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ABSTRACT
Users rely on clever recommendations for items they might like
to buy, and service providers rely on clever recommender systems
to ensure that their product is recommended to their target audi-
ence. Providing explanations for recommendations helps to increase
transparency and the users’ overall trust in the system, besides
helping practitioners debug their recommendation model. Modern
recommendation systems utilize multi-modal data such as reviews
and images to provide recommendation. In this work, we propose
CAVIAR (Counterfactual explanations for VIsual Recommender sys-
tems), a novel method to explain recommender systems that utilize
visual features of items. Our explanation is counterfactual and is
optimized to be simultaneously simple and effective. Given an item
in the user’s top-K recommended list, CAVIAR makes a minimal,
yet meaningful, perturbation to the item’s image-embedding such
that it is no longer a part of the list. In this way, CAVIAR aims to
find the visual features of the item that were the most relevant for
the recommendation. In order to lend meaning to the perturbations,
we leverage CLIP model to connect the perturbed image features
to textual features. We frame the explanation as a natural language
counterfactual by contrasting the observed visual features in the
item before and after the perturbation.
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1 INTRODUCTION
In the modern world, where users have no dearth of options to
choose from, there is an increasing reliance on recommender sys-
tems to guide users to the best product for them. They offer a degree
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of personalization to the user’s interactions and consequently in-
crease user satisfaction. The use of deep learning methods, along
with more and more data surrounding user-item interactions has
led to the development of better recommendation models at the
cost of understand-ability. Providing explanations for recommen-
dations helps to improve the trust, persuasiveness, transparency,
satisfaction, effectiveness and efficiency of recommendation sys-
tems [12, 14]. It also facilitates system designers for better system
debugging. There is a growing need to ensure that users trust and
understand the system, and explainability is useful in this regard.

A counterfactual explanation reveals what should have been
different in an instance in order to observe a different outcome. The
main advantage of counterfactual explanations over other types of
explanations is understand-ability. Counterfactuals provide a causal
understanding of which aspects led to which recommendations. In
our problem setting, these explanations are concise, scrutable, and
actionable, as they are minimal sets derived using a counterfactual
setup over a user’s own interactions. They also do not expose any
information about other users, thus eliminating privacy concerns.

Existing counterfactual explanation models for recommender
systems either do not utilize item information at all [3, 13], or only
utilize information gathered from textual user reviews [11]. An
item’s image is often what draws a user towards it. As a result,
the focus on multi-modal features in recommendation models has
increased. Models like VBPR[4], DVBPR[5], DeepStyle[7], ACF[1],
NPR[9] etc., all utilize item images to arrive at a recommendation.
Unfortunately, current counterfactual explanation models do not
work for visual recommendation systems. We make the following
contributions.

• We devise a framework CAVIAR that generates counterfac-
tual explanations for visual recommender systems. Given a
user and a recommended item, CAVIAR extracts the visual
features most relevant for the recommendation by finding
the least perturbation to the item’s image embedding that
displaces it from the users recommended list.

• Our optimization algorithm intended to find the minimal
perturbation described aboveminimizes a novel loss function
that can perform a search in the image feature space and
return the optimal counterfactual image features.

• We perform experiments to compare our method with base-
lines and demonstrate its effectiveness with respect to mul-
tiple metrics of interest. We also qualitatively demonstrate
validity of our explanations by identifying parts of user re-
views that align with explanations generated by CAVIAR.

2 RELATEDWORK
In the domain of counterfactual explanations, PRINCE [3] defines an
explanation as a set of minimal actions performed by the user that, if
removed, changes the recommendation to a different item. Another
recent approach ACCENT [13] uses influence functions to identify
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Figure 1: An overview of CAVIAR. The architecture of the underlying recommender model based on the VBPR [4] model
is presented on the left hand side and that of the explanation methodology is presented on the right. The optimization
model generates a minimal perturbation of visual embedding of the item’s image such that the item is no longer in the top-K
recommended products. A natural language explanation can be generated by comparing how the perturbed image correlates
with different aspect classes as compared to the original image. For e.g., in this figure, the original image and the perturbed
image both correlate with the colour aspect Red whereas with respect to the sleeve-length aspect, the original image correlates
with Sleeves whereas the perturbed one correlates more with Sleeveless.

the training points that are the most relevant to a recommendation,
from a single to a pair of items, while deducing a counterfactual set
in an iterative process. Both these models are grounded in the user
actions instead of item aspects, thereby making a comparison with
our method unreasonable. They also do not explicitly utilize visual
features. A recent counterfactual explanation method CountER
[11] uses phrase level sentiment analysis to uncover item related
aspects mentioned in reviews and the user’s or item’s score on
those aspects. However, it does not make use of the information in
the item’s image in any way.

3 PROBLEM FORMULATION
In this section, we formulate our main problem statement. Before
doing that, we introduce some notation that will be used. Consider
a finite set of users 𝑈 and a finite set of items 𝑉 . Without loss
of generality we assume 𝑈 ⊂ R𝑑𝑈 for some integer 𝑑𝑈 . This can
easily be achieved by appropriately creating features for each user
either by hand or via other embeddings. For each item 𝑣 ∈ 𝑉 , we
assume that 𝑣 = (𝑣𝑖 , 𝑣𝑜 ), where 𝑣𝑖 is an image and 𝑣𝑜 are other
non-visual attributes of 𝑉 . Similar to the users, we assume that
𝑣𝑖 ∈ R𝑑𝐼 , 𝑣𝑜 ∈ R𝑑𝑂 for some integers 𝑑𝐼 , 𝑑𝑂 respectively. Next, let
R : R𝑑𝑈 ×R𝑑𝐼 ×R𝑑𝑂 → R be a recommender model. For each user
𝑢 ∈ 𝑈 and item 𝑣 ∈ 𝑉 , R(𝑢, 𝑣) ∈ R is a real valued score indicating
how “relevant” item 𝑣 is to user 𝑢. Based on this score, for each user
one can rank the list of items to get a ranked list L𝑢 and use the
top items as a recommendation for the user.

For generation of our explanation as a natural language sentence,
we assume the knowledge of a set 𝐹 = {𝑓1, . . . , 𝑓𝑑 } of image aspects.

Every 𝑓𝑗 can be further written as a set of textual classes 𝑇𝑗 =

{𝑡1
𝑗
, . . . , 𝑡

𝑑 𝑗
𝑗
}. For e.g., 𝑓𝑗 might denote the color aspect of the image

and 𝑡1
𝑗
, . . . , 𝑡

𝑑 𝑗
𝑗

might be the various possible colors e.g., red, blue,
green etc. For this paper we will assume that 𝑣𝑖 is obtained as an
embedding of the image in 𝑣 and 𝑡 𝑗

𝑘
is a text embedding of the

textual classes in the aspect 𝑓𝑗 . Both of these are assumed to be
obtained using the image and text encoder of CLIP [10] respectively.
We denote the value of aspect 𝑓𝑗 for image embedding 𝑣𝑖 as

𝑓𝑗 (𝑣𝑖 ) = 𝜎 (𝑡1𝑗 · 𝑣𝑖 , . . . , 𝑡
𝑑 𝑗
𝑗

· 𝑣𝑖 )

where 𝑝 · 𝑞 denotes the dot product between two vectors 𝑝 and
𝑞 and 𝜎 : R𝑑 𝑗 → R𝑑 𝑗 denotes the SoftMax activation function. As
a result the aspect 𝑓𝑗 (𝑣𝑖 ) becomes a probability distribution over
the classes indicating how much a certain class correlates with the
image. Here is our formal problem statement.

Problem Statement: Fix an integer 𝐾 . Let𝑈 ,𝑉 ,R be as given
above. Let 𝑢 be a user, 𝑣 = (𝑣𝑖 , 𝑣𝑜 ) be the item with highest value of
R(𝑢, 𝑣) and L𝑢 be the ranked list of items for 𝑢 as described above.
We first wish to find 𝛿 ∈ R𝑑𝐼 with minimum ℓ1 norm i.e. ∥𝛿 ∥1
such that the relevance score R(𝑢, 𝑣𝛿 = (𝑣𝑖 + 𝛿, 𝑣𝑜 )) obtained on
perturbing 𝑣𝑖 to 𝑣𝑖 + 𝛿 is smaller than the scores of the top 𝐾 items
in L𝑢 i.e. the item falls out of the top 𝐾 items once the embedding
of its image is perturbed by 𝛿 . Using this 𝛿 we want to generate an
explanation as a comparison of the aspect distributions 𝑓𝑗 (𝑣𝑖 ) and
𝑓𝑗 (𝑣𝑖 + 𝛿) for every 𝑗 ∈ [𝑑].
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4 METHODOLOGY
In this section, we present our explanation framework CAVIAR. An
architecture diagram highlighting all key components is provided
in Fig. 1. As described earlier, our method is quite general and
can explain any recommendation system that uses CLIP[10] based
embeddings of item images. However, for the sake of completion,
in this paper, we use a modified version of the recommendation
model from VBPR [4]. The recommendation model in [4] utilizes
pre-trained image features from Alex-Net [6]. We modify this part
and instead use pre-trained image features from the image encoder
of CLIP [10]. The architecture of this modified recommendation
model can be found on the left side in Fig. 1. As described in Sec.
3, we assume knowledge of image aspects 𝑓1, . . . , 𝑓𝑑 and textual
classes corresponding to each aspect. We use embeddings 𝑡𝑘

𝑗
, 𝑗 ∈

[𝑑], 𝑘 ∈ [𝑑 𝑗 ] of these textual classes created via CLIP’s [10] text
encoder (See Sec. 3).

Recall that for any user 𝑢 ∈ 𝑈 , and item 𝑣 = (𝑣𝑖 , 𝑣𝑜 ) ∈ 𝑉 that
is most relevant to 𝑢 (i.e. has the highest R(𝑢, 𝑣)), we want to find
vector 𝛿 ∈ R𝑑𝐼 with the smallest ℓ1 norm such that R(𝑢, (𝑣𝑖 +𝛿, 𝑣𝑜 ))
is not among the top 𝐾 items in L𝑢 . Here L𝑢 is a ranked list of
items from 𝑉 , ordered according to their relevance scores. Let 𝑣𝐾
be the 𝐾𝑡ℎ item from the top in L𝑢 , i.e. it has the 𝐾𝑡ℎ largest rel-
evance score (say 𝑟𝐾 ). In order to find a perturbation 𝛿 ∈ R𝑑𝐼
with the smallest ℓ1 norm i.e. ∥𝛿 ∥1, such that (𝑣𝑖 + 𝛿, 𝑣𝑜 ) has a
score (say 𝑟𝛿 = R(𝑢, (𝑣𝑖 + 𝛿, 𝑣𝑜 ))) smaller than 𝑟𝐾 (i.e. it falls out
of the top 𝐾 items), we can focus on minimizing the quantities
∥𝛿 ∥1 and 𝑟𝛿 − 𝑟𝐾 respectively. This leads us to two main com-
ponents of our minimization objective, 𝐿1 = 𝑅𝑒𝐿𝑈 (𝑟𝛿 − 𝑟𝐾 ) and
𝐿2 = ∥𝛿 ∥1. Since our final goal is to provide an explanation by
comparing the aspect distributions 𝑓𝑗 (𝑣𝑖 ) = (𝑓𝑗 (𝑣𝑖 )1, . . . , 𝑓𝑗 (𝑣𝑖 )𝑑 𝑗 )
and 𝑓𝑗 (𝑣𝑖 +𝛿) = (𝑓𝑗 (𝑣𝑖 +𝛿)1, . . . , 𝑓𝑗 (𝑣𝑖 +𝛿)𝑑 𝑗 ), we also minimize the
overlap between the aspect distributions before and after the 𝛿 per-
turbation. This leads us to another component in our minimization

objective 𝐿3 =
𝑑∑
𝑗=1

𝑑 𝑗∑
𝑘=1

𝑓𝑗 (𝑣𝑖 )𝑘 log 𝑓𝑗 (𝑣𝑖 + 𝛿)𝑘 . Putting these together

we arrive at our minimization objective 𝐿 = 𝛼1𝐿1 + 𝛼2𝐿2 + 𝛼3𝐿3,
with 𝛼1, 𝛼2, 𝛼3 ∈ R being hyper-parameters that control the relative
importance between the three parts. We minimize this overall ob-
jective using an iterative optimization method. Using the 𝛿 ∈ R𝑑𝐼
obtained as a solution to this minimization, we frame our final
explanation as a natural language sentence using the textual classes
that changed between the aspect distributions 𝑓𝑗 (𝑣𝑖 + 𝛿) and 𝑓𝑗 (𝑣𝑖 ).
All the aspects 𝑗 , such that 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑓𝑗 (𝑣𝑖 + 𝛿)) ≠ 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑓𝑗 (𝑣𝑖 ))
are used to provide the explanation. For example, let the initial dis-
tribution for aspect 𝑓1 before perturbation be [0.92, 0.03, 0.05] and
the distribution for aspect 𝑓1 after perturbation be [0.42, 0.49, 0.09].
Since 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑓1 (𝑣𝑖 )) is different from 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑓1 (𝑣𝑖 + 𝛿)), 𝑓1 is an
aspect used to provide the explanation.

5 EXPERIMENTAL SETUP AND RESULTS
In this section, we perform experiments validating the performance
and usefulness of our method.

Datasets: We evaluate our method on the publicly available
Amazon Fashion Men andWomen datasets [8] consisting of around
112k and 397k user-item interactions respectively. We discard all

users having less than 5 interactions. Fashion is an ideal domain
for testing these recommender systems because of the intricate dif-
ferences between items’ appearances that directly influence users.

Implementation Details: The base recommender system is
trained in the same way as VBPR [4]. For our optimization model,
we utilise SGD optimizer with a learning rate of 3 × 10−4. We opti-
mize our model for 1000 steps of stochastic gradient descent. We
empirically choose the values of 𝛼1, 𝛼2, 𝛼3 to 1, 1 and 2 respectively.
Choosing these parameters in a more data driven way is an interest-
ing future direction. We choose a total of 5 possible aspects in our
experiments which are on the basis of color, sleeve length, formal
or casual, collar and fit of product. Using domain knowledge, these
can be expanded further. The value of 𝐾 is chosen as 10 in our
experiments. We fix the maximum value of 𝐿2 as 1. This ensures
that the optimization process is stable. If 𝐿2 is not bounded in this
manner, it can cause the class loss 𝐿3 to be overwhelmingly nega-
tive in order to compensate and this leads to sub-par optimization.
We use CLIP with ViT-B/32 as the image encoder which gives an
image embedding vector of 512 length.

Baselines: As a baseline for this work, we extended CountER
[11] to utilize information from images. This involved creating a
fixed and pre-decided set of image aspects based on domain knowl-
edge and then scoring the image on the presence of these aspects
using CLIP [10]. To provide a counterfactual explanation we perturb
these features in a similarly framed optimization problem. Other
details are kept same as the original CountER [11] paper. Another
baseline that we compare against is random perturbation combined
with our technique of creating natural language explanations. We
randomly generate a vector 𝛿 ∈ R𝑑𝐼 with a unit norm and add it to
the image feature. The rest of the method is same as ours.

Metrics: We use fidelity, explanation fidelity and explanation
number to measure the effectiveness of our explanations. We de-
fine fidelity as the fraction of items recommended to the user for
which the explanation model is able to remove the item from the
top 𝐾 recommendations. We define explanation fidelity as the frac-
tion of items recommended to the user for which the explanation
model is successfully able to generate an explanation i.e. at least
one aspect differs before and after the image perturbation. A higher
explanation fidelity indicates that the model is more successful at
identifying relevant features and generating explanations. Explana-
tion number is defined as the number of features required to explain
a recommendation. We only calculate the explanation number for
the instances where the model is successfully able to generate an
explanation. A clear, concise explanation that only lists the top
features responsible for a recommendation is preferred. Together,
these three metrics provide a measure of the model’s competency
in generating relevant explanations.

Results and ablations: We report the comparative results of
our experiments in Table 2 and 3. Since, modified CountER directly
modifies the item aspect to provide explanation, explanation fi-
delity for it is always 1. Compared to other methods, our method is
able to provide a more concise explanation and able to successfully
generate an explanation. An increase in explanation fidelity can be
obtained by increasing the number of aspects that we use to provide
explanation. We perform an ablation on the loss function to show
the effectiveness of using all the components. We exclude the cases

676



WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore Neham Jain, Vibhhu Sharma, and Gaurav Sinha

Table 1: Qualitative Analysis

Explanation by CAVIAR Review written by the user
If the item had the color black instead of red it would
not have been recommended

Got this for myself since my favorite color is red and I haven’t been
disappointed! Very professional and classy! Will buy more!

If the item had short sleeves instead of long sleeves, it
would not have been recommended

Great price! These shirts are great for cold winter days but are made of
cheap material. Still they are nice and comfortable long sleeve shirts.

If the item had no collar instead of a collar, it would not
have been recommended

Husband really likes it. The long length and knit collar helps keeps
drafts from getting inside.

If the item had the color blue instead of black it would
not have been recommended

Love the fit, the color and the way I feel when I wear these shoes. The
toning feature really makes a difference I the way I look and feel.

If the item was casual instead of formal it would not have
been recommended

This pants are perfect for formal wear, the quality is really nice.

Table 2: Performance metrics on Amazon Men dataset

Fidelity Explanation
Fidelity

Explanation
Number

Random 0.12 0.03 3.78
Modified CountER 0.94 1 3.212
CAVIAR (L1 and L2) 1 0.04 2.78
CAVIAR (L2 and L3) 0.14 0.83 2.56

CAVIAR (L1, L2 and L3) 0.98 0.81 2.36

Table 3: Performance metrics on Amazon Women dataset

Fidelity Explanation
Fidelity

Explanation
Number

Random 0.09 0.07 2.76
Modified CountER 0.96 1 2.88
CAVIAR (L1 and L2) 0.99 0.08 2.98
CAVIAR (L2 and L3) 0.08 0.86 2.12

CAVIAR (L1, L2 and L3) 0.99 0.79 2.23

where 𝐿2 is not present as this leads to trivial cases. Using only 𝐿1
and 𝐿2 is able to remove the item out of the top𝐾 recommendations
but is not sufficient to generate a recommendation. Using only 𝐿2
and 𝐿3 is able to successfully generate an explanation but it is not
able to remove the item out of the top 𝐾 recommendations. Thus,
using all three components 𝐿1, 𝐿2, 𝐿3 yields results that are able to
remove the item from the top 𝐾 recommendations and also pro-
vide an explanation most of the times. We also perform qualitative
evaluation by using a user’s review on an item they liked as the
ground truth for why they liked it. We mask the user’s interaction
with an item that they have previously rated well and observe the
explanation given by CAVIAR when the item is recommended back
to the user. We then use FLAN-T5[2] to check if the user mentioned
the visual features highlighted by CAVIAR positively in his orig-
inal review. The explanation provided by our model echoes the
sentiment of the reviews. We provide some of these examples in
Table 1. We leave the calculation of quantitative metrics based on
the review to future work. CAVIAR does have some limitations: it
requires a set of domain-specific visual features and can provide
incomplete explanations by itself when there are essential aspects
that are not visually prominent.
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