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ABSTRACT

Bayesian deep learning (BDL) is believed to be an effective approach to en-
abling uncertainty estimation and improving the generalisation and robustness of
classical deep learning with the help of the Bayesian principle. Considering its
non-meaningful weight-space prior and problematic Kullback-Leibler (KL) diver-
gence, functional inference with Wasserstein distance has recently emerged as a
promising direction in this field. However, existing efforts require different types
of degenerations to achieve tractable Wasserstein distance computation, which
limits the predictive and uncertainty estimation capabilities. In this paper, we pro-
pose two novel implicit functional BDL (ifBDL) approaches, i.e., implicit func-
tional Bayesian neural networks and implicit functional Bayesian deep ensemble.
The common idea is to implicitly transform the BDL posterior to a Gaussian pro-
cess via the neural tangent kernel to facilitate tractable 2-Wasserstein distance
computation and preserve the neural network parameterization. The experimental
evaluations on standard tasks show that ifBDL has superior predictive and un-
certainty estimation capabilities compared to existing weight-space and function-
space approaches.

1 INTRODUCTION

Bayesian deep learning (BDL) (Papamarkou et al.| [2024) is believed to be an effective approach to
enabling uncertainty estimation and improving the generalisation and robustness of classical deep
learning with the help of the Bayesian principle. Some typical models include Bayesian neural
networks (BNNs) (Blundell et al.l 2015} |Gal, 2016), Bayesian deep ensembles (Seligmann et al.
2024])), deep kernel processes (Ober et al., |2023)), neural processes (Garnelo et al., 2018), and so
on. The uncertainty estimation is essential for some safety-critical applications like medical diag-
nosis (Dolezal et al., [2022)) and autonomous driving (Tai1 et al., 2019), and stronger generalisation
and robustness are the keys to applying the trained model in practical scenarios featuring possible
distribution shifts and incomplete and noisy data. Recent works have also shown its capability of
extending large deep networks like Transformers (Chen & Li,|2023) and GPT (Shen et al., 2024) to
yield good weight-uncertainty for calibration, and model averaging.

Similar to all Bayesian approaches, there are two main steps of BDL: prior selection and posterior
inference. For prior selection, a straightforward and popular choice is the independent identically
distributed (i.i.d) prior for deep learning weights, such as the i.i.d Gaussian distributions. However,
this prior is found problematic because 1) it is hard to encode prior knowledge about the underlying
functions through distribution design for the large-scale network weights; 2) the samples of such
priors over parameters tend to be horizontally linear and lead to pathologies for deep models (Duve-
naud et al.| 2014} Matthews et al.| |2018; [Tran et al.| 2020); and 3) the effects of the given priors on
posterior inference and, consequently, on the resulting distributions over functions are unclear and
hard to control due to the complex architecture and non-linearity of the models (Ma & Hernandez-
Lobato, 2021} Wild et al., 2022). Considering these problems, there is increasing interest in using
functional priors instead. A representative example is the Gaussian process (GP) (Rasmussen &
Williams|, |2005)), which can easily encode prior knowledge of underlying functions through kernel
design. We call the BDL under functional prior functional BDL (fBDL).

The posterior inference for fBDL is more challenging than weight-space BDL due to the infinite-
dimensional functional prior and posterior. The (generalized) variational inference (Knoblauch et al.,
2022) of BDL involves a term to minimize the distance between the posterior of BDL and the prior.
However, the posterior is a complex distribution over functions without an explicit probability den-
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sity function, making the distance measurement to GP prior a challenge. Existing approaches in-
clude using a spectral Stein gradient estimator to evaluate the divergence between a BNN and a GP
(Sun et al., 2019), as well as using first-order Taylor expansion to approximate the posterior of BDL
(Rudner et al.,[2022). Both methods are designed for the Kullback-Leibler (KL) divergence, which
presents challenges because i) there do not exist density functions with respect to the Lebesgue
measure for stochastic processes prior and posterior (Hunt et al., |1992), and ii) the functional KL
divergence is not always well-defined (Burt et al.||2020) as the variational posterior measure should
be absolutely continuous with respect to the prior measure to guarantee the exist of Radon-Nikodym
derivative; otherwise, the KL divergence can be infinite (Gray}, 201 1; | Matthews et al., 2016). Conse-
quently, efforts have been made to use the Wasserstein distance instead. For instance, the dual form
of the 1-Wasserstein distance is employed to evaluate the distance between a BNN and a GP (Tran
et al.,|2022; Wu et al., [2024). Compared to the 1-Wasserstein distance, which requires a number of
function samples for approximation, the 2-Wasserstein distance can be much more easily evaluated
because it has a closed form for Gaussian measures on a given measurement set. To utilize the 2-
Wasserstein distance, another GP using a deep neural network as the mean function approximates
the posterior of BDL, and then the 2-Wasserstein distance is used to evaluate the distance between a
BNN and a GP (Wild et al.}|2022)). However, this GP degeneration reduces the uncertainty modelling
and model generalization capability of the original BDL, as verified in the experiments.

In this paper, we propose a novel functional BDL using the 2-Wasserstein distance via the neural
tangent kernel. The NTK (Jacot et al., [2018}; |[Lee et al.,[2019) captures the evolution of deep neural
networks under gradient descent. Under certain conditions, the distribution of functions learned
by such networks can be well approximated by a GP parameterized by the NTK. Motivated by
these properties of the NTK, we establish a connection between the BDL posterior and the NTK-
based GP transformation, resulting in our novel functional BDL method. Experimental evaluations
demonstrate that this approach outperforms the approximation using a GP with the deep neural
network as the mean function. Our main contributions are summarised as follows:

* We propose to use the 2-Wasserstein distance with good statistical properties instead of KL
divergence to achieve functional BDL. This approach can avoid many limitations associated
with using KL divergence in infinite-dimensional function space;

* A neural tangent kernel-based approach is employed to transform a BDL posterior to a GP.
This transformation preserves more uncertainty estimation and generalization capability
of BDL compared to the approximation using GP with deep neural networks as a mean
function.

* We introduce and verify the effectiveness of two functional BDL approaches, i.e., func-
tional Bayesian neural networks and functional Bayesian deep ensembles. These ap-
proaches are evaluated through comparative experiments on standard tasks with several
existing parameter space and functional space variational inference methods.

2 BACKGROUND

2.1 BAYESIAN DEEP LEARNING

Consider a dataset D = {X, Y} = {(z;,y;)};_,, where z € R? represents d-dimensional input and
y € R¢ represents c-dimensional target. Classical (determinate) deep learning (DL) aims to build
a function mapping f(y|z; w) between input and target weighted by parameter w, while Bayesian
deep learning (BDL) aims to learn a distribution over all possible functions p( f|D) instead of a sin-
gle f. Such distribution over functions is able to improve the model generalization and uncertainty
modelling (Papamarkou et al.,[2024). In this paper, we use two examples of BDL: Bayesian neural
networks and Bayesian deep ensembles.

2.1.1 BAYESIAN NEURAL NETWORKS

A Bayesian neural network (BNN) assigns prior po(w) and likelihood p(D|w) to neural net-
work weights. According to Bayes’ theorem, the posterior distribution of w can be calculated
as p(w|D) x p(D|w)po(w). Given test data x*, the predictive distribution can be obtained by
p(y*|z*, D) = Epwip)(p(y*|2*, w). It is important to note that the distribution over functions
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p(f|D) is induced by the posterior distribution p(w|D). Since the posterior is intractable for prac-
tical neural network architectures, the variational posterior inference is used to fit a tractable ap-
proximation posterior gg(w), parameterized by 6, to the exact posterior p(w|D). This is achieved
by minimizing their KL divergence, which is equivalent to maximizing the evidence lower bound

(ELBO):

Lo (w) = Bgg(w)[log p(D | w)] — KL[ge (W) |[po(W)]- ()
Bayes By Backprop (BBB), proposed by [Blundell et al.| (2015), is one of the most used variational
inference learning algorithms for BNNs in weight space. BBB leverages a fully factorized Gaus-
sian assumption about variational posterior and employs the reparameterization trick (Kingma &
Welling| 2014) to obtain unbiased gradient estimates of ELBO with respect to model parameters.
Several variants of BBB have been proposed in the field (Gal & Ghahramani, 2016; |Marino et al.,
2018 [Santana & Hernandez-Lobato, [2022). Despite their differences, these variants share a simi-
lar basic framework. However, the challenge remains in choosing an appropriate prior for network
weights and understanding its impact on inference and the resulting posterior distribution.

2.1.2 BAYESIAN DEEP ENSEMBLE

Deep ensemble (Lakshminarayanan et al.,|2017)) trains multiple (1/) independent determinate neural
networks { f;(y|z, w;)};* with different initializations. The posterior of weights can be considered

as in the form of a mixture of deltas ¢(w) = Zi\/[ d(w — w;) (Deng et al.,|2022). Given test

data z*, the predictive distribution can be obtained as p(y*|z*,D) = wa fily*|z*). Deep
ensembles are effective for uncertainty modelling and out-of-distribution predictions. Their success
is attributed to their relation to Bayesian inference and posterior approximation (Wilson & Izmailov,
2020; He et al.;,2020). When we assign a prior po(w) to the deep ensemble, we can derive a similar
(generalized) variational inference objective for the deep ensemble by adding a distance regularizer
on w, similar to BNNSs,

M

Liwy = Zlogp(D | wi)] = KLlg(w)l[po(w)]- @)

We refer to the deep ensemble with a given prior as Bayesian deep ensemble (BDE) in this paper.
The distribution over functions p( f|D) is also induced by the posterior distribution p(w|D).

2.2 FUNCTIONAL POSTERIOR INFERENCE

Suppose po(f) is a functional prior for BNNs defined on a probability space (€2, 7, P) (a separable
metric and complete Polish space) with a stochastic process f(-) : 7 — R, where T is an infinite
compact index set for f(-). Similar to the idea of Bayesian inference in parameter space, po(f)
combined with the likelihood p(D|f) yields the posterior p(f|D) given observed data. However, in
most cases, this posterior cannot be solved analytically. Performing variational inference directly
in function space aims to find an approximate posterior ¢(f) on (Q, F, P) that approximates the
truly posterior. This is typically achieved by minimizing the KL divergence between them. The KL
divergence between the distributions in function space is defined based on their Radon-Nikodym
derivatives (Gray, 2011)

KelaD)lor) = [ 1o {j‘;m} da(f) 3
dq

where (f) is the Radon-Nikodym derivative between ¢(f) and p(f) under the condition that

q(f) is absolutely continuous with respect to p(f). It is important to note that p(f) and gq(f)
are actually probability measures, as there are no densities with respect to the Lebesgue measure
in infinite-dimensional function space (our notation is slightly garbled here). According to the
measure-theoretic definition of Bayes’ theorem (Schervish, 2012), the Radon-Nikodym derivative
of the posterior p(f|D) w.r.t. the prior po(f) is defined as
ap(f[D) _ p(DL) “
dpo(f) p(D)
where p(D) = [ p(D|f)dp(f) represents the marginal likelihood. By applying the chain rule of
Radon-Nikodym derivatives, we obtain the KL divergence between ¢(f) and p(f|D) in function
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space:
dp(f|D)

KLl(Dlpr1D)] = [ 1og {;lZ(f)} ()~ [ o {dp(f)} da( )

= KLa(Hlp()) = Eqe)llog p(D|f)] + log p(D).
Consequently, ¢(f) can be equivalently optimized by maximizing the functional evidence lower

bound (fELBO)
Lypy = Eq(p) logp(D | f)] = KL[g(f)lIpo(f)]- (6)

The key challenge lies in effectively estimating the KL divergence between the stochastic process
prior po(f) and the variational posterior ¢(f). Although such KL divergence can be approximated
in some ways (Sun et al.,|2019), its practical validity may be limited because its application strictly
assumes the existence of Radon-Nikodym derivatives between ¢(f) and po(f). In cases where, for
example, the prior and the variational posterior correspond to two neural networks with different
structures, we encounter situations where KL[g(f)|lpo(f)] = oo (Burt et al.l [2020).

&)

In contrast to KL divergence, Wasserstein distance (Kantorovich, |1960; |Villani, 2021) is a rigor-
ously defined distance metric on probability measures satisfying non-negativity, symmetry and the
triangular inequality (Panaretos & Zemel, 2019). Originally proposed for the optimal transport prob-
lem, Wasserstein distance has gained popularity in the machine learning community in recent years

(Arjovsky et al.l|2017). Let us consider a Polish space (P, || - ||), where the T-Wasserstein distance
between probability measures p and v in (P, || - ||) is defined as
1/7
Wotu) = (nt [ o=l drte) )
YEL (k) Jpxp

where I'(u, ) represents the set of joint measures or couplings -y with marginals p and v on P X P.
The term || - || quantifies the effort required to transport one unit mass from measure y to v, and
the 7-Wasserstein distance measures the minimal cost of reconfiguring the mass distribution of one
probability measure to match another. [Tran et al.|(2022) proposed using the Kantorovich-Rubinstein
dual form of the 1-Wasserstein distance (Villani et al., 2009; |Arjovsky et al., [2017)) to evaluate the
distance between a BNN and a GP,

Wila(H)llpo(£)] = max Bo(p) [6(F)] = Epo(s) [6(1)] (8)
where ||¢||<1 indicates that ¢ is constrained to be a 1-Lipschitz function. Unlike the 1-Wasserstein
distance, which requires function samples for approximation, the 2-Wassessetin distance can be
more easily evaluated because it has a closed form for Gaussian measures on a given measurement
set (Gelbrichl [1990). To use 2-Wasserstein distance, Wild et al.| (2022)) proposed to use another GP
with the deep neural network as the mean function to approximate the posterior on measurement set
X (named GWD), ¢(fx) = N (mx,q,Xx.q)-

Wala(fx)Ipo(f)] =llmsx.q = mxoll3 +tr(Sx.0) + tr(Zx.) = 26r((Sx ;x. 05K 5] /?)

9
where po(fx) = N(mx o, Yx,0) represents GP prior on measurement set X, and ¢r() denotes the
trace of an operator. However, it is important to note that the uncertainty of fx is directly associ-
ated with ¥x , (usually predefined or jointly parameterized) rather than the variances of all network
weights. Consequently, this GP transformation reduces the uncertainty modelling and model gener-
alization capability of BDL.

3 PROPOSED METHODS

In this section, we introduce two new functional BDL approaches with 2-Wasserstain distance as the
regularizer via neural tangent kernel: functional BNN and functional BDE.

3.1 IMPLICIT FUNCTIONAL BAYESIAN NEURAL NETWORKS

We aim to extend the weight-space BNN to a functional BNN by revising its variational inference
objective (I to the following functional counterpart

L) = Egg(w)llog p(D | w)] — Wa[q(f; w)llpo(f)] (10)
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where ¢(f; w) represents the BNN posterior distribution over functions induced by the distribution
go(w). It is important to note that we cannot directly use (9) because ¢(f; w) is a BNN poste-
rior rather than GP. Next, we propose a GP transformation of ¢(f;w) to enable the efficient 2-
Wasserstein distance evaluation. Our idea is based on Neural Tangent Kernel (NTK) (Jacot et al.|
2018;|Arora et al.,[2019), which is an important concept linking GP and neural networks. The NTK
is defined as

ét (X, X/) = <vwf (X, Wt) vvwf (X/awt»

where f(x,w;) is the current output of NNs with parameter w; and ©, denotes the empirical NTK.
When the network width and training step go to infinity, such empirical NTK will converge to a
positive definite kernel ©, that is, NTK, which then stays constant during the training.

At a given training step ¢, we can linearize the stochastic function defined by the BNN posterior
around the mean value of w; ~ N (py, o) as

Fe(sw) = f(ipe) + Ve f (5 ) (W — ) (11)

where V, f (+; pt) represents the Jacobian of f at u,. We can safely do this linearization because
of the ‘lazy-training’ property of deep neural networks, especially with large network widths (Jacot
et al.| 2018} [Lee et al., 2019). Further, [Lee et al.|(2019) proved that the linearized neural network
f(x; w;) with randomly initialized f(x), when ¢ — oo, satisfies

JR(%) 1= foo (%) = fo(x) = OsxO% (f6(X) = Y) (12)

where O,x = O(x, X) and Oxx = ©71(X, X). At step ¢, we know the network function in
satisfies GP distribution,

Fi ~ GP(F(5 1), M) Moo = Vo f (55 p10) Vo f (5 ), By = diang(ar). (13)
If using it as the fj, we can derive the distribution f Lap (Moo (%), koo (x,%")), where

foo ~GP (moo (X)7 koo (Xa X/))
Moo (%) =f (5 1) — O, X)Ox (f(X; pae) = Y) (14)
ko (Xa X/) :Axx’ - AxX@;(k@Xx’ - @xXG;(;(AXx/ + GXXG;(%(AXXG;(;(@XX“

The derivation detail is given in the Appendix. As illustrated in Figure [Ta] the proce-
dure is: at step ¢, we can firstly evaluate the current implicit empirical NTK at pu; by
@t,ut (xaxl) = <vwf (X; /Jlt) 7vwf (X/§Ht)> and Ay = wa (X; IJJt) Etvwf (xl;ﬂt)—r; then
we transform ¢(f;w) to a GP as in (14); and finally we calculate the 2-Wasserstein distance
Wa[GP (Mmoo (%), koo (x,%)) |[po(f)] as the regularizer to update the BNN together with the data
likelihood.

This regularizer can be understood as follows: At training step t, imagine training the network
from its current state to infinity using the standard neural network training procedure (without reg-
ularization) with the observed data (X,Y). The stochastic network will converge to the above
GP. The regularizer constrains the BNN posterior update by constraining this GP to remain close
to the prior in Wasserstein space. Note that our GP transformation preservers all parameters of
BNNS (i.e., i, o), while the transformation in GWI only preserves the p and uses a shared vari-
ance for all predictions. Consequently, our NTK-based approach could provide better uncertainty
modelling capability than GWI. We call the functional objective (I0), with the distance defined by
W [GP (Mmoo (%), koo (x,X")) |lpo(f)], implicit functional Bayesian neural networks (ifBNN).

One issue with the above procedure is that the 2-Wasserstein distance between two Gaussian pro-
cesses exists in infinite-dimensional space. Fortunately, we have the following theorem:

Theorem 1 (Mallasto & Feragen|(2017)) The 2-Wasserstein metric between Gaussian distribu-
tions on finite samples converges to the Wasserstein metric between GPs, that is, if fi, ~

N(min, Xin), fi ~ GP(my, k;) fori = 1,2, then

Tim W3 (fin, fan) = W3 (f1, f2) - (15)
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Figure 1: Conceptual frameworks of ifBNN and ifBDE

According to the above theorem, we can approximate Wa[GP (moo (%), koo (X,%)) |[po(f)] via the
tractable 2-Wasserstein metric between Gaussian distributions over a finite number of measurement
samples. Note that although the KL divergence between two GP processes is also approximated
by a measurement set in (Sun et al., [2019), they are different. The limit in from Theorem
1 is relatively easier to achieve compared to the KL divergence because the limit in (I5)) can be
reached by simply increasing the measurement sample size. In contrast, achieving the limit for KL
divergence requires searching for the best subset among all possible subsets. The entire process of
ifBNN is summarized in Algorithm[I](in Appendix).

3.2 IMPLICIT FUNCTIONAL BAYESIAN DEEP ENSEMBLE

This section aims to extend the weight-space BDE to functional BDE by revising its objective (2)) to
the following functional counterpart

M
Liwy = Z log p(D | wi) — Walq(f; w)|lpo(f)] (16)

where ¢(f; w) represents functional posterior distribution induced by distribution ¢(w). Since the
prior pg typically comes from domain expert knowledge about the underlying functions for a target
task, it is used to constrain the final aggregated function distribution rather than each ensemble in
(I6). We call this implicit functional Bayesian deep ensemble (ifBDE). The concept is visually
represented in Figure [Tb] The next steps involve obtaining a GP transformation of the aggregated
ensembles and evaluating the 2-Wasserstein distance with the prior.

Continuing with and for an arbitrarily initialized fo L GP(0, k(x,x")), the posterior is f 2
GP (Mmoo (%), koo (X,X)), where
Moo (x) =0(x, X)0x'Y
koo (x,X') =kxxs + O(x, X)Ox kxO%'O(X, x') — (O(x, X)Ox kxx + O(x, X)Ox kxx) -

a7

We can see that ko, could be significantly simplified if & is equal to NTK ©. This can be achieved

by adding a random function to the original network function, f () = f (-) + g(-), where g() =

Vw/f(-,w)w* and w* = concat ({w=,0}). It has been proven that g(-) 4 Gp (0,0<%) and

fo() = fo()+g(") 4 GP(0, ©) under NTK parameterization|[He et al.|(2020). Then the covariance

matrix of f(-) becomes
koo(x,x) = O(x,x) — O(x,X)0"1XO(X, x) (18)

and it is interesting to see that this is equal to the GP posterior.
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On top of that, we obtain a GP transformation for each neural network in the ensemble, i.e.,
{GP; };=1.0, and then a straightforward idea to aggregate them is to use the average below:

GP, = ZGP”, my(x Zm” k(2 Zk” (z,z') (19)

where

fi(x) ~ GP;(my(x), ki(x,%')), mi(x) = OxxOxx Y, ki(x,X) = Oy — O, xOx x Oxtxc-
(20)
However, this straightforward average overlooks the underlying geometry of probability distribu-
tions. To align with the Wasserstein distance regularization used, we propose using the Wasserstein
Barycenter (Strommel 2020) of GPs, which is defined in a Wasserstein geometry space that captures
the underlying structure of probability distributions.

Definition 1 (Wasserstein Barycenter (Cuturi & Doucet 2014)) A Wasserstein barycenter of M
measures v+, .. .,vy inlP € P(Q) is arg min,, Z EWp (1, i), where & > 0,5 & = 1.

For our problem, we assume no preference over ensemble members, so barycentric coordinates are
fixedas & = ﬁ and p = 2. When {v; = N (m;, %;)} are finite-dimensional Gaussian distributions,
the mean of their Wasserstein barycenter is simply ﬁ >~; m;, but there is no explicit analytic form
for the covariance matrix. Fortunately, there is an efficient and differentiable fixed-point method to
calculate it as follows.

Theorem 2 ((Alvarez-Esteban et al., 2016)) Assume Y1, ..., 20 € R gre symmetric positive
semidefinite matrices, with at least one of them positive definite. Consider some symmetric positive
semidefinite matrices Sy and define

2

k
Sua1 =S, (SRS s 2 > 0. @1
j=1
IfN(0,%0) is the barycenter of N'(0,31), ..., N(0,%y), then

asn — oQ.

According to this theorem, we can obtain the (approximated) covariance matrix through several
iterations with a random initialization (we used the Euclidean mean from (19) in the implementa-
tion). For M = 20,d = 50, this procedure can achieve an accuracy of 10~ 0 in fewer than 14
steps. The following theorem further ensures that the barycenter of infinite-dimensional GPs can be
approximated by that of their finite-dimensional Gaussian distribution counterparts.

Theorem 3 ((Mallasto & Feragen, 2017)) Assuming the barycenter of a population of GPs is non-
degenerate, the barycenter of the finite-dimensional restrictions converges to the barycenter of GPs.

With the above theoretical guarantee, we first find the Wasserstein barycenter of all member net-
works via

GP, = arg min i Wo [GPi —GP (0, égf) ||GPt] (23)

where a GP component is added to reduce the effect from an additional g function for each ensemble.
A measurement set is sampled and used to transform the above infinite-dimensional problem into
a finite-dimensional one. Then, the fixed-point algorithm in (21} is used to obtain the barycenter
covariance. Together with the weighted mean, the Wasserstein distance Ws [GP;||po(f)] is used
in @, which is also in the finite-dimensional space due to the finite-dimensional nature of GP;
but is guaranteed to converge to its infinite-dimensional counterpart as the measurement set size
approaches infinity. Note that to ensure consistency, the sampled measurement set will be used for
both barycenter computation and the final prior regularization. The whole process is summarized in
Algorithm 2] (in Appendix).
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Figure 2: Extrapolation Illustrative Examples. The dashed black line is the ground true function and
black dots denote 20 observations. The blue line corresponds to the mean of approximate posterior
predictions and shadow areas represent the predictive standard deviations.

4 RELATED WORK

Due to the limitations of parameter-space variational inference, such as the intractability of spec-
ifying meaningful priors, |Sun et al.| (2019) proposed a functional ELBO to match a GP prior and
the variational posterior over functions for BNNs via a spectral Stein gradient estimator designed
for implicit distributions (Shi et al., [2018)). Concurrently, Wang et al.| (2019) proposed a particle
optimization variational inference method in function spaces for posterior approximation in BNNSs.
Rudner et al.| (2020; [2022) pointed out that the supremum of marginal KL divergence over finite
measurement sets cannot be solved analytically for the estimation of functional KL divergence.
They proposed approximating the distributions over functions as Gaussian via the linearization of
their mean parameters, deriving a tractable and well-defined variational objective since the func-
tional prior and variational posterior are two BNNs that share the same network structures. |[Ma &
Hernandez-Lobatol| (2021)) randomized the number of finite measurement points to derive an alter-
native grid-functional KL divergence, which can avoid some limitations of KL divergence between
stochastic processes. However, all these methods are based on KL divergence between stochastic
processes, which might be ill-defined for a wide class of distributions and lead to an invalid varia-
tional objective (Burt et al.| 2020).

Considering the potential weaknesses of KL divergence, some recent works have explored using
Wasserstein distance (Kantorovichl [1960; |Villanil [2021) as a replacement. [Tran et al.| (2020) pro-
posed matching a BNN prior to a GP prior by minimizing the 1-Wasserstein distance to obtain more
interpretable functional priors in BNNs. However, they used stochastic gradient Hamiltonian Monte
Carlo (SGHMC) rather than variational inference to approximate the posterior. |Wild et al.[(2022) de-
veloped a functional variational objective called GWI, where both the functional prior and posterior
are Gaussian measures, and the dissimilarity measure is the 2-Wasserstein distance. However, the
critical GP degeneration makes it less expressive than the original BDL in terms of uncertainty. Our
method retains the original BDL parameterization and facilitates tractable 2-Wasserstein distance
regularization.

5 EXPERIMENTS

In this section, we evaluate the predictive performance and uncertainty quantification of the proposed
models using several standard tasks including multivariate regression on UCI datasets, contextual
bandits, and image classification, via comparing them with several well-established parameter-space
variational inference approaches, i.e., weight-space BNN with KL divergence (KLBNN (Blun-
dell et all [2015)), and 2-Wasserstein distance (WBNN), and Bayesian deep ensemble (BDE), and
function-space variational inference approaches, i.e., BNN with functional KL divergence (fBNN
(Sun et al.l 2019)), 2-Wasserstein FSVI (Rudner et al., 2022) and GWI (Wild et al., 2022).
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Table 1: The table shows the results of average RMSE for multivariate regression on UCI datasets.
We split each dataset randomly into 90% training data and 10% test data, and this process is repeated
10 times to ensure validity. We perform the paired-sample t-test for the results from our best one

with other methods and get p < .05.

Dataset Yacht Boston Concrete Kin8nm Protein

ifBNN 0.341 £0.071 0.607 £0.093 0.613 £0.080 0.758 £0.048 0.882 £ 0.009
ifBDE 0.089 + 0.096 0.393 + 0.087 0.324 +0.079 0.334 +-0.034 0.779 £ 0.010
FSVI 0.922 +£0.087 0.967 +£0.095 0.976 +£0.092 0.992 +£0.043 0.997 £+ 0.012
GWI 2.198 £0.083 1.742 +£0.046 1.297 +£0.053 1.188 £0.015 1.333 £ 0.007
fBNN 1.523 £0.075 1.683 +=0.122 1.274 +0.049 1.447 £0.069 1.503 £+ 0.025
WBBB 2328 £0.091 2306 +0.102 2.131 £0.068 2.134 £0.029 2.188 £+ 0.012
KLBBB 2.131 £0.085 1.919+0.074 1.784 £0.063 1.787 £0.027 1.795 +0.010
BDE 0.210 £0.003 0.554 +=0.001 0.543 +0.003 0.710 £0.006 0.873 £+ 0.001

Table 2: The table shows the average test NLL on several UCI regression tasks. We split each dataset
randomly into 90% of training and 10% of test. This process is repeated 10 times to ensure validity.

Dataset Yacht Boston Concrete Kin8nm Protein

1ifBNN -1.347 +£0.95 -0.316 +0.30 -1.366 + 0.20 -2.410 £ 0.14 -1.942 + 0.31
ifBDE -4.269 + 0.97 -2.406 £+ 0.75 -1.467 + 0.34 -3.051 £+ 0.28 -0.887 + 0.49
FSVI -0.650 +£0.87 -0.487 +=0.52 -0.720 +0.33 -1.774 + 0.08 -1.692 4+ 0.58
GWI 0.112 £0.75 -1.043 £ 0.68 -0.684 + 0.49 -2.604 + 0.23 -1.575 £ 0.22
fBNN -0.770 £ 0.86  -1.193 = 0.76 -1.001 + 0.52 -2.445 + 0.62 -1.486 + 0.23
WBBB 2.856 £0.18 2.656 +0.17 2.838 = 0.15 2.823 £ 0.06 2.744 £+ 0.02
KLBBB 2.5124+0.16 2.066 +0.11 2.614 £ 0.16 2.614 + 0.07 2.222 +£0.02
BDE 8.085 +£2.13 45581 £6.01 63.367 £22.05 81.009 £26.16 62.305+ 53.15

5.1 EXTRAPOLATION ILLUSTRATIVE EXAMPLES

Given a random polynomial function, some random data points are sampled as the observations. The
setting details can be found in Appendix A3, and the results are shown in Figure 2] We can see that
1) BDE fitted the data points and recovered the underlying function well but exhibited an overfitting
phenomenon (especially in the range [0.25, 0.75]); 2) ifBDE achieved the best performance among
all methods and provided better uncertainty qualification than weight-space BDE; 3) both ifBNN
and ifBDE have shown good performance on function fitting and, more importantly, well-calibrated
uncertainty in the left-most and right-most ranges.

5.2 UCI REGRESSION

In this experiment, we evaluate our approaches for multivariate regression tasks on benchmark UCI
datasets to demonstrate their performance on prediction and uncertainty estimation. The setting de-
tails can be found in the Appendix A3. Table [I] shows the predictive results evaluated by the root
mean square error (RMSE). We can see that 1) Except for BDE, all functional inference approaches
consistently provide better predictive results than the parameter-space ones, which shows the advan-
tage of function-space variational inference.; 2) the functional one is better than its corresponding
weight-space ones, such as ifBDE is better than BDE and ifBNN is better than WBBB; 3) BDE
outperforms BNN in both weight-space and functional ones; 4) ifBDE is the best among all func-
tional inference methods Furthermore, our proposed approaches significantly outperform all other
two functional ones. Table[2]shows the average test negative log-likelihood (NLL) results, where the
function-space ones are also better than the weight-space ones and ifBDE generally performs best
among all function-space ones. We also see a significant performance drop in BDE.

5.3 IMAGE CLASSIFICATION AND OOD PREDICTION

We also evaluate our approaches to the image classification task with higher dimensions than UCI
datasets. To demonstrate their performance on prediction and uncertainty estimation, we evaluate
both the in-distribution and out-of-distribution (OOD) predictions on MNIST, FashionMNIST and
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Table 3: Image classification and OOD detection performance.

MNIST FMNIST CIFAR10
Model Accuracy OOD-AUC Accuracy OOD-AUC Accuracy OOD-AUC
ifBNN 9647 £0.00 0.92+0.01 86.63+0.00 0.84+0.01 4646+0.01 0.70=+0.03
ifBDE 9524 4+0.00 0.85+£0.03 8556+0.00 0.88+0.02 48.26+0.01 0.62+0.03
FSVI 96.26 £0.00 091+£0.01 8528+0.00 0.85=£0.01 4646=+0.01 0.65=£0.02
GWI 9540+0.00 0.85+£0.05 8543+0.00 039£0.04 4478+0.01 0.63£0.02
fBNN 96.09 £0.00 0.80+£0.07 85.64+0.00 0.81£0.02 46.29+0.01 0.61=+0.03
WBBB  96.16 +£0.00 0.86£0.03 8557+0.00 0.81+0.01 4576+0.01 0.60=+0.03
KLBBB 96.26 £0.00 0.86+0.03 85.71+0.00 0.82£0.02 46.20+0.00 0.60 =+ 0.02
BDE 95324+0.00 0.71£0.02 69.95+0.07 0.82+0.01 2447+0.01 0.61=+0.05
- j— :W;%Z: 5000 / 4000
(a) p=0.4 (b) p=0.5 (c) p=0.6

Figure 3: Comparisons of cumulative regrets various methods on the Mushroom contextual bandit
task (lower represents better performance).

CIFAR-10. Please see the Appendix for more setting details. The results are given in Table [3] We
can see that 1) the weight-space approaches were similar or even slightly better than the traditional
function-space ones; 2) our new approaches are better than others; and 3) ifBNN is slightly better
than ifBDE.

5.4 CONTEXTUAL BANDIT

In this section, we evaluate the ability of ifBDL on contextual bandit problem following the setting
in (Blundell et al., |2015) to guide exploration on the UCI Mushroom dataset fol, which includes
8124 instances, and each mushroom has 22 features and is identified as edible or poisonous. The
agent can observe these mushroom features as the context and choose either to eat or reject a mush-
room to maximize the reward. We consider three different reward patterns: for the action of eating
a mushroom if the mushroom is edible, the agent will receive a reward of 5. Conversely, if the
mushroom is poisonous, the agent will receive a reward of -35 with probabilities 0.4, 0.5, and 0.6
respectively for three different patterns, otherwise a reward of 5. On the other hand, if the agent
decides to take the action of rejecting a mushroom, it will receive a reward of 0. The cumulative re-
grets of all parameter-space and function-space variational inference methods for 3 reward patterns
are shown in Figure 3] We observe that 1) ifBDE and ifBNN achieve the best performance among
all methods; 2) ifBDE is the best for 0.4 and 0.5, while ifBNN is the best for 0.6. It indicates that
ifBDL can provide reliable uncertainty estimation in such decision-making scenarios.

6 CONCLUSION

In this paper, we propose two implicit functional BDL approaches: implicit functional Bayesian
neural networks and implicit functional Bayesian deep ensembles, via the NTK-based GP transfor-
mation. These approaches leverage the tractable property of the 2-Wasserstein distance between
Gaussian measures without sacrificing much on uncertainty modeling capability. These new BDL
approaches demonstrate better predictive and uncertainty modeling capabilities compared to exist-
ing methods on benchmark tasks. Our future work will focus on improving the scalability of these
approaches for large-scale models, such as GPT-4 and Gemini.

10
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A APPENDIX

A.1 DERIVATION OF (T4)

foo(%) = fo(x) — OxxO%" (fo(X) - Y)

and f, ~ GP ( fe = f(5 ), Am,), where the mean function is easy to derive and we only show
the derivation of covariance matrix below

COV[foo(X), foo (X))
=E[foo(X) foo (X') "] = Elfoo (X)]E[foe (X")] |
=E[(fo(X) = 0xx0%" (fo(X) = Y))(fo(X) - OxxO0%" (fo(X) = Y))"]

—E[fo(X) — Oxx0%" (fo(X) = Y)E[fo(X') — Ox:x0%" (fo(X) = Y)]"

of
[fo(X)fo(X)T]— [fo( ><@Xx@-1 (fo(X) = Y))"]
~E[(0xx0% Y)) fo
+E[(0xx0% ( )(@Xx@ (fo(X) = Y)) '] — E[fo(X)E[fo(X)T]

13
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Algorithm 1 ifBNN Inference

Require: Dataset: D = {X, Y}, minibatch size B, loss function £, BNN model fy: X =Y
1: Initialise 8 = (u, p) ~ init(-)
2: while € not converge do

3: Sample Dp = {Xp,Yp} ~D > fetch a data batch
4: Sample X ~ X & & > sample a measurement set
5: Calculate data likelihood /' using Dp
6: Evaluate network gradient V,, f (x) where x € {X 1, X}
7: Evaluate covariance matrix A and NTK © > prepare Gaussian process on measurement set
8: Calculate the Wasserstein regularizor, /Y via @I)
9:  Optimise 0: 6 < 0 — a [V (£ + B¢™)]
10: end while
+ Elfo(X)]E [e)xx@ (fo(X) = Y)]" +E[0xx0%" (fo(X) = Y)|E[fo(X)]"
E[@xx0x%" (fo(X) - Y)E[OxxO% (fo(X) - Y)]"
=E[fo(X)fo(X ) | = E[fo(X)IE[fo(X) "]
E[fo(X) (9xx@ (fo(X) = Y)) | - E[(0xx0%" (fo(X) = Y)) fo(X)"]
E[

OxxO0%' (fo(X) —Y) (fo(X) - Y)" 05 0kx]

+ ft( ) (@Xx9 ( +(X) — )) + (0xx0%' (fi(X) = Y)) fi(X)"
—OxxO%' (A(X)=Y) (fi(X) - ) x Oxx

=E[fo(X)fo(X)" ] - [ fo(X)IE[fo(X)T]
—E[fo(X) (0xx0%" (fo(X) — ))T} —E[(0xx0%' (fo(X) = Y)) fo(X)"]
+OxxOX 'E[fo(X) fo(X) 0% O xx

+ F(X) (OxxO%! (fi(X) = Y)) " + (0xxO%" (Ju(X) = Y)) fu(X)T
— OxxO%'E[fo(X)|E[fo(X) 0% Oxx

=E[fo(X)fo(X) "] — E[fo(X)]E[fo(X) ]
+OxxOx "E[fo(X) fo(X) T10x Okx — OxxOX'E[fo(X)E[fo(X) "]0x O kx
+E[fo(X)]E[fo(X) 0% Oxx — E[fo(X) fo(X) 0% O %x
+OxxOK ' E[fo(X)E[fo(X)T] — OxxO% E[fo(X) fo(X) ]

=Axx +OxxOx'AxOx 'O x — AxxOx O xx — OxxOx' Axx/

A.2 ALGORITHMS
A.3 EXPERIMENTAL SETTING

Extrapolation illustrative examples. We used an 1-D oscillation curve from the polynomial func-
tion: y = sin(37z) + 0.3 cos(97z) + 0.5sin(77z) + € with noise € ~ A(0,0.5?). There were 20
randomly sampled observation points, half of which were sampled from the interval [—0.75, —0.25],
and the other half are from [0.25,0.75]. In this experiment, we used 2 x 100 fully connected tanh
BNNSs as variational posteriors for all models. The functional GP priors were pre-trained on the
20 training points for 100 epochs. We also used 40 inducing points for the sampling of marginal
measurement points in FWBI, FBNN and GWI from [—1,1]. All methods are trained for 10000
epochs.

Multivariate regression on UCI datasets. We choose BNNs posteriors with two hidden layers
(input-10-10-output). The GP prior uses RBF kernel and is pre-trained on the test dataset for 100
epochs. The number of iterations for all models is 2000.

14
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Algorithm 2 ifBDE Inference

Require: Dataset: D = {X,Y}, minibatch size B, ensemble size M, parameter initialisation
scheme: init(-)

1: Initialise {w,—1.2} ~ init(-)
2: Sample D = {Xp,Yp} ~D > fetch a data batch
3: Sample X 0 € [X, X] > sample a measurement set
4: while {w,_1.7} not converge do
5: forz=1,....,Z do
e — L. — <L ~L+1
6: Initialise w, ~ init(-) and denote w, = concat({w,=", w, " })
7: Set w? = concat({w, =", 0E+1})
8: end for
9: forz=1,....Zdo
10: Calculate data likelihood /1% using Dp
11: Evaluate network gradient V,, f, (z) where 2 € [X g, X 0]
12: Evaluate covariance matrix A, and NTK ©,,
13: Define g,(z) = Vo f2(x)w}
14: end for
15: Calculate Wasserstein barycenter via > prepare Gaussian process on measurement set
16: Calculate the Wasserstein regularizor, /* via @]}

17: Optimise §: 6 < 0 — a [Vo(>, 0% + gev)]
18: end while

Classification and OOD detection For all models in this experiment, the variational posteriors are
fully connected BNNs with 2 hidden layers, each with 800 units. The functional prior is a Dirichlet-
based GP designed for classification tasks and is pre-trained on test dataset for 500 epochs. ALL
inference methods are trained for 600 epochs and the batchsize is 125.

Contextual bandits. The variational posteriors are fully connected tanh BNNs with two hidden
layers (input-100-100-output) and the GP prior is pre-trained on 1000 randomly sampled points
from training data. ALL models are trained using the last 4096 input-output tuples in the training
buffer with a batch size of 64 and training frequency 64 for each iteration. All inference methods
are trained for 10000 epochs.

A.4 NOTATION TABLE

Table [4]is the notation table to demonstrate the notation used in this paper.

15
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Table 4: Notation table

Notation Meaning

D = {X,Y)} a dataset with n data points

{(i,mi) iy

X CR? (d-dimensional) input space

Yy C R¢ (c-dimensional) output space

X Finite marginal points

X m Finite measurement points

w Random model parameters for a BDL model (e.g., network weights of a BNN)
f(;w) Random function mapping defined by a BDL model parameterized by w
0={p,o} Parameters for variational distribution, go (W) = N (p, 0 - I)

po(w) Prior distribution over model parameters (e.g., prior over weights in a BNN)
p(w|D) Posterior over model parameters (e.g., posterior over weights in a BNN)
qo(w) Variational posterior over model parameters (e.g., variational posterior over

—~
—

> —~ O
—~
S-

ESEI O

weights in a BNN)

Prior distribution over random functions
Posterior over functions

Variational posterior over functions
Neural tangent kernel (NTK)

the mean function of a Gaussian process
the kernel function of a Gaussian process
the layer number of deep learning

the measurement set
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