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Abstract

The release of OpenAl’s ol marks a signif-
icant milestone in Al, achieving proficiency
comparable to PhD-level expertise in mathe-
matics and coding. While ol excels at solving
complex reasoning tasks, it remains a closed-
resource model, limiting its accessibility and
broader application in academic and industrial
contexts. Despite numerous efforts to replicate
ol’s results, these attempts often focus on iso-
lated aspects of the model (e.g., training, infer-
ence), neglecting the holistic interplay between
components and failing to provide a global pic-
ture of the pathways to enhance LLMs’ reason-
ing capabilities, and replicate o1’s performance.
Currently, there is no systematic review of these
replication efforts, nor a clear survey of the ma-
jor issues that must be addressed to achieve
comparable performance to ol.

In this survey, we provide a systematic review
of the most up-to-date state of knowledge on
reasoning LLMs, helping researchers under-
stand the current challenges and advancements
in this field. Specifically, we will (1) review the
basic concepts and techniques behind two rep-
resentative reasoning LLMs, ol and DeepSeek
R1, exploring their key components and ca-
pabilities; (2) detail recent efforts to replicate
ol’s performances, and more importantly, ad-
dress the key obstacles in enhancing the rea-
soning abilities; (3) explore the emerging class
of LLMs designed for multi-modal reasoning,
which extends the capabilities of traditional
LLMs by bridging the gap between language
understanding and sensory perception; and (4)
summarize the current challenges and discuss
opportunities for further improvement of rea-
soning large language models.

1 Introduction

Large language models (LLMs) (Jiang et al., 2023;
Bai et al., 2023; OpenAl, 2023; Yang et al., 2024a;
Dubey et al., 2024; OpenAl, 2024a; Mistral Al,
2024; Team et al., 2024; Liu et al., 2024b,a; Wake

et al., 2024; Shao et al., 2024a; OpenAl, 2024b;
GLM et al., 2024) have achieved remarkable per-
formance in numerous language tasks (Sun et al.,
2023b; Wang et al., 2023b; Wan et al., 2023; Sun
et al., 2023c,a; Wang et al., 2023a; Sun et al.,
2023d; Liu et al., 2024c; Yao et al., 2024; Wang
et al., 2024d). Despite their impressive capabilities,
LLMs still face significant challenges in reasoning.
They struggle with tasks that require logical deduc-
tion, numerical calculations, or consistent chains of
thought. Errors are observed even in simple tasks
that demand multi-step thinking, highlighting gaps
in how these models acquire, represent, and apply
knowledge (Cobbe et al., 2021; Wei et al., 2022;
Wang and Lu, 2023; Shakarian et al., 2023; Shi
et al., 2023; Chang et al., 2024; Ahn et al., 2024).

The release of OpenAl ol (OpenAl, 2024b)
marks a significant milestone in Al, particularly
in enhancing its reasoning abilities. OpenAl ol is
capable of solving complex reasoning tasks and
demonstrates capabilities comparable to PhD-level
proficiency in math and coding. Unfortunately,
ol is a closed-resource model, which limits its ac-
cessibility and potential for broader academic and
industrial use. This restricted access hinders col-
laborative efforts to further refine its abilities and
limits the opportunity for researchers and devel-
opers to build upon its foundation. Additionally,
the lack of transparency in the model’s underly-
ing architecture and training data raises concerns
about bias and fairness, making it difficult to fully
understand its decision-making processes.

As a result of the closed-resource nature of ol,
numerous efforts have emerged to replicate ol’s
impressive results (Shao et al., 2024a; Mistral Al,
2024; Team, 2024b; ol Team, 2024; Zhao et al.,
2024; Team, 2024a; DeepSeek-Al et al., 2024). ol,
however, is a highly complex system, with sub-
stantial improvements across multiple Al modules,
including training methodologies, inference mecha-
nisms, datasets, and evaluation processes. Existing



efforts to replicate ol tend to focus on isolated as-
pects of the model, often neglecting the holistic
interplay between these components, and, as a re-
sult, missing the full picture in enhancing LLMs’
reasoning abilities. As a result, there is currently no
systematic review of the efforts to replicate ol, and
more importantly, no clear survey of the major is-
sues that must be addressed to achieve comparable
performance across all these dimensions.

In this survey, we provide a systematic review
of the most up-to-date state of knowledge on the
challenges and opportunities involved in reason-
ing LLMs, in particularly with OpenAl ol (Ope-
nAl, 2024b) and DeepSeek R1 (DeepSeek-Al et al.,
2025). Specifically, Sec. 2 reviews the basic con-
cepts and techniques behind two representative rea-
soning LLMs, ol and DeepSeek R1, exploring their
key components and capabilities; Sec. 3 details re-
cent efforts to replicate ol’s performances, and
more importantly, addresses the key obstacles in
enhancing the reasoning abilities; Sec. 4 explores
the emerging class of LLMs designed for multi-
modal reasoning, which extends the capabilities
of traditional LLMs by bridging the gap between
language understanding and sensory perception;
Sec. 5 summarizes the current challenges and dis-
cusses opportunities for further improvement of
reasoning LLMs; and Sec. 6 concludes this survey.

2 Overview of OpenAl o1 and DeepSeek
R1

OpenAl ol and DeepSeek R1 represent two signif-
icant advancements in artificial intelligence, each
emphasizing enhanced reasoning capabilities to
tackle complex, multi-step tasks. In this section,
we first illustrate one of their key features: “Think-
ing before Response Generation”, which allows
them to produce detailed, step-by-step solutions
that excel in domains such as science, mathematics,
and programming. Then, we explore the speculated
techniques in o1 and insights from R1 to enhance
the reasoning capabilities of LLMs across three
dimensions: (1) At the dataset level, we review
recent efforts in constructing high-quality, diverse,
and representative datasets that play a pivotal role
in enhancing LLMs’ reasoning capabilities; (2) At
the training level, we delve into different training
techniques that harness these datasets to ensure the
model acquires robust logical reasoning and struc-
tured problem-solving capabilities; and (3) At the
inference level, we provide an in-depth review of

techniques designed to identify and execute rea-
soning paths during the decoding process in LLMs.
Additionally, since both the ol and R1 series con-
sist of multiple models, each tailored with varying
sizes, inference speeds, and prices to meet different
use cases, we provide a detailed breakdown of the
release dates, capabilities, features of the various
ol and R1 models, along with their performance
on benchmarks, in the Appendix A.

2.1 Key Feature: Thinking before Response
Generation

A hallmark of both the ol and R1 models is the
deliberate allocation of additional time for “think-
ing” before generating responses. This extended
processing period allows the models to produce
detailed, step-by-step reasoning paths that are par-
ticularly effective in solving complex mathematical,
programming, and scientific challenges, such as:

The Given Question:

How many Rs are in “strawberry”?
Generated by ol:

There are three ‘R’s in the word “straw-
berry.”

Here’s the breakdown: S-T7-R-A-W-B -
E-R-R-Y

e 3rd letter: R
e 8th letter: R
e Oth letter: R

So, the letter ‘R’ appears three times in
“strawberry.”

By allocating more ‘“thinking” time, the model
can decompose complex, multi-step problems into
smaller, manageable components. On one hand,
this allows the model to produce well-structured
and coherent solutions to reasoning problems; on
the other, it offers transparency into the reason-
ing process, enabling users to understand how the
model reached its answers.

2.2 Speculated Techniques in 01 and Insights
from R1

OpenAl ol is a closed-source model, and as a re-
sult, there has been much speculation regarding
the techniques behind its development. Various
blogs, reports, and technical papers have attempted
to deconstruct its capabilities, offering hypotheses



about its underlying architecture, datasets, training
methods, and reasoning processes. Some speculate
that ol leverages advanced forms of reinforcement
learning and unsupervised learning, while others
suggest a highly refined chain-of-thought (CoT)
approach to enhance its multi-step reasoning. In
parallel, the DeepSeek R1 series, detailed in the
DeepSeek-R1 technical report (DeepSeek-Al et al.,
2025), employs a transparent, multi-stage training
pipeline that shares several conceptual similarities
with the speculated techniques in o1. Below, we ex-
plore the speculated techniques and insights from
R1 to enhance the reasoning capabilities of LLMs
across three levels: dataset, training and inference.

2.2.1 Constructing Reasoning Formatted
Datasets

Building the training dataset is the initial step to-
ward equipping a model with advanced reasoning
capabilities. For reasoning LLMs, this involves
constructing a reasoning formatted dataset that em-
phasizes logical progression, multi-step thinking,
and structured problem-solving. For example:

Input: What is the sum of the first 10 posi-
tive integers?
Reasoning Path:

» Step 1: The first 10 positive integers are
1,2,3,---,10.

* Step 2: The sum of a sequence can be
calculated using the formula (n x (n +
1))/2(nx (n+1))/2(n x (n+1))/2.

e Step 3: Substituting n = 10, we get
(10x11)/2 =55(10x 11)/2 = 55(10 x
11)/2 = 55.

¢ Answer: The sum is 55.

In prior research (Swamy et al., 2024), OpenAl
researchers discovered that exposing LLMs to rea-
soning formatted data enables them to learn logical
patterns and enhance their accuracy. To construct
such reasoning formatted datasets, most studies
(Qin et al., 2024; Hwang et al., 2024a; Liao et al.,
2024b; Lu et al., 2024; Shao et al., 2024b; Bansal
et al., 2024; Tang et al., 2024) typically focus on
one or a combination of the following strategies:
the machine-generated, where a trained model
provides feedback, responses or grades, and the
human-generated, where humans are asked to

provide feedback. Some datasets rely on a single
strategy, while others combine both approaches, an
overview of these datasets is shown in Table 2.
Recently, in DeepSeek R1, thousands of cold-
start examples are collected with a clearly de-
fined output format. Each sample is designed with
special tokens that separate the detailed chain-of-
thought from a concise summary, ensuring that the
dataset not only promotes logical reasoning but
also enhances readability. This method of dataset
construction mirrors the idea that exposing models
to structured reasoning data enables them to learn
logical patterns and improve overall accuracy.

2.2.2 Training LLMs on Reasoning
Formatted Datasets

After constructing the specialized reasoning for-
matted datasets, it has been speculated that the next
step for models like ol is to fine-tune them on
this data using a combination of supervised fine-
tuning (SFT) (Zhang et al., 2023) and reinforce-
ment learning (RL) (Wang et al., 2024e). SFT is
employed as an initial step to train the model to
generate complete reasoning paths in response to
given questions. This process teaches the model to
follow logical chains and produce coherent outputs,
thereby establishing a solid foundation for tackling
more advanced reasoning challenges (Gou et al.,
2023; Tian et al., 2024; Liao et al., 2024a). RL,
on the other hand, is used to further refine these
capabilities (Saunders et al., 2022; Yu et al., 2023;
Liu et al., 2023; Wang et al., 2024b; Zhang et al.,
2025; Zeng et al., 2024; Zheng et al., 2024; Song
et al., 2025; Zhang et al., 2024c; Chen et al., 2024c;
Liu et al., 2023; Hwang et al., 2024b; Putta et al.,
2024). Techniques such as large-scale Reinforce-
ment Learning from Human Feedback (RLHF) and
alternative strategies like Monte Carlo Tree Search
(MCTYS) are speculated to drive the exploration of
multiple solution paths and to optimize the model’s
performance by using reward models that capture
correctness and logical consistency. We put techni-
cal details on these approaches in Appendix B, and
a summary of each of these paradigms in Table 3.
In contrast, DeepSeek R1 adopts a two-phase
training strategy to develop its reasoning abilities:
(1) R1-Zero is developed through pure RL with-
out any SFT. This phase allows the model to self-
evolve its reasoning strategies and explore various
solution paths, although it may sometimes produce
outputs with challenges in readability and language
consistency. (2) R1 incorporates a modest amount



of high-quality cold-start data to guide and stabi-
lize the reasoning process. This phase is further
refined through additional RL training stages and
SFT (including rejection sampling for high-quality
responses), which helps the model generate coher-
ent and user-friendly chain-of-thought outputs.
This dual approach ensures that the model learns
to generate complete and logical reasoning paths in
response to given questions, establishing a robust
foundation for addressing more complex problems.

2.2.3 Inference with Advanced Thinking
Strategies

At inference time, researchers speculate that ol-
like models employ a series of advanced reasoning
techniques, many of which are also utilized in R1.
Below, we present examples to demonstrate these
techniques, while additional technical details are
provided in Appendix C, and an overview of recent
inference methods is summarized in Table 4.

Problem Breakdown. Deconstructing complex
problems into smaller, manageable parts (as illus-
trated below) to facilitate a step-by-step solution,
an approach also central to the design of R1.

The Given Question:
How many Rs are in “strawberry”?
Decomposition:

* Identify all the words: S-T-R-A-W -
B-E-R-R-Y

* Identify which positions are the word R:
3rd letter, 8th letter, and 9th letter.

* Calculate: The letter ‘R’ appears three
times

Mistake Recognition and Self-Correction. In
this strategy, the model detects and rectifies errors
in their reasoning, much like a human reassessing
and adjusting a flawed approach. Such as when
get a response “The area is 10 x 5 = 50” by given
a question “What is the area of a triangle with a
base of 10 and a height of 5?”. A critic model is
employed (McAleese et al., 2024; Xi et al., 2024;
Kalyanpur et al., 2024), or the ol-like reasoning
LLM itself is prompted (Kumar et al.; Gao et al.,
2024; Li et al., 2024), to evaluate whether the re-
sponse is accurate. If an error is identified, the
ol-like reasoning LLLM will immediately generate

a new answer. This iterative process continues un-
til the critic model or the LLM determines that the
generated response is correct. R1 demonstrates this
capability through its iterative RL process, where
an “aha moment”, which is shown in Figure 4, oc-
curs as the model dynamically adjusts its reasoning.

Solution Exploration. ol-like reasoning LLMs
explore multiple potential solution paths before ar-
riving at a final answer, ensuring the selection of the
most logical and accurate outcome. This process
resembles a tree structure, where the input problem
serves as the root node, each node represents a step
in the solution, and the path from a leaf node to
the root forms a complete reasoning trajectory(Yao
et al., 2024; Yuan et al., 2024; Feng et al., 2023;
Zhang et al., 2024b; Tian et al., 2024; Xie et al.,
2024; Chen et al., 2024b; Zhang et al., 2024a). To
enhance accuracy, ol-like models employ various
search strategies to construct this solution tree and
evaluate the validity of each path, leading to more
precise and insightful results. However, R1 does
not adopt this approach due to the challenges of
scaling token-level search, such as an exponentially
expanding search space and the difficulty of train-
ing a reliable value model. Instead, R1 leverages
extended test-time computation and reinforcement
learning to refine its reasoning process without re-
lying on explicit tree search algorithms.

3 Recent Efforts in Reproducing OpenAl
ol

Currently, many efforts have been made to replicate
OpenAl’s ol or specific capabilities of ol (such
as code generation and mathematical reasoning).
We have collected nine such works, among which
seven are open-source, five provide reports or pa-
pers, and five include comparisons with ol. For
detailed information, please refer to Table 5. In
the following section, we will focus on introduc-
ing three landmark works: (1) rStar-Math (Guan
et al., 2025), which shows that smaller language
models can match or even exceed the mathemati-
cal reasoning capabilities of OpenAl’s ol model,
without requiring distillation from larger models;
(2) Kimi-k1.5 (Team et al., 2025), a multi-modal
LLM that represents a major advancement in scal-
ing reinforcement learning; and (3) DeepSeek-R1
(DeepSeek-Al et al., 2025), a state-of-the-art rea-
soning model that achieves performance compara-
ble to OpenAlI’s ol series models. For additional
similar works in replicating o1’s reasoning abilities,



please refer to Appendix D.

3.1 rStar-Math

rStar-Math (Guan et al., 2025), developed by Mi-
crosoft, demonstrates that small language models
(SLMs) can match or surpass the mathematical rea-
soning abilities of OpenAlI’s ol model, without
the need for distillation from larger models. This
is achieved through “deep thinking” via MCTS,
where an SLM-based math policy conducts test-
time searches, guided by a process preference
model (PPM) also built on SLMs. The core ad-
vancements of rStar-Math lie in three key solu-
tions designed to overcome training challenges
for the two SLMs: (1) a code-enhanced CoT data
synthesis method, (2) a PPM training framework,
and (3) a self-evolution strategy. Extensive experi-
ments demonstrate significant improvements on the
MATH (Hendrycks et al., 2021) benchmark. rStar-
Math enhances the accuracy of Qwen2.5-Math-7B
(Yang et al., 2024a) from 58.8% to 90.0% and
Phi3-mini-3.8B (Abdin et al., 2024) from 41.4% to
86.4%, outperforming ol-preview by +4.5% and
+0.9%, respectively. On the American Invitational
Mathematics Examination (AIME) (AI-MO, 2025),
rStar-Math successfully solves an average of 53.3%
(8/15) of the problems, placing it within the top
20% of high school math students.

rStar-Math trains a math policy SLM and a PPM
integrated with MCTS for deep thinking. The
training involves three key innovations. First, a
code-augmented CoT data synthesis method uses
MCTS rollouts to generate step-by-step reasoning
trajectories annotated with self-assigned Q-values.
The policy SLM samples candidate nodes, produc-
ing one-step CoTs and corresponding Python code.
Only nodes with successful code execution are re-
tained, reducing errors. Q-values are assigned to
each step based on its contribution, ensuring ac-
curate reasoning trajectories. Second, a PPM to
enable reliable prediction of reward labels for math
reasoning steps. Rather than using noisy Q-values
directly, the PPM distinguishes correct steps from
incorrect ones using preference pairs and optimizes
its scoring with a pairwise ranking loss (Ouyang
et al., 2022). This improves the accuracy of step-
wise reward assignment compared to traditional
methods (Chen et al., 2024b). Finally, a four-round
self-evolution framework refines the policy model
and PPM. Starting with a dataset of 747k math
word problems, each round uses the updated mod-
els to generate better training data. This iterative

process leads to: (1) a stronger policy SLM, (2) a
more reliable PPM, (3) improved reasoning trajec-
tories, and (4) expanded data coverage for more
challenging math problems.

3.2 Kimi-k1.5

Kimi-k1.5 (Team et al., 2025), developed by Moon-
shot Al, is a multi-modal LLM which represents
a significant advancement in scaling RL. The au-
thors introduce a novel approach by focusing on
long context scaling, extending the context window
of RL to 128k, and refining policy optimization
methods. Unlike traditional RL frameworks that
rely on complex techniques such as MCTS, value
functions, and process reward models, Kimi-k1.5
establishes a streamlined and effective RL frame-
work. The model achieves state-of-the-art reason-
ing performance across various benchmarks and
modalities, rivaling OpenAl’s ol. Additionally, the
authors introduce long2short methods that utilize
long-CoT techniques to enhance short-CoT mod-
els, significantly outperforming existing models
like GPT-40 (OpenAl, 2024a) and Claude Sonnet
3.5! by up to 550%.

The development of Kimi-k1.5 involves several
stages: pretraining, vanilla SFT, long-CoT SFT,
and RL. The primary innovation lies in the RL
phase, where the authors construct a high-quality
RL prompt set designed to guide the model toward
robust reasoning while mitigating risks such as re-
ward hacking and overfitting to superficial patterns.
This prompt set is characterized by three key prop-
erties: diverse coverage, balanced difficulty, and
accurate evaluability. During RL training, three
critical strategies are employed: (1) Online Pol-
icy Mirror Descent: A variant of this algorithm
is used to optimize the training process (Abbasi-
Yadkori et al., 2019; Mei et al., 2019; Tomar et al.,
2020); (2) Length Penalty: A reward mechanism
is introduced to control the rapid growth of token
length, enhancing token efficiency; and (3) Sam-
pling Methods: Two sampling techniques are uti-
lized to improve training efficiency: a. Curricu-
lum sampling progressively trains the model from
simpler to more complex tasks, enhancing both
training efficiency and model performance. b. Pri-
oritized sampling focuses on areas where the model
underperforms by sampling problematic tasks more
frequently, proportional to their failure rates, accel-
erating learning in weaker areas.

1https: //www.anthropic.com/news/
claude-3-5-sonnet
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While long-CoT models demonstrate strong per-
formance, they often require more test-time tokens
compared to standard short-CoT LLMs. To address
this, the authors propose four methods to transfer
the reasoning capabilities of long-CoT models to
short-CoT models, a challenge referred to as the
long2short problem. These methods include: (1)
Model Merging: Combining a long-CoT model
with a shorter model by averaging their weights.
(2) Shortest Rejection Sampling: Using the long-
CoT model to generate multiple responses to the
same question and selecting the shortest correct
response for SFT. (3) Direct Preference Optimiza-
tion (DPO): Forming pairwise preference data us-
ing positive (shortest correct solution) and negative
(longer solutions) samples for DPO training. (4)
Long2short RL: A two-phase training approach
where, after standard RL training, a model with op-
timal performance and token efficiency is selected
for a second phase. In this phase, a length penalty
is applied, and the maximum response length is
reduced to encourage more concise responses.

3.3 DeepSeek-R1

DeepSeek-R1 (DeepSeek-Al et al., 2025), devel-
oped by DeepSeek, is a state-of-the-art reasoning
model that achieves performance comparable to
OpenAl’s ol series models. This work pioneers
the use of pure RL to enhance language model
reasoning capabilities, focusing on self-evolution
without relying on supervised data. The authors
first train DeepSeek-R1-Zero, a model derived
from DeepSeek-V3-Base (Liu et al., 2024a), us-
ing large-scale RL without SFT. This preliminary
model demonstrates significant reasoning improve-
ments, with the pass@1 score on AIME 2024
(AI-MO, 2025) increasing from 15.6% to 71.0%.
With majority voting, the score further rises to
86.7%, matching the performance of OpenAl-ol-
0912. To address issues such as poor readabil-
ity, language mixing, and to further boost reason-
ing performance, the authors introduce DeepSeek-
R1. This enhanced model incorporates a small
amount of cold-start data and a multi-stage train-
ing pipeline, achieving performance on par with
OpenAl-o01-1217, which is shown in Figure 3.
The RL training process for DeepSeek-R1-
Zero employs Group Relative Policy Optimization
(GRPO) (Shao et al., 2024a), which eliminates the
need for a critic model by estimating baselines from
group scores. The reward system is rule-based, con-
sisting of two main components: accuracy rewards

and format rewards. The accuracy reward evalu-
ates the correctness of responses, while the format
reward enforces the use of ‘<think>" and ‘</think>’
tags to structure the reasoning process. During
training, an intermediate version of the model ex-
hibited an “aha moment”, which is shown in Figure
4, where it learned to allocate more time to reevalu-
ate its initial approach, demonstrating the evolving
reasoning capabilities facilitated by RL.

The training process for DeepSeek-R1 consists
of two alternating stages of SFT and RL: (1) Ini-
tial Cold Start SFT: The process begins with the
collection of thousands of high-quality, readability-
focused long CoT datasets. These datasets are used
to fine-tune DeepSeek-V3-Base, establishing a ro-
bust foundation for subsequent RL training; (2)
First Reasoning-oriented RL Stage: The model
undergoes large-scale reasoning-oriented RL, lever-
aging the same methodology applied in DeepSeek-
R1-Zero to enhance its reasoning abilities. Upon
convergence, the resulting checkpoint is utilized
to gather additional SFT data for the next stage;
(3) Second SFT Stage: This phase focuses on fur-
ther refining the model through a combination of
reasoning and non-reasoning data. For reasoning
data, specialized prompts are curated, and reason-
ing trajectories are generated via rejection sampling
using the RL checkpoint from the previous stage.
For non-reasoning data, such as writing, factual
QA, self-cognition, and translation, the DeepSeek-
V3 pipeline is utilized, integrating portions of the
DeepSeek-V3 SFT dataset. Finally, DeepSeek-V3-
Base is fine-tuned for two epochs using this com-
prehensive dataset to ensure optimal performance
across a wide range of tasks; and (4) Second RL
Stage for all Scenarios: A final RL phase is con-
ducted to align the model with human preferences
by fine-tuning the model with a combination of
reward signals and diverse prompt distributions,
enhancing its helpfulness and harmlessness while
further refining its reasoning abilities.

4 Beyond Language: Multi-modal
Reasoning LLMs

While the current key feature of the ol mod-
els, “Thinking before Response Generation,”does
not yet support multi-modal functions, future ver-
sions hold significant promise for integrating them.
Multi-modal reasoning LLMs (MLLMs) are a class
of models that enhance the capabilities of tradi-
tional LLMs by bridging the gap between language



understanding and sensory perception. These mod-
els enable more sophisticated reasoning across var-
ious types of data. By incorporating the ability
to process and integrate information from differ-
ent data modalities, such as text, images, and au-
dio, MLLMs have the potential to greatly improve
holistic reasoning, offering users a richer and more
comprehensive experience. Currently, MLLMs are
an emerging category, with many studies focus-
ing on enhancing their multi-step visual reasoning
capabilities (Dong et al., 2024; Hu et al., 2024;
Team, 2024a), fewer studies addressing their spa-
tial understanding and reasoning abilities (Carbune
et al., 2024; Chen et al., 2024a), and ongoing ef-
forts to improve LLMs’ reasoning with table-based
data (Wang et al., 2024f). An overview of these
MLLMs is provided in Figure 6, and more details
about these works can be found in Appendix E.

5 Evaluation & Analysis & Future

This section explores the reasoning capabilities of
LLMs by reviewing recent research that approaches
the topic from various angles. It considers aspects
such as token bias, the length of reasoning steps,
and the reliability of CoT explanations, offering a
thorough assessment of how reasoning influences
model alignment, safety, and generalization. In
addition, we provide an overview of the current
evaluation benchmarks in use and highlight the
need for future benchmarks specifically tailored to
evaluate reasoning skills.

5.1 Evaluation

The ol-like model demonstrates strong reason-
ing capabilities across a variety of benchmarks.
Currently, evaluations tend to focus on (1) scien-
tific domains, such as mathematics, physics, chem-
istry, and biology, with datasets including GPQA
(Rein et al., 2023), OlympiadBench (He et al.,
2024), Minerva (Lewkowycz et al., 2022), GSM8K
(Cobbe et al., 2021), MATH (Hendrycks et al.,
2021) and American Invitational Mathematics Ex-
amination (AIME) (AI-MO, 2025); and (2) pro-
gramming contests (coding), such as Codeforces
(Mirzayanov, 2025). These tasks primarily involve
high-difficulty, competitive-level problems, includ-
ing some PhD-level questions in science and engi-
neering. For further details about those datasets,
please refer to Appendix F. In the future, in ad-
dition to the accuracy and difficulty of evaluation
benchmarks, there is significant opportunity for

research in developing new benchmarks specifi-
cally aimed at assessing LLMs’ reasoning abilities.
These could include factors such as evaluating the
correctness and length of the generated reasoning
steps, as well as the relevance and contribution of
each reasoning step to the final answer.

5.2 Safety & Policy

Guan et al. (2024) introduce deliberative alignment,
anovel training paradigm that leverages LLMs’ rea-
soning capabilities to improve their safety. This
approach trains models to explicitly recall and
reason through safety specifications before gen-
erating responses. When applied to OpenAlI’s o-
series models, deliberative alignment enables the
use of CoT reasoning to analyze user prompts, ref-
erence relevant policy guidelines, and produce safer
outputs. Experimental results demonstrate that o-
series models aligned through deliberative align-
ment achieve precise compliance with OpenAl’s
safety policies without relying on human-authored
chain-of-thoughts or answers. Additionally, de-
liberative alignment advances the Pareto frontier
by strengthening resistance to jailbreak attempts,
lowering overrefusal rates, and enhancing general-
ization to out-of-distribution contexts. These out-
comes underscore that reasoning over clearly de-
fined policies fosters more scalable, reliable, and
transparent model alignment.

5.3 Faithfulness of LLMs’ Reasoning Process

Faithfulness refers to how accurately the model’s
reasoning process (e.g., CoT) aligns with the ac-
tual internal computation or representations used
to derive the output. Recent research indicates that
this alignment is frequently lacking, making the
enhancement of faithfulness a critical challenge
for achieving greater transparency, alignment, and
reliability in large language models.

5.3.1 Faithfulness of CoT Reasoning

Lanham et al. (2023) examine whether the rea-
soning presented in CoT explanations accurately
reflects the actual reasoning processes of LLMs.
First, they evaluate post-hoc reasoning, where rea-
soning is generated after the conclusion has already
been determined, by truncating or introducing er-
rors into the CoT before the final answer. Their
findings reveal significant variation in LLMs’ re-
liance on CoT across tasks: some tasks exhibit
no dependence on CoT, while others rely on it
heavily. Interestingly, post-hoc reasoning tends



to worsen with more capable models, indicating
that smaller models may be more reliable for tasks
requiring faithful reasoning. Second, they investi-
gate whether CoT’s performance gains stem from
increased test-time computation. By replacing CoT
with uninformative filler text, they find no accuracy
improvements, suggesting that test-time computa-
tion alone does not account for CoT’s effective-
ness. Third, they explore whether CoT encodes
task-relevant information in ways inaccessible to
human interpretation. By substituting CoT with
paraphrased versions, they observe no performance
degradation, indicating that the specific phrasing
of CoT is not crucial to its success. In conclusion,
these findings emphasize the major challenges in
CoT faithfulness and underscore the importance
of developing systems with more transparent and
reliable reasoning processes.

5.3.2 Token Bias in LLMs’ Reasoning

Jiang et al. (2024) introduce the concept of to-
ken bias: an LLM exhibits token bias in a rea-
soning task if changes to some or all tokens in
the task description, while maintaining the under-
lying logic, predictably alter the model’s output.
To determine whether LLMs are capable of gen-
uine reasoning or if their performance is primar-
ily driven by token biases, the authors propose a
hypothesis-testing framework. This framework out-
lines a set of hypotheses where token biases are
readily identifiable, with all null hypotheses assum-
ing the genuine reasoning capabilities of LLMs.
By doing so, they show that while LLMs may
perform well on classic problems, their success
is largely driven by recognizing superficial patterns
influenced by strong token bias. This raises con-
cerns about their true reasoning and generaliza-
tion capabilities. These findings suggest that CoT
prompting and in-context learning may not invoke
genuine reasoning in LLMs. Instead, they may lead
to semantic shortcuts that superficially mimic the
desired behavior. This highlights the need for fur-
ther investigation into the underlying mechanisms
and limitations of LLMs, particularly with respect
to their reasoning abilities.

5.4 Controlling Reasoning Length in LL.Ms

Recent studies have highlighted the need for con-
trolling reasoning length in LLMs, as issues such
as overthinking, and redundant computations con-
tribute to inefficient resource allocation and in-
creased costs (Nori et al., 2024; Sprague et al.,

2024; Yang et al., 2024b; Jin et al., 2024).

Specifically, to address the overthinking issue
in reasoning-focused LLMs, where excessive com-
putational resources are allocated to simple tasks
without proportional benefits, Chen et al. (2024d)
suggest strategies like length preference optimiza-
tion and response simplification to streamline the
reasoning process. In contrast, Han et al. (2024)
introduce TALE, a token-budget-aware reasoning
framework that dynamically adjusts token bud-
gets based on the complexity of the task. These
approaches successfully optimize the balance be-
tween computational efficiency and performance,
reducing unnecessary reasoning steps while pre-
serving effectiveness, and offer promising solutions
for intelligent resource scaling in reasoning tasks.
Regarding redundant inference costs, Jang et al.
(2024) propose VARR, a framework for reducing
sentence-level rationale based on a principled ver-
bosity criterion. VARR employs a likelihood-based
method to identify and eliminate redundant reason-
ing steps during training, keeping only the most
crucial steps. This approach ensures the integrity
of reasoning while minimizing the risk of generat-
ing incorrect answers, effectively balancing both
efficiency and accuracy.

6 Conclusion

In this survey, we presented a review of reason-
ing LL.Ms by focusing on dataset construction, su-
pervised fine-tuning, reinforcement learning, and
advanced inference strategies (chain-of-thought
and automated critiques) through the lens of Ope-
nAI’s ol model and DeepSeek’s R1 model. De-
spite the progress, several challenges exist. Formal
verification and robust error detection are neces-
sary to improve the interpretability and trustwor-
thiness of reasoning trace. Reliance on purely
text-based logic necessitates neuro-symbolic frame-
works that combine continuous embeddings with
external symbolic manipulators for advanced math-
ematics, proofs, or legal argumentation. Beyond
the targeted fine-tuning in math or coding, real-
world applications demand broader domain adapta-
tion and multi-modal reasoning, integrating signals
from text, vision, audio, and beyond. The transi-
tion of LLMs from mere next-token predictors to
structured reasoners is under way, and while ol
showcases the promise of today’s solutions, forg-
ing robust, trustworthy, and multi-modal reasoning
engines necessitates substantial future works.



7 Limitations

In this survey, we focus on providing a systematic
review of reasoning LLMs, but several technical
aspects, such as the optimization techniques and
iteration processes of the widely used reinforce-
ment learning algorithm Group Relative Policy Op-
timization (GRPO), have not been discussed in
depth. Additionally, as reasoning LL.Ms are an
emerging class, numerous communities, research
groups, and companies are working to replicate the
performance of ol and R1 in order to develop their
own powerful reasoning LLMs. Some of the exist-
ing works in this area, such as training frameworks,
evaluation benchmarks, and considerations regard-
ing the safety and faithfulness of the reasoning pro-
cess, are still in progress and not yet complete. We
will continue to track developments in this field and
update the latest advancements related to reasoning
LLMs as they emerge.
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A The Family of OpenAl ol and
DeepSeek R1

A.1 Different Versions

The ol series represents a line of models, with
each version designed with different model sizes,
inference speeds, and prices to cater to diverse use
cases. Additionally, each version has specific rea-
soning capabilities that allow it to perform better in
various domains like mathematics, programming,



and science. In parallel, the R1 series has evolved
through a multi-stage training pipeline that not
only enhances its reasoning capabilities but also
improves output readability and computational effi-
ciency. The following is a breakdown of the release
dates, abilities, and features of the different ol and
R1 models:

* 0l-Preview, released on September 12, 2024
offers advanced multi-step reasoning and ex-
cels in complex problem-solving tasks. It fea-
tures the "chain of thought" process to en-
hance reasoning accuracy but requires higher
computational resources and has slower infer-
ence speed.

* 01-Mini, released on September 12, 2024, is
a faster, more cost-effective alternative to the
ol-Preview, offering 80% lower costs while
still providing good reasoning for tasks like
coding and STEM problems. It’s designed for
users who prioritize speed over the depth of
reasoning and is ideal for developers, students,
and quick technical applications.

* Full o1, released on December 5, 2024, pro-
vides the highest level of reasoning power,
with capabilities on par with PhD-level exper-
tise in fields like math, science, and program-
ming. It’s the most accurate and reliable op-
tion for professionals requiring precise, multi-
step analysis but comes with higher computa-
tional costs and slower performance.

* ol-Lite, to be released on January 2025, is a
lightweight, cost-efficient version of the full
ol, offering moderate reasoning abilities for
general tasks at faster speeds. It’s designed
for small businesses, educational platforms,
and individual users who need basic problem-
solving capabilities at a reduced price, without
the need for deep analysis or heavy computa-
tional resources.

* R1-Zero, released on January 20, 2025, is
developed using pure reinforcement learning
without any supervised fine-tuning. It demon-
strated significant improvements in reasoning
capabilities but encountered challenges in out-
put readability and language consistency.

* R1, released on January 20, 2025, is an en-
hanced version which incorporates a modest

amount of high-quality cold-start data to op-
timize the chain-of-thought process and im-
prove user-friendly outputs. With these im-
provements, its performance reaches a level
comparable to that of OpenAl-01-1217.

* R1-Distill, released on January 20, 2025, em-
ploys model distillation to transfer the ad-
vanced reasoning abilities of R1 to smaller
dense models. This distilled version main-
tains competitive performance on benchmarks
such as AIME 2024 and MATH-500 while
significantly reducing model size and com-
putational resource requirements, making it
ideal for deployment in resource-constrained
environments.

A.2 Performances on Benchmarks

Both OpenAl ol and DeepSeek R1 models have
demonstrated remarkable performance on a wide
range of challenging tasks, showcasing advanced
reasoning capabilities that rival expert human per-
formance in various domains. Below, we compare
their results across several benchmarks. Note: The
ol scores listed here are based on the initial release
reports.

* AIME 2024 (Math):

— ol: Achieved a score of 13.9, placing
it among the top 500 students nationally
and above the cutoff for the USA Mathe-
matical Olympiad, with a pass@1 accu-
racy of 74%.

— R1: Recorded a pass@1 accuracy of
79.8%, reflecting its robust multi-step
reasoning and precise problem-solving
approach.

* GPQA Diamond (Chemistry, Physics, and
Biology):

— ol: Achieved a pass@1 accuracy of
78.0%, surpassing the performance of
recruited human experts with PhDs and
becoming the first model to achieve such
a feat.

— R1: Achieved a pass@1 accuracy of
71.5%, underscoring its competitive edge
in scientific reasoning.

* Programming Contests Hosted by Code-
forces (Coding):



— ol: Achieved an Elo rating of 1807, per-
forming better than 93% of competitors.

— R1: Demonstrated an even higher com-
petitive edge with an Elo rating of 2029,
performing better than 96% of competi-
tors.

* MATH-500 (Math):

— ol: Achieved a pass@1 accuracy of
94.8% on the benchmark, demonstrating
its advanced reasoning capabilities.

— R1: Excelled with a pass@1 accuracy
of 97.3%, further highlighting its strong
mathematical reasoning abilities.

As shown in Table 1 and Figure 1, the evalu-
ation of ol demonstrates substantial gains over
GPT-40 on a diverse array of reasoning-intensive
benchmarks, including competition math, code-
generation challenges, and domain-specific ques-
tion answering. On average, ol exhibits consider-
ably higher pass@1 and consensus @64 accuracy
than its predecessor, indicating that its targeted ar-
chitectural and training improvements have led to
more robust reasoning capabilities.

Figure 2 presents some human evaluation re-
sults between openai ol and gpt-4o. Interestingly,
the human preference evaluations reveal that ol
does not uniformly outperform gpt-4o0 across all
domains. While ol demonstrates a pronounced ad-
vantage in more structured, logic-driven tasks, such
as computer programming, data analysis, and math-
ematical calculation (where it wins over 70% of all
cases), it lags slightly behind gpt-40 in more sub-
jective or stylistic tasks like personal writing. For
editing text, ol and gpt-4o are comparable, suggest-
ing that the model’s improvements in reasoning do
not necessarily translate to an equally strong edge
in language polish or creative composition.

Similarly, R1 achieves performance that is com-
petitive with, or even surpasses, that of ol in several
key areas. While ol has set state-of-the-art bench-
marks—such as outperforming PhD-level experts
on GPQA Diamond and securing a top-500 rank
on the AIME 2024 exam—R1 consistently delivers
high accuracy on similar tasks. Detailed compar-
ison results between ol and R1 can be found in
Figure 3.

B Training Details

As discussed earlier, reasoning datasets are meticu-
lously structured, often representing step-by-step
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problem-solving processes. Effectively training
LLMs on such datasets requires methodologies
that maximize the utility of each reasoning step,
whether correct or erroneous. This section explores
three key training paradigms designed to leverage
reasoning datasets for training ol-like reasoning
LLMs:

1 Supervised Fine-tuning (SFT): A founda-
tional technique that refines pre-trained LLMs
by explicitly teaching structured reasoning
patterns through labeled (INSTRUCTION,
ANSWER) pairs.

Reinforcement Learning from Human
Feedback (RLHF): A refinement approach
that aligns LLLM outputs with human prefer-
ences or quality signals, further enhancing rea-
soning skills through iterative optimization.

Direct Preference Optimization (DPO): A
simplified alternative to RLHF that directly
optimizes fine-tuned LLMs for preferred rea-
soning outputs without requiring intermediate
reward modeling.

A summary of each of these paradigms is pre-
sented in Table 3. Below we present their method-
ologies, strengths, and contributions to reasoning-
focused training in details.

B.1 Supervised Fine-tuning

Supervised Fine-tuning (SFT) serves as the cor-
nerstone for developing reasoning capabilities in
LLMs. By utilizing structured (instruction, an-
swer) pairs, SFT provides explicit guidance, en-
abling models to learn systematic reasoning pat-
terns and produce accurate outputs across complex
reasoning tasks. The process typically begins with
a pre-trained LLM, which embodies extensive gen-
eral knowledge and linguistic understanding. SFT
fine-tunes these models on task-specific datasets,
emphasizing logical reasoning, problem-solving,
and domain-specific expertise. These datasets of-
ten reflect deterministic reasoning frameworks, en-
abling the model to generate consistent and inter-
pretable outputs for tasks such as mathematical
problem-solving, program synthesis, and logical
deduction. To further optimize performance, SFT
is frequently integrated with complementary train-
ing paradigms. For instance, multi-task fine-tuning
leverages diverse datasets to improve generaliza-
tion, while curriculum learning structures training



Dataset Metric gpt-40  ol-preview ol
Competition Math AIME (2024) C;’;:S(?@T‘ 1;;‘ ij:g gi:i
Competition Code CodeForces Per]cael:g tile 18 ? % 16’3:508 18,8,703
. cons@64 56.1 78.3 78.0
GPQA Diamond pass@1  50.6 733 77.3
el cons @64 63.2 73.7 68.4
pass@1 61.6 65.9 69.2
Chemistry cons@64 43.0 60.2 65.6
pass@1 40.2 59.9 64.7
i cons@64 68.6 89.5 94.2
pass@1 59.5 89.4 92.8
MATH pass@1 60.3 85.5 94.8
MMLU pass@1 88.0 90.8 92.3
MMMU (val) pass@1 69.1 n/a 78.2
MathVista (testmini) pass@1 63.8 n/a 73.9

Table 1: Official evaluation results of ol on typical benchmarks (o1 Contributors, 2024).

gptdo
ML Benchmarks
MATH - 94.8
MathVista (testmini) 73.9
MMMU (val) - 78.2
MMLU - 92.3
0 20 40 60 80 100
pass@1accuracy
Exams
AP English Lang 58.0
AP Physics 2 4 81.0
AP English Lit 4 68.0
LSAT - 95.6
AP Calculus - 83.3
AP Chemistry 4 89.0
SAT EBRW 4 94.4
0 20 40 60 80 100

percent raw score

olimprovement
PhD-Level Science Questions

(GPQA Diamond)
Chemistry 4 64.7
Physics 4 92.8
Biology - 69.2
0 2|O 4|0 6b 8b 1OIO
pass@1accuracy
MMLU Categories
Global Facts A 784
College Chemistry A 78.1
College Mathematics 98.1
Professional Law - 85.0
Public Relations 4 80.7
Econometrics 87.1
Formal Logic 4 97.0
0 QIO 4|0 Gb 8I0 1(30

pass@1 accuracy

Figure 1: Official sub-category evaluation results of ol on typical benchmarks (o1 Contributors, 2024).

data to progressively increase task difficulty. This
adaptability allows SFT to be tailored to specific
reasoning requirements, making it a versatile and
essential component of LLM training.

B.2 Reinforcement Learning with Human
Feedback (RLHF)

Reinforcement Learning from Human Feedback
(RLHF) has emerged as a critical paradigm for
aligning large language models with human prefer-
ences, enabling improved reasoning and alignment
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Human preferences by domain: oi-preview vs GPT-40
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Figure 2: Official human evaluation results of ol (o1 Contributors, 2024).
Machine Human
Dataset Data Source Data Scale Generated Generated Open-source
PRMSO00K (Swamy et al., 2024)! MATH 800K annotations v v e
O1-Journey (Qin et al., 2024)> MATH, PRM800K 677 instances v v V2
Self-Explore (Hwang et al., 2024a) GSMB8K, MATH Model-specific v X X
MARIO (Liao et al., 2024b)3 GSMB8K, MATH, MetaMath 28.8K instances v v V3
MathGenie (Lu et al., 2024) GSMS8K, MATH 170K qa pairs v X X
DeepSeekMath (Shao et al., 2024b)* AlgebraicStack, arXiv, GitHub 120B tokens v v V4
Compute-Optimal Sampling (Bansal et al., 2024) GSMS8K, MATH, etc. Model-specific v X X
MathScale (Tang et al., 2024)° GSMS8K, MATH 2M qa pairs v X V3
G-LLaVA (Gao et al., 2023)° Geometry3K, GeoQA+ 170K instances v X Vo

L https://github.com/openai/prm8eok
2 https://github.com/GAIR-NLP/01-Journey

3 https://github.com/MARIO-Math-Reasoning/MARIO

4 https://github.com/deepseek-ai/DeepSeek-Math
5 https://github.com/XylonFu/MathScale
5 https://github.com/pipilurj/G-LLaVA

Table 2: An overview of currently widely-adopted reasoning datasets for LLMs.

capabilities. By incorporating iterative feedback
and leveraging reinforcement learning techniques,
RLHF enhances the models’ ability to evaluate,
refine, and generate outputs aligned with human
expectations. Recent works have advanced this
approach by introducing innovative frameworks
for training reward models, integrating guided de-
coding, and enabling self-improvement without re-
liance on extensive human annotations.

B.3 Direct Preference Optimization (DPO)

Direct Preference Optimization (DPO) (Rafailov
et al., 2024; Xiao et al., 2024; Amini et al., 2024)
is an emerging training paradigm designed as a
simpler alternative to RLHF. Unlike RLHF, which
relies on reward modeling and reinforcement learn-
ing algorithms like Proximal Policy Optimization
(PPO), DPO directly optimizes a language model’s
outputs to align with human preferences by fine-
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tuning the model on comparison data. This ap-
proach eliminates the complexity of learning a re-
ward function and instead leverages pairwise pref-
erence data to improve the quality and alignment
of generated outputs, offering an efficient and scal-
able solution for enhancing reasoning capabilities
in LLMs.

C Inference Details

Multi-step reasoning tasks are prone to errors at
any step, as small mistakes can cascade into in-
correct final answers. To address this, reasoning
LLMs often generate multiple reasoning paths for
a given input question during the inference stage
and choose the answer that aligns best with the
most logically consistent and broadly supported
reasoning steps.

In this section covers the following three widely
used techniques in reasoning LL.Ms, which we


https://github.com/openai/prm800k
https://github.com/GAIR-NLP/O1-Journey
https://github.com/MARIO-Math-Reasoning/MARIO
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https://github.com/XylonFu/MathScale
https://github.com/pipilurj/G-LLaVA
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Figure 3: Results of DeepSeek-R1 (DeepSeek-Al et al., 2025). The figure is adapted from DeepSeek-Al et al.

(2025).

think are crucial in building o1-like reasoning mod-
els:

1 Tree of Thoughts, which represents the rea-
soning process as a tree structure and explores
various branches to determine the most effec-
tive path.

2 Automated Reasoning Critic, which em-
ploys a trained critic model to evaluate and
validate the reasoning steps generated by the
LLMs.

Self-Correction, where the LLM mimics hu-
man critical thinking by iteratively reviewing,
identifying errors, and refining its reasoning
steps to enhance accuracy and logical consis-
tency.

In addition to these three inference techniques,
we will also explore "Inference Scaling Laws",
which provide insights into how reasoning perfor-
mance improves as inference time increases, en-
abling us to balance the trade-off between com-
putational efficiency and reasoning accuracy. An
overview of this section is provided in Table 4.

C.1 Tree of Thoughts

In complex reasoning tasks, systematically explor-
ing multiple paths of thought is crucial for finding
optimal solutions. Tree of Thoughts represents the
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reasoning process as a tree structure, enabling mod-
els to systematically explore and evaluate different
solution branches. This approach not only helps
models find optimal solutions but also prevents
them from getting stuck in local optima. The frame-
work employs various tree search strategies, start-
ing from fundamental methods like Breadth-first
and Depth-first Search (Yao et al., 2024; Yuan et al.,
2024; Feng et al., 2023) and advancing to more so-
phisticated approaches such as Monte Carlo Tree
Search (Zhang et al., 2024b; Tian et al., 2024;
Xie et al., 2024; Chen et al., 2024b; Zhang et al.,
2024a).

C.2 Automated Reasoning Critic

In the reasoning process of LLMs, the ability to
identify and correct faulty reasoning steps is es-
sential. Automated Reasoning Critic (Barto et al.,
1983; Saunders et al., 2022) introduces dedicated
critic models to evaluate the correctness and logical
consistency of reasoning steps, thereby improving
the reliability of the reasoning process. This ap-
proach mirrors how humans validate their thinking
process when solving complex problems, providing
a systematic way to assess and improve the quality
of generated reasoning.

C.3 Self-Correction

Errors in reasoning often accumulate progressively,
where small mistakes can lead to significant devi-



Paper Key Innovation Main Techniques
Sec. B.1 Supervised Fine-tuning (SFT)
ToRA Tool-integrated Mathematical Focused Imitation Learning, Output Space Shaping
(Gou et al., 2023) Reasoning Agents
AlphaLLM Self Improving Training SFT with Monte Carlo Tree Search
(Tian et al., 2024)
MARIO Mathematical Reasoning Framework Data Enhancement with GPT-4, Human Re-

(Liao et al., 2024a)

view, and Self-training

Self-Critiquing
(Saunders et al., 2022)
OovM

(Yu et al., 2023)
PPO-MCTS

(Liu et al., 2023)
MATH-SHEPHERD
(Wang et al., 2024b)
Qwen-2.5-math
(Zhang et al., 2025)
Roadmap to ol
(Zeng et al., 2024)
PROCESSBENCH
(Zheng et al., 2024)

PRMBENCH
(Song et al., 2025)

Fundations of Language Model Self-
Critiquing

Evaluating the Potential of Incomplete Rea-
soning Paths

Value-Guided Decoding trhough PPO

Eliminatioin of Human Annotation
Enhanced Process Reward Model

Combination of Various Techniques to Re-
produce ol

Benchmark for Error Identification in
Mathematical Reasoning

Fine-grained Benchmark for Process Re-
ward Models

Sec. B.2 Reinforcement Learning from Human Feedback (RLHF)

Al-assisted Human Feedback,
Outcome-supervised Value Models
Proximal Policy Optimization, Monte
Carlo Tree Search

step-wise verification through MCTS
LLM-as-a-judge

Policy Initialization, Reward Shaping, Pol-
icy Gradient

Step-level Error Detection

Multi-dimensional Evaluation Benchmark

CPO

(Zhang et al., 2024c)
SVPO

(Chen et al., 2024c)
PPO-MCTS

(Liu et al., 2023)
Self-Explore
(Hwang et al., 2024b)
Agent Q

(Putta et al., 2024)

Sec. B.3 Direct Preference Optimization (DPO)

Fine-tuning CoT reasoning with ToT

Step-level preferences for reasoning im-
provement

Value-guided decoding during inference

Self-guided Learning with Fine-grained Re-
wards

Enhanced Agentic reasoning

Tree-of-Thoughts framework, Paired pref-
erence fine-tuning

MCTS for step-level preferences, Value
model integration
PPO value network MCTS

First-pit Identifications

MCTS with Al feedback, Offline DPO

Table 3: An overview of LLM Training Techniques.

ations in final results. The Self-Correction mech-
anism (Huang et al., 2023; Madaan et al., 2024)
enables large language models to engage in self-
reflection and correction, similar to human criti-
cal thinking. Through iteratively reviewing, iden-
tifying errors, and refining reasoning steps, this
approach improves the accuracy of final answers.
This methodology is particularly effective for tasks
requiring multi-step reasoning.
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C.4 Inference Scaling Laws

Inference Scaling Laws examine the relationships
between inference time, computational resource
allocation, and reasoning performance. Research
on inference-time compute scaling suggests that
spending more computational resources during in-
ference can significantly enhance model perfor-
mance, a principle applied in ol models. Very
recently, DeepSeek models (DeepSeek-R1-Lite-
Preview, 2024) also demonstrate the inference scal-



Question: If a > 1, then the sum of the real solutions of va — Va + x = x is equal to

Response: <think>

To solve the equation va — va + x = x, let’s start by squaring both - - -

2
( a—Va+x) =x2 - a—Va+X:x2

Rearrange to isolate the inner square root term:

(a-x*?=a+x = a®-2ax?+ (x?)?

=a+x = x*-2ax?-x+(a®-a)=0

Wait, wait. Wait. That’s an aha moment I can flag here.
Let’s reevaluate this step-by-step to identify if the correct sum can be - - -

We started with the equation:

Va-+Va+x=x
First, let’s square both sides:

a+x=x* = \a+x=a-x?

a—

Next, I could square both sides again, treating the equation: - - -

Figure 4: An intriguing "aha moment" observed in an intermediate version of DeepSeek-R1-Zero (DeepSeek-Al
et al., 2025), where the model demonstrates the ability to rethink its approach using an anthropomorphic tone.
This moment not only highlights the model’s evolving reasoning capabilities but also underscores the remarkable
potential and elegance of reinforcement learning in fostering advanced cognitive behaviors. The figure is adapted

from DeepSeek-Al et al. (2025).

ing law, as shown in Figure 5. This sub-section ex-
plores how understanding these laws can guide the
optimal configuration of computational resources,
providing theoretical insights for maximizing rea-
soning capabilities while maintaining efficiency.

D O1-like Reasoning LLLMs

D.1 Marco-ol

Macro-ol (Zhao et al., 2024), developed by Al-
ibaba, explores the generalization capabilities of
the ol model in open-ended domains lacking clear
standards or quantifiable rewards, unlike disci-
plines with standard answers such as mathemat-
ics, physics, or coding. It employs techniques in-
cluding CoT fine-tuning, Monte Carlo Tree Search
(MCTS), reflective processes, and advanced rea-
soning to address complex real-world challenges.
Experimental results indicate that Macro-ol ex-
hibits ol-like reasoning abilities, achieving signifi-
cant accuracy gains of +6.17% on the MGSM (En-
glish) dataset and +5.60% on the MGSM (Chinese)
dataset, highlighting its improved reasoning perfor-
mance. Additionally, it pioneers the application of
large reasoning models (LRMs) in machine transla-
tion, particularly excelling in translating slang ex-
pressions, while investigating inference-time scal-
ing laws in multilingual contexts.
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Macro-o1’s core idea is to first fine-tune a base
LLM using a combined dataset and then perform
inference with MCTS to expand the solution space.
The fine-tuning dataset comprises three compo-
nents: the refined Open-O1 CoT Dataset (O1,
2025), a Marco-ol CoT Dataset generated via
MCTS, and the Marco Instruction Dataset. During
inference, two action strategies are applied within
the MCTS framework: “step as action” for efficient
exploration and “mini-step as action” (32 or 64
tokens) for finer granularity. The latter broadens
the solution space by incorporating more detailed
reasoning steps, enhancing the model’s capacity
to handle complex tasks. A reflection mechanism
further improves performance by prompting the
model to reevaluate its reasoning with phrases like:
“Wait! Maybe I made some mistakes! I need to
rethink from scratch.” This self-reflection helps cor-
rect errors in difficult problems. The final solutions
are selected based on calculated confidence scores.

D.2 o01-Coder

01-Coder (Zhang et al., 2024d), developed by Bei-
jing Jiaotong University, aims to evaluate the per-
formance of OpenAI’s ol model in coding tasks by
adapting it to better address programming-related
problem-solving challenges. The goal is to en-
hance the model’s capabilities through focused im-
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Figure 5: DeepSeek-R1-Lite-Preview (DeepSeek-R1-Lite-Preview, 2024) shows consistent score improvements on
AIME as the length of reasoning increases. The figure is adapted from (DeepSeek-R1-Lite-Preview, 2024).

provements. ol-Coder combines RL with MCTS
to strengthen the model’s System-2 reasoning abil-
ities. The system involves training a Test Case
Generator (TCG) for standardized testing, utilizing
MCTS to generate reasoning-augmented code data,
and iteratively refining the policy model to evolve
from pseudocode to fully functional code.
ol-Coder consists of six key steps: 1. The pro-
cess begins by training a TCG, denoted as yrcg, to
automatically create test cases based on the given
problem descriptions. 2. Next, MCTS is applied to
the original code dataset, producing a new dataset
Dprocess- This dataset incorporates reasoning pro-
cesses and a validity indicator to distinguish correct
from incorrect steps. 3. The dataset is then used
to fine-tune the policy model 7y, encouraging it
to adopt a “think before acting” approach. 4. The
reasoning data from the previous step is used to
initialize a process reward model (PRM), pprm,
which evaluates the quality of reasoning steps. 5.
Both the pprM, and ycg, provide rewards based
on process and outcome, respectively. This enables
reinforcement learning to iteratively update the pol-
icy model 7. 6. Finally, the updated policy model
generates new reasoning data, which is used to re-
fine the pprM, creating a self-improving iterative
cycle through steps 4, 5, and 6. This approach
forms a feedback loop that enhances the model’s
reasoning and coding performance over time.

E Multi-modal Reasoning LLMs

E.1 Insight-V

Insight-V (Dong et al., 2024) is a framework de-
signed to enhance the multi-step visual reasoning
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capabilities of MLLMs by constructing reliable
multi-step reasoning data and developing a refined
training process. The authors propose the following
techniques: (1) a flexible strategy for generating
multi-step reasoning data for complex multi-modal
tasks, (2) a multi-agent system that divides task
handling processes into reasoning and summariza-
tion parts to enhance response quality, and (3) a
two-stage training process to better cultivate agents’
abilities. The data generation pipeline utilizes a
progressive method to create formatted multi-step
reasoning data with various reasoning paths and
a multi-level assessment system to evaluate the
quality of the generated reasoning data and divide
them into different datasets. The multi-agent sys-
tem employs a reasoning agent to generate detailed
reasoning steps and a summarization agent to ex-
tract core logic and generate concise response. The
two-stage training pipeline involves SFT of a base
MLLM to develop the reasoning and summariza-
tion agents, followed by iterative DPO to align the
reasoning agent with human preferences. The pro-
posed techniques lead to significantly improved
performance on complex multi-modal visual rea-
soning benchmarks and effortlessly retains or ele-
vates its performance on multi-modal perception
tasks.

E.2 Sketchpad

Sketchpad (Hu et al., 2024) is a framework de-
signed to enhance the multi-step multi-modality
reasoning process by inserting image processing
behaviors in the inference phase. The authors in-
troduce this technique to remedy the shortcomings
of current CoT and tool-use paradigms, which rely



Paper Key Innovation Main Techniques

Sec. C.1 Tree of Thoughts
Tree of Thoughts Ist tree-structured reasoning framework BFS/DFS search, Self-evaluation, Back-
(Yao et al., 2024) tracking
EURUS Tree-structured alignment dataset ULTRAINTERACT dataset, Preference
(Yuan et al., 2024) learning
TS-LLM AlphaZero-inspired framework Markov Decision Process (MDP) formula-
(Feng et al., 2023) tion, Deep search (64 depth)
MCTSr Enhanced MCTS for math Self-reflection, Dynamic pruning, Upper
(Zhang et al., 2024b) Confidence Bound (UCB)
ALPHALLM Self-improvement framework Option-level MCTS, Adaptive branching,
(Tian et al., 2024) State merging
MCTS-DPO Step-level preference learning w/ MCTS ~ MCTS guided exploration, DPO updates,
(Xie et al., 2024) Step-level signals
AlphaMath Self-supervised MCTS reasoning Step-level value model, Beam search, Self-
(Chen et al., 2024b) improvement
ReST-MCTS* Process-reward enhanced MCTS Per-step rewards, Dual optimization, Dy-

(Zhang et al., 2024a)

namic exploration

CriticGPT
(McAleese et al., 2024)
AutoMathCritique
(Xi et al., 2024)
LLM-ARC
(Kalyanpur et al., 2024)

Sec. C.2 Automated Reasoning Critic

LLM-based code critique
Two-player math reasoning

Neuro-symbolic reasoning

Tampered data generation, RLHF, Bugs
identifying

Dynamic supervision, Error generation

LLM + reasoning engine integration, An-
swer Set Programming (ASP) solver

SCoRe
(Kumar et al.)
CoSC

(Gao et al., 2024)

DotaMath
(Li et al., 2024)

Sec. C.3 Self-Correction
Multi-turn RL framework

Embedded self-correction

Integrated mathematical reasoning

Self-generated data, Two-stage training,
Reward shaping

Program generation, execution, and verifi-
cation, Two-phase fine-tuning
Multi-round correction, Python executor,
Task decomposition

Scale-Compute
(Snell et al., 2024)
REBASE

(Wu et al., 2024)
LLMonkeys
(Brown et al., 2024)
STILL-2

(Min et al., 2024)
MindStar

(Kang et al., 2024)

Sec. C.4 Inference Scaling Laws

Test-time compute analysis
Reward balanced search
Sampling analysis
Three-phase training

No-tuning enhancement

Compute-optimal strategy, Process-based
Reward Models (PRMs) search

Dynamic tree optimization, Pruning with a
reward model

Repeated sampling, Exponentiated power
law, Cost optimization

Imitation, Exploration, Self-improvement,
Long-form Thought Dataset

PRM-guided search, Dynamic exploration,
Levin tree search

solely on text during intermediate reasoning stages.
Unlike prior works where language models (LMs)

Table 4: An overview of LLM Inference Techniques.
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generate images via text-to-image models, the au-
thors equip LMs with the ability to draw lines,



Report/Paper Comparison

Model Organization #Params  Open Source Available with ol
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Table 5: Overview of recent efforts in reproducing OpenAl ol. The format ‘671B-A31B’ refers to MoE models

with 671B total and 31B active parameters.

boxes, marks, etc., mimicking human sketching
and thus improving the reasoning process. Addi-
tionally, to improve visual perception and reason-
ing, Sketchpad leverages specialized vision models
to optimize its sketching process (e.g., using object
detection models to draw bounding boxes and seg-
mentation models to create masks). Evaluation ex-
periments for this work were conducted on several
kinds of benchmark datasets, covering topics such
as geometry, functions, graphs, chess, and challeng-
ing visual reasoning tasks. Compared to powerful
baseline models without applying proposed tech-
nique, Sketchpad significantly boosts performance
across all tasks. Specifically, it improves average
performance on math tasks by 12.7% and visual
tasks by 8.6%. Using the proposed technique, GPT-
40 achieves the best performance across all bench-
marks, such as V*Bench (Wu and Xie, 2023) with
a score of 80.3%, and visual correspondence at
80.8%.

E.3 ChartPall-5B

ChartPalLI-5B (Carbune et al., 2024) is a MLLM
based on PalLI3-5B (Chen et al., 2023) designed
to improve the chart-related reasoning abilities of
VLMs. To narrow the reasoning ability gap be-
tween smaller VLMs and LLMs, the authors pro-
pose a method to transfer knowledge from LLMs.
First, they adopt the improved chart-to-table conver-
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sion (?) and use this refined chart representation to
undergo pre-training. Then, they construct a dataset
that is 20 times larger than the original training set.
Following that, the authors design reasoning steps
with table representations of charts to strengthen
both reasoning and numerical capabilities. Finally,
they fine-tune the model using a multitask loss
(Hsieh et al., 2023) on the constructed datasets.
These datasets contains reasoning steps generated
by more powerful LLLMs, enabling the transfer of
reasoning abilities. ChartPalLI-5B achieves state-of-
the-art performance on ChartQA and significantly
improves performance on PlotQA and FigureQA.
Moreover, even without an upstream OCR system,
ChartPal.I-5B surpasses much larger models like
PaLLIX-55B while maintaining similar inference
times as its base model PalLI3-5B. Additionally,
by adopting a straightforward program-of-thought
prompt (Chen et al., 2022) to refine the logic chain,
ChartPalLI-5B even outperforms the recently re-
leased Gemini Ultra and GPT-4V.

E.4 Spatial VLM

Spatial VLM (Chen et al., 2024a) is a framework
designed to enhance the spatial understanding and
reasoning capabilities of VLMs by leveraging out-
of-the-box vision models to generate spatial an-
notations on the training data. This work tackles
the difficulties encountered by VLMs in spatial
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comprehension and reasoning, particularly in tasks
involving the interpretation of numerical relation-
ships between physical entities, such as variations
in size and spatial distance. The authors suggest
that this limitation arises from the lack of annota-
tion of spatial information in the training data. The
proposed solution is to enhance VLMs by train-
ing them on a large-scale spatial reasoning dataset.
First, they develop an automated framework for
generating visual question answering (VQA) data
with rich spatial information annotations. By inte-
grating techniques such as region captioning and
segmentation, this framework annotates real-world
data at scale and formats it for training VLMs on
diverse tasks. With this framework and 10 million
real-world images, they finally gain 2 billion VQA
examples. Next, they explore several key factors
in the training process, such as model architecture
and data quality, trying to develop an optimized
training mechanism. The natural language inter-
face of a powerful VLM using Spatial VLM can
support complex spatial reasoning by facilitating
a CoT process, making it efficient for tackling so-
phisticated spatial problems. It also enables the
model to serve as an open-vocabulary reward anno-
tator for tasks involving rearrangement. Training
a VLM on the dataset created using the proposed
techniques improves the model’s qualitative and
quantitative spatial understanding and reasoning
capabilities, enabling it to achieve significant per-
formance improvements on related tasks. VLMs
applying this technique can further carry out more
complex spatial perception applications , thanks to
their abilities to make quantitative estimations.

E.5 Chain-of-Table

Chain-of-Table (Wang et al., 2024f) is a frame-
work designed to improve the reasoning abilities of
LLMs when working with table-based data. While
CoT and similar methods integrate reasoning pro-
cesses as textual context, effectively incorporating
tabular data into this reasoning chain remains a
challenge. Table-based reasoning involves extract-
ing semantics from unstructured questions and par-
tially structured tabular information, which differs
from conventional reasoning tasks. The authors
propose a method that directly utilizes tabular data
in the intermediate steps of the reasoning chain,
carrying out progressive reasoning through tabular
operations, thereby forming a chain of intermedi-
ate tables. The authors employ in-context learning
to teach the model to use table operations (e.g.,
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adding columns, filtering rows, or grouping) step
by step to refine or simplify the table. This enables
LLMs to dynamically plan each subsequent action
based on the intermediary tables in the operation
history. Such a process better utilizes the semantics
of the table that is continuously optimized during
reasoning. Chain-of-Table sets a new benchmark
in performance on the WikiTQ (Pasupat and Liang,
2015), FeTaQA (Nan et al., 2022), and TabFact
(Chen et al., 2020) datasets.

E.6 QVQ-72B-Preview

QVQ-72B-Preview (Team, 2024a) is a MLLM built
upon Qwen2-VL-72B (Wang et al., 2024c), de-
signed to enhance visual reasoning capabilities
through step-by-step reasoning. It aims to improve
LLMs’ cognitive abilities by incorporating visual
understanding. However, few technical details are
currently available. The team mainly presents eval-
uation results and discusses the model’s limitations.
QVQ-72B-Preview has achieved impressive results
across several benchmarks, including an outstand-
ing 70.3% on the MMMU benchmark, demon-
strating QVQ’s strong ability in multi-domain rea-
soning and comprehension. The model’s substan-
tial improvements on MathVision (Wang et al.,
2024a) highlight its advancements in mathemat-
ical problem-solving. OlympiadBench (He et al.,
2024) further showcases its enhanced capability to
address complex challenges. Despite these achieve-
ments, the model has several limitations. For in-
stance, it may mix languages or enter recursive
reasoning loops, affecting response clarity and con-
ciseness. Although it has made advancements in
visual reasoning, it struggles with multi-step rea-
soning, occasionally hallucinating or losing focus,
and does not outperform Qwen2-VL-72B in basic
recognition tasks. Additionally, the model is lim-
ited to single-round dialogues and image outputs,
with no support for video inputs.

F Evaluation Benchmarks

GPQA. The GPQA (Rein et al., 2023) dataset
provides a challenging benchmark for evaluating
reasoning abilities, particularly in scientific do-
mains such as physics, chemistry, and biology. It
consists of graduate-level multiple-choice ques-
tions carefully crafted by domain experts to test
the limits of human and Al performance. What
makes GPQA unique is its difficulty: even experts
with PhDs or those pursuing advanced degrees in



Pretraining Fine-tuning

Model or Framework Base Model Input Modality Data Scale  Data Scale Open-source
Insight-V (Dong et al., 2024) Qwen-2.5-7B Text/Image 558K 4M images vl
LLaVA-CoT-11B (Xu et al., 2024) Llama-3.2-11B-Vision-Instruct Text/Image - 99K V2
Sketchpad (Hu et al., 2024) GPT-40 Text/Image - - V3
ChartPalLI-5B (Carbune et al., 2024) Pal.I-3 Text/Image(chart) 2.37M 544.9K X
Spatial VLM (Chen et al., 2024a) PalLM 2-E Text/Image(3d) - - V3
Chain-of-Table (Wang et al., 2024f) PalLM 2-S, Llama-2-17B-chat Text(table) - - v4
QVQ-72B-Preview (Team, 2024a) Qwen2-VL-72B Text/Image - - v

Y https
2https
3 https
4https

://github.com/dongyh20/Insight-V
://github.com/PKU-YuanGroup/LLaVA-CoT
://github.com/Yushi-Hu/VisualSketchpad

® https://github.com/remyxai/VQASynth
6https://huggingface.co/Qwen/QVQ—72B—Preview
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Table 6: An overview of emerging LLMs designed for multi-modal reasoning.

relevant fields achieve only 65% accuracy, which
increases to 74% when accounting for errors iden-
tified retrospectively. Highly skilled non-experts,
despite having unrestricted access to the internet,
achieve a mere 34% accuracy. The dataset is also
notably difficult for state-of-the-art Al systems like
GPT-4, which achieves only 39% accuracy, signif-
icantly above random chance (25%). This makes
GPQA an ideal testbed for evaluating large reason-
ing models. As the Al community continues to
explore advanced reasoning capabilities, datasets
like GPQA will be crucial in assessing whether Al
models can handle tasks that are inherently difficult
for both human experts and Al systems alike.

OlympiadBench. OlympiadBench (He et al.,
2024) offers a comprehensive and rigorous bench-
mark for evaluating reasoning abilities, particularly
in mathematics and physics, through a bilingual
multimodal dataset. Comprising 8,476 challenging
problems sourced from international Olympiads,
Chinese Olympiads, and the Chinese College En-
trance Exam (GaoKao), OlympiadBench pushes
the boundaries of current Al models. Each prob-
lem is annotated with expert-level step-by-step rea-
soning, ensuring that the dataset captures the full
depth of problem-solving processes. Additionally,
OlympiadBench addresses a critical gap in exist-
ing benchmarks by incorporating multimodal rea-
soning, as many scientific tasks require not just
textual analysis but also an understanding of vi-
sual or geometric information. With its rigorous
design, OlympiadBench serves as an essential tool
for assessing the true reasoning capabilities of state-
of-the-art Al models, helping to guide future ad-
vancements in artificial general intelligence.
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Minerva. Minerva (Lewkowycz et al., 2022) in-
troduces a benchmark specifically focused on test-
ing large language models in quantitative reason-
ing across various scientific domains, including
mathematics, physics, chemistry, and biology. The
dataset contains over 200 undergraduate-level prob-
lems drawn from MIT’s OpenCourseWare (OCW)
and other technical sources, providing a broad spec-
trum of challenges that require step-by-step reason-
ing and solution generation. Minerva pushes the
boundaries of model performance by testing the
ability to solve complex, real-world scientific prob-
lems without relying on external tools or solvers.
The problems in Minerva involve not only natu-
ral language processing but also the integration of
formal mathematical language, such as equations
and diagrams, to model accurate problem-solving
procedures. Minerva’s diverse and robust set of
problems offers a comprehensive platform for as-
sessing how well Al systems can handle multi-step,
quantitative reasoning tasks, providing a critical
measure for the development of future Al assis-
tants in scientific and engineering fields.

GSMS8K. GSMSK (Cobbe et al., 2021) is a
benchmark designed to evaluate the ability of lan-
guage models to perform multi-step mathematical
reasoning at the grade school level. It consists
of 8.5K high-quality, linguistically diverse math
word problems that cover a wide range of topics.
Despite the simplicity of the underlying math con-
cepts, the dataset poses significant challenges due
to its high linguistic diversity, requiring models to
demonstrate strong reasoning abilities in both inter-
preting natural language and solving mathematical
problems. GSMS8K provides a valuable resource
for advancing the development of models capable
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of tackling elementary yet challenging quantitative
reasoning tasks, serving as a key tool for testing
the reasoning and problem-solving abilities of Al
systems.

MATH. The MATH dataset (Hendrycks et al.,
2021) presents a challenging benchmark specif-
ically designed to evaluate the mathematical
problem-solving abilities of machine learning mod-
els. Comprising 12,500 competition-level math
problems from high school math competitions,
MATH covers a broad range of topics including
algebra, geometry, combinatorics, and number the-
ory. Each problem is accompanied by a full step-by-
step solution, enabling models to learn both the cor-
rect final answer and the reasoning process behind
it. The dataset is particularly valuable for testing
models’ abilities to perform multi-step reasoning
and generate coherent explanations. MATH’s com-
plexity, even for human experts, combined with
its large scale and focus on structured problem-
solving, makes it an essential benchmark for push-
ing the boundaries of AI’s reasoning capabilities,
particularly in the realm of mathematics.

AIME. The American Invitational Mathematics
Examination (AIME) (AI-MO, 2025) serves as a
prestigious benchmark for evaluating mathematical
reasoning abilities, particularly for high school-
level problem-solving. It is originally a selective
15-question, 3-hour exam that is open to students
who perform in the top 5% of the AMC 12 exam
(or top 2.5% of the AMC 10). The problems tested
in the AIME primarily focus on algebra, geometry,
trigonometry, number theory, probability, and com-
binatorics, and often require advanced problem-
solving techniques not typically covered in stan-
dard high school curricula. For large models, the
AIME dataset serves as an important benchmark
for evaluating their capabilities in multi-step math-
ematical reasoning.

Codeforces. Codeforces (Mirzayanov, 2025) is
a platform hosts regular programming contests,
known as "Codeforces Rounds," which challenge
participants to solve algorithmic problems under
time pressure. The problems typically span a vari-
ety of topics in computer science, including graph
theory, dynamic programming, data structures, and
number theory, requiring strong analytical and com-
putational reasoning skills. The Codeforces rating
system, similar to the Elo system, evaluates con-
testants based on their performance across these
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contests. With divisions for different skill levels
(Div. 1, Div. 2, Div. 3, and Div. 4), Codeforces
offers a wide range of problems suitable for eval-
uating Al systems at various levels of difficulty.
This makes Codeforces an excellent resource for
assessing the ability of large models to solve al-
gorithmic and coding problems, particularly those
requiring multi-step, logical reasoning and opti-
mization strategies.
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