
Successor-Predecessor Intrinsic Exploration

Changmin Yu1,2 Neil Burgess1,∗ Maneesh Sahani2,∗ Samuel J. Gershman3,∗
1Institute of Cognitive Neuroscience; 2Gatsby Computational Neuroscience Unit;

UCL, London, United Kingdom
3Department of Psychology, Harvard University, Cambridge, United States

∗ Joint senior authors

Abstract

Exploration is essential in reinforcement learning, particularly in environments
where external rewards are sparse. Here we focus on exploration with intrinsic
rewards, where the agent transiently augments the external rewards with self-
generated intrinsic rewards. Although the study of intrinsic rewards has a long his-
tory, existing methods focus on composing the intrinsic reward based on measures
of future prospects of states, ignoring the information contained in the retrospective
structure of transition sequences. Here we argue that the agent can utilise retro-
spective information to generate explorative behaviour with structure-awareness,
facilitating efficient exploration based on global instead of local information. We
propose Successor-Predecessor Intrinsic Exploration (SPIE), an exploration algo-
rithm based on a novel intrinsic reward combining prospective and retrospective
information. We show that SPIE yields more efficient and ethologically plausible
exploratory behaviour in environments with sparse rewards and bottleneck states
than competing methods. We also implement SPIE in deep reinforcement learning
agents, and show that the resulting agent achieves stronger empirical performance
than existing methods on sparse-reward Atari games.

1 Introduction

The study of exploration in reinforcement learning (RL) has produced a broad range of methods [1, 2],
ranging from simple methods such as pure randomization [3, 1, 4], to more sophisticated methods
such as targeted exploration towards states with high uncertainty [5–7] and implicit exploration
with entropy maximization [8, 9]. Intrinsic exploration, a highly effective class of methods, uses
intrinsic rewards based on the agent’s current knowledge of the environment, hence informing
targeted exploration towards states with high predictive uncertainty or state occupancy diversity [10,
11, 6, 12]. However, existing approaches define the intrinsic reward based solely on prospective or
empirical marginal information about future states, ignoring retrospective information (e.g., does a
given state always precedes the goal state, hence should be more frequently traversed?). We argue
that the retrospective information contains useful signals about the connectivity structure of the
environment, hence could facilitate more efficient targeted exploration. For example, consider a
clustered environment with bottleneck states connecting the clusters (Figure 1a), exploration based
on local information (e.g., visitation counts) would discourage the agent from traversing bottleneck
states, despite the key roles these states play in connecting different clusters. Guiding the agents to
visit such “bottleneck” states in the face of minimal local information gain is essential in driving
efficient and biologically plausible exploration. Here we study the contribution of retrospective
information for global exploration with intrinsic motivation.

One of the most successful recent intrinsic exploration algorithms [12] uses the successor representa-
tion (SR; [13, 14]) to generate intrinsic rewards. The SR represents each state in terms of successor
states. The row norms of the SR can be used as an intrinsic reward that generalises count-based

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

exploration [12]. As we discuss in Section 3, the SR contains not only prospective information,
but also retrospective information about expected predecessors. This information can be utilised to
construct a novel intrinsic reward which overcomes some of the problems associated with purely
prospective intrinsic rewards, such as untargeted exploration, the augmented reward function is
non-stationary, and asymptotic uniformity.

We provide a brief overview of background and relevant literature in Section 2, and formally
introduce the novel intrinsic exploration method, Successor-Predecessor Intrinsic Exploration (SPIE),
in Section 3. We propose two instantiations of SPIE for discrete and continuous state spaces, with
comprehensive empirical examinations of properties of SPIE in discrete state space. We show that
SPIE facilitates more efficient exploration, in terms of improved sample efficiency of learning and
higher asymptotic return, through empirical evaluations on both discrete and continuous environments
in Section 4.

2 Background and related work

Reinforcement Learning Preliminaries. We consider the standard RL problem in Markov Decision
Processes (MDP), defined by the tuple, ⟨S,A,P,P0,R, γ⟩, where S is the state space,A is the action
space, P : S ×A → ∆(S) is the state transition distribution (where ∆(S) is the probability simplex
over S), P0 ∈ ∆(S) is the initial state distribution, R : S × A → R is the reward function, and
γ ∈ (0, 1) is the discount factor. The goal for an RL agent is to learn the optimal policy that maximises
value (expected cumulative discounted reward): π∗(a|s) = argmaxπ q

π(s, a),∀(s, a) ∈ S × A,
where π : S → ∆(A) is the policy, and qπ(s, a) is the state-action value function:

qπ(s, a) = EPπ [
∑∞

τ=0 γ
τR(sτ , aτ)|s0 = s, a0 = a] = EPπ [R(s, a) + γqπ(s′, a′)] , (1)

where Pπ(s′|s) =
∑

a π(a|s)P(s′|s, a) is the marginal state transition distribution given π1. The
second equality is the recursive form of the action value function known as the Bellman equation
[15], which underlies temporal difference learning [1]:

q̂π(st, at)← q̂π(st, at) + αδt, δt = rt + γq̂π(st+1, at+1)− q̂π(st, at) , (2)

where q̂π(st, at) is the current estimate of the action values (with respect to π), δt is the (one-
step) temporal difference (TD) error. We will study the effect of different intrinsic rewards on the
performance of online TD learning (SARSA) in discrete state MDPs.

The successor representation. The SR is defined as the expected cumulative discounted future state
occupancy under the policy2:

M[s, s′] = EPπ [
∑∞

τ=0 γ
τ1(sτ , s

′)|s0 = s] = EPπ [1(s0, s
′) + γM(s1, s

′)|s0 = s] . (3)

Given the recursive formulation, it is possible to learn the SR matrix online with TD learning. Given
the transition tuple, (st, at, rt, st+1, at+1), the update is

M̂[st, s
′]← M̂[st, s

′] + αδMt , δMt = 1(st, s
′) + γM̂[st+1, s

′]− M̂[st, s
′] , (4)

Note that these equations are analogous to TD learning for value function estimation, except that in
this case the function being learned is a vector-valued (one-hot) representation of future states.

First-occupancy representation. The SR captures the expected cumulative discounted state occu-
pancy over all future steps. However, in many real-world and simulated tasks, it may be preferable to
reach the goal state as quickly as possible instead of as frequently as possible. In this spirit, Moskovitz
et al. [16] introduced the First-occupancy Representation (FR). Formally, the FR matrix in a discrete
MDP is defined by

F[s, s′] = EPπ

[∞∑
τ=0

γτ1(sτ = s′, s′ /∈ {s0:τ})|s0 = s

]
= EPπ [1(st, s

′) + γ(1− 1(st, s′))F[st+1, s
′]|st = s] ,

(5)

1Note that unless otherwise stated, we assume deterministic MDP, i.e., P(s′|s, a) is a delta function.
2For notational simplicity, we keep the policy dependence implicit. Similar notational choice holds for all

quantities discussed in the rest of the paper (F and N).

2

where {s0:τ} = {s0, s1, . . . , sτ−1}. The recursive formulation implies that there is an efficient TD
learning rule for online learning of the FR matrix. Given the transition tuple (st, at, rt, st+1, at+1),
the update rule is

F̂[st, s
′]← F̂[st, s

′] + αδFt , δFt = 1(st, s
′) + γ(1− 1(st, s′))F̂[st+1, s

′]− F̂[st, s
′] , (6)

Intrinsic exploration in RL. Here we focus on exploration with intrinsic motivation, where the agent
augments the external rewards with self-constructed intrinsic rewards based on its current knowledge
of the environment.

rtot(s, a) = rext(s, a) + βrint(s, a) , (7)
where rext(s, a) denotes the extrinsic environmental reward, rint(s, a) denotes the (possibly non-
stationary) intrinsic reward, and β is a multiplicative scaling factor controlling the relative balance
of rext(s, a) and rint(s, a). The intrinsic reward often operates by motivating the agent to move into
under-explored parts of the state space in the absence of extrinsic reinforcement. Many types of
intrinsic rewards have been proposed, including functions of state visitation counts [17–19], predictive
uncertainty of value estimation [5], and predictive error of forward models [10, 6, 20]. In a closely
related work, Zhang et al. [21] proposes NovelD, which constructs the episode-specific non-negative
intrinsic reward based on the difference between the novelty measures of temporally adjacent states
along a trajectory. However in contrast to SPIE (discussed later), the key difference is that NovelD
does not explicitly utilise the retrospective information for exploration and the associated intrinsic
reward is episode-dependent.

3 Successor-Predecessor Intrinsic Exploration

Existing intrinsic exploration methods construct intrinsic rewards based on either the predictive
information in a temporally forward fashion (e.g., predictive error), or the empirical marginal
distribution (e.g., count-based exploration). Here we argue that the retrospective information inherent
in experienced trajectories, though having been largely overlooked in the literature, could also be
utilised as a useful exploratory signal. Specifically, consider the environment in Figure 1a (Cluster-
simple), where the discrete grid world is separated into two clusters connected by a “bottleneck” state.
Whenever the starting and reward locations are in different clusters, the bottleneck state, s∗, always
precedes the goal state, regardless of the trajectory taken. Hence, the frequent predecessor state
(e.g., s∗), to the goal state should be traversed despite the fact that immediate information gain by
traversing the state is minimal. In the absence of extrinsic reward, if only utilising learned prospective
information based on past experience (e.g., the norm of the online-learned SR [12]), the intrinsic
motivation for exploration is merely local hence would discourage transitions into bottleneck states.
However, the retrospective information can be utilised to identify the state transitions that connect
different sub-regions of the state space, hence incorporating the connectivity information of the state
space into guiding exploration, allowing the agent to escape local exploration and navigate towards
bottleneck states to reach distant regions.

We develop Successor-Predecessor Intrinsic Exploration (SPIE) algorithm utilising intrinsic rewards
based on both prospective and retrospective information from past trajectories. Below we provide
instantiations of SPIE based on the SR for discrete and continuous state spaces.

SPIE in discrete state space. We define the SR-Relative (SR-R) intrinsic reward, which is defined as
the SR of the future state from the current state minus the sum of the SRs of the future state from all
states. Formally, given a transition tuple, (s, a, r, s′, a′), we define the SR-R intrinsic reward as:

rSR-R(s, a) = M̂[s, s′]− ||M̂[:, s′]||1 = −
∑

s̃∈S,s̸̃=s

M̂[s̃, s′] , (8)

The above equation holds in deterministic MDPs (i.e., when s′ is a function of (s, a)). We note that
the j-th column of the SR matrix represents the expected discounted occupancy to state j, starting
from every state, hence constituting a temporally backward measure of the accessibility of state j [22].
Therefore, rSR-R(s, a) consists of both a prospective measure (M̂[s, s′]) and a retrospective measure
(||M̂[:, s′]||1), and exploring with rSR is an instantiation of SPIE in discrete MDPs. Intuitively,
rSR-R(s) can be interpreted as penalising transitions leading into states s′ that are frequently reached
from many states other than s, hence providing an intrinsic motivation for guiding the agent towards
states that are harder to reach in general, e.g, boundary states and bottleneck states. We thoroughly

3

investigate the individual contribution of prospective and retrospective information through ablation
studies in Appendix B.4, and we observe that prospective information alone does not yield optimal
exploration performance, whereas utilising only the retrospective information does not degrade
exploration efficiency, indicating the importance of global topological information contained in the
retrospective information for intrinsic exploration.

In a closely related work, Machado et al. [12] showed that rSR(s) = 1/||M̂[s, :]||1 can be used as an
intrinsic reward that facilitates exploration in sparse reward settings. They additionally showed that
the row norm of the online-learned SR matrix implicitly approximates the state visitation counts,
so the resulting behaviour resembles count-based exploration. However, a key issue associated
with rSR is that the asymptotic exploratory behaviour is uniformly random across all states, i.e.,
||M[s, :]||1 → 1/(1− γ),∀s ∈ S. We note that exploration involves learning of both the environ-
mental transition structure Pπ and the reward structureR. Hence, were the SR matrix to be known a
priori (hence Pπ could be implicitly derived), no intrinsic motivation would be introduced at any state
and the resulting agent regresses back to random exploration, omitting further efficient exploration
for learningR. Since rSR-R contains the sum of columns of the SR matrix, the asymptotic uniformity
in rSR no longer holds, yielding non-trivial intrinsic exploration even when the SR matrix is known
and fixed a priori, allowing continual exploration for learning the reward structure despite sparse
extrinsic reinforcement.

Analysis of rSR-R with pure exploration in grid-worlds. We examine exploration based on rSR-R(s)
in discrete grid-worlds with different topologies (Fig. 1a). We first consider pure exploration in the
absence of extrinsic reward, and evaluate the exploratory behaviours of 4 RL agents with different
intrinsic rewards, in terms of their state coverage. The agents we consider are: vanilla SARSA [1];
SARSA with rSR (SARSA-SR; [12]); SARSA with rFR(s) = ||F [s, :]||1 (SARSA-FR; [16]); and
SARSA with rSR-R (SARSA-SRR); the pseudocode for SARSA-SRR can be found in Appendix).
We consider 4 different grid-world environments with different configurations (Figure 1a), namely,
10× 10 open-field grid (OF-small); 10× 10 grid with two rooms (Cluster-simple); 10× 10 grid with
4 rooms (Cluster-hard); and 20× 20 open-field grid (OF-large).

Exploration efficiency is quantified as the number of timesteps taken to cover 50%, 90% and 99%
of the state space. The value estimates for all states are initialised to be 0. Due to the absence of
extrinsic reward, the vanilla SARSA agent is equivalent to a random walk policy, which acts as
a natural baseline. We observe from Figure 1b that SARSA-SRR yields the fastest coverage of
the state space amongst all considered agents. The SARSA-FR agent yields similar state coverage
efficiency as SARSA. SARSA-SR performs poorly in all 4 grid-worlds, failing to achieve 50% state
coverage within 8000 timesteps in all environments other than the simplest one (OF-small). Moreover,
we observe that SARSA-SRR performed consistently across the 4 considered grid configurations,
whereas all other agents experienced significant degradation in exploration efficiency as the size and
complexity of the environments increase.

We note that in addition to improved exploration efficiency, SARSA-SRR exhibits “cycling” behaviour
in pure exploration in the 20 × 20 two-cluster environment (Figure 6e), spending the majority of
its time exploring in one cluster and periodically traverses the “bottleneck” states to explore the
opposing clusters upon sufficient coverage of the current cluster. Such “cycling” strategy exhibits
short-term memory of recent states and consistent long-term planned exploration towards regions
more distant in history. This is potentially advantageous for environments with non-stationary reward
structures ([23]), such as real-world foraging, which require continual exploration for identifying new
rewards. We verify the capability of SARSA-SRR for dealing with non-stationary reward structure in
Section 4 (Figure 3).

The complexity of analysing the properties of SARSA-SRR is two-fold: the online learning of
the SR matrix and the online update of the Q-values. By assuming the SR matrix is known and
fixed throughout training,3 we observe from Figure 1c that SARSA-SRR consistently outperforms
all competing methods, similar to what we observed when the SR (FR) matrix is learned online.
Additionally, we observe that the exploration efficiency for all three intrinsic exploration agents drops
when using the intrinsic reward constructed with the fixed SR (FR), but SARSA-SRR yields minimal
decrease comparing to the significant degradation with SARSA-SR and SARSA-FR. Hence, we have
empirically confirmed that the improved exploration efficiency does not stem solely from the online
learning of the SR matrix, but is a property of rSR-R. Another long-standing issue with many existing

3We assume the policy the fixed SR matrix is dependent on is the random walk policy unless otherwise stated.

4

S

G

G1

G2

OF-small

s

Cluster-simple

S

G

G1

G2

Cluster-hard OF-large

(a)

0 1000 2000 3000 4000 5000 6000 7000 8000
steps

0

20

40

60

80

100

Nu
m

be
r o

f v
ist

ed
 st

at
es

50%

90%
99%

50%

90%
99%

50%

90%
99%

50%

90%
99%OF-small

0 1000 2000 3000 4000 5000 6000 7000 8000
steps

0

20

40

60

80

50%

90%
99%

50%

90%
99%

50%

90%
99%

50%

90%
99%Cluster-simple

0 1000 2000 3000 4000 5000 6000 7000 8000
steps

0

10

20

30

40

50

60

70

50%

90%
99%

50%

90%
99%

50%

90%
99%

50%

90%
99%Cluster-hard

0 1000 2000 3000 4000 5000 6000 7000 8000
steps

0

50

100

150

200

250

300

350

50%

90%
99%

50%

90%
99%

50%

90%
99%

50%

90%
99%OF-large

SARSA
SARSA-SR
SARSA-FR
SARSA-SRR

(b)

0 1000 2000 3000 4000 5000 6000 7000 8000
steps

0

20

40

60

80

100

Nu
m

be
r o

f v
ist

ed
 st

at
es

50%

90%
99%

50%

90%
99%

50%

90%
99%

50%

90%
99%OF-small

0 1000 2000 3000 4000 5000 6000 7000 8000
steps

0

20

40

60

80

50%

90%
99%

50%

90%
99%

50%

90%
99%

50%

90%
99%Cluster-simple

0 1000 2000 3000 4000 5000 6000 7000 8000
steps

0

10

20

30

40

50

60

70

50%

90%
99%

50%

90%
99%

50%

90%
99%

50%

90%
99%Cluster-hard

0 1000 2000 3000 4000 5000 6000 7000 8000
steps

0

50

100

150

200

250

300

350

50%

90%
99%

50%

90%
99%

50%

90%
99%

50%

90%
99%OF-large

SARSA
SARSA-SR
SARSA-FR
SARSA-SRR

(c)

Figure 1: Evaluation of exploration efficiency in grid worlds. (a) Grid worlds with varying size
and complexity. ‘S’ and ‘G’ in OF-small and Cluster-hard represents the start and goal states in
the goal-oriented reinforcement learning task; colored G1 and G2 in OF-small and Cluster-hard
represent the changed goal locations (see the non-stationary reward experiment in Section 4), s∗
in Cluster-simple denote the bottleneck state. (b-c) Accumulated number of states visited against
exploration timesteps, for all considered agents in all grid-worlds in with (a) online-learned SR matrix
(b) and fixed SR matrix (c). All reported results are averaged over 10 random seeds (shaded area
denotes mean ± 1 standard error). Hyperparameters can be found in Appendix.

intrinsic exploration methods is the non-stationary nature of the associated intrinsic bonus. By fixing
the SR (FR) matrix, the associated rSR-R is stationary whilst still yielding high exploration efficiency,
hence validating the utility of SPIE.

SPIE in continuous state space with deep RL. In order to generalise rSR-R to continuous state space,
we replace the SR with successor features (SF; [24]).

ψπ(s, a) = E
[∑∞

k=0 γ
kϕt+k|st = s, at = a

]
= ϕ(st+1) + E [ψπ(st+1, π(st+1))|st = s, at = a]

(9)
where ϕ(s, a) is a feature representation such that r(s, a) = ϕ(s, a) ·w, with weight parameter w.
The recursive formulation for SF admits gradient-based learning of ϕ by minimising the following
squared TD loss.

δSF
t = E

[
(ϕ(st, at) + γψ(st+1, at+1)− ψ(st, at))2

]
, (10)

where the transition tuple (st, at, st+1, at+1) can be taken from either online samples (SARSA-like)
or sampled from offline trajectories (Q-learning-like). We previously noted that the column of the
SR matrix provides a marginal retrospective accessibility of states, facilitating stronger exploration.
However, there is no SF-analogue of the column of the SR matrix. We therefore construct the
retrospective exploration objective with the Predecessor Representation (PR), which was proposed
to measure how often a given state is preceded by any other state given the expected cumulative
discounted preceding occupancy [25]. The formal definition for the PR matrix under discrete MDP,

5

N ∈ R|S|×|S|, is defined as following.

N[s, s′] = EP̃π

[
n∑

τ=0

γτ1(s, sn−τ)|sn = s′

]
= EP̃π [1(s, sn) + γN[s, sn−1]] , (11)

where the expectation is based on P̃π(st = s|st+1 = s′) = Pπ(s,s′)z(s)
z(s′) , the retrospective transition

model, and z(s) = limt→∞ EPπ [1(st = s)], denotes the stationary distribution given policy π.

Utilising the recursive formulation for the PR matrix, we can again derive a TD-learning rule. Namely,
given the transition tuple, (st, at, rt, st+1, at+1), we have the following update rule.

N̂
′
[s̃, st+1] = N̂[s̃, st+1] + αδNt , δNt = 1(st+1, s̃) + γN̂[s̃, st]− N̂[s̃, st+1]. (12)

The SR and PR have a reciprocal relationship (proof in appendix):

Ndiag(z) = diag(z)M , (13)

where diag(z) ∈ R|S|×|S| denotes the diagonal matrix whose diagonal elements corresponds to the
discrete stationary distribution of the MDP under the current policy.

Similar to how SF generalises SR, we propose the “Predecessor Feature” (PF) that generalises PR.

ξπ(s) = E
[∑∞

k=0 γ
kµt−k|st+1 = s

]
= µ(st+1) + γE [ξπ(st)|st+1 = s, at = a] . (14)

Similarly to the SF, the recursive definition of the PF again allows a simple expression of the TD
error for gradient-based learning of the PF.

δPF
t = E [(ϕ(st+1) + γξ(st)− ξ(st+1))] , (15)

We utilise the norms of SF and PF to replace the row sums in discrete settings for tractable approxi-
mation to rSR-R in continuous state spaces. We use the same feature vector, ϕ, for computing the SF
and PF. In order to ensure the SF and PF are of similar scales across the state space, we normalise
ϕ(s) such that ||ϕ(s)||2 = 1 for all s. Contrary to how we define rSR-R as the difference between
the SR and the column sum of the SR in discrete MDPs4, we find that setting the intrinsic reward
as the difference between the reciprocal of the norms of the SF and the PF yields better empirical
performance. We hence define the continuous Successor-Predecessor intrinsic reward as follows.

rSF-PF =
1

||ϕ(st+1)||1
− 1

||ψ(st, at)||1
(16)

st ϕtC
on

v

D
ec

on
v

M
LP

M
LP

M
LP

M
LP

̂q(st, at)

ψ(st)

ξ(st+1)

̂St+1

at

Figure 2: Graphical illustration of the neural net-
work architecture of DQN-SF-PF for Atari games.
Note that the state feature vector is L2-normalised,
ϕ(s) = ϕ̃(s)

||ϕ̃(s)||2
, where ϕ̃(s) is the raw output of

the convolutional encoder.

Details of deep RL implementation of
rSF-PF. We instantiate rSF-PF based on a
Deep Q Network (DQN; [26]), with auxil-
iary predictive reconstruction task (Lrecon =

E
[
(st+1 − ŝt+1)

2 |st
]
, where ŝt+1 is the pre-

dicted next state), and separate heads for com-
puting the q-values, the SF, and the PF, respec-
tively (Figure 2). We call this model DQN-SF-
PF. Note that, following Machado et al. [12], the
intermediate feature representation ϕ is trained
given only the predictive reconstruction and
value learning supervisions, and not updated
given the TD error in the learning of the SF or
the PF (the filled black circle in Figure 2 indicat-
ing the stop_gradient operation). We adopt
the same set of hyperparameters and architecture
for the DQN as reported in Oh et al. [27]. To
make the comparison consistent, we utilise the

4Note we refer to discrete/continuous MDP as an MDP with discrete/continuous state and action space.

6

Table 1: Evaluations SARSA-SRR and related baseline agents on RiverSwim and SixArms (averaged
over 100 seeds, numbers in the parentheses represents standard errors).

SARSA SARSA-SR SARSA-FR SARSA-SRR SARSA-SR-PR

RiverSwim 25,075 1,197,075 1,547,243 2,547,156 2,857,324

(1,224) (36,999) (34,050) (479,655) (419,922)
SixArms 376,655 1,025,750 119,149 2,199,291 1,845,229

(8,449) (49,095) (42,942) (1,024,726) (1,032,050)

mixed Monte-Carlo return loss [28, 12], defined
as following.

Lq = E
[
((1− τ)δTD(s, a) + τδMC(s, a))

2
]
,

where δMC(s, a) =

∞∑
t=0

γt
(
r(st, at) + βrSF-PF(st, at; θ

−)
)
− q(s, a; θ) ,

(17)

where δTD denotes the standard TD error for q-values (Eq. 2), τ is the scaling factor controlling the
contribution of the TD error and the Monte Carlo error, and θ and θ− denote the parameters for the
online and target DQN-SF-PF, respectively. Hence the overall loss objective for training DQN-SF-PF
is as following.

LDQN-SF-PF = wqLq + wSFδ
SF + wPFδ

PF + wreconLrecon , (18)

where wq/SF/PF/recon denotes the scaling factors for the respective loss terms. The complete set of
hyperparameters for DQN-SF-PF can be found in the Appendix.

4 Experiments

Classical hard exploration tasks. We evaluate performance of the discrete SPIE agent (and other
considered agents in Section 3: SARSA, SARSA-SR, SARSA-FR) on two classical hard exploration
tasks commonly studied in the PAC-MDP literature, RiverSwim and SixArms [29] (appendix Figure 5).
In both tasks, environment transition dynamics induce a bias towards states with low rewards, leaving
high rewards in states that are harder to reach. Evaluation of the agents is based on the cumulative
reward collected within 5000 training steps.

We observe from Table 1 that SARSA-SRR significantly outperforms all other considered agents.
Moreover, in order to further justify the utility ofRSR-R in driving exploration, we run ablation studies
by evaluating the performance of variants of SARSA-SRR (Appendix B.4). Ablation studies reveal
the importance of combining both prospective and retrospective information for exploration, as well
as the benefits of dynamic balancing exploring uncertain states and bottleneck states.

In order to validate the replacement of column norm of the SR with column norm of the PR in
the construction of rSR-R, given the reciprocal relationship (Eq. 13), we empirically evaluate the
performance of the SARSA agent with the alternative intrinsic reward, rSR-PR(s, a) = M̂[s, s′]−||N̂[:
, s′]||1. SARSA-SR-PR yields comparable performance as SARSA-SRR on both RiverSwim and
SixArms (Table 1), empirically justifying the instantiation of SPIE with the PR for capturing the
retrospective information.

Goal-oriented / sparse-reward tasks. We next evaluate the agents on grid world tasks with a single
terminal goal state (Figure 1a; OF-small and Cluster-hard). All non-terminal transitions yield rewards
of −1, and transitions into the goal state generates a reward of 0. Such goal-directed or sparse-reward
tasks require efficient exploration. We examine both open-field and clustered grid-worlds. In OF-
small and Cluster-hard tasks, SARSA-SRR outperforms both vanilla SARSA and SARSA-SR in
terms of sample efficiency (Figure 3). In addition, SARSA-SRR yields more stable training and
performance is more robust across different random seeds. Note that the navigation performance of
SARSA-SR during training is highly unstable, which might attribute to its equivalence to count-based
exploration given that visitation count is only a local measure for exploration. Somewhat surprisingly,
the improvement for SARSA-SRR is more significant in open-field grid world (OF-small) rather than

7

0 10 20 30 40 50
episodes

100
90
80
70
60
50
40
30
20
10

ep
iso

di
c

re
tu

rn

OF-small (stationary)

(a)

0 10 20 30 40 50
episodes

100
90
80
70
60
50
40
30
20
10

ep
iso

di
c

re
tu

rn

Cluster-hard (stationary)

(b)

0 10 20 30 40 50 60 70 80 90
episodes

100

80

60

40

20

0

ep
iso

di
c

re
tu

rn

Cluster-hard (non-statinoary)

Sarsa-SRR
Sarsa
Sarsa-SR

(c)

0 10 20 30 40 50 60 70 80 90
episodes

100

80

60

40

20

0

ep
iso

di
c

re
tu

rn

Cluster-hard (non-statinoary)

Sarsa-SRR
Sarsa
Sarsa-SR

(d)

Figure 3: Goal-oriented navigation in grid worlds. Evaluations of SARSA, SARSA-SR and
SARSA-SRR on OF-small (a) and Cluster-hard (b) grid worlds (Figure 1a) with stationary reward
structure, and on OF-small (c) and Cluster-hard (d) with non-stationary reward structures. The red
dashed horizontal line represents the shorted path distance. The black dashed vertical lines represent
the time point at which the goal change occurs.

the clustered grid world (Cluster-hard), in contrast to the pure exploration experiments (Figure 1b).
Nevertheless, the improvement is strong and consistent.

In many real-world tasks, the environment is inherently dynamic, requiring continual exploration
for adapting the optimal policy with respect to the non-stationary task structure. One such example
is random foraging, where foods are depleted upon consumption, and new rewards appear in new
locations. As argued in Section 3, SARSA-SRR yields “cycling” exploratory behaviour (Figure 6),
hence could facilitate continual exploration that is potentially suitable for such non-stationary envi-
ronments. To empirically justify the hypothesis, we consider the Non-Markovian Reward Decision
Process (NMRDP; [23]), where the reward changes dynamically given the visited state sequence. We
instantiate the NMRDPs in the grid worlds, OF-small and Cluster-hard, where there are three reward
states (G, G1, G2; Figure 1a) that are sequentially activated (and deactivated) every 30 episodes.
As shown in Figure 3c and 3d, we observe that SARSA-SRR consistently outperforms SARSA
and SARSA-SR, reaching the new goal states in increasingly shorter timescales. This supports
our idea that SPIE provides a more ethologically plausible exploration strategy for dealing with
non-stationarity. However, we note that the main focus of the current paper is on improved exploration
within a single task, instead of over a stream of inter-related tasks. Here we provide preliminary
evidence of potential applicability of SPIE in such continual exploration setting, and we leave more
rigorous investigation in this direction for future work.

Linear function approximation for continuous state spaces. We next evaluate SPIE with function
approximation. As a first step, we consider the linear features before moving onto the deep RL setting.
We consider the MountainCar task (Figure 4a; [30]), with sparse reward structure, where we set the
reward to 0 for all transitions into non-terminal states (the terminal state is indicated by the flag on
the top of the right hill). We utilise Q-learning with linear function approximation, where we define
the linear features to be the 128-dimensional random Fourier features (RFF [31]; Figure 4b). The
SF and the PF are defined given the RFF, and are learned via standard TD-learning (Eq. 10; 15).
The performance (over the first 1000 training episodes) of the resulting linear-Q agents with rSF and

8

(a) (b)

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

rSF PF

rSF

(c)

Figure 4: Evaluation of SPIE with linear features in MountainCar. (a) Graphical demonstration
of MountainCar environment; (b); Example random Fourier features; (c) Evaluations of Q-learning
with linear function approximation with intrinsic rewards rSF and rSF-PF on MountainCar. Reported
results are averaged over 10 random seeds.

Table 2: Evaluations of SPIE with deep RL implementation on hard-exploration Atari games (averaged
over 10 random seeds, numbers in the parentheses are 1 standard errors).

DQN DQNMMC RND DQNMMC-SR DQNMMC-SF-PF

Freeway 32.4 (0.3) 29.5 (0.1) 28.2 (0.2) 29.4 (0.1) 27.5 (0.2)
Gravitar 118.5 (22.0) 1078.3 (254.1) 714.1 (105.9) 457.4 (120.3) 1223.0 (408.9)

Mont. Rev. 0.0 (0.0) 0.0 (0.0) 528 (314.0) 1395.4 (1121.8) 1530.0 (1072.1)
Private Eye 1447.4 (2,567.9) 113.4 (42.3) 61.3 (53.7) 104.4 (50.4) 488.2 (390.9)

Solaris 783.4 (55.3) 2132.6 (394.8) 1395.2 (401.7) 1890.1 (163.1) 2455.8 (262.0)
Venture 4.4 (5.4) 1220.1 (51.0) 953.7 (167.3) 1348.5 (56.5) 1274.0 (133.2)

rSF-PF is shown in Figure 4c. The agent with rSF-PF outperforms the opposing agent significantly,
empirically justifying the utility of SPIE in the linear function approximation regime.

Deep RL instantiation of SPIE in Atari games. We empirically evaluate DQNSF-PF on 6 Atari
games with sparse reward structures [32]: Freeway, Gravitar, Montezuma’s Revenge, Private Eye,
Solaris, and Venture. We follow the evaluation protocol as stated in Machado et al. [33], where we
report the averaged evaluation scores over 10 random seeds given 108 training steps. The agent
takes (stacked) raw pixel observations as inputs. Across all 4 games, the β values are set to 0.07
and the discounting factor γ = 0.995. We adopt the epsilon-annealing scheme as in [28], which
linearly decreases ϵ from 1.0 to 0.1 over the first 106 frames. We train the network with RMSprop,
with standard hyperparameters, learning rate 0.00025, ϵ = 0.001 and decay equals 0.95 [26]. The
discounting factors for value learning and online learning of the SF and the PF are set to 0.99. The
scaling factors in Eq. 18 are set such that the different losses are on roughly similar scales: wq = 1,
wSF = 1500, wPF = 1500, wrecon = 0.001. More implementation details can be found in Appendix.

We compare DQN-SF-PF with vanilla DQN trained with standard TD error, vanilla DQN trained
with the MMC loss (Lq), Random Network Distillation (RND; [20]), DQN-SR trained with the
MMC loss [12] (Table 2). All agents are trained with the predictive reconstruction auxiliary task. By
comparing with our main baseline, DQN-SR, we observe that DQN-SF-PF significantly outperforms
DQN-SR on Four games (Gravitar, Montezuma’s Revenge, Private Eye and Solaris), whilst yielding
similar performance on the remaining two games (Freeway and Venture). Moreover, DQN-SF-PF
outperforms RND, a state-of-the-art Deep RL algorithm for exploration, on all 6 games. The empirical
difference is not only reflected in the asymptotic performance, but also in the sample efficiency of
learning. Specifically, for Montezuma’s Revenge, one of the hardest exploration games in the Atari
suite, our agent achieves near asymptotic performance (defined as the score given 108 training steps)
with only ∼ 8× 106 training frames, whereas the performance of DQN-SR saturates at ∼ 2.4× 107

training frames (with a lower score). We emphasise that the main aim of our empirical evaluations is
to validate the utility of SPIE exploration objective as a simple modification to DQN. In principle,
SPIE can be integrated with any state-of-the-art RL agent, and different instantiations of SPIE could
be implemented to deal with the task at hand. We leave such investigation for future work.

9

5 Conclusion

The development of more efficient exploration algorithms is essential for practical implementation
of RL agents in real-world environment where sample efficiency and optimality are vital to success.
Here, we propose a general intrinsically motivated exploration framework, SPIE, where we construct
intrinsic rewards by combining both prospective and retrospective information contained in past
trajectories. The retrospective component provides information about the connectivity structure of
the environment, facilitating more efficient targeted exploration between sub-regions of state space
given structure awareness (e.g., robust identification of the bottleneck states; Figure 1a). SPIE yields
more sample efficient exploration in discrete MDPs under complete absence of external reinforce-
ment. Moreover, a side benefit we observe empirically is that SPIE exhibits ethologically plausible
exploratory behaviour during exploration in grid worlds (i.e., cycling between different clusters of
states). In continuous state space, we developed a novel generalization of the predecessor representa-
tion, the predecessor features, for capturing retrospective information in continuous spaces. Empirical
evaluations on both discrete and continuous MDPs demonstrate that SPIE yields improvements over
existing intrinsic exploration methods, in terms of sample efficiency of learning and asymptotic
performance, and for adapting to non-stationary reward structures.

We instantiate SPIE using the SR and the PR, but we note that SPIE is a general framework that can
be implemented with other formulations (e.g., predictive error in a temporally backward direction [34,
35]) and with more advanced neural architectures (including those currently unthought of). Although
here we have examined the empirical properties of SPIE, the theoretical underpinnings for SPIE
and the bottleneck seeking exploratory behavior bears further investigation. Specifically, more work
needs to be done to probe the theoretical property of using SF and PF in continuous settings. Our
definition of rSR-R overlaps with the successor contingency [25, 36], which has long been recognised
for learning causal relationship between predictors and reward [37]. An interesting venue for future
work is to investigate the implications of SPIE for causally guided exploration in RL. Another
interesting direction for future work is to investigate the implications of SPIE in human exploration,
where we could utilise SPIE to investigate how human balance local (e.g., visitation counts) versus
global (e.g., environment structure) information for exploration in sequential decision tasks [38, 39].

Acknowledgement

We thank Franziska Brändle, James Heald, and Ted Moskovitz for useful discussions, and anonymous
reviewers for valuable comments. This work is funded by the UKRI, DeepMind, the Gatsby Charitable
Foundation, the Simons Foundation, the Wellcome Trust, and the Harvard Brain Initiative and by the
Center for Brains, Minds and Machines (CBMM).

References
[1] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,

2018.

[2] Susan Amin, Maziar Gomrokchi, Harsh Satija, Herke van Hoof, and Doina Precup. A survey of
exploration methods in reinforcement learning. arXiv preprint arXiv:2109.00157, 2021.

[3] Gerald Tesauro et al. Temporal difference learning and td-gammon. Communications of the
ACM, 38(3):58–68, 1995.

[4] Will Dabney, Georg Ostrovski, and André Barreto. Temporally-extended {\epsilon}-greedy
exploration. arXiv preprint arXiv:2006.01782, 2020.

[5] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. Advances in neural information processing systems, 29, 2016.

[6] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pages 2778–
2787. PMLR, 2017.

10

[7] Michael Laskin, Hao Liu, Xue Bin Peng, Denis Yarats, Aravind Rajeswaran, and Pieter
Abbeel. Cic: Contrastive intrinsic control for unsupervised skill discovery. arXiv preprint
arXiv:2202.00161, 2022.

[8] Gergely Neu, Anders Jonsson, and Vicenç Gómez. A unified view of entropy-regularized
markov decision processes. arXiv preprint arXiv:1705.07798, 2017.

[9] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
conference on machine learning, pages 1861–1870. PMLR, 2018.

[10] Jürgen Schmidhuber. Curious model-building control systems. In Proc. international joint
conference on neural networks, pages 1458–1463, 1991.

[11] Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic control. arXiv
preprint arXiv:1611.07507, 2016.

[12] Marlos C Machado, Marc G Bellemare, and Michael Bowling. Count-based exploration with
the successor representation. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 5125–5133, 2020.

[13] Peter Dayan. Improving generalization for temporal difference learning: The successor repre-
sentation. Neural computation, 5(4):613–624, 1993.

[14] Samuel J Gershman. The successor representation: its computational logic and neural substrates.
Journal of Neuroscience, 38:7193–7200, 2018.

[15] Richard Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

[16] Ted Moskovitz, Spencer R Wilson, and Maneesh Sahani. A first-occupancy representation for
reinforcement learning. arXiv preprint arXiv:2109.13863, 2021.

[17] Peter Dayan and Terrence J Sejnowski. Exploration bonuses and dual control. Machine
Learning, 25:5–22, 1996.

[18] Richard S Sutton. Integrated modeling and control based on reinforcement learning and dynamic
programming. Advances in neural information processing systems, 3, 1990.

[19] Justin Fu, John Co-Reyes, and Sergey Levine. Ex2: Exploration with exemplar models for deep
reinforcement learning. Advances in neural information processing systems, 30, 2017.

[20] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random
network distillation. arXiv preprint arXiv:1810.12894, 2018.

[21] Tianjun Zhang, Huazhe Xu, Xiaolong Wang, Yi Wu, Kurt Keutzer, Joseph E Gonzalez, and
Yuandong Tian. Noveld: A simple yet effective exploration criterion. Advances in Neural
Information Processing Systems, 34:25217–25230, 2021.

[22] Duncan Bailey and Marcelo Mattar. Predecessor features. arXiv preprint arXiv:2206.00303,
2022.

[23] Sylvie Thiébaux, Charles Gretton, John Slaney, David Price, and Froduald Kabanza. Decision-
theoretic planning with non-markovian rewards. Journal of Artificial Intelligence Research, 25:
17–74, 2006.

[24] André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt,
and David Silver. Successor features for transfer in reinforcement learning. Advances in neural
information processing systems, 30, 2017.

[25] Vijay Mohan K Namboodiri and Garret D Stuber. The learning of prospective and retrospective
cognitive maps within neural circuits. Neuron, 109(22):3552–3575, 2021.

[26] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

11

[27] Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L Lewis, and Satinder Singh. Action-
conditional video prediction using deep networks in atari games. Advances in neural information
processing systems, 28, 2015.

[28] Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi
Munos. Unifying count-based exploration and intrinsic motivation. Advances in neural
information processing systems, 29, 2016.

[29] Alexander L Strehl and Michael L Littman. An analysis of model-based interval estimation for
markov decision processes. Journal of Computer and System Sciences, 74(8):1309–1331, 2008.

[30] Andrew William Moore. Efficient memory-based learning for robot control. Technical report,
University of Cambridge, 1990.

[31] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances
in neural information processing systems, 20, 2007.

[32] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

[33] Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and
Michael Bowling. Revisiting the arcade learning environment: Evaluation protocols and open
problems for general agents. Journal of Artificial Intelligence Research, 61:523–562, 2018.

[34] Changmin Yu, Dong Li, Jianye Hao, Jun Wang, and Neil Burgess. Learning state representations
via retracing in reinforcement learning. arXiv preprint arXiv:2111.12600, 2021.

[35] Tao Yu, Cuiling Lan, Wenjun Zeng, Mingxiao Feng, Zhizheng Zhang, and Zhibo Chen. Playvir-
tual: Augmenting cycle-consistent virtual trajectories for reinforcement learning. Advances in
Neural Information Processing Systems, 34:5276–5289, 2021.

[36] Charles R Gallistel, Andrew R Craig, and Timothy A Shahan. Temporal contingency. Be-
havioural processes, 101:89–96, 2014.

[37] Herbert M Jenkins and William C Ward. Judgment of contingency between responses and
outcomes. Psychological monographs: General and applied, 79(1):1, 1965.

[38] Daniel Acuna and Paul R Schrater. Structure learning in human sequential decision-making.
Advances in neural information processing systems, 21, 2008.

[39] Franziska Brändle, Lena J Stocks, Joshua Tenenbaum, Samuel J Gershman, and Eric Schulz.
Intrinsically motivated exploration as empowerment. 2022.

[40] Ronen I Brafman and Moshe Tennenholtz. R-max-a general polynomial time algorithm for
near-optimal reinforcement learning. Journal of Machine Learning Research, 3(Oct):213–231,
2002.

12

A More Details on Predecessor Representation

Here we provide proofs of the reciprocal relationship between the SR and the PR.

Proposition A.1. Ndiag(z) = diag(z)M, where diag(z) is the diagonal matrix with the diag-
onal elements as the vector z, and z is the vector of stationary distribution of Pπ (i.e., z[i] =
limt→∞ EPπ [st = i].

Proof. Given the formal definition of the SR and the PR (Eq. 3; 11), we have the following analytical
expressions.

M = (I− γPπ)−1; N = (I− γP̃π)−1; (19)

where P̃π is the temporally reversed transition distribution. Assume matrix formulation of Pπ and
P̃π , P and P̃ in R|S|×|S|, we have the following.

P̃ij = P(st = i|st+1 = j) =
P(st+1 = j|st = i)P(st = i)

P(st+1 = j
=

Pijzi
zj

,

⇒P̃diag(z) = diag(z)P ,
(20)

Substituting the reciprocal relationship between P̃ and P into the definition of the PR, we have the
following.

N =
(
I− γdiag(z)Pdiag(z)−1

)−1
,

Ndiag(z) =
(
I− γdiag(z)Pdiag(z)−1

)−1
diag(z)

=
(
diag(z)−1(I− γdiag(z)Pdiag(z)−1)

)−1

=
(
(I− γP)diag(z)−1

)−1

= diag(z) ((I− γP))−1

= diag(z)M

(21)

B Further results on tabular hard exploration tasks.

B.1 Graphical illustration of tabular hard-exploration tasks.

The demos of RiverSwim and SixArms is shown in Figure 5. In both tasks, the environmental
transition dynamics impose asymmetry, biasing the agent towards low-rewarding states that are easier
to reach, with greater rewards available in hard-to-reach states.

sss1 sss2 sss3 sss4 sss5 sss6
⟨0,0.3,0.0⟩

⟨0,0.3,0.0⟩
⟨1,1.0,5.0⟩

⟨0,0.3,0.0⟩

⟨0,0.1,0.0⟩

⟨0,0.6,0.0⟩

⟨1,1.0,0.0⟩

⟨0,0.3,0.0⟩

⟨0,0.1,0.0⟩
⟨1,1.0,0.0⟩

⟨0,0.6,0.0⟩

⟨0,0.3,0.0⟩

⟨0,0.1,0.0⟩
⟨1,1.0,0.0⟩

⟨0,0.3,0.0⟩

⟨0,0.1,0.0⟩
⟨1,1.0,0.0⟩

⟨0,0.6,0.0⟩ ⟨0,0.6,0.0⟩ ⟨0,0.3,10000.0⟩

⟨0,0.7,0.0⟩
⟨1,1.0,0.0⟩

(a) RiverSwim

sss0

sss1

sss6

sss5

sss4

sss3

sss2

⟨0,1.0,0.0⟩

⟨1,0.15,0.0⟩

⟨2,0.10,0.0⟩

⟨3,0.05,0.0⟩

⟨4,0.03,0.0⟩

⟨5,0.01,0.0⟩

⟨0 − 3 & 5,1.0,50.0⟩

⟨4,1.0,0.0⟩

⟨2,1.0,300.0⟩

⟨0 & 2 − 5,1.0,0.0⟩

⟨1,1.0,133.0⟩

⟨0 − 1 & 3 − 5,1.0,0.0⟩

⟨3,1.0,800.0⟩

⟨0 − 2 & 4 − 5,1.0,0.0⟩

⟨4,1.0,1666.0⟩

⟨0 − 3 & 5,1.0,0.0⟩

⟨5,1.0,6000.0⟩
⟨0 − 4,1.0,0.0⟩

(b) SixArms

Figure 5: Discrete MDPs. Transition probabilities are denoted by ⟨action, probability, reward⟩. In
RiverSwim (a), the agent starts in state 1 or 2. In SixArms (b), the agent starts in state 0.

13

Table 3: Evaluations on RiverSwim and SixArms with intrinsic rewards based on fixed SR/FR
(averaged over 100 seeds, numbers in the parentheses represents standard errors).

SARSA-SR SARSA-FR SARSA-SRR

RiverSwim 327,402 278,096 3,096,913
(787,118) (666,752) (230,059)

SixArms 969,781 1,143,037 2,059,424
(2,895,306) (1,939,021) (3,292,936)

B.2 Pseudocode for SARSA-SRR.

We provide the pseudocode for SARSA-SRR in Algorithm 1. We note that SARSA, SARSA-SR and
SARSA-FR utilise the similar algorithm, but only replacing the intrinsic bonus.

Algorithm 1 Pseudocode for SARSA-SRR

Require: α, η, γ, γSR, β, ϵ
s = env.reset();
M = 0 ∈ R|S|×|S|; ▷ Initialise the SR matrix as zero matrix
Q = 0 ∈ R|S|×|A|;
while not done do

θ ∼ U(0, 1);
if θ < ϵ then ▷ ϵ-greedy policy

a ∼ U(A);
else

a = argmaxa∈AQ[s, a];
end if
s′, r, done = env.step(a);
M[s, :] = M[s, :] + η (1(s) + γSR(1− done)M[s′, :]−M[s, :]); ▷ TD-learning of the SR
r = r + β(M[s, s′]− ||M[:, s′]||1); ▷ Constructing intrinsic reward
θ′ ∼ U(0, 1);
if θ′ < ϵ then

a′ ∼ U(A);
else

a′ = argmaxa∈AQ[s′, a];
end if
Q[s, a] = Q[s, a] + α (r + γ(1− done)Q[s′, a′]−Q[s, a]);
s = s′;

end while

B.3 Evaluations given the fixed SR.

Conforming to our analysis of rSR-R with fixed SR (Section 3), we additionally evaluate SARSA-
SR/FR/SRR with the corresponding intrinsic rewards constructed based on fixed SR/FR matrix on
RiverSwim and SixArms (Table 3. Similar to what we found in the grid worlds (Figure 1c), both
SARSA-SR and SARSA-FR perform worse than their online-SR counterparts (note one exception
being SARSA-FR on SixArms). However, in contrast to the decrease in exploration efficiency of
SARSA-SRR in grid worlds, we found that fixing the SR actually improves the performance of
SARSA-SRR. Hence, in accord with our analysis in Section 3, the cause for the improved empirical
performance of rSR-R does not lie solely in the online learning process of SR, but might stems from
the inherent “bottleneck-seeking” property of rSR-R.

B.4 Ablation studies of SPIE in discrete tasks

We perform ablation studies on SARSA-SRR for further demonstration of the utility of the SPIE objec-
tive of combining both the prospective and retrospective information. We firstly show that prospective

14

Table 4: Ablation studies of SARSA-SRR on RiverSwim and SixArms.
SARSA-SRR SARSA-SRR(a) SARSA-SRR(b) SARSA-SRR(c)

RiverSwim 2,547,156 127,703 2,629,947 95,691
(479,655) (530,564) (930,170) (181,216)

SixArms 2,199,291 893,530 1,902,553 562,346
(1,024,726) (2,601,324) (2,211,960) (1,748,455)

information alone cannot yield strong exploration, whereas utilising solely the retrospective infor-
mation maintains the strong explorative performance. We consider two variants of SARSA-SRR,
SARSA-SRR(a) and SARSA-SRR(b), with the respective intrinsic rewards as following.

RSR-R(a)(s, a, s
′) = M̂ [s, s′] , RSR-R(b)(s, a, s

′) = −||M̂ [:, s′]||1 , (22)

From Table 4, we observe that utilising the prospective information alone for exploration yields
suboptimal performance, hence empirically justifying the utility of the SPIE framework. However, we
do observe that utilising the retrospective information alone yields near- or supra-optimal performance.
Together, the results indicate that the global topological information contained in the retrospective
information is essential for intrinsic exploration purposes.

We argue that the dynamic balancing between exploring states with high uncertainty and bottleneck
states is a key factor driving the empirical success of SPIE. In order to test this hypothesis, we devise
a variant of theRSR-R.

RSR-R(c) = ||M̂ [s, :]||1 − M̂ [s, s′] , (23)

Intuitively,RSR-R(c) provides an intrinsic motivation for taking transitions that lead to states that are
less reachable from s, which only yields exploration towards states of high uncertainty, but does
not provide any motivation towards bottleneck states. Indeed, as we observe from Table 4 that
SARSA-SRR(c) also yields suboptimal performance, providing empirical evidence supporting the
benefits of SPIE in driving the agents towards bottleneck states.

C Further results on exploration in grid worlds

C.1 Transient dynamics of exploration.

We look more closely at the transient dynamics of the considered agents during pure exploration in
Cluster-simple-large (where Cluster-simple-large denotes the 20× 20 grid world with two clusters).
We observe that in the absence of external reinforcement, SARSA-SR, regardless of based on intrinsic
rewards given either online-learned or fixed SR matrix, exhibits minimal exploration (Figure 6a 6b).
This is largely due to its local exploration behaviour. For SARSA-FR, we observe significant
difference between using online-trained and fixed FR matrix, where exploration with intrinsic
rewards based on fixed FR completed disrupts exploration, only exploring a small proportion of the
environment. In contrast, we observe that SARSA-SRR consistently fully explores both clusters
(repeatedly) under both conditions. Additionally, by closely examining the transient dynamics during
the exploration phase, we observe the “cycling” behaviour5.

C.2 Effect of optimistic initialisation.

We note that across all considered SARSA agents, the Q values were initialised to be 0 for all state
action pairs. Given that all SR entries are non-negative, we know that rSR-R only admits negative
rewards, hence the zero-initialisation yields optimistic initialisation, which encourages the agent
to explore [40, 29]. To disentangle the effect of SPIE from optimistic initialisation, we perform
the ablation study on pure exploration with augmented SARSA-SR and SARSA-FR agents with
optimistic initialisation. Specifically, we note that the maximum value the SR entries can take is 1

1−γ ,
and additionally since the FR entries, by definition, are always less than or equal to the corresponding

5see the attached videos in supplementary materials for the full exploration dynamics for the considered
agents

15

(a)

(b)

(c)

(d)

(e)

(f)

Figure 6: Pure exploration given fixed SR / FR measures. Temporal evoluation of state coverage
heatmaps over 6000 training steps of (a) SRASA-SR; (c) SARSA-FR; (e) SARSA-SRA agents with
intrinsic rewards based on fixed SR/FR measures in OF-small; and (b), (d), (f) for the counterparts
with online-trained SR/FR measures in the 20 × 20 Cluster-simple grid world. From left to right:
200, 400, 600, 800, 1000, 1500, 2000, 3000, 4000, 5000, 6000 steps.

16

0 1000 2000 3000 4000 5000 6000 7000 8000
steps

0

20

40

60

80

100

Nu
m

be
r o

f v
ist

ed
 st

at
es

50%

90%
99%

50%

90%
99%

50%

90%
99%

50%

90%
99%OF-small

0 1000 2000 3000 4000 5000 6000 7000 8000
steps

0

20

40

60

80

50%

90%
99%

50%

90%
99%

50%

90%
99%

50%

90%
99%Cluster-simple

0 1000 2000 3000 4000 5000 6000 7000 8000
steps

0

10

20

30

40

50

60

70

50%

90%
99%

50%

90%
99%

50%

90%
99%

50%

90%
99%Cluster-hard

0 1000 2000 3000 4000 5000 6000 7000 8000
steps

0

50

100

150

200

250

300

350

50%

90%
99%

50%

90%
99%

50%

90%
99%

50%

90%
99%OF-large

SARSA
SARSA-SR
SARSA-FR
SARSA-SRR

Figure 7: Ablation study on optimistic initialisation on exploration efficiency. We evaluate
SARSA, SARSA-SRR, and optimistically augmented SARSA-SR and SARSA-FR on the considered
grid worlds (Figure 1a).

SR entries, we initialise the Q values for all state-action pairs for both SARSA-SR and SARSA-
FR to be 1

1−γ . We evaluate the exploration efficiency for the optimistically augmented agents on
the grid worlds (Figure 7), and we observe that despite the optimistic initialisation improves the
performance of both SARSA-SR and SARSA-FR relative to their corresponding naive counterparts,
the performance differences in terms of exploration efficiency between the augmented agents and
SARSA-SRR are significant, hence justifying the utility of the SPIE framework independent of the
optimistic initialisation.

D Further results on deep RL implementation of SPIE in Atari games

D.1 Ablation study on the effect of predictive reconstruction auxiliary task

In our implementation of DQN-SF-PF, by following relevant literature [27, 12], we include an
additional sub-module in the neural architecture for predicting action-dependent future observation,
which is trained via minimising the predictive reconstruction error. The purpose of including this
sub-module is purely for learning better latent representations underlying the visual observation. We
validate the utility of such predictive reconstruction auxiliary supervision by performing ablation
study. We implemented an alternative version of DQN-SF-PF, removing the visual reconstruction
sub-module, and test on Montezuma’s Revenge. The resulting model achieves 551.5 points (averaged
over 5 random seeds, s.e. equals 618.4). We observe that there is a significant decrease from
standard DQN-SF-PF (Table 2), indicating the importance of stronger representation learning given
the predictive reconstruction auxiliary task. Moreover, given the reported performance of 398.5
points (s.e., equals 230.1) of DQN-SF in the absence of predictive reconstruction auxiliary task
from Machado et al. [12], we observe that the SPIE objective still yields improved performance over
exploration with SF alone, justifying the utility of SPIE irrespective of the specific neural architecture
we choose.

E Experiment Details

Here we provide further details of the experiments presented in the main paper.

Tabular tasks. We run hyperparameter sweeps for all considered agents (SARSA, SARSA-SR,
SARSA-FR, SARSA-SRR) on the following hyperparameters: {0.005, 0.05, 0.1, 0.25, 0.5} for learn-
ing rate of TD learning for the Q values (α); {0.005, 0.05, 0.1, 0.25, 0.5} for learning rate of TD
learning for the SR/FR matrices (η); {0.5, 0.8, 0.9, 0.95, 0.99} for the discounting factor defining
the SR/FR formulation (γSR/FR); {1, 10, 50, 100, 1000, 10000} for the multiplicative scaling factor
controlling the scale of the intrinsic rewards (β); {0.01, 0.05, 0.1} for the degree of randomness in
ϵ-greedy exploration (ϵ). The complete sets of optimal hyperparameters for the reported performance
of the considered agents in Table 1 (and for the corresponding agents with intrinsic rewards based on
fixed SR/FR matrix; Table 3) in shown in Table 5.

Exploration in grid worlds. For all presented results in the grid worlds, we use the hyperparameters
(0.1, 0.1, 0.95, 0.95, 1.0, 0.1) for (α, η, γ, γSR/FR, β, ϵ).

MountainCar experiment. We use the 128-dimensional random Fourier features, defined over the
two-dimensional state space (location×speed), as the state representation. We use the hyperparameters

17

Table 5: Hyperparameters for the considered agents in the tabular hard-exploration tasks (the values
in parentheses are the corresponding hyperparameter values for the learning of the PR).

agent α η γ γSR/FR β ϵ

RiverSwim SARSA 0.005 - 0.95 - - 0.01

SARSA-SR 0.25 0.1 0.95 0.95 10 0.1

SARSA-FR 0.25 0.01 0.95 0.95 50 0.1

SARSA-SRR 0.1 0.25 0.95 0.95 10 0.01

SARSA-SR-PR 0.25 0.25(0.1) 0.95 0.95(0.99) 1 0.01

SARSA-SR (fixed) 0.01 - 0.95 0.95 10 0.05

SARSA-FR (fixed) 0.1 - 0.95 0.95 10 0.1

SARSA-SRR (fixed) 0.25 - 0.95 0.95 10 0.01

SixArms SARSA 0.5 - 0.95 - - 0.01

SARSA-SR 0.1 0.01 0.95 0.99 100 0.01

SARSA-FR 0.1 0.01 0.95 0.99 100 0.01

SARSA-SRR 0.01 0.01 0.95 0.99 10000 0.01

SARSA-SR-PR 0.05 0.25(0.25) 0.95 0.95(0.99) 10 0.01

SARSA-SR (fixed) 0.5 - 0.95 0.95 1 0.01

SARSA-FR (fixed) 0.5 - 0.95 0.95 1 0.01

SARSA-SRR (fixed) 0.5 - 0.95 0.95 10 0.01

(0.1, 0.2, 0.2, 0.99, 0.95, 0.95, 1000, 0.3) for (α, η, ηPR, γ, γSR, γPR, β, ϵ), where ηPR and γPR are the
learning rate and discounting factor values for the PR, respectively.

Atari experiments. The neural architecture of the deep RL implementation shown in Figure 2,
here we provide the specific hyperparameters of the architecture. The Conv block is a convolutional
network with the configuration (4, 84, 84, 0, 2)−ReLU−(64, 40, 40, 2, 2)−ReLU−(64, 6, 6, 2, 2)−
ReLU − (64, 10, 10, 0, 0)− FC(1024), where the tuple represents a 2-dimensional convolutional
layer with the architecture (num_filters, kernel_width, kernel_height, padding_size, stride), and
FC(1024) represents a fully connected layer with 1024 hidden units. We take the output of the Conv
block as the 1024-dimensional state representation given the observation, which is then subsequently
used for computing the SF and the PF. The action input is transformed into a high-dimensional
embedding through a linear transformation, FC(2048). The MLP for the predictive reconstruction
block is FC(2048)− ReLU , for the Q-value estimation block is FC(|A|), for the SF head block
is FC(2048) − ReLU − FC(1024), for the PF head block is FC(2048) − ReLU − FC(1024).
The Deconv block is FC(2048) − FC(1024) − ReLU − FC(6400) − Reshape((64, 10, 10)) −
⟨64, 6, 6, 2, 2⟩−⟨64, 6, 6, 2, 2⟩−⟨1, 6, 6, 0, 2⟩−Flatten, where the tuple represents a 2-dimensional
deconvolutional layer with parameters ⟨ num_filters, kernel_width, kernel_height, padding_size,
stride ⟩.

18

	Introduction
	Background and related work
	Successor-Predecessor Intrinsic Exploration
	Experiments
	Conclusion
	More Details on Predecessor Representation
	Further results on tabular hard exploration tasks.
	Graphical illustration of tabular hard-exploration tasks.
	Pseudocode for SARSA-SRR.
	Evaluations given the fixed SR.
	Ablation studies of SPIE in discrete tasks

	Further results on exploration in grid worlds
	Transient dynamics of exploration.
	Effect of optimistic initialisation.

	Further results on deep RL implementation of SPIE in Atari games
	Ablation study on the effect of predictive reconstruction auxiliary task

	Experiment Details

