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Abstract—This article presents an in-depth analysis of the used 

sailboat market, using data analysis techniques to provide in-
sights into pricing and influential factors. The study utilized Py-
thon and Excel to process and analyze data, employing different 
algorithms and statistical methods to build models and make 
predictions. We prepared a heartfelt and accessible report based 
on the conclusions and the results we derived from models and 
experiments for the Hong Kong broker. 

 
Index Terms—Ordinary Least Squares, Regression Analysis, 
ANOVA, Multicollinearity, MLP. 

 

I. INTRODUCTION 
1.1  Problem Background 

Despite fluctuating demand and rapidly changing national 
conditions, the global second-hand sailboat market is showing 
a steady expanding trend with continuous development of 
technology, presenting a great business opportunity. 

However, as a high-priced luxury goods transaction, asset 
pricing and market positioning analysis for second-hand sail-
boats are fraught with difficulties due to the numerous pa-
rameters and models of sailboats, significant randomness in-
volved, and relatively obscure specialized data. Therefore, it is 
necessary to collect valid data in relatively niche fields and 
conduct the most detailed statistical analysis and forecasting 
on the numerous and unexpected attributes of the data. 

1.2 Restatements and Clarifications 

In this study, we obtained pricing data for different types of 
used sailboats from various manufacturers and regions up to 
2019. The data includes information on boat length, place of 
origin, and year of production. Based on this data, we aim to 
analyze and address the following issues for an intermediary 
based in Hong Kong: 

1. Develop mathematical models to explain and predict the 
pricing of sailboats. 

2. Use the model to explain regional impact on pricing and 
validate cross-regional consistency. 

3. Discuss the practicality of the established model for the 
Hong Kong market and retrieve data todetermine if there are 
different regional effects in the Hong Kong market. 

4. Discover interesting information and conclusions. 
5. Write a concise, two-page report for the interested Hong 

Kong sailboat broker. 

 
This paper is submitted on March 25th, 2024 for review.  

1.3 Our Approach 

Noticing that using the data provided can not yield satisfac-
tory results in the Hong Kong used sailboat market, we collect 
specific parameters of yachts and macroeconomic data of the 
regions based on the problem background. After processing 
the data using Python and Excel, we accomplish the tasks for 
each question in the following way: 

1.To construct an explanatory model, we initially try OLS. 
However, this approach is susceptible to a severe issue known 
as multicollinearity. In order to mitigate this problem, we ex-
plore two alternative methods. The first involves removing 
correlated predictors in a heuristic manner to obtain a simpli-
fied OLS model, called mini-OLS. The second employs regu-
larization techniques to obtain a stable but biased ENR-OLS 
model. Additionally, we introduce a neural network model 
solely for predictive purposes and disregard its potential for 
explanation. 

2.We use statistical methods, including ANOVA and t-tests 
of coefficients, to analyze the effect of region on pricing, and 
test its consistency. 

3.We utilized macroeconomic data from Hong Kong to 
model its impact on regional macroeconomic factors. We se-
lected a subset of thirty records and analyzed the predicted 
results in comparison to actual yacht prices in Hong Kong. 
Our analysis demonstrated the effectiveness of using geo-
graphic regions as a predictor, and we tested this approach on 
both catamarans and monohull sailboats. 

4.We have made two noteworthy discoveries. One is that 
when simply using OLS analysis on original data, the error 
increases as the length does, indicating potential missing fac-
tors. The revised model included the square and cube of length 
as estimated specifications of sailboats, getting better out-
comes. The other discovery is that, although the OLS model 
exhibits multicollinearity, we can utilize its data to make per-
suasive conclusions by employing a Bayesian-like technique, 
namely partial regression analysis. 

5.Based on the work we did before, we write a report to 
help the broker understand Hong Kong used sailboat market. 

Fig. 1. Flow Chart of Our Work 

 
 
 
 
 
 
 



 

1.4 Notation 

Symbol Explanation 
LOA Length over all in meters 
S.A. Total surface area of sails when fully raised 
GDP Gross Domestic Product of country 

GDPPC Gross Domestic Product Per Capita of country 
marine Marine protected area of country 
OLS Ordinary Least Squares 
MLP Multilayer Perceptron 
VIF Variance Inflation Factor 

II. IMPLEMENTION 

2.1 Data Preprocessing 

2.1.1 Data Collecting 

Surprisingly any model built directly using the data provid-
ed in "2023_MCM_Problem_Y_Boats.xlsx" does not exhibit a 
good fit. We think that this phenomenon is because the data is 
insufficient for the model to analyze the market well, and 
therefore caused failed practical analysis and prediction. 

Based on this, we decide to collect more adequate data. Af-
ter collecting dozens of yacht specifications, we choose the 
yacht's LOA, model, beam, draft, displacement, sail area, fuel 
tank, and water tank as additional parameters, along with the 
derived S.A./disp. and disp./len. To make the model more pre-
cise, we also collected the macroeconomic parameters of dif-
ferent countries in different years. Then chose GDPPC, im-
port, export, and marine protected area as additional parame-
ters to make 'country' a quantitative parameter rather than 
simply qualitative data. We will provide the sources of data 
used in the references. [1][2][4][6][7][10][11][12][13][14][15] 

 

Fig. 2. Cloud Chart of Indicators 

 

2.1.2 Dealing with Missing Data 

As a relatively niche luxury market, the sailboat market 
does not provide a comprehensive and convenient database for 
boat specifications. Therefore, it is challenging to find round-
ed specifications of all given yachts. We choose to discard the 
corresponding records for the missing categorical data that 
does not have an apparent logical relationship. We use a semi-

supervised learning approach to obtain estimated values as 
fill-ins for the missing quantitative data that have certain regu-
larity. 

2.2 Modeling and Evaluation 

2.2.1 OLS: Ordinary Least Square 

Considering the goals of given problems, selecting an inter-
pretable model is crucial. Linear regression appears to be a 
suitable option, and therefore Ordinary Least Squares (OLS) 
was initially employed[8]. 

The formula for multiple linear regression can be expressed 
as follows: 

𝑦𝑦 = β0 + β1𝑥𝑥1 + β2𝑥𝑥2 +⋯+ β𝑝𝑝𝑥𝑥𝑝𝑝 + 𝜖𝜖 
where: 

𝑦𝑦 is the listing price (the one we want to predict) 
         𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑝𝑝 are the predictors 
        β0 is the intercept 
         β1,β2, … ,β𝑝𝑝 are the coefficients 

         ϵ is the error term. The sample size is large enough,   
so it can be assumed that the 𝜖𝜖 follows a normal distribu-
tion 𝑁𝑁(0, σ2). 

After running the model, we get  some evaluation values: 
 

Table 1. Evaluation of OLS 

 
The 𝑅𝑅2 value of 0.933 represents 93.3% of variation in the 

listing price variable can be accounted for by the predictors 
included in the linear regression model. 

𝑅𝑅2 = 1−
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)2𝑖𝑖
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑖𝑖

 

    where 𝑦𝑦𝑖𝑖 denotes the observed value, 𝑦𝑦𝚤𝚤�  denotes the predict-
ed value, 𝑦𝑦� denotes the mean of the observed values. 

The adjusted  𝑅𝑅2 value is similar but considers the number 
of independent variables in the model, indicating that 91.9% 
of the variability in the listing price can be explained by the 
predictors after adjusting for overfitting. 

𝑅𝑅2���� =
1 −𝐾𝐾
𝑁𝑁 −𝐾𝐾 +

𝑅𝑅2(𝑁𝑁 − 1)
𝑁𝑁 −𝐾𝐾  

The F-statistic is used to test the null hypothesis that all co-
efficients in the regression model are zero, suggesting that 
none of the predictors have a significant impact on the listing 
price. A high F-statistic value of 68.18 suggests that we can 
reject the null hypothesis, indicating that the model adequately 
fits the data and the predictors have a significant joint effect 
on predicting the listing price. 

The Durbin-Watson 𝑑𝑑 statistic serves as a means for mex-
amining the presence of autocorrelation within residual or 
error terms. Typically, a 𝑑𝑑  value between 1.5 and 2.5 is 
deemed satisfactory, whereas a 𝑑𝑑 value outside of this range 
suggests probable serious autocorrelation existing among error 
terms. 



 

2.2.2 mini-OLS:Drop Correlated Predictors  

Multicollinearity in regression occurs when two or more 
predictor variables are highly correlated with each other, mak-
ing it difficult to determine the individual effect of each pre-
dictor. This can lead to unreliable and unstable estimates of 
the regression coefficients and can make it difficult to interpret 
the results of the regression analysis. It is important to detect 
and address multicollinearity before interpreting the results of 
a regression analysis. 

The data we selected exhibited a multicollinearity issue, as 
indicated by the output of the code presented below:  
 
Notes: 
[1] ...... 
[2] The smallest eigenvalue is 2.68e-29. This might indicate 
that there are strong multicollinearity problems or that the 
design matrix is singular. 
 

To avoid such problem, several factors need to be consid-
ered. Dummy variable trap is an usual way to cause multicol-
linearity. To avoid it we need to perform one-hot encoding on 
(𝑛𝑛 − 1) dummy variables when the category size is 𝑛𝑛. 

One common way to solve multicollinearity is to eliminate 
predictors that are highly correlated with each other[5]. We 
applied the ‘Variance Inflation Factor’ technique to identify 
any interdependence among the predictors we selected, and 
obtained the results in a file named ’𝑣𝑣𝑣𝑣𝑣𝑣.𝑐𝑐𝑐𝑐𝑣𝑣’. The analysis 
revealed that it would be difficult to simultaneously achieve 
optimal variable selection and maintain complete leverage of 
the available data, so we have to drop lots of features to obtain 
a stable and interpretable model. 

After selecting predictors based on the ‘Variance Inflation 
Factor’ in a heuristic manner, we were left with the following 
7 predictors. 

 
Table 2. Model-2 Statistical Analysis to Predictor Coefficients 

 
The results demonstrate that our chosen predictors provide 

consistent coefficients, enabling us to effectively interpret 
their impact. This is evidenced by the p-values obtained from 
performing hypothesis $H_0: \beta_j = 0$ for each predictor, 
which are almost all close to zero. Additionally, their coeffi-
cients have confidence intervals that fall within a narrow range 
of epsilon. These findings suggest that Model 2 is robust and 
possesses a strong explanatory power. 

The observation also aligns with empirical evidence that the 
listing price exhibits a positive correlation with building mate-
rials, their efficacy, GDP per capita, and years they are built. 
The coefficients of these variables signify the degree to which 
the listing price could potentially rise with unit increase of the 
predictor, assuming linearity. 

The evaluation of this model is shown below: 
 

Table 3. Evaluation of mini-OLS 

 
 

As can be inferred, the adjusted 𝑅𝑅2���� value shows a signifi-
cant decrease to 0.614 while σ doubles in magnitude. This 
indicates that only 61.4% of the variation in listing price can 
be accounted for by this model, and the substantial increase in 
𝜎𝜎 suggests that the predictive accuracy is limited. 

2.2.3 ENR-OLS: Elastic Net Regularization  

An alternative strategy to mitigate multicollinearity is to use 
regularization[3]. In this study, we specifically opted for Elastic 
net regularization, which combines the strengths of ridge and 
lasso regularizations. 

    𝐿𝐿𝐿𝐿𝑐𝑐𝑐𝑐 = 𝑆𝑆𝑆𝑆𝑆𝑆
2𝑛𝑛

+ α �1−𝑤𝑤
2

|𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐|22 +𝑤𝑤|𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐|1� 
where 𝑆𝑆𝑆𝑆𝑅𝑅 refers to the Sum of Square residuals. The sym-

bol α  represents a hyperparameter used for regularization, 
while 𝑤𝑤 denotes the weight assigned to the 𝐿𝐿1 component. 

We experimented with various combinations of hyperpa-
rameters and observed that upon applying regularization, the 
coefficients of predictors exhibited higher stability than those 
in Model 1. However, the interpretations derived from the 
model did not align with real-world observations. For in-
stance, contrary to expectations, an increase in the parameters 
of year, beam, water, and draft led to a decrease in the listing 
price. This discrepancy appeared consistently across numerous 
hyperparameter adjustments, indicating that regularization led 
to a biased estimation of the data.  
 

Table 4. Coefficients of predictors in Model 3 
predictor coefficients 

const 3.036208e+05 
Length (ft) 1.841988e+02 

Year -3.291069e+00 
Monohulled -8.066942e+04 
Catamarans 1.601292e+05 

LOA 1.761799e+02 
Beam -5.413574e+01 
S.A. 1.081311e+02 

 
The evaluation of this model is: σ = 66411.60 

2.2.4 MLP: MLP prediction  

To improve the accuracy of our prediction, we have inte-
grated a Multi-layer Perception (MLP) nonlinear model. The 
MLP approach provides increased adaptability in capturing 
intricate relationships among variables by incorporating mul-
tiple layers of neurons and nonlinear activation function with-
in the network architecture.[9] The purpose of this model is to 
improve the prediction's performance and accuracy, without 
prioritizing explanatory power. 
 

predictor coef std err t 𝑃𝑃>|𝑡𝑡| [0.025 0.975]
const -3.55E+07 1.04E+06 -34.294 0 -3.76E+07 -3.35E+07
Year 1.73E+04 516.176 33.515 0 1.63E+04 1.83E+04

Length(ft) 1.39E+04 504.605 27.601 0 1.29E+04 1.49E+04
Beam 4.53E+04 2084.809 21.71 0 4.12E+04 4.93E+04
Fuel 142.9576 12.399 11.53 0 118.648 167.267

S.A./Disp. 4.59E+06 1.06E+06 4.335 0 2.51E+06 6.66E+06
gdppc 3.2075 0.214 14.989 0 2.788 3.627

Is_Europe -2.02E+04 6925.268 -2.914 0.004 -3.38E+04 -6603.782
Is_USA 9.83E+04 8165.696 12.033 0 8.22E+04 1.14E+05



 

Fig. 3. Multilayer Perceptron (MLP) Architecture 

 
 

In order to capture the hidden characteristics of the problem, 
it may be necessary to incorporate additional neural network 
layers beyond our linear model. Adding a single hidden layer 
to the network architecture can facilitate the identification and 
modeling of these features. 

In order to align the complexity of the model with the size 
of the data set, the hidden layer was configured to have 16 
neurons with 0.3 dropout rate. Meanwhile, 𝐿𝐿2 regularization 
was employed. 

Fig. 4. MSE loss of MLP with epoch iterations (200 Iters) 

 
We can see from the figure that the MSE value dropped 

drastically within the initial 50 iterations, post which it re-
mained approximately constant at 0.11. The σ value for this 
model is 51016.35, which is the smallest among all our mod-
els. 

 

2.3 Effect of Region 

2.3.1 Coefficient Testing in Model 1 

In order to dig out the effect of region on the listing price, 
we calculated the p-values for the following hypotheses in 
Model 1: 

𝐻𝐻0:β𝑗𝑗 = 0 
where β𝑗𝑗  refers to the j-th coefficient of the dummy variables 
for the predictor variable 𝑅𝑅𝑅𝑅𝑅𝑅𝑣𝑣𝐿𝐿𝑛𝑛. 

The p value generated by t-statistic is a measure to show the 
effectiveness of the predictors. In particular, the p value of 0.1 
associated with a predictor indicates that there exists a 10.0% 
likelihood that this predictor has no significant impact on the 
outcome variable, listing price. 

To show the effectiveness of 𝑅𝑅𝑅𝑅𝑅𝑅𝑣𝑣𝐿𝐿𝑛𝑛, we need to synthesis 
the p value of all dummy variables generated by its different 
categories. Here we show the distribution of p values. 

Fig. 5. Bubble chart of P-values for Region Dummies' Coefficients 

 
It indicates that a relationship exists between region and 

listing price, as most of the p-values are concentrated around 0. 

2.3.2  Evidence from Model 2 

In model 2, the region related predictors we reserved is Ge-
ographic Region. To prevent the dummy variable trap, we 
selected Caribbean as the base reference. Therefore, the coef-
ficients for Is_USA and Is_Europe demonstrate the contrast of 
these regions with respect to the Caribbean region as 2.2.2 
shows. The data indicates a conspicuous disparity between the 
listing prices in the United States as opposed to those in the 
Caribbean and Europe, with the former being considerably 
higher. 

2.4 Consistent Effect of Region 

To determine if the regional effect is consistent across all 
sailboat variants intuitively, we draw the Box-plot grouped by 
Region. 

Fig. 6. Box-plot of listing price grouped by region 

 
ANOVA is a statistical method often used to determine 

whether there are statistically significant differences between 
groups in terms of their mean values. 
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To discuss whether regional effect is consistent across all 
sailboat variants. We consider each region as a group and use 
ANOVA to test whether it is consistent. Consequently, we 
have converted the problem into a Single-factor K-level exper-
iment wherein the "single factor" pertains to regional factors 
and "k-level" refers to the number of various regions. 

𝑌𝑌𝑖𝑖𝑗𝑗 = 𝑝𝑝𝑖𝑖 + 𝑅𝑅𝑖𝑖𝑗𝑗 , 𝑗𝑗 = 1,⋯ , 𝑛𝑛𝑖𝑖 , 𝑣𝑣 = 1,⋯ ,𝑘𝑘 
where 𝑌𝑌𝑖𝑖𝑗𝑗  refer to the j-th listing price of region 𝑣𝑣, 𝑝𝑝𝑖𝑖 means the 
mean value of region 𝑣𝑣 , 𝑅𝑅𝑖𝑖𝑗𝑗 is random error, we assume: 
 

𝐸𝐸�𝑅𝑅𝑖𝑖𝑗𝑗� = 0,0 < 𝑉𝑉𝑝𝑝𝑝𝑝�𝑅𝑅𝑖𝑖𝑗𝑗� = σ2 < ∞ 
and all  𝑅𝑅𝑖𝑖𝑗𝑗 are 𝑣𝑣. 𝑣𝑣. 𝑑𝑑. 

To test the consistency, we hold the null hypnosis: 
𝐻𝐻0:𝑝𝑝1 = 𝑝𝑝2 = ⋯ = 𝑝𝑝𝑘𝑘 

Divide the sum of squares of residuals into within-group 
𝑆𝑆𝑆𝑆𝑒𝑒  and among-group 𝑆𝑆𝑆𝑆𝐺𝐺 components. 

𝑆𝑆𝑆𝑆 = ���𝑌𝑌𝑖𝑖𝑗𝑗 − 𝑌𝑌��
2

𝑛𝑛𝑖𝑖

𝑗𝑗=1

𝑘𝑘

𝑖𝑖=1

,𝑌𝑌� = ��𝑌𝑌𝑖𝑖𝑗𝑗/
𝑛𝑛𝑖𝑖

𝑗𝑗=1

𝑛𝑛
𝑘𝑘

𝑖𝑖=1

 

𝑆𝑆𝑆𝑆𝑒𝑒 = ���𝑌𝑌𝑖𝑖𝑗𝑗 − 𝑌𝑌𝚤𝚤��
2

𝑛𝑛𝑖𝑖

𝑗𝑗=1

𝑘𝑘

𝑖𝑖=1

,𝑌𝑌𝚤𝚤� = �𝑌𝑌𝑖𝑖1 +⋯+ 𝑌𝑌𝑖𝑖𝑛𝑛𝑖𝑖�/𝑛𝑛𝑖𝑖 , 𝑣𝑣 = 1,⋯ ,𝑘𝑘 

𝑆𝑆𝑆𝑆𝐺𝐺 = 𝑆𝑆𝑆𝑆 − 𝑆𝑆𝑆𝑆𝑒𝑒 = �𝑛𝑛𝑖𝑖(𝑌𝑌𝚤𝚤� − 𝑌𝑌�)2
𝑘𝑘

𝑖𝑖=1

 

where 𝑛𝑛𝑖𝑖 represents the quantity of data in a given group de-
noted by 𝑣𝑣, 𝑆𝑆𝑆𝑆𝑒𝑒  corresponds to the residual variation within 
groups, which is considered as the same random error for all 
groups, 𝑆𝑆𝑆𝑆𝐺𝐺 refers to the residual variation among all groups, 
which is considered as their differences. 

Assuming that the null hypothesis 𝐻𝐻0 is true, and given a 
sufficient number of samples, we can make the assumption 
that the error term 𝑅𝑅𝑖𝑖𝑗𝑗 follows a normal distribution with mean 
0 and variance 𝜎𝜎2. This leads us to the following conclusion: 

𝑀𝑀𝑆𝑆𝐺𝐺 = 𝑆𝑆𝑆𝑆𝐺𝐺/(𝑘𝑘 − 1),𝑀𝑀𝑆𝑆𝑒𝑒 = 𝑆𝑆𝑆𝑆𝑒𝑒/(𝑛𝑛 − 𝑘𝑘) 
𝑀𝑀𝑆𝑆𝐺𝐺/𝑀𝑀𝑆𝑆𝑒𝑒 ∼ 𝐹𝐹𝑘𝑘−1,𝑛𝑛−𝑘𝑘 

Now we can use F-statistics to test the consistency of the ef-
fect of regional predictor. Specifically, we will accept the null 
hypothesis 𝐻𝐻0 if the subsequent inequality is satisfied: 

𝑀𝑀𝑆𝑆𝐺𝐺
𝑀𝑀𝑆𝑆𝑒𝑒

≤ 𝐹𝐹𝑘𝑘−1,𝑛𝑛−𝑘𝑘(α) 

Table 5. ANOVA of Region 

 
 
The p-value result for C(Region) indicates that there is suf-

ficient evidence to support accepting the null hypothesis, 
which suggests that the regional effect is consistent across all 
sailboat variants. 

III. PREDICTING AND ANALYTICS 

3.1 Boat Subsets and Market Data 

We collected the Hong Kong market data from web[15]. Two 
subsets of 15 records each were chosen, one for monohulled 
sailboats and the other for catamarans. The selection was 

made with consideration for the balance of data size between 
different categories due to the limited availability of sailboat 
pricing data in Hong Kong.  

In order to assess the potential effect of our geographic re-
gion modeling approach in the Hong Kong (SAR) market, we 
assume that the primary determinant of listing price variability 
across geographic regions is macroeconomic data. Specifical-
ly, we assume that the causal relationship indicated by the red 
pathway in the following diagram may be substituted with that 
of the green pathway: 

Fig. 7. Two pathway assumed equal 

 
Specifically, our assumption is that the macroeconomic data 

has the ability to capture and represent the distinctions in geo-
graphical regions at a relatively elevated level. Therefore, we 
have gathered macroeconomic data for Hong Kong from 2005 
to 2019.  

3.2 Final Results 

Due to the limited availability of data from Hong Kong, we 
have opted to utilize the geometric mean absolute residual 
metric in order to present the predictive performance of vari-
ous models across different datasets. This approach allows for 
a stable overall evaluation while minimizing the impact of 
excessive noise. 

𝐺𝐺𝑀𝑀𝐺𝐺𝑅𝑅 = ��|𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤� |
𝑛𝑛

𝑖𝑖=1
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Fig. 8. HK Monohulled Price Prediction with 4 Models 

 

 

Sum_Square DoF F PR(>F)
C(Region) 8.95E+12 7.60E+01 3.14E+00 8.06E-18
Residual 1.28E+14 3.41E+03 - -

Geographical
Region

Listing
Price

GDP Marine GDPPC

Import Export

0

5000

10000

15000

20000

25000

30000

OLS mini-OLS ENR-OLS MLP

Predic�on without Economic Data Predic�on with Economic Data



 

Fig. 9. HK Catamaran Price Prediction with 4 Models 

 
 

The data indicates that in most cases, precision improves 
with the availability of macroeconomic data, thereby demon-
strating that geographic region information can be useful in 
the Hong Kong market, so our hypothesis that the impact of a 
geographic region can be substituted by examining macroeco-
nomic data at a level commensurate with that particular region 
is supported. The enhancement of precision is evident in both 
catamarans and monohull sailboats. 

It can also be observed that when economic data is includ-
ed, MLP outperforms other linear models significantly. This 
indicates that machine learning methods have stronger predic-
tive capabilities compared to linear models. Although MLP 
performs well even without economic data, mini-OLS signifi-
cantly improved. This could be due to the small sample size of 
the selected data in HK market. 

Among three linear models, OLS and ENR-OLS perform 
poorly while mini-OLS performs well. This is because alt-
hough OLS has the highest $R^2$, this only indicates that the 
selected features are good predictors of listing price. However, 
due to the presence of multicollinearity, OLS is highly unsta-
ble. The regularized model can improve coefficient stability 
but introduces bias that results in similar prediction perfor-
mance to OLS. By using the mini-OLS model, which elimi-
nates correlated variables, we achieve the best stability, accu-
racy, and interpretability among the linear models.  
 
 

IV. CONCLUSION 
This research set out to develop a succinct pricing model for 

sailboats and to gain a comprehensive understanding of the 
factors that affect the pricing of used boats. 

We used several statistical methods including but not lim-
ited to VIF, ANOVA and t-tests of coefficients to select inde-
pendent variables as predictors, to test the effect and to valid 
the consistency. 

The regression analysis revealed how the price is potentially 
related to the given predictors. We also introduced a neural 
network model solely for predictive purposes and disregarded 
its deficiencies for explanation. 

We also utilized macroeconomic data from Hong Kong to 
model its impact on regional macroeconomic factors. We se-
lected a subset of thirty records and analyzed the predicted 
results compared to actual yacht prices in Hong Kong. Our 
analysis demonstrated the effectiveness of using geographic 
regions as a predictor, and we tested this approach on both 
catamarans and monohulled sailboats and got a consistent re-
sult. 

However, the study is not flawless. The major limitation of 
this study is the lack of variety of the data set. The given data 
has limited dimensions and less than 5 thousand samples. Due 
to limited time, we chose to expand the width of the data in-
stead of the size because it is relatively enough for linear re-
gression. Since we have got a usable result, a larger set of data 
is bound to make the model more convincing. 

Apart from our main goals, we have also made two note-
worthy discoveries. One is that when simply using OLS analy-
sis on original data, the error increases as the length does, in-
dicating potential missing factors. The revised model included 
the square and cube of length as estimated specifications of 
sailboats, getting better outcomes. The other discovery is that, 
although the OLS model exhibits multicollinearity, we can 
utilize its data to make persuasive conclusions by employing a 
Bayesian-like technique, specifically, partial regression analy-
sis. 

The insights gained from this study may be of assistance to 
brokers all around the world in deciding the boat price. Con-
sidering the economic significance, this would be a fruitful 
area for further work. 
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mini-OLS code
1 import pandas as pd

2 import numpy as np

3 import statsmodels.api as sm

4 import statsmodels.formula.api as smf

5 import matplotlib.pyplot as plt

6 from statsmodels.api import OLS

7 from statsmodels.graphics.regressionplots import plot_regress_exog

Listing 1: Import Envrionments

1 def VIF(X):

2 vif = pd.DataFrame()

3 vif[’variables’] = X.columns

4 vif[’VIF’] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]

5 vif.tocsv("tmp.csv")

Listing 2: Variance Inflation Factor to make OLS ”mini”

1 Data = pd.read_excel("2023_MCM_Problem_Y_Boats_selected.xlsx", index_col=None, sheet_name="

Boats")

2 Data.dropna()

3 X = Data.loc[:, [’Year’, ’Length (ft)’, "Beam", "Fuel", "S.A./Disp.", ’gdppc’,’

Geographic_Region’]]

4 X = pd.get_dummies(data=X, columns=[’Geographic_Region’], drop_first=True)

5 # X = pd.get_dummies(data=X, columns=[’Make’, ’Variant’, ’Geographic Region’, ’Region’],

drop_first=True)

6 y = Data.loc[:, [’Price’]]

7 y = y.values.reshape(y.shape[0])

8 X = sm.add_constant(X)

Listing 3: Data Processing

1 model = OLS(y, X).fit()

2 print(model.summary())

3 y_hat = model.predict(X)

4 residuals = y - y_hat

5 print(np.sqrt(np.sum(residuals**2)/DoF))

Listing 4: OLS Linear Regression

MLP code
1 import torch

2 device=torch.device(’cuda’ if torch.cuda.is_available() else ’cpu’)

3 from torch import nn

4 from sklearn.utils import shuffle

5 import pandas as pd

Listing 5: Import Envrionments

APPENDICES 



1 def zscore(df):

2 means=[]

3 stds=[]

4 for key in df.keys():

5 if key!=’Make’ and key!=’Variant’ and key!=’Geographic_Region’ and key!=’Region’:

6 mean=df[key].mean()

7 std=df[key].std()

8 means.append(mean)

9 stds.append(std)

10 df[key]=(df[key]-mean)/std

11 return df, means,stds

12

13 Data=pd.read_excel("2023_MCM_Problem_Y_Boats.xlsx",index_col=None,sheet_name="Boats")

14 MonohulledDataCopy=Data

15 Data.dropna()

16 Data=shuffle(Data,random_state=2331567)

17 X=Data.loc[:,[’Make’,’Variant’,’Length (ft)’,’Year’,"Monohulled","Catamarans","S.A.","Draft"

,"Displacement","Fuel","Water","S.A./Disp.","Disp./Len.","export","import","gdp","gdppc",

"marine"]]

18 X,Xmeans,Xstds=zscore(X)

19 X=pd.get_dummies(data=X,columns=[’Make’,’Variant’])

20 Y=Data.loc[:,[’Price’]]

21 Y,Ymeans,Ystds=zscore(Y)

22

23 x_train=torch.tensor(X[:n_train].values, dtype=torch.float32,device=device)

24 x_test=torch.tensor(X[n_train:X.shape[0]].values, dtype=torch.float32,device=device)

25 y_train=torch.tensor(Y[:n_train].values.reshape(-1, 1), dtype=torch.float32,device=device)

26 y_test=torch.tensor(Y[n_train:X.shape[0]].values.reshape(-1, 1), dtype=torch.float32,device=

device)

Listing 6: Data Processing

1 def init_weights(m):

2 if type(m) == nn.Linear:

3 nn.init.normal_(m.weight,std=0.056)

4

5 net=nn.Sequential(nn.Flatten(),nn.Linear(548, 16),nn.ReLU(),nn.Dropout(0.3),nn.Linear(16, 1)

)

6 net.apply(init_weights);

7 net=net.to(device=device)

Listing 7: Build Nerual Network

1 batch_size, lr, num_epochs=256, 0.01, 200

2 loss_p=0

3 loss_fn=nn.MSELoss(reduction="mean")

4 optimizer=torch.optim.Adam(net.parameters(), lr=lr, weight_decay=0.001,betas=(0.9,0.999),eps

=1e-8)

5 for i in range(num_epochs):

6 net.train()

7 y_pred=net(x_train)

8 loss=loss_fn(y_pred,y_train)



9 with torch.no_grad():

10 net.eval()

11 y_pred=net(x_test)

12 loss1=loss_fn(y_pred,y_test)

13

14 optimizer.zero_grad()

15 loss.backward()

16 optimizer.step()

Listing 8: Train Network

1 y_pred=net(x_test)

2 y_pred=y_pred*Ystds[0]+Ymeans[0]

3 y_test=y_test*Ystds[0]+Ymeans[0]

4 for i in range(len(y_test)):

5 error += torch.pow((y_test[i].item()-y_pred[i].item()),torch.tensor(2,dtype=torch.

float32,device=device))

6 error=error / len(y_test)

7 error=torch.sqrt(error)

8 print(error.item())

Listing 9: Evaluate Network

Regression Analysis code
1 def anova(Data):

2 model_anova = smf.ols("Price ˜ C(Geographic_Region)",data=Data).fit()

3 anova = sm.stats.anova_lm(model_anova, test="F", typ=2)

4 print(anova)

Listing 10: Analysis of Variance

1 def partial_reg(model):

2 plot_regress_exog(model, ’Year’)

3 plt.show()

Listing 11: Partial Regression Analysis
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