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ABSTRACT

Recent advancements in large language and vision-language models have made
it possible to solve new tasks via zero-shot inference without task-specific train-
ing. Various adaptation techniques, such as In-Context Learning (ICL), supervised
fine-tuning, and prompt engineering, can further enhance the model’s performance
on a given task. However, these methods require either labeled examples or sub-
stantial manual effort to construct effective prompts. In this work, we introduce a
Jjoint inference framework extending the standard zero-shot inference. In contrast
to independent zero-shot predictions, joint inference makes predictions simultane-
ously for all inputs for a given task. Since direct joint inference involves a compu-
tationally expensive optimization, we develop efficient approximation techniques
resulting in two unsupervised adaptation methods that are compatible with lan-
guage and vision-language models: unsupervised fine-tuning and unsupervised
ICL. We demonstrate the effectiveness of both approaches across a broad range
of tasks and models, including language-only Llama 3.1, vision-language Open-
Flamingo and API-only access GPT-40 models. Our experiments reveal substan-
tial improvements over the standard zero-shot approach. Furthermore, our ap-
proach, although unsupervised, often performs on par with supervised approaches
that use ground truth labels.

1 INTRODUCTION

Recent progress in large language and vision-language models, which we collectively refer to as
foundation models (FMs), have made it possible to adapt them to solve different new tasks via zero-
shot inference by leveraging their general knowledge obtained during pre-training (Brown et al.
2020). For a given task, e.g., sentiment classification, it obtains the prediction y for an input sentence
x by maximizing the probability of the next token, i.e., arg max, p(y|x)'} Various methods have
been proposed to enable better task adaptation, with In-Context Learning (ICL) (Brown et al.|, |2020;
Agarwal et al., [2024} Jiang et al., [2024), fine-tuning (Hu et al.| 2022; [Jia et al., |2022)), and prompt
engineering (Wei et al.| 2023} [Snell et al.,|2024) emerging as the most prevalent techniques. While
these methods improve upon zero-shot inference, they rely on labeled examples or require manual
effort to craft effective prompts, which can pose practical limitations.

In this work, we propose an unsupervised joint inference framework that enables fully unsuper-
vised adaptation on a new task. Our framework generalizes the standard zero-shot inference to joint
inference over N > 1 inputs, resulting in the following optimization problem:

argmaxp(yi, .-, YN|T1,-- -, TN)- (1
Yi,---YN
Compared to the zero-shot independent predictions, joint inference can guide the model to make
consistent predictions and reason over multiple inputs simultaneously (see Fig[I}Left). To solve this
optimization problem that can be intractable for a large number of examples N, we develop two
approximate solutions resulting in two unsupervised adaptation methods: unsupervised fine-tuning
and unsupervised ICL.

The unsupervised fine-tuning method is a principled approach for fine-tuning an FM to optimize its
own joint predictive probability (Eq.[I), enhancing an FM based on its own feedback. We show that

!This usually also involves having a task-specific textual instruction which we omit here for simplicity.
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Figure 1: Unsupervised joint inference framework for foundation models. Left: Unlike the
standard zero-shot inference that makes a prediction y independently for each input z, our proposed
Jjoint inference makes predictions for multiple inputs at the same time, leveraging dependencies
between all examples. Right: We develop two methods to perform the unsupervised joint inference
that achieve substiantial improvements over traditional zero-shot inference. Their performance also
increases as the number of examples N for the joint inference increases, showing the effectiveness
of the proposed joint inference framework.

our method matches the performance of supervised fine-tuning in many cases while not having ac-
cess to any labeled examples. To fine-tune the model, this method requires access to model weights
and output probabilities, which might be unavailable in some cases, for example, for close-weight
models, such as GPT-4 (Achiam et al.| 2023). To enable the applicability of our framework to all
existing model types, including closed-weight ones, our unsupervised ICL adaptation method relies
only on access to next-token generation and uses the few-shot in-context inference, where instead
of ground truth labels, we use the model’s own answers from previous iterations. We show that this
unsupervised ICL method, in fact, implicitly maximizes the joint probability in Eq[T|and can be seen
as an approximate joint inference under the same framework.

We evaluate proposed methods on a range of text and image classification, natural language in-
ference, (visual) question-answering, and math problem-solving (via GSM8K (Cobbe et al.| 2021))
tasks using language-only and vision-language FMs, including open-weight Llama 3.1 (Dubey et al.},
2024) and OpenFlamingo (Awadalla et al., |2023)) models and close-weight GPT-40 via the corre-
sponding API. We show that both proposed methods significantly outperform zero-shot inference
and even approach their corresponding fully-supervised counterparts in many cases.

2 RELATED WORK

Adapting FMs via fine-tuning. Pre-training generalist foundation models followed by task-
specific fine-tunning was shown to be an effective approach to solving different language and vision
tasks (Raffel et al., 2023; Radford et al.,|2021; Beyer et al.|, 2024} |Chen et al.| 2022; [McKinzie et al.}
2024; Dubey et al.,[2024). The first pre-training stage usually involves optimizing an unsupervised
objective, e.g., next-token prediction for language or contrastive loss for vision, on a large-scale
dataset (Raffel et al.| [2023} |Cherti et al., 2023} |Radford et al.l 2021} [Kaplan et al., |2020a; |Schuh-
mann et al} [2022). The second stage involves either full-weights training or parameter-efficient
fine-tunning (Hu et al., [2022} | Yosinski et al.| {2014} Jia et al., 2022;|Chen et al., 2023} Houlsby et al.}
2019; |Pfeiffer et al., |2020). Similar to the second stage, our unsupervised fine-tuning method up-
dates the weights of a pre-trained FM to adapt to a specific task. However, unlike other fine-tuning
methods, our approach is based on a self-improvement mechanism and does not require labeled
examples.

Adapting FMs via prompting. Prompting-based approaches emerged as an alternative
optimization-free way to adapt an FM to a new task (Wei et al., 2022; Radford et al.; Brown et al.,
2020; |Alayrac et al.,[2022). A standard zero-shot inference provides input and a task description as
a context for a model and generates the answer via next-token prediction. A large line of works de-
velop methods to improve this zero-shot inference by, e.g., prompting a model to generate additional
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“reasoning” steps (Wei et al.| 2023} [Yao et al.| 2023} Snell et al.| [2024) or providing a few labeled
examples as a context (Brown et al.,2020). Similarly, our unsupervised ICL method improves upon
the zero-shot inference by using a few self-generated examples as a context that are labeled by the
model itself, thus without requiring any labeled examples.

Reinforcement learning for FMs. This line of work uses reinforcement learning algorithms [Sutton
(2018); [Schulman et al.| (2017) to fine-tune FMs to optimize a non-differentiable reward function.
These reward functions are either based on a human feedback (Ouyang et al., 2022; (Christiano et al.}
2017), a metric (Pinto et al., 2023) or the output the same or another FM (Zheng et al.| 2023} Bai
et al., 2022} |Lee et al.| [2024)). Related to this, here we use the model’s own feedback based on the
Jjoint probability (Eq.|1) to fine-tune its weights via a reinforcement learning algorithm.

Probabilistic Inference in FMs. Recently, there has been a significant interest in adapting general
probabilistic inference techniques to perform inference in a probabilistic models defined by a foun-
dation model. For example, [Zhao et al.| (2024) build upon Sequential Monte-Carlo (Doucet et al.,
2013) to sample from an unnormalized target distribution defined by a foundation model. Another
line of works (Hu et al.| [2024; [Yu et al., [2024) employ GFlowNets framework (Bengio et al., [2023)
to solve the probabilistic inference problems. While these general probabilistic inference techniques
could be possibly extended to perform the proposed joint inference, we develop the principled unsu-
pervised fine-tuning approach that effectively leverages the structure of our optimization problem.

3 BACKGROUND

3.1 FOUNDATION MODELS PRE-TRAINING

In this work, we study the class of foundation models (FMs) that are pre-trained on a huge amount
of data to model probabilities of a next token given the preceding ones, also known as the next-token
prediction objective. In particular, given maximal context length L of a foundation model, it models
probabilities of token sequences as follows:

L
pen(ty, . tn) = [ [ pem(tiltica), 2)
=1
where t; € V and V is the model’s vocabulary. Such pre-training has shown remarkable scaling laws
(Kaplan et al.l [2020b)), resulting in the predictable gains that can be delivered by increasing model
size, the amount of available training data or compute budget. Furthermore, a separately trained
vision adapter can be integrated in such models to enable performing multimodal tasks (Alayrac
et al., 2022). It allows a foundation model to ingest a multimodal sequence containing images
and/or videos interleaved with text and produce text.

3.2 SOLVING DOWNSTREAM TASKS WITH FOUNDATION MODELS

This subsection discusses illustrative set of approaches to perform a downstream task given a pre-
trained foundation model pgy.

Supervised Fine-tuning. Supervised fine-tuning is the prevalent approach to improve model per-
formance on a downstream task. Specifically, given labeled examples Diin, a model is trained to
maximize the probability of the correct outputs, i.e., cross-entropy:

Z log pFM(yGT|1')' 3

(,961) € Dirain

Although being the most performant, supervised fine-tuning requires having access to labeled data,
model weights, and, given tremendous model size of pry, parameter-efficient optimization methods.

Zero-shot Inference and In-Context Learning. Brown et al.| (2020) have shown that large-scale
pre-training via next-token prediction enables so-called zero-shot inference. Specifically, without
any additional training, a foundation model can be prompted with an input instance of a task x and
the task description C' to generate the corresponding solution via next-token prediction:

arg max ppm(y|z, C). 4)
y
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It was also demonstrated that the model’s performance is susceptible to the chosen prompts, giving
rise to manual prompt engineering to produce more accurate solutions (Liu et al.l [2021). Another
way to improve the predictions is so-called In-Context Learning (ICL), where the model is provided
with a set of input instances and their corresponding ground truth answers:

arg max pem (Y], {(@n, v ) 1), (5)
Yy

where (,,,yST) denote ground truth (GT) in-context examples and N denotes number of in-context
examples. Although such approach has proven itself effective, it requires having access to the set of
labeled examples, thus, reflecting the conventional supervised learning setting.

Chain-of-Thought (CoT). [Kojima et al.|(2023)) have recently proposed the off-the-shelf prompting
technique that surprisingly improves the performance of a model. In particular, a model is prompted
with Ccor = “Think step by step” phrase, that, in turn, triggers it to generate a problem solving
reasoning. Subsequently, conditioning on such reasoning chain results into more accurate solutions:

71, Tm ~ Pem(*|Ceot, T) (6)
arg maXpFM(y‘T17 vy Tmy CCOT? "E),
y
where r1,...,7,, represent the reasoning chain. The authors have also demonstrated that such

approach brings improvements upon both supervised ICL and zero-shot inference.

4 UNSUPERVISED JOINT INFERENCE FRAMEWORK

In this section, we first formally introduce the problem setting and then present a general form of
our framework.

Definitions and Problem Setting. We refer to a task 7 : X — ) as a mapping from the space of
input instances X’ to the set of plausible answers ). For example, for the task of question answering,
the elements of X and ) correspond to questions and the corresponding plausible answers to these
questions, respectively. Another example can be the sentiment classification task, where x € X are
sentences, and the set of plausible answers is as simple as )) = {Positive, Negative}. We assume
that we are given a set of input instances D = {z,,}M_,, z,, € X to perform a task T on these
instances with a foundation model pgwm(+).

The question that we aim to answer in our work is what is a principled approach to improve the
predictions of prm(+) on a given task 7 in an unsupervised way, i.e., without having demonstrations
of input instances x with their corresponding correct answers y? To simplify the narration, we
consider close-ended tasks with K plausible answers, i.e., Y = {y1,...,yx}, witheachy € Y
comprising a single token. We discuss the general case in detail in Section [§|and Appendix [A]

4.1 GENERAL FORMULATION FOR THE JOINT INFERENCE

Here, we propose to perform joint inference to produce answers for a set of instances D. In particu-
lar, we define the joint likelihood of y1, . .., yas autoregressively given a set of instances D and aim
to optimize the following objective:

argmax logp(y1,...,yml|x1,...,25), where @)
Y1,y €EYM

M
def
p(yla DRI Z/M|$17 e 733M) é H pFM(ymlxma {(xivyi)}i<m)-

m=1

Given that foundation models have limited context length and processing the entire D might be
infeasible, we consider the limited number of instances in a single model pass as follows:

argmax J (y1,...,y), where (8)
Y1, yM €Y M
def 1 &
jN(yh cyM) = Exl,...@NNDN Z log pem (Yn |[Zn, { (@i, ¥i) bicn),
n=1
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where IV limits the number of instances to be processed in a single model pass. Besides the fact that
such formulation makes it possible to efficiently estimate the objective via Monte Carlo sampling, it
also incorporates the important inductive bias. Indeed, it is easy to note that that Eq. (7)) imposes the
particular order when processing the sequence (z1, Y1, - . ., Zap, Yar) With pem(+). However, ground
truth answers should not depend on the particular order, and the expectation over different sequences
z1,...,zN allows to effectively embed this constraint into the objective. One can readily observe
that our objective is a strict generalization of the standard zero-shot inference since 7' reduces to
it. Furthermore, Figure [T] demonstrates that increasing N leads to obtaining more accurate answers
for the set of instances D compared to the standard zero-shot inference.

In the subsequent sections, we propose two approaches to optimize the proposed joint inference
objective, namely, unsupervised fine-tuning and unsupervised In-Context Learning.

4.2 UNSUPERVISED FINE-TUNING AS A PRINCIPLED APPROACH

Although the objective 7V admits efficient Monte Carlo estimation, optimizing it requires K™ M
model calls which is infeasible in practice. To address this challenge, we resort to the following
amortization:

max jN(y177yM) 2ma'XEyang(-\mn)jN(yla"'7yM)7 (9)
Y1seeym EYM 0
where we refer to a 7y(-|x,,) as a task encoder which defines a distribution over ) parametrized
by continuous parameters 6. As a result, instead of solving the difficult combinatorial optimization
problem, we can apply efficient stochastic optimization techniques to learn the parameters of a task
encoder. In principle, given flexible enough 79 would result in the strict equality in Eq. (9). After
the optimization is done, arg mea3>}( 7o (y|x,) provides us with answers y,, to the corresponding input
Y

instance x,, independently from all other input instances x;,, allowing for the efficient inference.

Efficient optimization. Enabling efficient optimization requires obtaining an unbiased stochastic
gradient estimator of the objective in Eq. @I) Given that pgy is a black-box function, i.e., it can be
evaluated on any given input but the gradients with respect to inputs are unavailable, the prevalent
approach in such scenarios is the REINFORCE gradient estimator (Williams, [1992). Despite its
generality, a naive implementation of REINFORCE suffers from the high variance when used for
the optimization over combinatorial spaces (Gadetsky et al.| 2020} [Paulus et al.| 2021} |Struminsky
et al., 2021). To address this challenge, we develop an effective stochastic gradient estimator that
leverages the structure of our objective to substantially improve the convergence speed. We provide
the complete derivation of this estimator and compare it to REINFORCE in Appendix [B.1}

Task encoder parametrization. We employ a foundation model itself to serve as our task encoder
7o(-|xy, ). In particular, we constrain pgy to model a distribution over ) as follows:

0
P (ylzn) [y € V]
n) = - , 10

where [-] denotes Iverson bracket and p%, denotes the same foundation model parametrized by
LoRA (Hu et al.| [2022) with the corresponding trainable parameters §. The LoRA parameters 6
are set such that, at the beginning of training, pf,; corresponds to the zero-shot predictions of pry,
providing a good initialization for our REINFORCE-based optimization, which is known to lead to
faster convergence (Greensmith et al., 2004). Noteworthy, this parametrization, coupled with our
unsupervised objective, can be seen as an instantiation of self-training, in which a model improves
by obtaining feedback from itself.

Regularization. Optimizing Eq. (9) can lead to degenerate solutions, i.e., converging to a single an-
swer for all the input instances, which is common in unsupervised learning. This happens because
prm assigns high probabilities to a single answer after observing the same answer for all input in-
stances in its context. To avoid such trivial solutions, we regularize our task encoder 7. In particular,

let 78 (y) = E,ep7y(y|2), then the regularization term is as follows:
R(m) = =D 75" (y) log 73" (y). (11)
yey
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Putting it all together, our final optimization objective to train 7y is as follows:
méiXEynNTe(~\wn)\7N(ylv~-'ayM)+7R(7—9)3 (12)

where we found v = 10 is a good default choice for the regularization strength. We refer to this
principled approach as the joint inference via unsupervised fine-tuning. The pseudocode and the
implementation details are provided in Appendix

4.3 UNSUPERVISED IN-CONTEXT LEARNING

Although amortization offers a principled approach to optimize the objective in Eq. (§), it requires
access to model weights, i.e., to define a task encoder 7y, and output probabilities of pgy. This
makes our model suitable to open-weight models, but limit its applicability to most close-weight
models, such as GPT-4 (Achiam et all [2023). To make our approach broadly applicable, our key
insight is that each summand in Eq. (8)) can be seen as ICL predictions:

arg max logpFM(yn|xna {(miayi)}z(n)' (13)
Y1, Yn €Y
Unlike conventional supervised ICL, which relies on ground truth answers, our approach also opti-
mizes answers.

We employ this insight to develop the unsupervised
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where z1, ...,y ~ D. Insuch a way, our approach timizes the join inference objective. Both
self-improves answers through the number of itera- the joint inference objective and the perfor-
tion steps. It is important to note that such approach mance improve with more optimization turns
is readily applicable to all existing foundation mod-  of the unsupervised ICL method.

els, since it only requires obtaining samples from a

model. Figure 2] hightlights that the proposed approach indeed optimizes the joint inference objec-
tive (Eq. (8)). We provide the complete algorithm in Appendix

5 EXPERIMENTS

Datasets and evaluation metric. We evaluate the performance of our joint inference framework
across a wide range of tasks, including text classification, image classification, question answer-
ing, visual question answering, natural language inference, common-sense reasoning, and math
problem-solving. A detailed description of each dataset, along with the prompts used, is provided
in Appendix [C.I} We use accuracy as the evaluation metric for all the experiments.

Foundation models. We utilize two open-source foundation models to evaluate our method, namely,
Llama-3.1 (Dubey et al., 2024)) for text-based experiments and OpenFlamingo (Awadalla et al.|[2023;
Alayrac et al., 2022) for vision-language experiments. Specifically, Llama-3.1-8B is used as the
default model for our primary text experiments, with extensions to the instruction-tuned version and
the larger 70B instruction-tuned model. For vision experiments, we use OpenFlamingo-4B as the
default model. Furthermore, we employ GPT-40 (Achiam et al., 2023)) to serve us as a close-weight
foundation model in our experiments.

Baselines. We incorporate the following baselines and upper bounds for our evaluations. (1) Zero-
shot inference makes the predictions independently for each input example without task-specific
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fine-tuning or demonstrations. (2) Zero-shot with Chain-of-Thought (CoT) incorporates CoT reason-
ing prompts to generate intermediate reasoning steps before the final answer (Kojima et al., 2022;
Wei et al.| |2023)). We only use it for our language experiments, as we found that CoT does not show
any benefit for the OpenFlamingo model, often significantly degrading the performance. (3) Super-
vised In-Context Learning (ICL) uses labeled training examples to provide them as demonstrations
to the model. Consequently, this serves as an upper bound to our unsupervised ICL method, which
does not use any labeled data. Similarly, (4) Fully-Supervised Fine-tuning (FT) employs LoRA (Hu
et al.} 2022) supervised fine-tuning using all labeled training examples and serves as an upper bound
to our unsupervised fine-tuning method.

Hyperparameters. Unless mentioned otherwise, we use the context length N = 16 as the default
value for unsupervised fine-tuning, unsupervised ICL, and supervised ICL. We ablate the influence
of N in Section [5.3] For unsupervised fine-tuning and supervised fine-tuning, we fine-tune the
model with LoRA (Hu et al., 2022)) for 6, 000 iterations. For unsupervised ICL, we initialize the
labels with the zero-shot predictions and iteratively update it during 5 turns. We refer the reader to
Appendix [C.2] for the additional implementation details.

5.1 RESULTS ON NLP TASKS

Table 1: Results of the unsupervised fine-tuning and unsupervised in-context learning meth-
ods on NLP tasks. For each dataset, we show the accuracy (in %) of the zero-shot inference,
the proposed unsupervised fine-tuning (FT), and ICL methods, and their corresponding supervised
counterparts are shown in gray, which represent the upper bound. We use the Llama-3.1-8B model
in all cases. Both proposed unsupervised adaptation methods outperform zero-shot inference and
approach the performance of the corresponding supervised methods in most cases.

Text Classification Language Inference Question Answering

Adaptation Method ‘SSTZ Amazon AGNews TREC DBPedia SUBJ ‘ RTE QNLI MNLI ‘ COPA BoolQ PIQA HellaSwag‘Avg.

Zero-shot 717 655 74.6 42.7 72.4 429 | 627 555 343 | 810 667 59.0 46.0 60.1
Zero-shot + CoT 788  76.1 58.3 28.7 63.1 54.1 | 55.6 521 475 | 69.0 644 582 34.6 57.0

Fine-tunning (via LoRA):
923 96.1 89.3 61.9 98.7 95.4 ‘ 81.7 782 720 ‘ 88.1 817 80.0 65.5 ‘83.1

Unsupervised FT

In-Context Learning (no weight updates):
924 96.6 86.2 59.0 97.9 74.2 ‘78.8 674 659 ‘ 935 826 784 58.2 ‘79,3

Unsupervised ICL

Results on the benchmark datasets. To study the performance of the joint inference framework
on language tasks, we evaluate our methods on 13 benchmark datasets, spanning various NLP tasks.
Our results highlight the effectiveness of our unsupervised joint inference framework (Table [I)).
First, we can observe that unsupervised fine-tuning substantially outperforms the standard zero-shot
inference. In particular, it brings 23% absolute improvement on average over 13 considered datasets,
with remarkable 52.5% 30.6%, 26.3% and 19.5% on the SUBJ, Amazon, DBPedia and HellaSwag
datasets, respectively. Furthermore, it often approaches the performance of its fully supervised
counterpart, closely matching it on 6 out of 13 considered datasets. Secondly, unsupervised In-
Context Learning also exhibits remarkable performance gains compared to the zero-shot inference,
bringing 19.2% absolute improvement on average over 13 considered datasets. Remarkably, it is
on par with the supervised ICL on 10 out of 13 considered datasets, overall demonstrating the
effectiveness of the proposed joint inference framework.

The influence of instruction-tuning and model size. Further, we study the performance of our
methods, unsupervised fine-tuning and unsupervised ICL, when applied to the instruction-tuned
Llama-3.1-8B and the larger scale Llama-3.1-70B models. Results show that our joint inference
framework is effectively applicable across different model sizes compared to Chain-of-Thought
(Figure3), which can improve a foundation model only for large-scale models. In addition, even for
the large-scale Llama-3.1-70B model, our unsupervised fine-tuning and unsupervised ICL signifi-
cantly outperform the Chain-of-Thought prompting technique. In particular, it surpasses CoT by 5%
and 4% on the SST-2 and RTE datasets, respectively, providing a principled approach to enhance
predictions for models across different sizes.
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Figure 3: Using instruction-tuned and larger scale models. We evaluate our methods on the base
8B, instruction-tuned 8B-Instruct, and a larger 70B-Instruct from the Llama-3.1 family. We find that
both proposed methods scale to instruction-tuned and larger-scale models consistently outperform
zero-shot baselines. Notably, our methods applied to the base non-tuned 8B model outperform or
work closely to the zero-shot methods on a X9 larger 70B-Instruct that also benefits from additional
training.

Open-ended tasks. To demonstrate the applicability of our
framework to open-ended tasks, we study the performance Table 2: Unsupervised ICL suc-
of our unsupervised ICL on the GSM8K dataset (Cobbe| cessfully scales to the open-ended
et al] [2021)) that contains math problems. We employ GSMS8K math reasoning task.
large-scale instruction-tuned Llama-3.1-80B for this exper- We use the Llama-3.1-70B-Instruct
iment. Following the official evaluation protocol [Dubey] model. Our unsupervised ICL method
et al.|(2024) and to demonstrate that our unsupervised ICL  outperforms zero-shot with CoT and
can be coupled with modern prompting techniques, we em- approaches the performance of the
ploy Chain-of-Thought for our method and all the base- supervised ICL (as reported in|Dubey
lines. Both our method and supervised ICL use N = 8 [et al. (2024).

in-context examples, where supervised ICL utilizes ground

truth labels and our method refines the labels in a fully Accuracy (%)
unsupervised manner. We report the performance of un- 7414 shot + CoT 88 9
supervised ICL after 3 refinement turns. Table [2] demon- Unsupervised ICL 94.0
strates that unsupervised ICL brings remarkable 5.1% ab-  gypervised ICL %951

solute improvements upon the zero-shot inference on this
challenging benchmark, approaching its supervised coun-
terpart. Overall, these results indicate that our joint inference framework is also applicable to open-
ended problems.

5.2 RESULTS FOR IMAGE CLASSIFICATION AND VQA TASKS

Results on the benchmark datasets. To study the performance of the joint inference framework on
tasks that require visual comprehension, we evaluate our methods on five vision datasets, spanning
both image classification tasks (CIFAR-10, CIFAR-100, Food101) and visual question-answering
tasks (COCO-Color and COCO-Number). Our results demonstrates that both unsupervised fine-
tuning and unsupervised ICL consistently outperform the standard zero-shot inference (Table[3). In
particular, unsupervised fine-tuning brings substantial absolute improvements of 14% on average
over the considered datasets with the remarkable gains of 23% on the Food101 dataset, which is the
challenging fine-grained image classification task for a vision-language foundation model. Further-
more, reflecting our language experiments, unsupervised ICL closely matches the performance of
its supervised counterpart on 4 out of 5 considered datasets, overall demonstrating the applicability
of our joint inference framework to vision-language foundation models.

Closed-weight GPT-40 results. To demonstrate the applicability of our framework to closed-weight
models, we employ GPT—4dE| and study the performance of unsupervised ICL on a subset of Ima-
geNet (Deng et al., 2009). In particular, we construct a support set containing 1000 images corre-
sponding to 100 classes and we sample 5000 images for the evaluation purposes only. Specifically,
to assess the generalization, we refine the support set with our unsupervised ICL for two rounds,

2We employ the GPT-4o version gpt—40-2024-08-06.
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Table 3: Results for image classification and VQA tasks. For each dataset, we report the accuracy
(in %) of zero-shot inference, the proposed unsupervised fine-tuning and unsupervised ICL, and
their corresponding supervised counterparts shown in gray. We use OpenFlamingo-4B in all cases.
Both unsupervised fine-tuning and unsupervised ICL methods consistently outperform zero-shot
inference and approach the performance of the corresponding supervised methods in most cases.

Image Classification Visual Question Answering
Adaptation Method | CIFAR10  CIFAR100 Food101 | COCO-Color COCO-Number | Avg.
Zero-shot | 872 58.0 584 | 558 25.6 | 57.0
Fine-tunning (via LoRA):

Unsupervised FT ‘ 96.0 74.1 81.0 ‘ 62.0 423 ‘71.1

In-Context Learning (no weight updates):

Unsupervised ICL ‘ 92.6 69.0 61.8 ‘ 57.5 36.8 ‘63.5

Table 4: QOur unsupervised ICL method improves the performance of closed-weight GPT-40
on image classification. We use 100 randomly sampled classes to construct the IN-100 dataset.

IN-100 (Top-1, %)

Zero-shot + CoT 76.1
Unsupervised ICL 79.0
Supervised ICL 79.5

and, then, examine the performance on the evaluation set conditioned on the refined support set. As
before, we compare our unsupervised ICL to the zero-shot inference and to the suppervised ICL that
employs support set with ground truth labels. Table [4|illustrates that unsupervised ICL brings sub-
stantial improvement of 3% compared to the zero-shot inference with Chain-of-Thought prompting
and approaches supervised ICL, overall demonstrating that our joint inference framework is also
applicable to closed-weight models.

5.3 ANALYSIS AND ABLATIONS

The influence of the context length N. We examine the impact of the context length N on the
performance of our method across both language-only and vision-language tasks. As shown in Fig-
ure ] increasing the context length consistently improves the performance for both our methods,
demonstrating the benefits of the joint inference framework to improve the predictions of a foun-
dation model upon the zero-shot inference. Remarkably, unsupervised ICL closely matches the
performance of its corresponding supervised upper bound for different values of N. It is also worth
noting that the well-known self-training principle, e.g. (Huang et al.,|2022), resembles as the special
case of our unsupervised fine-tuning with N = 1.

Convergence rate of the multi-turn unsupervised in-context learning. In addition, we investigate
the performance of our unsupervised ICL with respect to the number of turns. The results are shown
in Figure[5] Interestingly, we find that the method often converges to near-optimal performance with
only a few turns, approaching the supervised ICL upper bound.

6 CONCLUSION AND LIMITATIONS

In our work, we proposed the unsupervised joint inference framework that brings substantial im-
provements over the standard independent zero-shot inference on a given task. The key idea behind
our approach is to simultaneously make predictions for multiple input instances of a task. To per-
form such joint inference, which involves infeasible optimization, we develop two approximations
resulting in two efficient unsupervised methods: unsupervised fine-tuning and unsupervised ICL. We
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Figure 4: The effect of the context length V.
We show the performance of both our meth-
ods for different context lengths (/V). For both
text (left) and image (right) classification tasks,
our method displays consistent improvement as
N increases. This demonstrates the benefits of
making joint predictions for multiple examples
under the proposed joint inference framework.
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Figure 5: The convergence analysis of the
multi-turns unsupervised ICL method. We
study the number of relabeling turns need for
the unsupervised ICL method to converge. We
find that the proposed method converges to near-
optimal performance after only a few turns and
approaches the upper bound supervised ICL
performance.

show their effectiveness on a range of datasets and tasks using large language and vision-language
models. Below, we discuss both methods and their corresponding limitations.

Unsupervised fine-tuning. Unsupervised fine-tuning is a principled approach to optimize the pro-
posed joint inference objective. Remarkably, although being unsupervised, it often approaches its
supervised upper bound, which uses labeled examples for fine-tuning. This approach has two main
limitations. First, in its current form, it is limited to close-ended tasks with a finite set of plausible
answers ). This stems from the fact that we need to constrain the output of the task encoder to ),
which greatly benefits the optimization. One potential solution to this could be using more advanced
amortization optimization techniques such as (Hu et al., [2024; Zhao et al., [2024). Second, this ap-
proach is not applicable to closed-weight proprietary models (Achiam et al.| 2023 Team et al., 2023)
since it requires access to model weights and output probabilities. We address this limitation with
our unsupervised ICL method.

Unsupervised ICL. Unsupervised ICL offers a simple yet powerful approximation to perform the
joint inference compatible with any task and model. It requires only obtaining samples from a model
conditioned on the provided input, that is readily available for all the existing foundation models.
Moreover, it can be easily coupled with modern prompting techniques such as Chain-of-Thought to
further improve the performance in an unsupervised manner. The main limitation of this approach
lies in the ICL capabilities of the original model. Indeed, if the original model does not exhibit
in-context capabilities, it will not be able to self-refine given the provided context. Conversely, our
method can benefit from (constantly) improved capabilities of newly released foundation models.
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A GENERALIZATION TO MULTI-TOKEN LABELS

In the main paper, we assume for simplicity that each y € ) comprise a single token, which might
not be the case for many datasets. Let y, = [t},... ,tfk} € Y be a multi-token label comprising I,
tokens. Then, to compute 1og prv (Vi |Tm, {(%i, ¥i) }i<m) one would need to sum over all the tokens
comprising yy:

173
log pem (Y [Tm s { (%4, Yi) bicm) = Z logpFM(tﬂt§<i7 Ty {45 Y1) Yicm)- (15)
=1

Given that our task encoder 7y involves renormalization in Eq. @I) summation over all the tokens
for all y € Y would require impractical multiple model calls.

First token approximation. In case of absence of labels y € ) sharing their first corresponding
token ¥, we found that the following approximation of Eq. performs well in practice:

Ik

> log pem(tF I i m, { (i, i) Yicm) ~ log pemt ([ @m, { (i, 9i) bicm). (16)
=1

Bag-of-Tokens (BoT) approximation. First token approximation would not work in case there are
labels y;,y; € ) that share prefix. Such scenario mostly occurs for fine-grained image classification
problems. To address this challenge, we, first, find the minimal prefix g = [t}, ... vtfm]’ me < myg
that allows to distinguish y;, € )V from the rest labels. Then, we propose to consider §j;, as a Bag-of-
Tokens, effectively ignoring the order of ¢¥, . .. ,tﬁlk:

Uy

> log pem(EE [t <y @, { (i, yi) Yicm) = > logpemt(tlzm, {(2i,9i) bicm).  (17)

i=1 t€Yk

It is easy to note that Bag-of-Tokens approximation reduces to the first token approximation for
datasets without labels that share a prefix. Consequently, we use it by default for all the datasets.
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B IMPLEMENTATION DETAILS OF THE PROPOSED APPROACHES

B.1 AMORTIZED APPROACH

For the close-ended tasks it is feasible to enumerate all y € ), thus we renormalize conditional
likelihoods over the entire set )/, resulting in:

ef pFM(yn|$n,{(xi7yi)}i<n)
Ing Yn|Tny \\Ti, Yi) si<n d: 10g 3
Waln e ye)bicn) Z o8 = oo, (o )} ien)

where it is important to note that this renormalization does not require additional model calls. It
is well-known that rescaling the objective is beneficial for the faster convergence of REINFORCE-
based optimization methods (Mnih et al., 2015} |Schulman et al., 2017} |Sutton, 2018). We use this
renormalization for all the summands in 7% in Eq. .

(18)

Low-variance Gradient Estimator. Our objective in Eq. (9) has the following form:

N
Eay...an~DBy,nrg (o) O T (U1, -, Yn), where (19)

n=1

1
jf{v(ylv ey yn) == N logp(yn|xna {(‘rza yl)}7<n)

Without loss of generality, let’s consider particular samples 21, ...,Zny ~ D, since averaging over
multiple samples does not introduce any bias. Thus, after rearranging terms, we need to obtain the
unbiased gradients for the following objective:

N
Z vQEylwwynNH?:1 Te(-\in)j’rfv(yla cety yn) (20)

n=1

Considering only n-th term, let’s note that:

VO]Eyl,...,ynNH;L:1 Tg(~\:in)jriv(y1a e 1yn) = v(JIEy1 ..... Yn—1 Z jyiv(ylv sy Yn—1, y)TH(ykﬁn)
yeY
(21)

The key insight here is that marginalization over y € ) can be done efficiently without additional

model calls as before. Let’s denote J (y1,...,Yn_1,0) = D oyey TN Y1y Yn—1,9)T0(y|2n),
then '

VOEyl,.H,yn,lj(yly"'7yn7179) = (22)

n—1
~ . 0 =
Eyl ..... Yn—1 j(ylv e 7yn7170) Z v@ 10g7—9(yj|1'j) +Ey1 ..... Yn—1 %j(yl, .. 'aynflaa)a

=1

where the first term can be seen as the REINFORCE gradient estimator for J (y1,---,Yn—1,0) and
the second term is low-variance pathwise derivative. To reduce the variance of the overall estimator
even further, we introduce simple yet effective control variate for the first term. In particular, let

y; = argmaxy(y|Z;), j = 1,...,(n — 1), then our final gradient estimator is:
yey
n—1
Eyres “j(yl, e Yno1,0) — B, ... ,:zn)} x {Z Vo 1ogrg(yj\gzj)} + )
j=1
+Ey, o yn %j(yla s Yn—1, 9)’ where
B(d1,...,%,) = Z jrfv(yi o Un 1Y) To(Y]Tn)-
yey
The obtained estimator admits the unbiased estimate by sampling y1, . ..,yn ~ To(:|Z,) and calcu-

lating what is inside expectations. Figure[BI|demonstrates the effectiveness of the proposed gradient
estimator on several tasks.

B.2 MULTI-TURN FOR UNSUPERVISED IN-CONTEXT LEARNING
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Figure B1: Comparison of our gradient estimator with the naive approach. The plot shows
the convergence rate during optimization of the joint inference objective. Our proposed gradient
estimator achieves faster convergence and leads to the higher values of the objective.

Algorithm B1 Amortized Approach

1: Input: Dataset D, Foundation model prv (), hyperparameter IV, LoRA task encoder 74(+) with
parameters 6, regularization strength -y, number of iterations 7, learning rate «, batch size B

2: Initialize 0 such that 7y, = pem
3: fort=0toT — 1do
4:  Sample mini-batch 2%, ..., 2% ~D, b=1,..., B
5. Sample answers y° ~ 1¢,(:|2%), n=1,... , N;b=1,...,B
6:  Estimate Tg:lor(') = ﬁ Zszl Zfzvzl 70, (|25)
7. Compute the objective Oy = £ 577 S0 TN (yy,...,yn) + YR(T5™")
8:  Compute the gradient estimator g, via Eq.
9:  Updante the parameters: 6,11 = 0; + ag;
10: end for
11: Produce answers y,, = arg max 7y, (y|z)for all z € D
yey
12: Output: Answers for D

Algorithm B2 Multi-Turn Approach

1: Input: Dataset D, Foundation model ppv (-), hyperparameter N, number of turns 7', number of
repeats N,

2: Initialize answers with zero-shot predictions: Dy = {(z,y) | * € D, y ~ pru(:|z)}
3: fort =1to T do

4:  Initialize Dy = @

5. forz € Ddo

6: forn =1to N, do

7: Sample support examples labeled by previous turn: (z1, 4! %), ..., (zx, yf\,_l) ~ D4

8: Obtain answer: y* ~ ppm(-|z, (1,901, (zn, ¥ 1))

9: end for
10: Take majority vote over N,. options: y* = MAJ(yf, ..., y%, )
11: Update answers: D, = D, U {y”}
12:  end for
13: end for

14: Take answers from the last turn: {y,, | (zn,yn) € Dr}
15: Output: Answers for D
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C EXPERIMENTAL DETAILS

C.1 DATASETS AND PROMPTS

Text. We evaluate our method on 13 NLP datasets covering various tasks. For sentiment analysis, we
use SST2 (Socher et al.,[2013), which contains movie reviews classified as positive or negative, and
Amazon (McAuley & Leskovec} |2013)), a dataset of product reviews with similar labels. For topic
classification, we use AG-News (Zhang et al.,2015), which consists of news articles categorized into
four topics (World, Sports, Business, and Technology), TREC (Voorhees & Ticel [2000) for classi-
fying questions into six types, and DBpedia-14 (Lehmann et al., 2015)), which includes Wikipedia
articles grouped into 14 categories. SUBJ (Pang & Lee, [2004)) is used for classifying sentences as
subjective or objective. For natural language inference, we use RTE (Wang| 2018)) to assess en-
tailment relationships, QNLI (Rajpurkar, [2016)) for sentence-answering tasks, and MNLI (Williams
et al.} 2017), which involves classifying sentence pairs into entailment, contradiction, or neutral. We
also include COPA (Roemmele et al., 2011) and HellaSwag (Zellers et al.,[2019) for story comple-
tion, BoolQ (Clark et al., [2019) for yes/no question answering, and PIQA (Bisk et al., 2020) for
physical commonsense reasoning. For open-ended questions, GSM8K (Cobbe et al.| [2021) assesses
mathematical reasoning through multi-step word problems.

For each dataset, we randomly sample 2, 000 examples as the train split for unsupervised learning,
and 1,000 examples as the test split for evaluation (except for COPA where there are only 500
examples in total). We balance labels in both train split and test split. For GSM8K (Cobbe et al.,
2021)), we use the whole test set which contains 1319 examples for the evaluation. The datasets and
corresponding prompts are summarized at Table [CI]

Vision. We evaluate our method on five vision datasets, including three image classification tasks
and two visual question-answering tasks. For image classification, we use CIFARI0 (Krizhevsky
et al., 2009), a benchmark dataset with color images across 10 different classes, and CI-
FARI00 (Krizhevsky et al., 2009), which provides a more detailed classification challenge with
100 classes. We also include Foodl0l (Bossard et al., 2014), a large-scale dataset featuring a
wide variety of food categories. For visual question answering, we use COCO-Color and COCO-
Number, both derived from VQAv2 (Goyal et al., 2017). COCO-Color focuses on questions about
the dominant colors of objects in images, testing the model’s ability to understand color attributes,
while COCO-Number involves predicting numerical attributes such as object counts, evaluating the
model’s numeric reasoning based on visual input.

For all vision datasets, we train the model on the entire training set and report performance on the
test set. Details of the prompts used for each dataset can be found in Table [C1]

C.2 IMPLEMENTATION DETAILS / HYPERPARAMETERS

Unsupervised Fine-tuning. We use LoRA (Hu et al., 2022) for parameter-efficient fine-tuning on
NLP and vision tasks. For NLP tasks with Llama-3.1, we also use flash-attention (Dao et al.| [2022)
and 4-bit quantization of the model provided by the Unsloth library [’| to improve efficiency. We
found that with improved gradient estimator, the training is less sensitive to the hyper-parameters.
Thus we do not customize hyperparamters for each datasets, and instead using a learning rate of
le-5 with Adam optimizer for all datasets. The model is fine-tuned for 6,000 iterations and usually
the training converges at around 2,000 iterations. We train our model with 64 examples at each
mini-batch. We use context-length NV = 16 for the main experiments and provide ablation study
on the effect of IV at Section @ Similarly, for vision experiments, we train our model for 3,000
iterations with a learning rate of le-4, and 256 examples at each iteration. The typical training time
is 12h for text tasks and 4h for vision tasks, on one NVIDIA H100 GPU.

Unsupervised ICL. For unsupervised in-context learning (ICL), we initialize pseudo-labels using
zero-shot predictions and iteratively refine them based on ICL predictions. At each iteration, the
label of a query example is updated based on the ICL prediction from IV support examples. For both
supervised and unsupervised ICL, we manually balance the labels when sampling support examples,
as this helps prevent biased predictions. Additionally, we sample 5 support sequences per iteration

3The library could be found at https://github.com/unslothai/unsloth
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and apply a majority vote to reduce variance. The labels are updated across 5 turns, after which we
report the accuracy on the test set.

GPT-40 evaluation. We use the version of “gpt-40-2024-08-06" for evaluation. We experiment
on a subset of the ImageNet dataset with 1000 support images and 5000 evaluation images corre-
sponding to 100 classes. We perform two-turn pseudo labeling for unsupervised ICL and 16-shot
for evaluation. The total cost for the API call and evaluation is $200.
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Table C1: Datasets and corresponding prompts used in this paper.

Dataset

Prompts

SST2

<sentence>
The sentiment of the sentence is <label>.

Amazon

<title><content>
The sentiment of the sentence is <label>.

AG-News

<text>
The topic of the sentence is about <label>.

TREC

<text>
The topic of the sentence is about <label>.

DBpedia-14

<title><content>
The topic of the sentence is about <label>.

SUBJ

<text>
The sentence is <label>.

RTE

<premise>
Question: Does this imply that “<hypothesis>", yes or no?
Answer: <label>.

QNLI

<sentence>
Question: Does that sentence have all you need to answer the question “<question>", yes or no?
Answer: <label>.

MNLI

<premise>
Based on the previous passage, is it true that “<hypothesis>"?
Answer: <label>.

COPA

Consider the following premise: “<premise> "

Choice 1: <choicel>

Choice 2: <choice2>

Q: Which one is more likely to be the <question>, choice 1 or choice 2?7
A: <label>.

BoolQ

<passage>
Question: After reading this passage, the answer to the question <question> is yes or no?
Answer: <label>.

PIQA

Goal: <goal>

Solution 1: <soll>

Solution 2: <sol2>

Question: Given the goal, what is the correct solution, solution 1 or solution 2?
Answer: <label>.

HellaSwag

Consider the following description: “<ctx>"

Choice 1: <endingsl>

Choice 2: <endings2>

Choice 3: <endings3>

Choice 4: <endings4>

Question: Which is the most plausible ending, choice 1, choice 2, choice 3 or choice 4?
Answer: <label>.

GSMEK

Given the following problem, reason and give a final answer to the problem.
Problem: <question>
Answer: <label>

CIFARI10

<image>An image of <label>.<|endofchunk|>

CIFAR100

<image>An image of <label>.<|endofchunk|>

Food101

<image>An image of <label>.<|endofchunk|>

COCO-Color

<image>Question: <question>? Short answer: <label><|endofchunk|>

COCO-Number

<image>Question: <question>? Short answer: <label><|endofchunk|>

ImageNet-100

<image>Please identify the class of the image provided. The class has to belong to one of the classes
specified in the system prompt
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