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Abstract—Many recent advances in robotic manipulation have
come through imitation learning, yet these rely largely on
mimicking a particularly hard-to-acquire form of demonstrations:
those collected on the same robot in the same room with
the same objects as the trained policy must handle at test
time. In contrast, large pre-recorded human video datasets
demonstrating manipulation skills in-the-wild already exist, which
contain valuable information for robots. Is it possible to distill a
repository of useful robotic skill policies out of such data without
any additional requirements on robot-specific demonstrations or
exploration? We present the first such system ZeroMimic, that
generates immediately deployable image goal-conditioned skill
policies for several common categories of manipulation tasks
(opening, closing, pouring, pick&place, cutting, and stirring) each
capable of acting upon diverse objects and across diverse unseen
task setups. ZeroMimic is carefully designed to exploit recent
advances in semantic and geometric visual understanding of
human videos, together with modern grasp affordance detectors
and imitation policy classes. After training ZeroMimic on the
popular EpicKitchens dataset of ego-centric human videos, we
evaluate its out-of-the-box performance in varied real-world and
simulated kitchen settings with two different robot embodiments,
demonstrating its impressive abilities to handle these varied tasks.
To enable plug-and-play reuse of ZeroMimic policies on other
task setups and robots, we release software and policy checkpoints
of our skill policies.

I. INTRODUCTION

It is clear that animals and humans are able to observe third-
person experiences to acquire functional sensorimotor skills,
often “zero-shot” with limited or no need for additional practice.
For example, one can learn to cook pasta, use a wood lathe,
plant a garden, or tie a necktie, with reasonable proficiency
by watching how-to video demonstrations on the web. While
“imitation learning” has also been instrumental in many recent
successes for robotic manipulation [1–4], these robots largely
rely on a much stronger kind of demonstration — gathered by
manually operating the very same robot in the same small set
of scenarios (scenes, viewpoints, objects, lighting, background
textures, and distractors) to perform the task of interest. This
is an immediate stumbling block on the road to developing
general-purpose robots: gathering robot- and scenario-specific
demonstrations scales poorly.

Learning robot skills from in-the-wild human videos offers
the enticing prospect that data would no longer be a bottleneck:
videos of humans demonstrating varied manipulation tasks in
diverse scenarios are already available on the web, it is easy
to gather many more if needed, and further, the same videos
could be re-used for many robots. However, there are serious
challenges. Robots differ from humans in embodiments, action
spaces, and hardware capabilities. Individual web videos often
do not conveniently present all the details of how to perform
a task (e.g. occlusions, out-of-frame objects and actions, or
shaky moving cameras). Finally, the distribution of in-the-wild

videos spans very large variations that may be hard to handle.
We present an approach, ZeroMimic, that systematically

overcomes these challenges and distills in-the-wild egocentric
videos from EpicKitchens [5] into a repository of off-the-shelf
deployable image goal-conditioned robotic manipulation skill
policies that transfer across scenarios. Briefly, we abstract the
action spaces of humans and standard robot arms with two-
fingered grippers to permit coarse action transfer, we exploit
video activity understanding and pre-existing visuomotor robot
primitives such as grasping to transfer the finer details of
control, we exploit modern structure-from-motion systems to
maintain 3D maps of noisy and shaky in-the-wild egocentric
human videos, and demonstrate that large policy classes can
digest the diversity of web video to learn useful behaviors. The
resulting system empirically demonstrates zero-shot robotic
manipulation capabilities to perform a wide range of skills
with diverse objects. In summary, our contributions are:

1) We develop ZeroMimic, a system that distills robotic
manipulation skills from web videos that can be deployed
zero-shot in diverse everyday environments.

2) We evaluate ZeroMimic on 9 different skills and show that
ZeroMimic achieves 71.0% out-of-the-box success rate
in the real world, 73.8% success rate in simulation, can
generalize to new objects unseen in our curated web video,
and can be deployed across different robot embodiments.

3) Our ablation studies reveal important lessons of what is
important in learning and executing robotic skills purely
from in-the-wild human videos.

II. RELATED WORK

Popular recent approaches [1–3] for enabling robot ma-
nipulation often rely on costly high-quality in-domain robot
demonstrations. Therefore, recent works in robot learning have
increasingly focused on leveraging unstructured or out-of-
domain data. Some works have demonstrated the zero-shot
capabilities of models trained on large robotics datasets [6–14],
but the curation of such datasets incurs a significant cost. Some
have exploited recent advances in VLMs, trained on “web” data
without any connection to robotics, and directly elicit zero-shot
robotic actions [15–21]. These policies are limited by the lack
of physical understanding and slow inference speed of VLMs,
as demonstrated by our experiments in Section IV-D. Human
web videos [5, 22–26], due to their abundance, diversity, and
rich information about interactions, emerge as a promising
source of data for robotic skill acquisition.

Since generating robot policies from out-of-domain human
videos directly is difficult, many works instead train representa-
tions [27–29] (e.g. R3M [27]), rewards [30–33] (e.g. VIP [31]),
or affordances [34–60] (See Fig 2). Some works [34–45]
(e.g. MimicPlay [34], WHIRL [36], and ATM [39]) explored



Fig. 1: ZeroMimic distills robotic manipulation skills from egocentric web videos for zero-shot deployment across diverse
real-world and simulated environments, a variety of objects, and different robot embodiments.

Fig. 2: Representative related work organized by Generality
of Source Human Videos and Level of Knowledge Transfer.
ZeroMimic learns diverse zero-shot policies from in-the-wild
web videos.

learning afoordances from in-domain human videos. Recent
works [46–60] (e.g. VRB [53], Track2Act [57], LAPA [60])
extended these approaches to learning from in-the-wild human
videos. Since these visual representations, reward functions,
and affordances are not explicitly actionable for robots, they
still depend on in-domain robot data to learn manipulation
policies.

Very limited prior work [61–66] such as DITTO [61],
R+X [64] and OKAMI [65] has aimed to directly generate
policies from human videos without any in-domain data.
These methods typically require the distribution of human
demonstrations to be similar enough to the test-time robot
environment and assumes knowledge of ground truth camera
and depth information, making them unsuitable for learning
from diverse and unstructured web data. Some methods also
rely on heuristic-based mappings from human hand poses

to robot gripper actions during data collection [64] or have
manually defined constraint formulations [66], limiting the
range of demonstrations and tasks these methods can handle.

As Figure 2 shows, to our knowledge, the only prior work
that attempts zero-shot policies from truly in-the-wild videos
is H2R [67], which learns plausible 3D hand trajectories from
egocentric in-the-wild EpicKitchens [5] videos and retarget
them to robot end effector for zero-shot deployment in real-
world settings. We too train policies on EpicKitchens data,
but with critical pre-processing steps that ground the data in
3D and generate higher quality policies. Further, we design
a robust system that combines learned pre-contact interaction
affordances and learned post-contact action policies. As our
experiments show, these method improvements translate to
dramatic gains in the ability to generate functional out-of-the-
box performance for manipulation skills in the real world.

III. METHOD

We focus on manipulation skills that permit decomposition
into two phases: the grasping phase that consists of approach-
ing and grasping an object of interest appropriately for the
target task, and the post-grasp phase which consists of a rigid
manipulation of the object while stably held in the gripper. This
encompasses such diverse skills as pick&place, slide opening
and closing, hinge opening and closing, pouring, cutting, and
stirring. ZeroMimic pretrains components specific to these two
phases, as described in Sec III-A and III-B before combining
them, as in Figure 3. We focus on distilling human videos
from EpicKitchens [5] into robotic skills. Pre-training on off-
the-shelf human data naturally constrains our approach to be
not tied to any specific robotic system design: we target static
robot arms with 2-fingered grippers, observing the scene with
an RGB-D camera from any egocentric-like vantage point of



Fig. 3: ZeroMimic is composed of the grasping phase and the post-grasp phase. The grasping phase (top) leverages human
affordance-based grasping to execute a task-relevant grasp. The post-grasp phase (bottom) is an imitation policy trained on
web videos to predict 6D wrist trajectories. We deploy this trained model directly on the robot.

the robot workspace. See Appendix A for images and more
details of our experiment setups.

A. Human Affordance-Based Grasping

For this phase, we use human videos to learn to identify
the appropriate region of the scene to seek to execute a grasp
in, i.e., affordance prediction. Subsequent to this, given that
human videos are of limited use in selecting the grasp itself
due the vastly different embodiment of the robot’s gripper and
the human hand, we use an approach trained on robot data
to identify suitable grasps for a 2-fingered gripper within that
region, i.e. grasp selection.

For affordance prediction, we use VRB [53] to generate
a 3D point of intended contact. VRB is pre-trained on
EpicKitchens [5]. It generates pixel-space grasp locations, given
an RGB image and a task description in natural language, e.g.
“open drawer”. Next, to select a grasp close to this chosen
location, we use AnyGrasp [68], a widely used grasp generation
model pre-trained on robot data for our 2-fingered robotic
grippers. Once a grasp is chosen, we plan a linear end-effector
motion through free space to execute it. See Figure 3 for
examples of intermediate outputs after each stage of processing
above, and the resulting grasp execution.

B. Human Movement-Based Post-Grasp Robot Policy

Once the robot has grasped the object, it must decide what
6D end-effector trajectory to execute to accomplish the task.
ZeroMimic’s post-grasp module is an imitation policy that
distills this information from in-the-wild human videos. We
first extract human wrist trajectories grounded in world 3D
coordinates by reconstructing the hand pose and the egocentric
camera, Given a skill, we take the corresponding subset of the
data and train a skill model to predict 6D wrist trajectory.

a) Extracting Human Wrist Trajectories From Web Videos:
To curate diverse and large-scale human behavior, we use
EpicKitchens [5], an in-the-wild egocentric vision dataset. It
contains 20M frames in 100 hours of daily activities in the
kitchen. To extract wrist trajectories from EpicKitchens, we

run HaMeR [69], a state-of-the-art pre-trained hand-tracking
model, to obtain 3D hand pose reconstruction. HaMeR outputs
the locations and orientations of all hand joints relative to a
canonical hand, along with camera parameters corresponding
to a translation t ∈ R3. We use camera parameters inferred
through the COLMAP [70] structure-from-motion algorithm, as
provided in EPIC-Fields [71], to convert these pixel-coordinate-
based hand pose outputs into world 3-D coordinates. We
consider only the wrist joint, and the result is 6D wrist
trajectories {ht = (xt ,yt ,zt ,αt ,βt ,γt)}T

t=1 for a T -frame clip
that is expressed in the world coordinate. See our website for
videos of ZeroMimic’s hand reconstructions.

b) Policy Training, Execution, and Implementation De-
tails: A major challenge for learning to predict trajectories
from web videos is the highly multi-modal nature of human
demonstrations – there are multiple ways to manipulate objects
in a scene given the same image observation. To model this
multi-modality, we use the recently popular action chunking
transformer (ACT) [1] policy class to learn a generative model
over action sequences. The input of our model is the current
image It , goal image Ig, and the current wrist pose ht , and
our model outputs future wrist poses {hi}t+n+1

i=t+i , where n is the
prediction chunk size. We use the last frame in the task-relevant
clip as the goal image. See Figure 3 for an illustration. Since at
test time, we perform robot experiments with a static camera,
we relieve the burden of the model to predict camera parameters
by transforming all current and future wrist poses into the
current frame’s camera coordinate using the camera extrinsics
of each frame. See Figure 4 for qualitative visualization of
generated wrist trajectories on unseen human videos. We train
one model for each skill, obtaining a set of 9 skill policies. Our
model predicts relative 6D wrist poses with a chunk size of
n = 10, and we discuss the impact of these choices in Section
IV-B. We train each skill policy for 1000 epochs, which takes
approximately 18 hours on an NVIDIA RTX 3090 GPU.

c) Retargeting Human Wrist Policy to the Robot: We
deploy our trained post-grasp policies directly on the robot
to generate 6D gripper trajectories (See Figure 3). We use a

https://zeromimic.github.io/anonymous.html


single image of a human achieving the desired outcome as the
“goal image” for all trials of a task. In addition to the goal
image, we provide the policy with the current RGB observation
and the current gripper pose in the camera’s frame. The model
predicts 6D trajectories in the same camera frame, which is
converted to the robot frame for execution. The robot executes
all actions in a chunk before prompting the model for the next
round of inference.

(a) Open drawer (b) open cupboard

Fig. 4: 6D wrist post-grasp policy outputs on unseen images.
The red, green, and blue arrows denote the x,y,z coordinates
of the wrist orientation in the camera frame.

IV. EXPERIMENTS

We evaluate ZeroMimic skill policies out-of-the-box on
a diverse set of real-world and simulation objects with
two different robot embodiments. See our website ze-
romimic.github.io/anonymous.html for videos. Our exper-
iments aim to answer the following questions:

1) How important is each component of ZeroMimic to its
eventual performance?

2) How well do ZeroMimic skill policies perform when
deployed zero-shot to perform varied skills in diverse
real-world and simulation environments?

3) How does ZeroMimic compare to other state-of-the-art
zero-shot robotic system?

4) What are the failure modes and causes of ZeroMimic?

A. Experiment Setup

We use the text annotations of EpicKitchens [5] to curate
human video data corresponding to each manipulation skill.
Having trained the 9 ZeroMimic skill policies on in-the-wild
human videos, we evaluate them on our robot in real-world
and simulation environments. Our real-world evaluation spans
30 distinct scenarios across 18 object categories in 6 kitchen
scenes. In simulation, we evaluate 4 skill policies, randomizing
kitchen scenes across trials. Figure 5 show the results. See
Appendix B for a detailed breakdown of skills, robots, object
categories, scenarios, and success rates. None of the object
instances or scenarios used in our experiments feature in our
training data.

a) Real-world experiment setup: All real-world experi-
ments are performed in 3 different real kitchens on the UPenn
campus and two different robots, a Franka Emika Panda arm
and a Trossen Robotics WidowX 250 S arm. Before our
evaluations, we position the camera and the robot at a camera
angle roughly similar to the relative camera angle of the human
hand appearing in egocentric videos: camera at human height,
and gripper within human arm’s reach of the camera. We

perform 10 trials with varying camera and robot positions
to generally resemble a human’s egocentric viewpoint. The
success of all experiments is determined by their consistency
with the goal provided by the human goal image. Visualizations
of the trial positions are available on our website through an
experiment time-lapse. See Appendix A-A for more details of
our real-world experiment setup and images of our real kitchen
scenes.

b) Simulation experiment setup: We conduct our simula-
tion experiments in RoboCasa [72]. We evaluate 4 ZeroMimic
skill policies, each across 20 randomized kitchen trials. For
each trial, we vary the camera and robot positions, background
objects, and kitchen styles (e.g., textures, object placements).
We select camera views most similar to a human egocentric
perspective. See Appendix A-B for more details of our
simulation experiment setup and images of our simulated
kitchen scenes.

B. Contribution of Each System Component to ZeroMimic

We first validate the design of the ZeroMimic procedure
by measuring the importance of each of its components on
two real-world tasks with the Franka robot: Open Drawer and
Open Cupboard. To do this, we construct ablated variants of
ZeroMimic that either drop a component or replace it with
simpler alternatives. More details about the setup of these
variants can be found in Appendix C.

a) Grasping Methods: ZeroMimic employs the human
interaction affordance provided VRB [53] to select which
grasp produced by AnyGrasp [68] to execute. We compare
our approach to two simpler alternatives: (1) selecting the
best grasp directly using AnyGrasp’s grasp score (Ours w/o
interaction affordance), as done in [73], and (2) moving the
end effector to the 2D contact point lifted to 3D with depth,
and close the gripper (Ours w/o grasp model), as done in
[53, 54]. The results in Table I indicate that ours is clearly
the best method. Ours w/o interaction affordance fails by
proposing grasps on irrelevant scene regions, while Ours w/o
grasp model struggles due to incorrect gripper orientations
and imprecise contact predictions.

Grasping Task Ours Ours w/o
Affordance

Ours w/o
Grasp Model

Drawer Handle 8/10 0/10 0/10
Cupboard Handle 7/10 4/10 6/10

TABLE I: Success rates for different grasping methods.

b) Wrist Post-Grasp Policy: After grasping the object,
we deploy our 6D post-grasp policy to execute the task. H2R
[67] also trains 6D wrist post-grasp policy on web videos,
however the key difference is that it does not account for the
impact of camera motion on the human hand motions detected
in the video frames. We consider a strengthened version of
H2R (ours w/o SfM) by simply removing camera extrinsics
and intrinsics when processing our training data. Next, VRB is
trained on web videos to produce post-contact trajectories only
in terms of 2D pixel locations on the image, rather than 6-DOF
wrist trajectories. To execute it on the robot, we sample a target
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Fig. 5: ZeroMimic Zero-Shot Performance Overview. ZeroMimic demonstrates strong generalization capabilities, achieving
consistent success across diverse tasks, robot embodiments, and both real-world and simulated environments. The evaluation
spans 34 distinct scenarios across 18 object categories in 7 kitchen scenes, highlighting the adaptability and robustness of the
system. For a detailed breakdown of performance by skills, robots, object categories, and scenarios, refer to Appendix B.

end-point depth at random and interpolate the trajectory while
fixing the gripper orientation.

We evaluate the task success rate of our model and two
alternatives after a successful grasp, and the results in Table II
show the superiority of our model, highlighting the importance
of camera information from SfM and predicting dimensions
beyond pixel coordinates. Both compared methods in this
paragraph were designed as ablations of the post-contact wrist
trajectory component of ZeroMimic; as such, they benefit from
ZeroMimic’s robust grasping phase. Without this, they would
struggle still further: H2R cannot execute grasps in the original
paper, and VRB does not provide grasp orientation even though
it generates a contact point.

Task Ours Ours w/o SfM VRB

Open drawer 10/10 4/10 2/10
Open cupboard 10/10 6/10 0/10

TABLE II: Success rates for different post-grasp policies after
a successful grasp.

Additionally, to understand critical factors for predicting
wrist trajectories from web videos, we evaluate several design
choices of the post-grasp module using teleoperated successful
grasps. We find that ACT [1] and Diffusion Policy [2] policy
architectures yield similar performance. Regarding action rep-
resentation, relative actions in both translation and orientation
significantly outperform absolute representations. Detailed
results of these experiments are provided in Appendix D.

C. ZeroMimic Zero-Shot Deployment Performance

Having established the robustness of ZeroMimic’s system
design above, we proceed to evaluate all 9 ZeroMimic skill
policies zero-shot in varied real-world and simulated scenes
with diverse objects and viewpoints. They achieve an impressive
overall success rate of 71.9% in the real word with the Franka

arm, 65.0% in the real world with the WidowX arm, and 73.8%
in simulation. See Figure 5 for a breakdown of success rates
by skills. These results indicate that ZeroMimic is capable of
distilling a diverse set of unique skills from web videos. The
results are best viewed in the videos presented on our website.

The slide closing/opening and hinge closing/opening skills
require grasping the object handle and reasoning about the
object articulation affordances. Articulated objects often have
handles of different shapes, sizes, and orientations, which our
grasping module needs to appropriately adjust to. Furthermore,
slide and hinge skills require different movements with respect
to the object’s articulation axis: translation and rotation,
respectively. Hinge skills in particular require the model to
determine if an object should be manipulated clockwise or
counterclockwise along the axis (e.g. the left and right door
of a cupboard).

For the picking and placing skills, ZeroMimic needs to
reason about the target object pose provided in the goal image.
Picking has the elevated complexity of grasping the object first,
resulting in worse performance than the placing skill.

ZeroMimic is also able to learn to use tools and perform
pouring and cutting skills at a high level. Pouring requires
reasoning about the target pour location and subsequently
moving towards the location while rotating the object along
the correct axis. Similarly, cutting requires reasoning about the
cutting angle on the object given the initial knife pose and the
target object pose. Afterwards, the robot needs to rotate the
knife to align the edge and the object at the optimal angle and
perform a swift downward motion. Interestingly, we observe
that instead of always cutting straight down, which may result
in an undesired cut on the object (e.g. slicing a vertically placed
banana along its longer axis), our model is aware of the relative
placements between the knife and the object and it learns to
adjust its motion plan properly.

Stirring is arguably the hardest skill to learn since it requires
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a particular set of motions where the translational position re-
mains roughly the same but the orientation continuously moves
in the same direction. Also, there is not much information
about the desired motions in the goal image. In evaluation,
ZeroMimic can rotate a ladle and stir solid food objects as
well as liquid in a container without excessive translational
movements.

Having been trained exclusively on in-the-wild human
videos, ZeroMimic demonstrates remarkable generalization
when deployed across object instances, categories, scenes, and
robot embodiments. Notably, it successfully executes tasks
involving object categories unseen in the human training
data, such as Pour Salt from Spoon into Pan and Cut Cake.
ZeroMimic skill policies perform comparably on the WidowX
and Franka arms for most tasks, except for the stirring skill,
which is challenging due to the limited workspace of the smaller
WidowX robot. Additionally, ZeroMimic exhibits robustness to
the real-to-sim gap, with no significant performance differences
observed between real-world and simulation experiments.

Task ZeroMimic ReKep [20]

Open Drawer 8/10 0/10
Close Drawer 6/10 6/10

Place Pasta Bag into Drawer 8/10 4/10
Pour Food from Bowl into Pan 8/10 0/10

TABLE III: Success rates for different tasks using ZeroMimic
and ReKep.

D. Comparison to Other Zero-Shot Robotic System

Concurrent work ReKep [20] optimizes keypoint-based
constraints generated by vision-language models (VLMs) to
achieve zero-shot robotic behavior. Similar to ZeroMimic, it
does not require task-specific training or environment models.
To compare ZeroMimic to ReKep, we perform real-world
experiments on 4 tasks using the Franka robot in a kitchen
environment (Figure 8a). The Open Drawer and Close Drawer
tasks involve reasoning about the drawer’s movement and
articulation. The Place Pasta Bag into Drawer task requires
spatial reasoning to understand the relationships between
objects. The Pour Food from Bowl into Pan task demands
reasoning about both object rotation and spatial relations.

Table III show the results. We observe that the failure cases
of ReKep mostly stem from two issues: the vision module
generates inaccurate keypoints or associates incorrect keypoints
with target objects, and the VLM generates incorrect keypoint-
based constraints due to its limited spatial reasoning capabilities.
For more information about our implementation of ReKep and
a detailed analysis of its failure cases, see Appendix E.

E. ZeroMimic Failure Breakdown

We investigate the system errors by examining the interme-
diate outputs of various modules and manually recording the
cause of failure for each unsuccessful trial and aggregating
their likelihood. Out of 87 failure trials in our real-world
experiments, 31.1% failed at the AnyGrasp stage, 24.1% failed

at the VRB stage, and 44.8% failed at the post-grasp policy
stage. We present failure analysis of each module below and
several examples of these failures on our website.

AnyGrasp. AnyGrasp is sensitive to point cloud sensing
failures. We use the “neural” mode of Zed depth cameras
for more accurate and smooth depth estimates; however,
performance still degrades with small, reflective objects or
under poor lighting conditions (e.g., small shiny drawer
handles). Occasionally, AnyGrasp also generates incorrect or
unreachable grasps.

VRB. A common issue with VRB is its difficulty in
predicting appropriate contact locations on large furniture (e.g.
cabinets, refrigerators) and opened articulated objects. Addi-
tionally, since VRB internally relies on Grounded SAM [74] for
language-based segmentation, segmentation errors can directly
result in its failures.

Post-grasp policy. The post-grasp policy is sometimes
sensitive to camera-robot relative positional configurations,
especially if they deviate significantly from an egocentric
perspective, since the policy models are trained on egocentric
human data. Additionally, action reconstructions from human
videos are inherently noisy, causing difficulties with fine-
grained tasks such as pouring from a spoon or cutting small
food items.

V. CONCLUSIONS & LIMITATIONS

We have presented ZeroMimic, a first step towards distilling
zero-shot deployable a repertoire of robotic manipulation skill
policies from purely in-the-wild human videos, each validated
in real scenes with real objects. Presently, ZeroMimic exploits a
simplified pre-grasp / post-grasp skill stricture, directly retargets
human wrist movements to the robot without accounting
for morphological differences, does not learn any in-hand
manipulations, non-prehensile interactions, or gripper release,
and does not handle tasks requiring two arms. Nevertheless, we
have shown that it already suffices to learn many useful skills.
ZeroMimic builds on the very best current models and hardware
for grasp generation, interaction affordance prediction, depth
sensing, and hand detection. We have shown that it is limited
by their performance; as those models continue to improve,
they will further increase the viability of our approach. Finally,
we have trained ZeroMimic on a relatively modest 100 hrs of
egocentric daily activity dataset, and expanding this to include
larger datasets such as Ego-4D [25] and beyond could help to
generate a more comprehensive and performant repository of
web-distilled skill policies.
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APPENDIX A
EXPERIMENTAL SETUP DETAILS

A. Real-World Experimental Setup Details

Fig. 6: Our Franka hardware setup includes a 7-DOF Franka
Emika Panda arm with a Robotiq 2-fingered gripper and a Zed
2 stereo camera mounted on the base.

Fig. 7: Our WidowX hardware setup includes a 6-DOF Trossen
Robotics WidowX 250 S arm attached to a table with a 2-
fingered gripper and an Intel RealSense Depth Camera D435.

Our Franka experiments uses the hardware setup in Fig 6,
which is similar to that used in prior works [75]. We use a
Franka Emika Panda arm with a Robotiq two-finger gripper
mounted on a mobile base, which we use to drag the robot
across various scenes. We use a Zed 2 stereo camera mounted
on the base to capture RGB and depth images.

Our WidowX experiments uses the hardware setup in Fig 7.
The WidowX arm is attached to a stationary table. An Intel
RealSense Depth Camera D435 is mounted on a tripod beside
the table to capture RGB and depth images.

(a) Levine Hall Kitchen (b) Grasp Lab Kitchen

(c) Towne Hall Kitchen (d) Table Top 1

(e) Table Top 2 (f) Table Top 3

Fig. 8: Real-world environments used in our experiments: (a-c)
Various kitchen environments across different buildings, (d-f)
Different tabletop setups. We perform our Franka experiments
using setups (a-e), and our WidowX experiments using setup
(f).

Figure 8 shows our real-world experimental environments.
We conducted experiments in three different kitchen environ-
ments (Figures 8a-8c) and three tabletop setups (Figures 8d-8f).
For the Franka robot experiments, we used environments (a)-
(e), moving the robot between different buildings. The WidowX
robot experiments were conducted using the stationary tabletop
setup shown in (f).

B. Simulation Experimental Setup Details

Fig. 9: Our RoboCasa simulation setup includes a 7-DOF
Franka Emika Panda arm with a 2-fingered gripper.

Figure 9 shows our simulation setup in RoboCasa [72]. We
use a Franka Emika Panda arm with a two-finger gripper in a
simulated kitchen layout. We perform 20 trials for each task,



Real-World Results

Skill Robot Object Category Scenario Success Rate (%)

Hinge Opening Franka Cupboard Levine Hall Kitchen 6/10
Franka Cupboard Table Top 1 6/10
Franka Cupboard Table Top 2 8/10
Franka Fridge GRASP Lab Kitchen 8/10

WidowX Cupboard Table Top 3 9/10

Hinge Closing Franka Cupboard Levine Hall Kitchen 4/10
Franka Cupboard Table Top 1 8/10
Franka Cupboard Table Top 2 10/10
Franka Fridge GRASP Lab Kitchen 8/10

WidowX Cupboard Table Top 3 7/10

Slide Opening Franka Drawer Levine Hall Kitchen 8/10
Franka Drawer Towne Hall Kitchen 10/10

Slide Closing Franka Drawer Levine Hall Kitchen 6/10
Franka Drawer Towne Hall Kitchen 10/10

Pouring Franka Water from Bowl into Sink Levine Hall Kitchen 8/10
Franka Food from Bowl into Pan Levine Hall Kitchen 8/10
Franka Salt from Spoon into Pan Levine Hall Kitchen 4/10

WidowX Water from Cup into Pot Table Top 3 7/10

Picking Franka Can Levine Hall Kitchen 7/10
Franka Banana Levine Hall Kitchenn 4/10
Franka Marker Table Top 1 6/10

Placing Franka Spoon Levine Hall Kitchen 10/10
Franka Pasta Bag into Drawer Levine Hall Kitchen 4/10

Cutting Franka Tofu Levine Hall Kitchen 8/10
Franka Banana Levine Hall Kitchen 8/10
Franka Cake Levine Hall Kitchen 8/10

Stirring Franka Food in Pan Levine Hall Kitchen 6/10
Franka Pasta in Water Levine Hall Kitchen 8/10
Franka Water in Pan Table Top 1 6/10

WidowX Food in Pot Table Top 3 3/10

9 Skills 2 Robots 18 Categories 30 Total Instances 71.0%

Simulation Results

Skill Robot Object Category Scenario Success Rate (%)

Hinge Opening Franka Cupboard Simulated Kitchen 15/20

Hinge Closing Franka Cupboard Simulated Kitchen 12/20
Slide Opening Franka Drawer Simulated Kitchen 17/20

Slide Closing Franka Drawer Simulated Kitchen 15/20

4 Skills 1 Robots 2 Categories 4 Total Instances 73.8%

TABLE IV: Summary of skills, robots, object categories, scenarios, and success rates for real-world and simulation results.

varying the camera position, randomizing the robot’s position,
altering the background object instances and their positions, and
selecting a random kitchen style from the 12 available options.
Each kitchen style features unique textures, distractor objects,
and fixture attributes, such as cabinet and drawer handle types.
Figure 10 are example images of different kitchen scene styles.
The success of a trial is evaluated based on the specific success
conditions defined for each task provided by RoboCasa.

APPENDIX B
DETAILED BREAKDOWN OF ZEROMIMIC ZERO-SHOT

DEPLOYMENT PERFORMANCES

Table IV provides a comprehensive overview of ZeroMimic’s
performance across both real-world and simulation environ-
ments. The results are categorized by skills, robots, object

categories, and scenarios, offering insight into the system’s
versatility and adaptability.

In the real-world evaluation, we assessed 9 skills across 2
robots and 18 object categories, spanning 30 distinct scenarios.
These evaluations resulted in an overall success rate of 71.0%.
Additionally, we evaluated 4 skills in a controlled simulated
kitchen environment using one robot across two object cate-
gories, totaling four distinct scenarios. This simulation study
achieved an overall success rate of 73.8%.

APPENDIX C
ABLATION EXPERIMENT DETAILS

In Section IV-B, the Open Drawer task is performed with
the “slide opening” skill policy, and the Open Cupboard task
is performed with the “hinge opening” skill policy.



Fig. 10: RoboCasa environment images showcasing different
setups and configurations. Each image corresponds to a different
kitchen environment style.

A. Grasping Methods Ablation Details

Ours w/o grasp model is an ablated variant of ZeroMimic
where the end effector is moved to the 2D contact point
proposed by VRB [53] lifted to 3D with depth, and the gripper
is then closed. In this experiment, since VRB does not output
orientation, we use the gripper’s initial orientation for the grasp
pose.

B. Wrist Post-Grasp Policy Ablation

In our strengthened version of H2R (ours w/o SfM), we
remove camera extrinsics and intrinsics when processing our
training data. As a result, the 3D location of the wrist is only
represented by its pixel coordinate and hand size, the output
of depth-ambiguous monocular hand reconstruction methods
[69, 76].

VRB produces post-contact trajectories only in terms of 2D
pixel locations on the image. To execute it on the robot, we
convert VRB’s 2D outputs to 6D using the following procedure:
we sample a target end-point depth at random and interpolate
the waypoints while fixing the gripper orientation as the initial
post-grasp gripper orientation throughout the trajectory.

APPENDIX D
ADDITIONAL POST-GRASP MODULE ABLATION

EXPERIMENTS

To gain insight into what is critical to learning to predict
wrist trajectories from web videos, we teleoperate the robot
to obtain a successful grasp and then evaluate a number of
alternative post-grasp trajectory generation options and present
our findings in this section.

a) Imitation Policy Architecture: We compare ACT [1]
and Diffusion Policy [2], two popular imitation learning policy
classes, for training our post-grasp policy on EpicKitchens. As
illustrated in Table V, they perform similarly when evaluated
in the real world with the Franka robot. ACT performs slightly
better on skills that mostly require gripper translation, while
Diffusion Policy is marginally better at more rotation-heavy
tasks. For consistency, we use ACT for all of our other
experiments and ablations.

Method Open drawer Open cupboard Pour water

ACT 10/10 8/10 7/10
DiffPo 8/10 8/10 9/10

TABLE V: Success rates for different post-grasp policies after
a successful grasp.

b) Relative vs. Absolute Action Representation: For
both the translation (T) dimensions and the orientation (O)
dimensions, we compare training an ACT model with absolute
and relative action representations, resulting in four variants:
absT+absO, absT+relO, relT+absO, and relT+relO. Evaluating
on the real-world “pour water” task with the Franka arm,
their respective success rates are 1/10, 3/10, 2/10, and 7/10,
indicating that relT+relO performs significantly better than
other variants. We hypothesize that the orientation distribution
shift from the human hand to the gripper as well as discontinuity
in orientation space from −π to π makes it harder for the model
to learn meaningful absolute orientation representation.

APPENDIX E
REKEP BASELINE DETAILS

A. ReKep Implementation Details

We adapted the publicly released simulation code of
ReKep [20] for OmniGibson to integrate with our real-world
Franka arm setup [75]. To evaluate ReKep as a zero-shot system
without human intervention, we use its ”Auto” mode, which
automatically generates keypoints and constraints, instead of
the ”Annotation” mode, which requires manual annotation for
both.

As part of the adaptation, we rewrote the environment
module, including the robot controller and keypoint registration
components. To ensure optimal performance and to use
ReKep’s steelman version as a competitive baseline, we rely
on teleoperated grasping for its grasping module, effectively
minimizing grasp failures. In the perception module, we replace
the ground-truth masks provided by the simulator with those
generated by the Segment Anything Model 2 (SAM2) [77].
These masks are filtered using area upper and lower bounds
to ensure accuracy. Additionally, we modify ReKep’s original
k-means and mean-shift clustering algorithms to refine the
generated keypoints, providing the VLM with cleaner input
data for generating keypoint constraints. Lastly, we replace
the simulator’s ground-truth depth data with depth data from
a ZED 2 Stereo Camera. We use its neural depth mode and
apply band filtering to improve the accuracy and reliability of
depth values.

B. ReKep Failure Cases

We present specific examples and a detailed analysis of
ReKep’s failure cases across three tasks with low success rates:
Open Drawer, Place Pasta Bag into Drawer, and Pour Food
from Bowl into Pan.

1 def path_constraint1(end_effector, keypoints):
2 """The robot must still be grasping the drawer
3 handle (keypoint 35)."""
4 handle_position = keypoints[35]



Fig. 11: Keypoints proposed by ReKep for the Open Drawer
task.

5 cost = np.linalg.norm(end_effector - handle_position)
6 return cost
7

8 def subgoal_constraint1(end_effector, keypoints):
9 """The drawer handle (keypoint 35) should be

displaced
10 outward by 10cm along the x-axis."""
11 handle_position = keypoints[35]
12 offsetted_position = handle_position + np.array

([-0.1, 0, 0])
13 cost = np.linalg.norm(handle_position -

offsetted_position)
14 return cost

Code Snippet 1: The constraints generated by ReKep for the
Open Drawer task instruct the end effector to move leftward in
the camera frame (Line 12). However, this direction deviates
from the drawer’s actual outward articulation axis.

a) Open Drawer: Failures in the Open Drawer task
arise because the VLM struggles with identifying the drawer’s
articulation axis in the camera frame, causing the gripper to
become stuck. Figure 11 illustrates the keypoints proposed
by ReKep, while Code Snippet 1 presents the corresponding
constraints generated by ReKep. These constraints direct the
end effector to move 10 cm along the negative x-axis (leftward)
in the camera frame. However, the actual outward articulation
axis of the drawer corresponds to −x (left), +y (down), and
−z (towards the screen) in the camera frame. As a result, the
actions generated by ReKep’s constraints cause the gripper to
become stuck, despite its attempts to move.

1 def path_constraint1(end_effector, keypoints):
2 """
3 Ensure the robot is still grasping the pasta bag

during the movement.
4 The cost is the Euclidean distance between the end-

effector and the pasta bag’s keypoint (keypoint 22).
5 """
6 pasta_bag_keypoint = keypoints[22]
7 cost = np.linalg.norm(end_effector -

pasta_bag_keypoint)
8 return cost
9

10 def subgoal_constraint1(end_effector, keypoints):
11 """
12 Ensure the pasta bag is inside the drawer.
13 The cost is the Euclidean distance between the pasta

bag’s keypoint (keypoint 22)
14 and the drawer’s keypoint (keypoint 6).
15 """
16 pasta_bag_keypoint = keypoints[22]

Fig. 12: Keypoints proposed by ReKep for the Place Pasta
Bag into Drawer task.

17 drawer_keypoint = keypoints[6]
18 cost = np.linalg.norm(pasta_bag_keypoint -

drawer_keypoint)
19 return cost

Code Snippet 2: For the Place Pasta Bag into Drawer
task, ReKep generates constraints based on incorrectly
identified keypoints. Specifically, it misclassifies keypoint 22,
a background keypoint, as the pasta keypoint, and keypoint
6, another background keypoint, as the drawer keypoint. See
Lines 16-17 and Figure 12 for the misclassified keypoints.

b) Place Pasta Bag into Drawer: Figure 12 illustrates the
keypoints proposed by ReKep, while Code Snippet 2 presents
the corresponding constraints. The keypoint proposal reveals
that ReKep’s vision module struggles to generate a reliable
keypoint on the inside of an empty drawer. Additionally, ReKep
projects 3D keypoints onto 2D images, which can result in
spatially close keypoints overlapping and cause errors in the
VLM’s keypoint selection. For example, it identifies a keypoint
near the edge of the pasta bag but slightly outside its actual
boundary as belonging to the bag. This misplacement leads
to the keypoint’s depth value being incorrectly interpreted as
the larger background depth value. Additionally, it sometimes
associates nearby background keypoints with the drawer. By
generating constraints based on these misidentified keypoints,
ReKep produces ineffective movement instructions for the end
effector, ultimately resulting in task failure.

1 def path_constraint1(end_effector, keypoints):
2 """
3 Ensure the robot continues to hold the bowl during

the pouring process.
4 This can be achieved by keeping the end-effector

aligned with the bowl’s keypoint (e.g., keypoint 48).

5 """
6 cost = np.linalg.norm(end_effector - keypoints[48])
7 return cost
8

9 def subgoal_constraint1(end_effector, keypoints):
10 """
11 Ensure the bowl is tilted to pour the object into the

pot.
12 This can be achieved by ensuring the vector formed by

two keypoints on the bowl (e.g., keypoints 48 and
49)

13 is at a specific angle with respect to the z-axis.
14 """



Fig. 13: Keypoints proposed by ReKep for the Pour Food from
Bowl into Pan task.

15 bowl_vector = keypoints[49] - keypoints[48]
16 z_axis = np.array([0, 0, 1])
17 angle = np.arccos(np.dot(bowl_vector, z_axis) / (np.

linalg.norm(bowl_vector) * np.linalg.norm(z_axis)))
18 desired_angle = np.pi / 4 # Tilt the bowl by 45

degrees
19 cost = np.abs(angle - desired_angle)
20 cost = np.linalg.norm(bowl_vector)
21 return cost

Code Snippet 3: The constraints generated by ReKep for the
Pour Food from Bowl into Pan task ensure that the bowl is tilted
at an angle of 45◦ with respect to the z-axis to facilitate pouring
(Line 18). However, this angle is insufficient to effectively pour
the food out of the bowl.

c) Pour Food from Bowl into Pan: Figure 13 illustrates the
keypoints proposed by ReKep, while Code Snippet 3 presents
the corresponding constraints. In the pouring task, while ReKep
correctly establishes a rotation constraint, it underestimates the
numerical value of the required rotation. As a result, the bowl
is only slightly tilted at 45◦, failing to achieve the intended
pouring motion to empty the bowl. While ReKep demonstrates
the Pour Tea task in its paper, the prompt used for the VLM in
the publicly released implementation includes helpful guidance
on constraint construction for this task, such as suggesting
that “the teapot must remain upright to avoid spilling”. This
additional guidance may have enhanced ReKep’s performance
on the task. While pouring tea requires only a slight tilt, pouring
food from a bowl into a pan demands a significantly larger tilt,
something the VLM fails to reason about effectively.
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