o1-like model demonstrates strong reason-571

ing capabilities across a variety of benchmarks.572

Currently, evaluations tend to focus on (1) scien-573

tific domains, such as mathematics, physics, chem-574

istry, and biology, with datasets including GPQA575

(Rein et al., 2023), OlympiadBench (He et al.,576

2024), Minerva (Lewkowycz et al., 2022), GSM8K577

(Cobbe et al., 2021), MATH (Hendrycks et al.,578

2021) and American Invitational Mathematics Ex-579

amination (AIME) (AI-MO, 2025); and (2) pro-580

gramming contests (coding), such as Codeforces581

(Mirzayanov, 2025). These tasks primarily involve582

high-difficulty, competitive-level problems, includ-583

ing some PhD-level questions in science and engi-584

neering. For further details about those datasets,585

please refer to Appendix F. In the future, in ad-586

dition to the accuracy and difficulty of evaluation587

benchmarks, there is significant opportunity for588

research in developing new benchmarks specifi- 589

cally aimed at assessing LLMs’ reasoning abilities. 590

These could include factors such as evaluating the 591

correctness and length of the generated reasoning 592

steps, as well as the relevance and contribution of 593

each reasoning step to the final answer. 594

5.2 Safety & Policy 595

Guan et al. (2024) introduce deliberative alignment, 596

a novel training paradigm that leverages LLMs’ rea- 597

soning capabilities to improve their safety. This 598

approach trains models to explicitly recall and 599

reason through safety specifications before gen- 600

erating responses. When applied to OpenAI’s o- 601

series models, deliberative alignment enables the 602

use of CoT reasoning to analyze user prompts, ref- 603

erence relevant policy guidelines, and produce safer 604

outputs. Experimental results demonstrate that o- 605

series models aligned through deliberative align- 606

ment achieve precise compliance with OpenAI’s 607

safety policies without relying on human-authored 608

chain-of-thoughts or answers. Additionally, de- 609

liberative alignment advances the Pareto frontier 610

by strengthening resistance to jailbreak attempts, 611

lowering overrefusal rates, and enhancing general- 612

ization to out-of-distribution contexts. These out- 613

comes underscore that reasoning over clearly de- 614

fined policies fosters more scalable, reliable, and 615

transparent model alignment. 616

5.3 Faithfulness of LLMs’ Reasoning Process 617

Faithfulness refers to how accurately the model’s 618

reasoning process (e.g., CoT) aligns with the ac- 619

tual internal computation or representations used 620

to derive the output. Recent research indicates that 621

this alignment is frequently lacking, making the 622

enhancement of faithfulness a critical challenge 623

for achieving greater transparency, alignment, and 624

reliability in large language models. 625

5.3.1 Faithfulness of CoT Reasoning 626

Lanham et al. (2023) examine whether the rea- 627

soning presented in CoT explanations accurately 628

reflects the actual reasoning processes of LLMs. 629

First, they evaluate post-hoc reasoning, where rea- 630

soning is generated after the conclusion has already 631

been determined, by truncating or introducing er- 632

rors into the CoT before the final answer. Their 633

findings reveal significant variation in LLMs’ re- 634

liance on CoT across tasks: some tasks exhibit 635

no dependence on CoT, while others rely on it 636

heavily. Interestingly, post-hoc reasoning tends 637
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to worsen with more capable models, indicating638

that smaller models may be more reliable for tasks639

requiring faithful reasoning. Second, they investi-640

gate whether CoT’s performance gains stem from641

increased test-time computation. By replacing CoT642

with uninformative filler text, they find no accuracy643

improvements, suggesting that test-time computa-644

tion alone does not account for CoT’s effective-645

ness. Third, they explore whether CoT encodes646

task-relevant information in ways inaccessible to647

human interpretation. By substituting CoT with648

paraphrased versions, they observe no performance649

degradation, indicating that the specific phrasing650

of CoT is not crucial to its success. In conclusion,651

these findings emphasize the major challenges in652

CoT faithfulness and underscore the importance653

of developing systems with more transparent and654

reliable reasoning processes.655

5.3.2 Token Bias in LLMs’ Reasoning656

Jiang et al. (2024) introduce the concept of to-657

ken bias: an LLM exhibits token bias in a rea-658

soning task if changes to some or all tokens in659

the task description, while maintaining the under-660

lying logic, predictably alter the model’s output.661

To determine whether LLMs are capable of gen-662

uine reasoning or if their performance is primar-663

ily driven by token biases, the authors propose a664

hypothesis-testing framework. This framework out-665

lines a set of hypotheses where token biases are666

readily identifiable, with all null hypotheses assum-667

ing the genuine reasoning capabilities of LLMs.668

By doing so, they show that while LLMs may669

perform well on classic problems, their success670

is largely driven by recognizing superficial patterns671

influenced by strong token bias. This raises con-672

cerns about their true reasoning and generaliza-673

tion capabilities. These findings suggest that CoT674

prompting and in-context learning may not invoke675

genuine reasoning in LLMs. Instead, they may lead676

to semantic shortcuts that superficially mimic the677

desired behavior. This highlights the need for fur-678

ther investigation into the underlying mechanisms679

and limitations of LLMs, particularly with respect680

to their reasoning abilities.681

5.4 Controlling Reasoning Length in LLMs682

Recent studies have highlighted the need for con-683

trolling reasoning length in LLMs, as issues such684

as overthinking, and redundant computations con-685

tribute to inefficient resource allocation and in-686

creased costs (Nori et al., 2024; Sprague et al.,687

2024; Yang et al., 2024b; Jin et al., 2024). 688

Specifically, to address the overthinking issue 689

in reasoning-focused LLMs, where excessive com- 690

putational resources are allocated to simple tasks 691

without proportional benefits, Chen et al. (2024d) 692

suggest strategies like length preference optimiza- 693

tion and response simplification to streamline the 694

reasoning process. In contrast, Han et al. (2024) 695

introduce TALE, a token-budget-aware reasoning 696

framework that dynamically adjusts token bud- 697

gets based on the complexity of the task. These 698

approaches successfully optimize the balance be- 699

tween computational efficiency and performance, 700

reducing unnecessary reasoning steps while pre- 701

serving effectiveness, and offer promising solutions 702

for intelligent resource scaling in reasoning tasks. 703

Regarding redundant inference costs, Jang et al. 704

(2024) propose VARR, a framework for reducing 705

sentence-level rationale based on a principled ver- 706

bosity criterion. VARR employs a likelihood-based 707

method to identify and eliminate redundant reason- 708

ing steps during training, keeping only the most 709

crucial steps. This approach ensures the integrity 710

of reasoning while minimizing the risk of generat- 711

ing incorrect answers, effectively balancing both 712

efficiency and accuracy. 713

6 Conclusion 714

In this survey, we presented a review of reason- 715

ing LLMs by focusing on dataset construction, su- 716

pervised fine-tuning, reinforcement learning, and 717

advanced inference strategies (chain-of-thought 718

and automated critiques) through the lens of Ope- 719

nAI’s o1 model and DeepSeek’s R1 model. De- 720

spite the progress, several challenges exist. Formal 721

verification and robust error detection are neces- 722

sary to improve the interpretability and trustwor- 723

thiness of reasoning trace. Reliance on purely 724

text-based logic necessitates neuro-symbolic frame- 725

works that combine continuous embeddings with 726

external symbolic manipulators for advanced math- 727

ematics, proofs, or legal argumentation. Beyond 728

the targeted fine-tuning in math or coding, real- 729

world applications demand broader domain adapta- 730

tion and multi-modal reasoning, integrating signals 731

from text, vision, audio, and beyond. The transi- 732

tion of LLMs from mere next-token predictors to 733

structured reasoners is under way, and while o1 734

showcases the promise of today’s solutions, forg- 735

ing robust, trustworthy, and multi-modal reasoning 736

engines necessitates substantial future works. 737
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7 Limitations738

In this survey, we focus on providing a systematic739

review of reasoning LLMs, but several technical740

aspects, such as the optimization techniques and741

iteration processes of the widely used reinforce-742

ment learning algorithm Group Relative Policy Op-743

timization (GRPO), have not been discussed in744

depth. Additionally, as reasoning LLMs are an745

emerging class, numerous communities, research746

groups, and companies are working to replicate the747

performance of o1 and R1 in order to develop their748

own powerful reasoning LLMs. Some of the exist-749

ing works in this area, such as training frameworks,750

evaluation benchmarks, and considerations regard-751

ing the safety and faithfulness of the reasoning pro-752

cess, are still in progress and not yet complete. We753

will continue to track developments in this field and754

update the latest advancements related to reasoning755

LLMs as they emerge.756
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A The Family of OpenAI o1 and 1381

DeepSeek R1 1382

A.1 Different Versions 1383

The o1 series represents a line of models, with 1384

each version designed with different model sizes, 1385

inference speeds, and prices to cater to diverse use 1386

cases. Additionally, each version has specific rea- 1387

soning capabilities that allow it to perform better in 1388

various domains like mathematics, programming, 1389
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and science. In parallel, the R1 series has evolved1390

through a multi-stage training pipeline that not1391

only enhances its reasoning capabilities but also1392

improves output readability and computational effi-1393

ciency. The following is a breakdown of the release1394

dates, abilities, and features of the different o1 and1395

R1 models:1396

• o1-Preview, released on September 12, 20241397

offers advanced multi-step reasoning and ex-1398

cels in complex problem-solving tasks. It fea-1399

tures the "chain of thought" process to en-1400

hance reasoning accuracy but requires higher1401

computational resources and has slower infer-1402

ence speed.1403

• o1-Mini, released on September 12, 2024, is1404

a faster, more cost-effective alternative to the1405

o1-Preview, offering 80% lower costs while1406

still providing good reasoning for tasks like1407

coding and STEM problems. It’s designed for1408

users who prioritize speed over the depth of1409

reasoning and is ideal for developers, students,1410

and quick technical applications.1411

• Full o1, released on December 5, 2024, pro-1412

vides the highest level of reasoning power,1413

with capabilities on par with PhD-level exper-1414

tise in fields like math, science, and program-1415

ming. It’s the most accurate and reliable op-1416

tion for professionals requiring precise, multi-1417

step analysis but comes with higher computa-1418

tional costs and slower performance.1419

• o1-Lite, to be released on January 2025, is a1420

lightweight, cost-efficient version of the full1421

o1, offering moderate reasoning abilities for1422

general tasks at faster speeds. It’s designed1423

for small businesses, educational platforms,1424

and individual users who need basic problem-1425

solving capabilities at a reduced price, without1426

the need for deep analysis or heavy computa-1427

tional resources.1428

• R1-Zero, released on January 20, 2025, is1429

developed using pure reinforcement learning1430

without any supervised fine-tuning. It demon-1431

strated significant improvements in reasoning1432

capabilities but encountered challenges in out-1433

put readability and language consistency.1434

• R1, released on January 20, 2025, is an en-1435

hanced version which incorporates a modest1436

amount of high-quality cold-start data to op- 1437

timize the chain-of-thought process and im- 1438

prove user-friendly outputs. With these im- 1439

provements, its performance reaches a level 1440

comparable to that of OpenAI-o1-1217. 1441

• R1-Distill, released on January 20, 2025, em- 1442

ploys model distillation to transfer the ad- 1443

vanced reasoning abilities of R1 to smaller 1444

dense models. This distilled version main- 1445

tains competitive performance on benchmarks 1446

such as AIME 2024 and MATH-500 while 1447

significantly reducing model size and com- 1448

putational resource requirements, making it 1449

ideal for deployment in resource-constrained 1450

environments. 1451

A.2 Performances on Benchmarks 1452

Both OpenAI o1 and DeepSeek R1 models have 1453

demonstrated remarkable performance on a wide 1454

range of challenging tasks, showcasing advanced 1455

reasoning capabilities that rival expert human per- 1456

formance in various domains. Below, we compare 1457

their results across several benchmarks. Note: The 1458

o1 scores listed here are based on the initial release 1459

reports. 1460

• AIME 2024 (Math): 1461

– o1: Achieved a score of 13.9, placing 1462

it among the top 500 students nationally 1463

and above the cutoff for the USA Mathe- 1464

matical Olympiad, with a pass@1 accu- 1465

racy of 74%. 1466

– R1: Recorded a pass@1 accuracy of 1467

79.8%, reflecting its robust multi-step 1468

reasoning and precise problem-solving 1469

approach. 1470

• GPQA Diamond (Chemistry, Physics, and 1471

Biology): 1472

– o1: Achieved a pass@1 accuracy of 1473

78.0%, surpassing the performance of 1474

recruited human experts with PhDs and 1475

becoming the first model to achieve such 1476

a feat. 1477

– R1: Achieved a pass@1 accuracy of 1478

71.5%, underscoring its competitive edge 1479

in scientific reasoning. 1480

• Programming Contests Hosted by Code- 1481

forces (Coding): 1482
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– o1: Achieved an Elo rating of 1807, per-1483

forming better than 93% of competitors.1484

– R1: Demonstrated an even higher com-1485

petitive edge with an Elo rating of 2029,1486

performing better than 96% of competi-1487

tors.1488

• MATH-500 (Math):1489

– o1: Achieved a pass@1 accuracy of1490

94.8% on the benchmark, demonstrating1491

its advanced reasoning capabilities.1492

– R1: Excelled with a pass@1 accuracy1493

of 97.3%, further highlighting its strong1494

mathematical reasoning abilities.1495

As shown in Table 1 and Figure 1, the evalu-1496

ation of o1 demonstrates substantial gains over1497

GPT-4o on a diverse array of reasoning-intensive1498

benchmarks, including competition math, code-1499

generation challenges, and domain-specific ques-1500

tion answering. On average, o1 exhibits consider-1501

ably higher pass@1 and consensus@64 accuracy1502

than its predecessor, indicating that its targeted ar-1503

chitectural and training improvements have led to1504

more robust reasoning capabilities.1505

Figure 2 presents some human evaluation re-1506

sults between openai o1 and gpt-4o. Interestingly,1507

the human preference evaluations reveal that o11508

does not uniformly outperform gpt-4o across all1509

domains. While o1 demonstrates a pronounced ad-1510

vantage in more structured, logic-driven tasks, such1511

as computer programming, data analysis, and math-1512

ematical calculation (where it wins over 70% of all1513

cases), it lags slightly behind gpt-4o in more sub-1514

jective or stylistic tasks like personal writing. For1515

editing text, o1 and gpt-4o are comparable, suggest-1516

ing that the model’s improvements in reasoning do1517

not necessarily translate to an equally strong edge1518

in language polish or creative composition.1519

Similarly, R1 achieves performance that is com-1520

petitive with, or even surpasses, that of o1 in several1521

key areas. While o1 has set state-of-the-art bench-1522

marks—such as outperforming PhD-level experts1523

on GPQA Diamond and securing a top-500 rank1524

on the AIME 2024 exam—R1 consistently delivers1525

high accuracy on similar tasks. Detailed compar-1526

ison results between o1 and R1 can be found in1527

Figure 3.1528

B Training Details1529

As discussed earlier, reasoning datasets are meticu-1530

lously structured, often representing step-by-step1531

problem-solving processes. Effectively training 1532

LLMs on such datasets requires methodologies 1533

that maximize the utility of each reasoning step, 1534

whether correct or erroneous. This section explores 1535

three key training paradigms designed to leverage 1536

reasoning datasets for training o1-like reasoning 1537

LLMs: 1538

1 Supervised Fine-tuning (SFT): A founda- 1539

tional technique that refines pre-trained LLMs 1540

by explicitly teaching structured reasoning 1541

patterns through labeled (INSTRUCTION, 1542

ANSWER) pairs. 1543

2 Reinforcement Learning from Human 1544

Feedback (RLHF): A refinement approach 1545

that aligns LLM outputs with human prefer- 1546

ences or quality signals, further enhancing rea- 1547

soning skills through iterative optimization. 1548

3 Direct Preference Optimization (DPO): A 1549

simplified alternative to RLHF that directly 1550

optimizes fine-tuned LLMs for preferred rea- 1551

soning outputs without requiring intermediate 1552

reward modeling. 1553

A summary of each of these paradigms is pre- 1554

sented in Table 3. Below we present their method- 1555

ologies, strengths, and contributions to reasoning- 1556

focused training in details. 1557

B.1 Supervised Fine-tuning 1558

Supervised Fine-tuning (SFT) serves as the cor- 1559

nerstone for developing reasoning capabilities in 1560

LLMs. By utilizing structured (instruction, an- 1561

swer) pairs, SFT provides explicit guidance, en- 1562

abling models to learn systematic reasoning pat- 1563

terns and produce accurate outputs across complex 1564

reasoning tasks. The process typically begins with 1565

a pre-trained LLM, which embodies extensive gen- 1566

eral knowledge and linguistic understanding. SFT 1567

fine-tunes these models on task-specific datasets, 1568

emphasizing logical reasoning, problem-solving, 1569

and domain-specific expertise. These datasets of- 1570

ten reflect deterministic reasoning frameworks, en- 1571

abling the model to generate consistent and inter- 1572

pretable outputs for tasks such as mathematical 1573

problem-solving, program synthesis, and logical 1574

deduction. To further optimize performance, SFT 1575

is frequently integrated with complementary train- 1576

ing paradigms. For instance, multi-task fine-tuning 1577

leverages diverse datasets to improve generaliza- 1578

tion, while curriculum learning structures training 1579
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Dataset Metric gpt-4o o1-preview o1

Competition Math AIME (2024) cons@64 13.4 56.7 83.3
pass@1 9.3 44.6 74.4

Elo 808 1,258 1,673Competition Code CodeForces Percentile 11.0 62.0 89.0
cons@64 56.1 78.3 78.0GPQA Diamond pass@1 50.6 73.3 77.3
cons@64 63.2 73.7 68.4Biology pass@1 61.6 65.9 69.2

Chemistry cons@64 43.0 60.2 65.6
pass@1 40.2 59.9 64.7

cons@64 68.6 89.5 94.2Physics pass@1 59.5 89.4 92.8
MATH pass@1 60.3 85.5 94.8
MMLU pass@1 88.0 90.8 92.3

MMMU (val) pass@1 69.1 n/a 78.2
MathVista (testmini) pass@1 63.8 n/a 73.9

Table 1: Official evaluation results of o1 on typical benchmarks (o1 Contributors, 2024).

Figure 1: Official sub-category evaluation results of o1 on typical benchmarks (o1 Contributors, 2024).

data to progressively increase task difficulty. This1580

adaptability allows SFT to be tailored to specific1581

reasoning requirements, making it a versatile and1582

essential component of LLM training.1583

B.2 Reinforcement Learning with Human 1584

Feedback (RLHF) 1585

Reinforcement Learning from Human Feedback 1586

(RLHF) has emerged as a critical paradigm for 1587

aligning large language models with human prefer- 1588

ences, enabling improved reasoning and alignment 1589
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Figure 2: Official human evaluation results of o1 (o1 Contributors, 2024).

Dataset Data Source Data Scale Machine
Generated

Human
Generated Open-source

PRM800K (Swamy et al., 2024)1 MATH 800K annotations ✓ ✓ ✓1

O1-Journey (Qin et al., 2024)2 MATH, PRM800K 677 instances ✓ ✓ ✓2

Self-Explore (Hwang et al., 2024a) GSM8K, MATH Model-specific ✓ ✗ ✗

MARIO (Liao et al., 2024b)3 GSM8K, MATH, MetaMath 28.8K instances ✓ ✓ ✓3

MathGenie (Lu et al., 2024) GSM8K, MATH 170K qa pairs ✓ ✗ ✗

DeepSeekMath (Shao et al., 2024b)4 AlgebraicStack, arXiv, GitHub 120B tokens ✓ ✓ ✓4

Compute-Optimal Sampling (Bansal et al., 2024) GSM8K, MATH, etc. Model-specific ✓ ✗ ✗

MathScale (Tang et al., 2024)5 GSM8K, MATH 2M qa pairs ✓ ✗ ✓5

G-LLaVA (Gao et al., 2023)6 Geometry3K, GeoQA+ 170K instances ✓ ✗ ✓6

1 https://github.com/openai/prm800k
2 https://github.com/GAIR-NLP/O1-Journey
3 https://github.com/MARIO-Math-Reasoning/MARIO

4 https://github.com/deepseek-ai/DeepSeek-Math
5 https://github.com/XylonFu/MathScale
6 https://github.com/pipilurj/G-LLaVA

Table 2: An overview of currently widely-adopted reasoning datasets for LLMs.

capabilities. By incorporating iterative feedback1590

and leveraging reinforcement learning techniques,1591

RLHF enhances the models’ ability to evaluate,1592

refine, and generate outputs aligned with human1593

expectations. Recent works have advanced this1594

approach by introducing innovative frameworks1595

for training reward models, integrating guided de-1596

coding, and enabling self-improvement without re-1597

liance on extensive human annotations.1598

B.3 Direct Preference Optimization (DPO)1599

Direct Preference Optimization (DPO) (Rafailov1600

et al., 2024; Xiao et al., 2024; Amini et al., 2024)1601

is an emerging training paradigm designed as a1602

simpler alternative to RLHF. Unlike RLHF, which1603

relies on reward modeling and reinforcement learn-1604

ing algorithms like Proximal Policy Optimization1605

(PPO), DPO directly optimizes a language model’s1606

outputs to align with human preferences by fine-1607

tuning the model on comparison data. This ap- 1608

proach eliminates the complexity of learning a re- 1609

ward function and instead leverages pairwise pref- 1610

erence data to improve the quality and alignment 1611

of generated outputs, offering an efficient and scal- 1612

able solution for enhancing reasoning capabilities 1613

in LLMs. 1614

C Inference Details 1615

Multi-step reasoning tasks are prone to errors at 1616

any step, as small mistakes can cascade into in- 1617

correct final answers. To address this, reasoning 1618

LLMs often generate multiple reasoning paths for 1619

a given input question during the inference stage 1620

and choose the answer that aligns best with the 1621

most logically consistent and broadly supported 1622

reasoning steps. 1623

In this section covers the following three widely 1624

used techniques in reasoning LLMs, which we 1625

18

https://github.com/openai/prm800k
https://github.com/GAIR-NLP/O1-Journey
https://github.com/MARIO-Math-Reasoning/MARIO
https://github.com/deepseek-ai/DeepSeek-Math
https://github.com/XylonFu/MathScale
https://github.com/pipilurj/G-LLaVA


DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning

DeepSeek-AI

research@deepseek.com

Abstract

We introduce our first-generation reasoning models, DeepSeek-R1-Zero and DeepSeek-R1.
DeepSeek-R1-Zero, a model trained via large-scale reinforcement learning (RL) without super-
vised fine-tuning (SFT) as a preliminary step, demonstrates remarkable reasoning capabilities.
Through RL, DeepSeek-R1-Zero naturally emerges with numerous powerful and intriguing
reasoning behaviors. However, it encounters challenges such as poor readability, and language
mixing. To address these issues and further enhance reasoning performance, we introduce
DeepSeek-R1, which incorporates multi-stage training and cold-start data before RL. DeepSeek-
R1 achieves performance comparable to OpenAI-o1-1217 on reasoning tasks. To support the
research community, we open-source DeepSeek-R1-Zero, DeepSeek-R1, and six dense models
(1.5B, 7B, 8B, 14B, 32B, 70B) distilled from DeepSeek-R1 based on Qwen and Llama.

Figure 1 | Benchmark performance of DeepSeek-R1.
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Figure 3: Results of DeepSeek-R1 (DeepSeek-AI et al., 2025). The figure is adapted from DeepSeek-AI et al.
(2025).

think are crucial in building o1-like reasoning mod-1626

els:1627

1 Tree of Thoughts, which represents the rea-1628

soning process as a tree structure and explores1629

various branches to determine the most effec-1630

tive path.1631

2 Automated Reasoning Critic, which em-1632

ploys a trained critic model to evaluate and1633

validate the reasoning steps generated by the1634

LLMs.1635

3 Self-Correction, where the LLM mimics hu-1636

man critical thinking by iteratively reviewing,1637

identifying errors, and refining its reasoning1638

steps to enhance accuracy and logical consis-1639

tency.1640

In addition to these three inference techniques,1641

we will also explore "Inference Scaling Laws",1642

which provide insights into how reasoning perfor-1643

mance improves as inference time increases, en-1644

abling us to balance the trade-off between com-1645

putational efficiency and reasoning accuracy. An1646

overview of this section is provided in Table 4.1647

C.1 Tree of Thoughts1648

In complex reasoning tasks, systematically explor-1649

ing multiple paths of thought is crucial for finding1650

optimal solutions. Tree of Thoughts represents the1651

reasoning process as a tree structure, enabling mod- 1652

els to systematically explore and evaluate different 1653

solution branches. This approach not only helps 1654

models find optimal solutions but also prevents 1655

them from getting stuck in local optima. The frame- 1656

work employs various tree search strategies, start- 1657

ing from fundamental methods like Breadth-first 1658

and Depth-first Search (Yao et al., 2024; Yuan et al., 1659

2024; Feng et al., 2023) and advancing to more so- 1660

phisticated approaches such as Monte Carlo Tree 1661

Search (Zhang et al., 2024b; Tian et al., 2024; 1662

Xie et al., 2024; Chen et al., 2024b; Zhang et al., 1663

2024a). 1664

C.2 Automated Reasoning Critic 1665

In the reasoning process of LLMs, the ability to 1666

identify and correct faulty reasoning steps is es- 1667

sential. Automated Reasoning Critic (Barto et al., 1668

1983; Saunders et al., 2022) introduces dedicated 1669

critic models to evaluate the correctness and logical 1670

consistency of reasoning steps, thereby improving 1671

the reliability of the reasoning process. This ap- 1672

proach mirrors how humans validate their thinking 1673

process when solving complex problems, providing 1674

a systematic way to assess and improve the quality 1675

of generated reasoning. 1676

C.3 Self-Correction 1677

Errors in reasoning often accumulate progressively, 1678

where small mistakes can lead to significant devi- 1679
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Paper Key Innovation Main Techniques

Sec. B.1 Supervised Fine-tuning (SFT)
ToRA
(Gou et al., 2023)

Tool-integrated Mathematical Focused
Reasoning Agents

Imitation Learning, Output Space Shaping

AlphaLLM
(Tian et al., 2024)

Self Improving Training SFT with Monte Carlo Tree Search

MARIO
(Liao et al., 2024a)

Mathematical Reasoning Framework Data Enhancement with GPT-4, Human Re-
view, and Self-training

Sec. B.2 Reinforcement Learning from Human Feedback (RLHF)
Self-Critiquing
(Saunders et al., 2022)

Fundations of Language Model Self-
Critiquing

AI-assisted Human Feedback,

OVM
(Yu et al., 2023)

Evaluating the Potential of Incomplete Rea-
soning Paths

Outcome-supervised Value Models

PPO-MCTS
(Liu et al., 2023)

Value-Guided Decoding trhough PPO Proximal Policy Optimization, Monte
Carlo Tree Search

MATH-SHEPHERD
(Wang et al., 2024b)

Eliminatioin of Human Annotation step-wise verification through MCTS

Qwen-2.5-math
(Zhang et al., 2025)

Enhanced Process Reward Model LLM-as-a-judge

Roadmap to o1
(Zeng et al., 2024)

Combination of Various Techniques to Re-
produce o1

Policy Initialization, Reward Shaping, Pol-
icy Gradient

PROCESSBENCH
(Zheng et al., 2024)

Benchmark for Error Identification in
Mathematical Reasoning

Step-level Error Detection

PRMBENCH
(Song et al., 2025)

Fine-grained Benchmark for Process Re-
ward Models

Multi-dimensional Evaluation Benchmark

Sec. B.3 Direct Preference Optimization (DPO)
CPO
(Zhang et al., 2024c)

Fine-tuning CoT reasoning with ToT Tree-of-Thoughts framework, Paired pref-
erence fine-tuning

SVPO
(Chen et al., 2024c)

Step-level preferences for reasoning im-
provement

MCTS for step-level preferences, Value
model integration

PPO-MCTS
(Liu et al., 2023)

Value-guided decoding during inference PPO value network MCTS

Self-Explore
(Hwang et al., 2024b)

Self-guided Learning with Fine-grained Re-
wards

First-pit Identifications

Agent Q
(Putta et al., 2024)

Enhanced Agentic reasoning MCTS with AI feedback, Offline DPO

Table 3: An overview of LLM Training Techniques.

ations in final results. The Self-Correction mech-1680

anism (Huang et al., 2023; Madaan et al., 2024)1681

enables large language models to engage in self-1682

reflection and correction, similar to human criti-1683

cal thinking. Through iteratively reviewing, iden-1684

tifying errors, and refining reasoning steps, this1685

approach improves the accuracy of final answers.1686

This methodology is particularly effective for tasks1687

requiring multi-step reasoning.1688

C.4 Inference Scaling Laws 1689

Inference Scaling Laws examine the relationships 1690

between inference time, computational resource 1691

allocation, and reasoning performance. Research 1692

on inference-time compute scaling suggests that 1693

spending more computational resources during in- 1694

ference can significantly enhance model perfor- 1695

mance, a principle applied in o1 models. Very 1696

recently, DeepSeek models (DeepSeek-R1-Lite- 1697

Preview, 2024) also demonstrate the inference scal- 1698
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Question: If 𝐿 > 1, then the sum of the real solutions of
√
𝐿 →↑

𝐿 + 𝑀 = 𝑀 is equal to

Response: <think>
To solve the equation

√
𝐿 →↑

𝐿 + 𝑀 = 𝑀, let’s start by squaring both · · ·(√
𝐿 →↑

𝐿 + 𝑀
)2

= 𝑀2 =↓ 𝐿 →↑
𝐿 + 𝑀 = 𝑀2.

Rearrange to isolate the inner square root term:
(𝐿 → 𝑀2)2 = 𝐿 + 𝑀 =↓ 𝐿2 → 2𝐿𝑀2 + (𝑀2)2 = 𝐿 + 𝑀 =↓ 𝑀4 → 2𝐿𝑀2 → 𝑀 + (𝐿2 → 𝐿) = 0
. . .
Wait, wait. Wait. That’s an aha moment I can flag here.
Let’s reevaluate this step-by-step to identify if the correct sum can be · · ·
We started with the equation:√
𝐿 →↑

𝐿 + 𝑀 = 𝑀
First, let’s square both sides:
𝐿 →↑

𝐿 + 𝑀 = 𝑀2 =↓ ↑
𝐿 + 𝑀 = 𝐿 → 𝑀2

Next, I could square both sides again, treating the equation: · · ·
. . .

Table 3 | An interesting “aha moment” of an intermediate version of DeepSeek-R1-Zero. The
model learns to rethink using an anthropomorphic tone. This is also an aha moment for us,

allowing us to witness the power and beauty of reinforcement learning.

Drawback of DeepSeek-R1-Zero Although DeepSeek-R1-Zero exhibits strong reasoning
capabilities and autonomously develops unexpected and powerful reasoning behaviors, it faces
several issues. For instance, DeepSeek-R1-Zero struggles with challenges like poor readability,
and language mixing. To make reasoning processes more readable and share them with the
open community, we explore DeepSeek-R1, a method that utilizes RL with human-friendly
cold-start data.

2.3. DeepSeek-R1: Reinforcement Learning with Cold Start

Inspired by the promising results of DeepSeek-R1-Zero, two natural questions arise: 1) Can
reasoning performance be further improved or convergence accelerated by incorporating a small
amount of high-quality data as a cold start? 2) How can we train a user-friendly model that
not only produces clear and coherent Chains of Thought (CoT) but also demonstrates strong
general capabilities? To address these questions, we design a pipeline to train DeepSeek-R1. The
pipeline consists of four stages, outlined as follows.

2.3.1. Cold Start

Unlike DeepSeek-R1-Zero, to prevent the early unstable cold start phase of RL training from
the base model, for DeepSeek-R1 we construct and collect a small amount of long CoT data
to fine-tune the model as the initial RL actor. To collect such data, we have explored several
approaches: using few-shot prompting with a long CoT as an example, directly prompting
models to generate detailed answers with reflection and verification, gathering DeepSeek-R1-
Zero outputs in a readable format, and refining the results through post-processing by human
annotators.

In this work, we collect thousands of cold-start data to fine-tune the DeepSeek-V3-Base as
the starting point for RL. Compared to DeepSeek-R1-Zero, the advantages of cold start data

9

Figure 4: An intriguing "aha moment" observed in an intermediate version of DeepSeek-R1-Zero (DeepSeek-AI
et al., 2025), where the model demonstrates the ability to rethink its approach using an anthropomorphic tone.
This moment not only highlights the model’s evolving reasoning capabilities but also underscores the remarkable
potential and elegance of reinforcement learning in fostering advanced cognitive behaviors. The figure is adapted
from DeepSeek-AI et al. (2025).

ing law, as shown in Figure 5. This sub-section ex-1699

plores how understanding these laws can guide the1700

optimal configuration of computational resources,1701

providing theoretical insights for maximizing rea-1702

soning capabilities while maintaining efficiency.1703

D O1-like Reasoning LLMs1704

D.1 Marco-o11705

Macro-o1 (Zhao et al., 2024), developed by Al-1706

ibaba, explores the generalization capabilities of1707

the o1 model in open-ended domains lacking clear1708

standards or quantifiable rewards, unlike disci-1709

plines with standard answers such as mathemat-1710

ics, physics, or coding. It employs techniques in-1711

cluding CoT fine-tuning, Monte Carlo Tree Search1712

(MCTS), reflective processes, and advanced rea-1713

soning to address complex real-world challenges.1714

Experimental results indicate that Macro-o1 ex-1715

hibits o1-like reasoning abilities, achieving signifi-1716

cant accuracy gains of +6.17% on the MGSM (En-1717

glish) dataset and +5.60% on the MGSM (Chinese)1718

dataset, highlighting its improved reasoning perfor-1719

mance. Additionally, it pioneers the application of1720

large reasoning models (LRMs) in machine transla-1721

tion, particularly excelling in translating slang ex-1722

pressions, while investigating inference-time scal-1723

ing laws in multilingual contexts.1724

Macro-o1’s core idea is to first fine-tune a base 1725

LLM using a combined dataset and then perform 1726

inference with MCTS to expand the solution space. 1727

The fine-tuning dataset comprises three compo- 1728

nents: the refined Open-O1 CoT Dataset (O1, 1729

2025), a Marco-o1 CoT Dataset generated via 1730

MCTS, and the Marco Instruction Dataset. During 1731

inference, two action strategies are applied within 1732

the MCTS framework: “step as action” for efficient 1733

exploration and “mini-step as action” (32 or 64 1734

tokens) for finer granularity. The latter broadens 1735

the solution space by incorporating more detailed 1736

reasoning steps, enhancing the model’s capacity 1737

to handle complex tasks. A reflection mechanism 1738

further improves performance by prompting the 1739

model to reevaluate its reasoning with phrases like: 1740

“Wait! Maybe I made some mistakes! I need to 1741

rethink from scratch.” This self-reflection helps cor- 1742

rect errors in difficult problems. The final solutions 1743

are selected based on calculated confidence scores. 1744

D.2 o1-Coder 1745

o1-Coder (Zhang et al., 2024d), developed by Bei- 1746

jing Jiaotong University, aims to evaluate the per- 1747

formance of OpenAI’s o1 model in coding tasks by 1748

adapting it to better address programming-related 1749

problem-solving challenges. The goal is to en- 1750

hance the model’s capabilities through focused im- 1751
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Figure 5: DeepSeek-R1-Lite-Preview (DeepSeek-R1-Lite-Preview, 2024) shows consistent score improvements on
AIME as the length of reasoning increases. The figure is adapted from (DeepSeek-R1-Lite-Preview, 2024).

provements. o1-Coder combines RL with MCTS1752

to strengthen the model’s System-2 reasoning abil-1753

ities. The system involves training a Test Case1754

Generator (TCG) for standardized testing, utilizing1755

MCTS to generate reasoning-augmented code data,1756

and iteratively refining the policy model to evolve1757

from pseudocode to fully functional code.1758

o1-Coder consists of six key steps: 1. The pro-1759

cess begins by training a TCG, denoted as γTCG, to1760

automatically create test cases based on the given1761

problem descriptions. 2. Next, MCTS is applied to1762

the original code dataset, producing a new dataset1763

Dprocess. This dataset incorporates reasoning pro-1764

cesses and a validity indicator to distinguish correct1765

from incorrect steps. 3. The dataset is then used1766

to fine-tune the policy model πθ, encouraging it1767

to adopt a “think before acting” approach. 4. The1768

reasoning data from the previous step is used to1769

initialize a process reward model (PRM), ρPRM,1770

which evaluates the quality of reasoning steps. 5.1771

Both the ρPRM, and γTCG, provide rewards based1772

on process and outcome, respectively. This enables1773

reinforcement learning to iteratively update the pol-1774

icy model πθ. 6. Finally, the updated policy model1775

generates new reasoning data, which is used to re-1776

fine the ρPRM, creating a self-improving iterative1777

cycle through steps 4, 5, and 6. This approach1778

forms a feedback loop that enhances the model’s1779

reasoning and coding performance over time.1780

E Multi-modal Reasoning LLMs1781

E.1 Insight-V1782

Insight-V (Dong et al., 2024) is a framework de-1783

signed to enhance the multi-step visual reasoning1784

capabilities of MLLMs by constructing reliable 1785

multi-step reasoning data and developing a refined 1786

training process. The authors propose the following 1787

techniques: (1) a flexible strategy for generating 1788

multi-step reasoning data for complex multi-modal 1789

tasks, (2) a multi-agent system that divides task 1790

handling processes into reasoning and summariza- 1791

tion parts to enhance response quality, and (3) a 1792

two-stage training process to better cultivate agents’ 1793

abilities. The data generation pipeline utilizes a 1794

progressive method to create formatted multi-step 1795

reasoning data with various reasoning paths and 1796

a multi-level assessment system to evaluate the 1797

quality of the generated reasoning data and divide 1798

them into different datasets. The multi-agent sys- 1799

tem employs a reasoning agent to generate detailed 1800

reasoning steps and a summarization agent to ex- 1801

tract core logic and generate concise response. The 1802

two-stage training pipeline involves SFT of a base 1803

MLLM to develop the reasoning and summariza- 1804

tion agents, followed by iterative DPO to align the 1805

reasoning agent with human preferences. The pro- 1806

posed techniques lead to significantly improved 1807

performance on complex multi-modal visual rea- 1808

soning benchmarks and effortlessly retains or ele- 1809

vates its performance on multi-modal perception 1810

tasks. 1811

E.2 Sketchpad 1812

Sketchpad (Hu et al., 2024) is a framework de- 1813

signed to enhance the multi-step multi-modality 1814

reasoning process by inserting image processing 1815

behaviors in the inference phase. The authors in- 1816

troduce this technique to remedy the shortcomings 1817

of current CoT and tool-use paradigms, which rely 1818
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Paper Key Innovation Main Techniques

Sec. C.1 Tree of Thoughts
Tree of Thoughts
(Yao et al., 2024)

1st tree-structured reasoning framework BFS/DFS search, Self-evaluation, Back-
tracking

EURUS
(Yuan et al., 2024)

Tree-structured alignment dataset ULTRAINTERACT dataset, Preference
learning

TS-LLM
(Feng et al., 2023)

AlphaZero-inspired framework Markov Decision Process (MDP) formula-
tion, Deep search (64 depth)

MCTSr
(Zhang et al., 2024b)

Enhanced MCTS for math Self-reflection, Dynamic pruning, Upper
Confidence Bound (UCB)

ALPHALLM
(Tian et al., 2024)

Self-improvement framework Option-level MCTS, Adaptive branching,
State merging

MCTS-DPO
(Xie et al., 2024)

Step-level preference learning w/ MCTS MCTS guided exploration, DPO updates,
Step-level signals

AlphaMath
(Chen et al., 2024b)

Self-supervised MCTS reasoning Step-level value model, Beam search, Self-
improvement

ReST-MCTS*
(Zhang et al., 2024a)

Process-reward enhanced MCTS Per-step rewards, Dual optimization, Dy-
namic exploration

Sec. C.2 Automated Reasoning Critic
CriticGPT
(McAleese et al., 2024)

LLM-based code critique Tampered data generation, RLHF, Bugs
identifying

AutoMathCritique
(Xi et al., 2024)

Two-player math reasoning Dynamic supervision, Error generation

LLM-ARC
(Kalyanpur et al., 2024)

Neuro-symbolic reasoning LLM + reasoning engine integration, An-
swer Set Programming (ASP) solver

Sec. C.3 Self-Correction
SCoRe
(Kumar et al.)

Multi-turn RL framework Self-generated data, Two-stage training,
Reward shaping

CoSC
(Gao et al., 2024)

Embedded self-correction Program generation, execution, and verifi-
cation, Two-phase fine-tuning

DotaMath
(Li et al., 2024)

Integrated mathematical reasoning Multi-round correction, Python executor,
Task decomposition

Sec. C.4 Inference Scaling Laws
Scale-Compute
(Snell et al., 2024)

Test-time compute analysis Compute-optimal strategy, Process-based
Reward Models (PRMs) search

REBASE
(Wu et al., 2024)

Reward balanced search Dynamic tree optimization, Pruning with a
reward model

LLMonkeys
(Brown et al., 2024)

Sampling analysis Repeated sampling, Exponentiated power
law, Cost optimization

STILL-2
(Min et al., 2024)

Three-phase training Imitation, Exploration, Self-improvement,
Long-form Thought Dataset

MindStar
(Kang et al., 2024)

No-tuning enhancement PRM-guided search, Dynamic exploration,
Levin tree search

Table 4: An overview of LLM Inference Techniques.

solely on text during intermediate reasoning stages.1819

Unlike prior works where language models (LMs)1820

generate images via text-to-image models, the au- 1821

thors equip LMs with the ability to draw lines, 1822
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Model Organization # Params Open Source Report/Paper
Available

Comparison
with o1

Gemini 2.0 Flash (Google AI) - ✗ ✗ ✗

QVQ-72B-Preview (QwenLM, QVQ) 72B ✓ 1 ✗ ✓

Marco-o1 (Zhao et al., 2024) 7B ✓ 2 ✓ 8 ✗

Skywork o1 (o1 Team, 2024) 8B ✓ 3 ✗ ✗

QwQ-32B-Preview (QwenLM, QwQ) 32B ✓ 4 ✗ ✓

o1-Coder (Zhang et al., 2024d) - ✓ 5 ✓ 9 ✗

rStar-Math (Guan et al., 2025) 1.5B,3B,7B ✓ 6 ✓ 10 ✓

Kimi-k1.5 (Team et al., 2025) - ✗ ✓ 11 ✓

DeepSeek-R1 (DeepSeek-AI et al., 2025) 671B-A31B ✓ 6 ✓ 12 ✓

1
https://huggingface.co/Qwen/QVQ-72B-Preview

2
https://github.com/AIDC-AI/Marco-o1

3
https://huggingface.co/Skywork/Skywork-o1-Open-Llama-3.1-8B

4
https://huggingface.co/Qwen/QwQ-32B-Preview

5
https://github.com/ADaM-BJTU/o1-Coder

6
https://github.com/zhentingqi/rStar

7
https://huggingface.co/deepseek-ai/DeepSeek-R1

8
https://arxiv.org/pdf/2501.04519

9
https://arxiv.org/pdf/2411.14405

10
https://arxiv.org/pdf/2412.00154

11
https://arxiv.org/pdf/2501.12599

12
https://arxiv.org/pdf/2501.12948

Table 5: Overview of recent efforts in reproducing OpenAI o1. The format ‘671B-A31B’ refers to MoE models
with 671B total and 31B active parameters.

boxes, marks, etc., mimicking human sketching1823

and thus improving the reasoning process. Addi-1824

tionally, to improve visual perception and reason-1825

ing, Sketchpad leverages specialized vision models1826

to optimize its sketching process (e.g., using object1827

detection models to draw bounding boxes and seg-1828

mentation models to create masks). Evaluation ex-1829

periments for this work were conducted on several1830

kinds of benchmark datasets, covering topics such1831

as geometry, functions, graphs, chess, and challeng-1832

ing visual reasoning tasks. Compared to powerful1833

baseline models without applying proposed tech-1834

nique, Sketchpad significantly boosts performance1835

across all tasks. Specifically, it improves average1836

performance on math tasks by 12.7% and visual1837

tasks by 8.6%. Using the proposed technique, GPT-1838

4o achieves the best performance across all bench-1839

marks, such as V*Bench (Wu and Xie, 2023) with1840

a score of 80.3%, and visual correspondence at1841

80.8%.1842

E.3 ChartPaLI-5B1843

ChartPaLI-5B (Carbune et al., 2024) is a MLLM1844

based on PaLI3-5B (Chen et al., 2023) designed1845

to improve the chart-related reasoning abilities of1846

VLMs. To narrow the reasoning ability gap be-1847

tween smaller VLMs and LLMs, the authors pro-1848

pose a method to transfer knowledge from LLMs.1849

First, they adopt the improved chart-to-table conver-1850

sion (?) and use this refined chart representation to 1851

undergo pre-training. Then, they construct a dataset 1852

that is 20 times larger than the original training set. 1853

Following that, the authors design reasoning steps 1854

with table representations of charts to strengthen 1855

both reasoning and numerical capabilities. Finally, 1856

they fine-tune the model using a multitask loss 1857

(Hsieh et al., 2023) on the constructed datasets. 1858

These datasets contains reasoning steps generated 1859

by more powerful LLMs, enabling the transfer of 1860

reasoning abilities. ChartPaLI-5B achieves state-of- 1861

the-art performance on ChartQA and significantly 1862

improves performance on PlotQA and FigureQA. 1863

Moreover, even without an upstream OCR system, 1864

ChartPaLI-5B surpasses much larger models like 1865

PaLIX-55B while maintaining similar inference 1866

times as its base model PaLI3-5B. Additionally, 1867

by adopting a straightforward program-of-thought 1868

prompt (Chen et al., 2022) to refine the logic chain, 1869

ChartPaLI-5B even outperforms the recently re- 1870

leased Gemini Ultra and GPT-4V. 1871

E.4 SpatialVLM 1872

SpatialVLM (Chen et al., 2024a) is a framework 1873

designed to enhance the spatial understanding and 1874

reasoning capabilities of VLMs by leveraging out- 1875

of-the-box vision models to generate spatial an- 1876

notations on the training data. This work tackles 1877

the difficulties encountered by VLMs in spatial 1878
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comprehension and reasoning, particularly in tasks1879

involving the interpretation of numerical relation-1880

ships between physical entities, such as variations1881

in size and spatial distance. The authors suggest1882

that this limitation arises from the lack of annota-1883

tion of spatial information in the training data. The1884

proposed solution is to enhance VLMs by train-1885

ing them on a large-scale spatial reasoning dataset.1886

First, they develop an automated framework for1887

generating visual question answering (VQA) data1888

with rich spatial information annotations. By inte-1889

grating techniques such as region captioning and1890

segmentation, this framework annotates real-world1891

data at scale and formats it for training VLMs on1892

diverse tasks. With this framework and 10 million1893

real-world images, they finally gain 2 billion VQA1894

examples. Next, they explore several key factors1895

in the training process, such as model architecture1896

and data quality, trying to develop an optimized1897

training mechanism. The natural language inter-1898

face of a powerful VLM using SpatialVLM can1899

support complex spatial reasoning by facilitating1900

a CoT process, making it efficient for tackling so-1901

phisticated spatial problems. It also enables the1902

model to serve as an open-vocabulary reward anno-1903

tator for tasks involving rearrangement. Training1904

a VLM on the dataset created using the proposed1905

techniques improves the model’s qualitative and1906

quantitative spatial understanding and reasoning1907

capabilities, enabling it to achieve significant per-1908

formance improvements on related tasks. VLMs1909

applying this technique can further carry out more1910

complex spatial perception applications , thanks to1911

their abilities to make quantitative estimations.1912

E.5 Chain-of-Table1913

Chain-of-Table (Wang et al., 2024f) is a frame-1914

work designed to improve the reasoning abilities of1915

LLMs when working with table-based data. While1916

CoT and similar methods integrate reasoning pro-1917

cesses as textual context, effectively incorporating1918

tabular data into this reasoning chain remains a1919

challenge. Table-based reasoning involves extract-1920

ing semantics from unstructured questions and par-1921

tially structured tabular information, which differs1922

from conventional reasoning tasks. The authors1923

propose a method that directly utilizes tabular data1924

in the intermediate steps of the reasoning chain,1925

carrying out progressive reasoning through tabular1926

operations, thereby forming a chain of intermedi-1927

ate tables. The authors employ in-context learning1928

to teach the model to use table operations (e.g.,1929

adding columns, filtering rows, or grouping) step 1930

by step to refine or simplify the table. This enables 1931

LLMs to dynamically plan each subsequent action 1932

based on the intermediary tables in the operation 1933

history. Such a process better utilizes the semantics 1934

of the table that is continuously optimized during 1935

reasoning. Chain-of-Table sets a new benchmark 1936

in performance on the WikiTQ (Pasupat and Liang, 1937

2015), FeTaQA (Nan et al., 2022), and TabFact 1938

(Chen et al., 2020) datasets. 1939

E.6 QVQ-72B-Preview 1940

QVQ-72B-Preview (Team, 2024a) is a MLLM built 1941

upon Qwen2-VL-72B (Wang et al., 2024c), de- 1942

signed to enhance visual reasoning capabilities 1943

through step-by-step reasoning. It aims to improve 1944

LLMs’ cognitive abilities by incorporating visual 1945

understanding. However, few technical details are 1946

currently available. The team mainly presents eval- 1947

uation results and discusses the model’s limitations. 1948

QVQ-72B-Preview has achieved impressive results 1949

across several benchmarks, including an outstand- 1950

ing 70.3% on the MMMU benchmark, demon- 1951

strating QVQ’s strong ability in multi-domain rea- 1952

soning and comprehension. The model’s substan- 1953

tial improvements on MathVision (Wang et al., 1954

2024a) highlight its advancements in mathemat- 1955

ical problem-solving. OlympiadBench (He et al., 1956

2024) further showcases its enhanced capability to 1957

address complex challenges. Despite these achieve- 1958

ments, the model has several limitations. For in- 1959

stance, it may mix languages or enter recursive 1960

reasoning loops, affecting response clarity and con- 1961

ciseness. Although it has made advancements in 1962

visual reasoning, it struggles with multi-step rea- 1963

soning, occasionally hallucinating or losing focus, 1964

and does not outperform Qwen2-VL-72B in basic 1965

recognition tasks. Additionally, the model is lim- 1966

ited to single-round dialogues and image outputs, 1967

with no support for video inputs. 1968

F Evaluation Benchmarks 1969

GPQA. The GPQA (Rein et al., 2023) dataset 1970

provides a challenging benchmark for evaluating 1971

reasoning abilities, particularly in scientific do- 1972

mains such as physics, chemistry, and biology. It 1973

consists of graduate-level multiple-choice ques- 1974

tions carefully crafted by domain experts to test 1975

the limits of human and AI performance. What 1976

makes GPQA unique is its difficulty: even experts 1977

with PhDs or those pursuing advanced degrees in 1978

25



Model or Framework Base Model Input Modality Pretraining
Data Scale

Fine-tuning
Data Scale Open-source

Insight-V (Dong et al., 2024) Qwen-2.5-7B Text/Image 558K 4M images ✓1

LLaVA-CoT-11B (Xu et al., 2024) Llama-3.2-11B-Vision-Instruct Text/Image - 99K ✓2

Sketchpad (Hu et al., 2024) GPT-4o Text/Image - - ✓3

ChartPaLI-5B (Carbune et al., 2024) PaLI-3 Text/Image(chart) 2.37M 544.9K ✗

SpatialVLM (Chen et al., 2024a) PaLM 2-E Text/Image(3d) - - ✓5

Chain-of-Table (Wang et al., 2024f) PaLM 2-S, Llama-2-17B-chat Text(table) - - ✓4

QVQ-72B-Preview (Team, 2024a) Qwen2-VL-72B Text/Image - - ✓6

1 https://github.com/dongyh20/Insight-V
2 https://github.com/PKU-YuanGroup/LLaVA-CoT
3 https://github.com/Yushi-Hu/VisualSketchpad
4 https://github.com/google-research/chain-of-table

5 https://github.com/remyxai/VQASynth
6 https://huggingface.co/Qwen/QVQ-72B-Preview

Table 6: An overview of emerging LLMs designed for multi-modal reasoning.

relevant fields achieve only 65% accuracy, which1979

increases to 74% when accounting for errors iden-1980

tified retrospectively. Highly skilled non-experts,1981

despite having unrestricted access to the internet,1982

achieve a mere 34% accuracy. The dataset is also1983

notably difficult for state-of-the-art AI systems like1984

GPT-4, which achieves only 39% accuracy, signif-1985

icantly above random chance (25%). This makes1986

GPQA an ideal testbed for evaluating large reason-1987

ing models. As the AI community continues to1988

explore advanced reasoning capabilities, datasets1989

like GPQA will be crucial in assessing whether AI1990

models can handle tasks that are inherently difficult1991

for both human experts and AI systems alike.1992

OlympiadBench. OlympiadBench (He et al.,1993

2024) offers a comprehensive and rigorous bench-1994

mark for evaluating reasoning abilities, particularly1995

in mathematics and physics, through a bilingual1996

multimodal dataset. Comprising 8,476 challenging1997

problems sourced from international Olympiads,1998

Chinese Olympiads, and the Chinese College En-1999

trance Exam (GaoKao), OlympiadBench pushes2000

the boundaries of current AI models. Each prob-2001

lem is annotated with expert-level step-by-step rea-2002

soning, ensuring that the dataset captures the full2003

depth of problem-solving processes. Additionally,2004

OlympiadBench addresses a critical gap in exist-2005

ing benchmarks by incorporating multimodal rea-2006

soning, as many scientific tasks require not just2007

textual analysis but also an understanding of vi-2008

sual or geometric information. With its rigorous2009

design, OlympiadBench serves as an essential tool2010

for assessing the true reasoning capabilities of state-2011

of-the-art AI models, helping to guide future ad-2012

vancements in artificial general intelligence.2013

Minerva. Minerva (Lewkowycz et al., 2022) in- 2014

troduces a benchmark specifically focused on test- 2015

ing large language models in quantitative reason- 2016

ing across various scientific domains, including 2017

mathematics, physics, chemistry, and biology. The 2018

dataset contains over 200 undergraduate-level prob- 2019

lems drawn from MIT’s OpenCourseWare (OCW) 2020

and other technical sources, providing a broad spec- 2021

trum of challenges that require step-by-step reason- 2022

ing and solution generation. Minerva pushes the 2023

boundaries of model performance by testing the 2024

ability to solve complex, real-world scientific prob- 2025

lems without relying on external tools or solvers. 2026

The problems in Minerva involve not only natu- 2027

ral language processing but also the integration of 2028

formal mathematical language, such as equations 2029

and diagrams, to model accurate problem-solving 2030

procedures. Minerva’s diverse and robust set of 2031

problems offers a comprehensive platform for as- 2032

sessing how well AI systems can handle multi-step, 2033

quantitative reasoning tasks, providing a critical 2034

measure for the development of future AI assis- 2035

tants in scientific and engineering fields. 2036

GSM8K. GSM8K (Cobbe et al., 2021) is a 2037

benchmark designed to evaluate the ability of lan- 2038

guage models to perform multi-step mathematical 2039

reasoning at the grade school level. It consists 2040

of 8.5K high-quality, linguistically diverse math 2041

word problems that cover a wide range of topics. 2042

Despite the simplicity of the underlying math con- 2043

cepts, the dataset poses significant challenges due 2044

to its high linguistic diversity, requiring models to 2045

demonstrate strong reasoning abilities in both inter- 2046

preting natural language and solving mathematical 2047

problems. GSM8K provides a valuable resource 2048

for advancing the development of models capable 2049
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of tackling elementary yet challenging quantitative2050

reasoning tasks, serving as a key tool for testing2051

the reasoning and problem-solving abilities of AI2052

systems.2053

MATH. The MATH dataset (Hendrycks et al.,2054

2021) presents a challenging benchmark specif-2055

ically designed to evaluate the mathematical2056

problem-solving abilities of machine learning mod-2057

els. Comprising 12,500 competition-level math2058

problems from high school math competitions,2059

MATH covers a broad range of topics including2060

algebra, geometry, combinatorics, and number the-2061

ory. Each problem is accompanied by a full step-by-2062

step solution, enabling models to learn both the cor-2063

rect final answer and the reasoning process behind2064

it. The dataset is particularly valuable for testing2065

models’ abilities to perform multi-step reasoning2066

and generate coherent explanations. MATH’s com-2067

plexity, even for human experts, combined with2068

its large scale and focus on structured problem-2069

solving, makes it an essential benchmark for push-2070

ing the boundaries of AI’s reasoning capabilities,2071

particularly in the realm of mathematics.2072

AIME. The American Invitational Mathematics2073

Examination (AIME) (AI-MO, 2025) serves as a2074

prestigious benchmark for evaluating mathematical2075

reasoning abilities, particularly for high school-2076

level problem-solving. It is originally a selective2077

15-question, 3-hour exam that is open to students2078

who perform in the top 5% of the AMC 12 exam2079

(or top 2.5% of the AMC 10). The problems tested2080

in the AIME primarily focus on algebra, geometry,2081

trigonometry, number theory, probability, and com-2082

binatorics, and often require advanced problem-2083

solving techniques not typically covered in stan-2084

dard high school curricula. For large models, the2085

AIME dataset serves as an important benchmark2086

for evaluating their capabilities in multi-step math-2087

ematical reasoning.2088

Codeforces. Codeforces (Mirzayanov, 2025) is2089

a platform hosts regular programming contests,2090

known as "Codeforces Rounds," which challenge2091

participants to solve algorithmic problems under2092

time pressure. The problems typically span a vari-2093

ety of topics in computer science, including graph2094

theory, dynamic programming, data structures, and2095

number theory, requiring strong analytical and com-2096

putational reasoning skills. The Codeforces rating2097

system, similar to the Elo system, evaluates con-2098

testants based on their performance across these2099

contests. With divisions for different skill levels 2100

(Div. 1, Div. 2, Div. 3, and Div. 4), Codeforces 2101

offers a wide range of problems suitable for eval- 2102

uating AI systems at various levels of difficulty. 2103

This makes Codeforces an excellent resource for 2104

assessing the ability of large models to solve al- 2105

gorithmic and coding problems, particularly those 2106

requiring multi-step, logical reasoning and opti- 2107

mization strategies. 2108
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