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Abstract

In many applications, decision-makers must choose between multiple predictive
models that may all be miscalibrated. Which model (i.e., predictor) is more
“useful” in downstream decision tasks? To answer this, our first contribution
introduces the notion of the informativeness gap between any two predictors,
defined as the maximum normalized payoff advantage one predictor offers over the
other across all decision-making tasks. Our framework strictly generalizes several
existing notions: it subsumes U-Calibration (Kleinberg et al.,2023)) and Calibration
Decision Loss (Hu and Wu, [2024), which compare a miscalibrated predictor to its
calibrated counterpart, and it recovers Blackwell informativeness (Blackwell, 1951}
1953) as a special case when both predictors are perfectly calibrated. Our second
contribution is a dual characterization of the informativeness gap, which gives rise
to a natural informativeness measure that can be viewed as a relaxed variant of the
earth mover’s distance (EMD) between two prediction distributions. We show that
this measure satisfies natural desiderata: it is complete and sound, and it can be
estimated sample-efficiently in the prediction-only access setting. Along the way,
we also obtain novel combinatorial structural results when applying this measure
to perfectly calibrated predictors.

1 Introduction

Over the last decade, the machine learning predictors have grown remarkably powerful, especially
with the rapid advancements in large-scale models such as large language models (LLMs). These pre-
dictors have demonstrated strong performance across a wide range of domains, providing high-quality
predictions that are increasingly used by downstream decision-makers to inform their decisions.
However, there are usually two key challenges that often hinder decision-makers from fully lever-
aging these predictions: (1) the underlying mechanisms used to generate predictions are frequently
proprietary and opaque to external users; (2) due to limitations in training data or computational
constraints in the training process, these predictors may exhibit biases and fail to accurately reflect
the empirical frequencies of outcomes. To mitigate these challenges, one natural solution is to ensure
that the predictions are calibrated.

A calibrated predictor regulates that predicted probabilities align with the true (conditional) probability
of the outcome (Dawid, |1982} |Foster and Vohral [1998)). For example, predictions of “80% likelihood”
materialize approximately 80% outcome realizations of the time. It is well established that agents
who naively best respond to perfectly calibrated predictions incur no regret (Foster and Vohra, |1998];
Foster and Hart, 2021). With this desired property, a variety of calibration error metrics have been
proposed to quantify how much a predictor deviates from perfect calibration — such as the Expected
Calibration Error (ECE) (Foster and Vohra, |1997), the smooth calibration error (Foster and Hartl
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2018)), and the distance to calibration (Blasiok et al.,2023)). Remarkably, some “decision-theoretic”
measures are proposed to directly quantify the decision-makers’ regret when she best-responds to
the predictor’s forecasts. [Kleinberg et al.| (2023) introduced “U-Calibration” (UCal), a measure that
captures the maximum payoff loss incurred by an agent who naively best responds to a miscalibrated
predictor, compared to responding to a best calibrated predictor that provides a fixed prediction.
Similarly, Hu and Wu|(2024) proposed the “Calibration Decision Loss” (CDL) which quantifies the
maximum payoff gap between naively responding to a miscalibrated predictor and responding to the
true empirical frequencies of the outcomes associated with each prediction.

Both UCal and CDL therefore assess how far a predictor falls short of its own calibrated counterpart
— they tell us “how much better this predictor would be if it were perfectly calibrated.” In practice,
however, the decision-maker is often handed two (or more) distinct predictors, each trained separately,
each potentially miscalibrated in its own way, and must decide which one to rely on. Because neither
predictor is necessarily the calibrated version of the other, existing metrics do not directly answer
the questions like “Which of these two (possibly miscalibrated) predictors will yield the higher
payoft? Is a perfectly calibrated predictor always more useful than a miscalibrated predictor?”” The
answers to these questions are far from obvious. To illustrate this subtlety, we begin with a simple
weather-forecasting example.

Example 1.1. Suppose the long-run probability of rain is 50%. We compare following predictors:
e The predictor v always forecasts a 50% chance of rain.

e The predictor p11 forecasts four possible predictions {0%,49%, 51%, 100%}, with a condi-
tional prediction distribution constructed as

0% 49% 51% 100 %
When it rains 0 0.0051 0.0049 0.99
When it does not rain 0.99 0.0049 0.0051 0

o The predictor o forecasts two possible predictions {1%,99%}, with a conditional predic-
tion distribution constructed as

1% 99%
When it rains 0 1
When it does not rain 1 0

In this example, we can see that although the predictor v is perfectly calibrated but it contains no
information about the realized outcome beyond the base rate (empirical rainy frequency). In contrast,
although predictor ;17 miscalibrates slightly on the two middle predictions — it says 49% (resp. 51%)
but the true rain rate is 51% (resp. 49%) — but is otherwise nearly perfectly accurate: it predicts
100% almost surely when it rains, and 0% almost surely when it does not. Because of this, any
decision-maker who acts on predictor p;’s predictions can make choices that more closely reflect the
actual outcome, compared to relying solely on the base rate. In fact, and perhaps unsurprisingly, one
can show that for every decision problem — no matter the payoff structure — the expected payoff under
miscalibrated predictor p1 is never lower (and often strictly higher) than under perfectly calibrated
predictor v. This example demonstrates that a miscalibrated but more informative predictor can
dominate a perfectly calibrated yet uninformative one.

However, this dominance is not guaranteed in general. If we slightly alter predictor . to be predictor
2 such that it miscalibrates on the two extreme predictions — i.e., predicting 99% when it actually
rains, and predicting 1% when it actually does not rain — then its advantage no longer holdsE] In

*In fact, one can show that the ECEs of predictors 41 and p2 have the same magnitude.



this case, in some decision problems, the predictor us leads to strictly lower expected payoff than
predictor v, despite still being more “informative” in some sense.

The above example highlights that not all miscalibrations are equal in terms of their impact on
decision-making. This raises a natural question: Which predictor is more useful for decision-
making problems? Notably, this question is not fully answered even when both predictors are
perfectly calibrated. In particular, by viewing a predictor as an information structure, the Blackwell
informativeness order offers a partial answer to this question (Blackwell, 1951} |1953)). Intuitively, the
Blackwell informativeness and its induced Blackwell order captures whether one perfectly calibrated
predictor is always more useful than another in every decision problem, thereby inducing a partial
order over the space of perfectly calibrated predictors. However, not every pair of perfectly calibrated
predictors is comparable under the Blackwell order, let alone pairs of possibly miscalibrated predictors.
This work aims to study the following questions:

Can we compare any two (possibly miscalibrated) predictors based on how “useful”
they are to the decision-making problems?

If they are not equally useful, can we quantify their gap, and is there a natural
measure that satisfies common sense desiderata for characterizing this difference?

1.1 Main Results

In this paper, we provide principled answers to both of the motivating questions. In line with most
prior work in the calibration literature, we focus on predictors for binary outcomes.

Informativeness gap. As our first conceptual contribution, we introduce and study a new notion called
the informativeness gap, denoted by INFOGAP[-, -]. Given any two (possibly miscalibrated) predictors
u and v, the informativeness gap INFOGAP|[u, 1] quantifies the maximum payoff advantage that
predictor p offers over predictor v across all normalized decision-making tasks. Here, the normalized
decision-making tasks refer to those in which, for any action, the decision-maker’s payoff difference
over different outcomes are bounded by one (see the formal definition in Definition E]

INFOGAP[p, V] & sup  PAYOFF[u] — PAYOFF[V] ,
payoff-normalized
decision problem

where PAYOFF[u] denotes the expected utility in a particular decision problem obtained by the
decision-maker who naively best-responds to the predictions produced by predictor. This definition
provides an operational analogue to Blackwell informativeness, which interprets the relative use-
fulness of two predictors through the decision-maker’s maximum payoff difference on all possible
decision problems.

Characterizing INFOGAP[-, -] between perfectly calibrated predictors. We begin by analyzing
the informativeness gap INFOGAP[u, v] in the special but theoretically fundamental case where both
predictors p and v are perfectly calibrated. Our main result provides a characterization of this gap,
and interestingly, reveals that it closely resembles a relaxed variant of the well-known earth mover’s
distance (EMD), also known as Wasserstein distance, between probability distributions. Motivated
by this connection, we introduce the quantity REMDJ-, -], defined over probability distributions. We
then illustrate how to interpret it as an informativeness measure that quantifies how much more useful
predictor p is compared to predictor v in decision-making tasks.

Definition[3.2]and Theorem[3.1|(Informal). For any two distributions f1, f2, define the relaxed earth
mover’s distance REMD/f1, f2] as REMD(f1, fo] £ infrer(s,, 1) fol lfol 7(p,q) - (p—q)dq| dp

and T1(f1, f2) denotes the set of all couplings between two distributions. For any two perfectly
calibrated predictors p, v, their informativeness gap INFOGAP[u, v| satisfies INFOGAP[u, v] =
REMD|f,,, f.] where f,, f, € A([0,1]) denote the distributions over predictions generated by the
two predictors (i, v, respectively.

3 Alternatively, one could consider a multiplicative informativeness gap, defined as the maximum ratio
between the payoffs under two predictors across all decision problems. However, we focus on and study the
additive version, as it aligns more naturally with the decision-theoretic calibration literature, which primarily
emphasizes additive regret.



While the informativeness gap INFOGAP[-, -] is defined over predictors, our relaxed earth mover’s
distance REMDY-, -] is defined over distributions. As we discuss below, REMD|:, -| admits inter-
esting structural characterizations and may be of independent interest—even beyond the context of
calibration or forecastingﬂ

Characterizing INFOGAP[-, | between miscalibrated predictors. We now turn to the setting
where both predictors may be miscalibrated. To capture the informativeness gap in the presence of
miscalibration, it is essential to incorporate the true frequencies of outcomes conditional on predic-
tions. Specifically, for any prediction p ~ p, we let k,,(p) € [0, 1] denote the true outcome frequency
given the prediction. Our main result introduces a strict extension of the measure REMD]-, -]. This
generalized measure, denoted by REMDMISC [f1, fa, k1, k2], takes as input two distributions and two
corresponding outcome functions.

Definition 4.1 and Theorem [d.1] (Informal). For any two distributions f1, f» € A([0,1]) and two
functions k1, ko : [0,1] — [0, 1], define informativeness measure REMDMSC[f; | fo. k1, Ko] as

1
REMDMSC[f,, fo, ki, kp] & inf /
well(f1.f2) Jo

where the set I1L(y, ), referred to as the flow set is a strict superset of the coupling set 11(f1, f2),
which imposes “flow conservation” constraint over m € A([0, 1] x [0, 1]).

For any two (possibly miscalibrated) predictors y, v, their informativeness gap INFOGAP|[u, V]
satisfies

INFOGAP[i1, ] = REMDMSC[f,. f,. K, 5, ]

where f,, f, (resp. k., k,) are the prediction distributions (resp. true outcome frequencies) of
predictors |, v, respectively.

To understand how REMDMSC[f,  f, k., k,] generalizes REMD{f,,, f,], notice that when both
predictors p, v are perfectly calibrated, we have k,(p) = . (p) = p for all p € [0, 1]. In this case,
the objective in REMDMSC[f,. f, . k,,, k] reduces exactly to that of REMDf,,, f,,]. Moreover, the

flow set II( fus fv) (see Section 4 for the formal definition) generalizes the standard coupling set
II(fu, f), and thus it represents a relaxed constraint.

Interestingly, by Theorem [3.T]and Theorem 4.1 we can see that when both predictors are perfectly
calibrated, the two measures equal to each other: REMDMC(f,,. f,. K, k,] = REMD|f,, f,]. In
other words, optimizing over the relaxed flow set is also sufficient to characterize the informativeness
gap in the perfectly calibrated setting.

Desiderata of our informativeness gap and informativeness measure. Our proposed informa-
tiveness measure REMDM'SC[. . . .] can be served as a tool for quantifying the informativeness
gap between (possibly miscalibrated) predictors. By Theorem REMDMBC(f,. f,, K, ko] is
both complete and sound (in fact, it satisfies these criteria exactly), and thus it is consistent. By our
definition, our proposed informativeness gap INFOGAP[u, V] and its equivalence representation, i.e.,
informativeness measure REMDMSC(f, | f, k,,, K, ], are also prediction-only accessible: notice that
for any predictor g, its true conditional frequency ,,(p) can be computed using only the sample pair
(prediction, realized outcome). Lastly, we also present sample complexity bounds for estimating
the measure REMDMC[f, _ f, K, k,] and thus the informativeness gap INFOGAP[y, v/]. The algo-
rithm for this estimation utilizes our structural characterizations for REMDMC[f,  f, r,, K, ], and
has a sample complexity of poly(l/e) (see Theorem . Finally, another desiderata that is usually
considered in the machine learning is the continuity of a measure: the measure should be continuous
w.r.t. the prediction distribution. This raises a natural question: does there exist an informativeness
measure that satisfy the above three desiderata and this additional continuity property simultaneously?
Perhaps not surprisingly, the answer is no. We present a general impossibility result showing that no
informativeness measure can satisfy consistency (i.e., completeness and soundness) and continuity
simultaneously.

SThroughout the paper, we use f,, and £, to denote the prediction distributions associated with predictors y
and v, respectively, and f1 and f> to denote general distributions.

/0 7(p,q)(p — q) dg + (k1(p) — p) f1(p) — (k2(p) — p) f2(p)| dp,



Proposition (Informal). For any informativeness measure over predictors, at least one of the
following must fail: it is complete, it is sound, and it is continuous.
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