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ABSTRACT

The deep learning models’ sensitivity to small input perturbations raises security
concerns and limits their use for applications where reliability is critical. While
adversarial training methods aim at training more robust models, these techniques
often result in a lower unperturbed (clean) test accuracy, including the most widely
used Projected Gradient Descent (PGD) method.
In this work, we propose uncertainty-targeted attacks (UTA), where the perturba-
tions are obtained by maximizing the model’s estimated uncertainty. We demon-
strate on MNIST, Fashion-MNIST and CIFAR-10 that this approach does not dras-
tically deteriorate the clean test accuracy relative to PGD whilst it is robust to
PGD attacks. In particular, uncertainty-based attacks allow for using larger L∞-
balls around the training data points, are less prone to overfitting the attack, and
yield improved generalization-robustness trade-off. Our source code is available
at anonymous.4open.science/r/Uncertainty-Targeted-Attacks-5BD3.

1 INTRODUCTION

It has been shown that small perturbations added to the input can easily “fool” well-performing
deep neural networks (DNNs) into making wrong predictions (Biggio et al., 2013; Szegedy et al.,
2014), which limits their application in many real-world tasks due to security risks. The goal of
adversarial training (AT) methods is improving the robustness to small perturbations of a trained
classifier Cω : x 7→ ŷ, with x ∈ Rd denoting a data sample of finite dataset {xi,yi}Ni=1 drawn
from the training data distribution pd, ŷ ∈ Rc its prediction for c possible classes, and ω ∈ Rm the
parameters of the model. For this purpose, AT methods make the assumption that all data points x̃
within a small region around a training data point xi, i ∈ [1, N ] belong to the same class:

‖x̃− xi‖ ≤ ε⇒ ỹ = yi, and @j ∈ [1, N ], s.t. j 6= i,yj 6= yi, ‖x̃− xj‖ ≤ ε . (AT-Asm)

As sampling all the points within the small regions around the training data points is infeasible,
common AT methods greedily target this weakness of DNNs by training the model with modified
training samples as follows:

min
ω

E(x,y)∼pd

[
max
δ∈∆
L(Cω(x+δ),y)

]
, (AT)

where L denotes the loss function, and the added worst-case perturbation δ ∈ Rd is constrained to
a small region around the sample x, typically a ball ∆ , [−ε, ε]d with ε > 0. Popular implementa-
tions of the (AT) objective are the projected gradient descent (PGD, Madry et al., 2018)—where the
inner maximization step is implemented with k gradient ascent steps, and its “fast variants”—which
take only one step to compute the perturbation δ, e.g., fast gradient sign method (FGSM, Goodfel-
low et al., 2015), see § 3. However, further empirical studies showed that AT methods often reduce
the average accuracy on “clean” unperturbed test samples, indicating the two objectives—robustness
and clean accuracy—might be competing (Tsipras et al., 2019; Su et al., 2018). Moreover, Wong
et al. (2020) further pointed out a phenomenon referred to as catastrophic overfitting where the
robustness of fast AT methods rapidly drops to almost zero, within a single training epoch, see § 5.

A separate line of work aims at increasing the interpretability of the model by associating to each
of its predictions an uncertainty estimate (Kim et al., 2016; Doshi-Velez & Kim, 2017). Two main
uncertainty types in machine learning are considered: (i) aleatoric–describing the noise inherent
in the observations, as well as (ii) epistemic–uncertainty originating from the model. While the
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former cannot be reduced, the latter arises due to insufficient data to train the model, and it can
be explained away given enough data. In the context of classification, apart from capturing high-
uncertainty due to overlapping regions of different classes, the epistemic uncertainty also captures
which regions of the data space are not “visited” by the training samples.

In this work we consider “uncertainty targeted attacks” (UTA), motivated by the insights that
(i) as standard AT methods find a perturbation δ which maximizies the loss, the perturbed sample
x̃ , x + δ is moved toward the decision boundary; and (ii) an uncertainty maximizing pertur-
bation would move x̃ either towards the decision boundary or toward non-visitied regions in data
space, depending on the proximity. Furthermore, in this paper we investigate if finding a perturba-
tion δ which maximizes the model’s estimated uncertainty can provide a better trade-off between
generalization and robustness, as well as improve the reported problem of catastrophic overfitting.

Contributions. Our contributions can be summarized as follows:

• Primarily, we point out that standard loss-based attacks, and in particular PGD requires
careful tuning of the size of the ε-ball, as large ε values can break the AT-Asm assumption,
and in turn cause oscillations throughout training, see § 4.1.

• We propose uncertainty-targeted attacks (UTA), where the perturbations are obtained by
maximizing the model’s estimated uncertainty. Moreover, when approximating the uncer-
tainty using a single model—corresponding in computational cost to that of PGD—our
approach reduces to maximizing the entropy of the classifier, see § 4.2. We demonstrate
on our 2D illustrative example that such uncertainty-based perturbed samples have the ad-
vantage of: (i) reduced “crossing” of the decision boundary—see § 4.3, allowing for using
larger ε-balls, and in turn, (ii) reduced oscillations throughout training.

• Finally, our extensive empirical evaluation on Fashion-MNIST, MNIST, SVHN and
CIFAR-10 shows that this approach—both entropy and uncertainty maximization, when
implemented either in image or latent space: (i) do not drastically decrease the clean test
accuracy relative to PGD, while at the same time (ii) it is robust to PGD attacks, and
(iii) its fast variant does not suffer from catastrophic overfitting, see § 5.

2 RELATED WORK

Adversarial training. In the context of computer vision, small perturbations in image space that
are not visible to the human eye can fool a well-performing classifier into making wrong predic-
tions. This observation motivated an active line of research on adversarial training (see Biggio &
Roli, 2018, and references therein)—namely, training with such adversarial samples to obtain robust
classifiers. However, further empirical studies showed that such training reduces the training accu-
racy, indicating the two objectives—robustness and generalization—are competing (Tsipras et al.,
2019; Su et al., 2018). Zhang et al. (2019) characterize this trade-off by decomposing the robust
error as the sum of the natural error and the boundary error. They further introduce TRADES,
which adds a regularizer encouraging smoothness in the neighborhood of samples from the data
distribution. Although unsupervised as ours, TRADES is orthogonal to our work, and it would be
interesting to explore combining it with the herein proposed uncertainty-based AT. Most similar to
ours, Zhang et al. (2020) argue that “friendly” attacks–attacks which limit the distance from the
boundary when crossing it through early stopping–can yield competitive robustness. Their approach
differs from ours as they do not consider the notion of uncertainty which also more elegantly handles
the “manual” stopping.

Latent-space attacks. Stutz et al. (2019) postulate that the observed drop in clean test accuracy
appears because the adversarial perturbations leave the data-manifold, and that ‘on-manifold adver-
sarial attacks’ will hurt less the clean test accuracy. The authors thus propose to use perturbations in
the latent space of a VAE-GAN (Larsen et al., 2016; Rosca et al., 2017), and recently Yuksel et al.
(2021) used Normalizing Flows for this purpose due to their exactly reversible encoder-decoder
structure. Our approach is orthogonal to these works as it can also be applied in latent space—see
§ 5.2, and interestingly, we show that our method does not decrease notably the clean test accu-
racy relative to common loss-based AT, while it notably improves the model’s robustness relative to
standard training.
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Maximizing entropy. As one way to estimate the model’s uncertainty is using entropy—see § 3,
maximum entropy (Pereyra et al., 2017) approaches can be seen as relevant to ours. In particular,
in the context of standard classification, Pereyra et al. (2017) penalize the confident predictions by
adding a regularizer that maximizes the entropy of the output distribution. Moreover, in the context
of adversarial training, the results of (Cubuk et al., 2017, §3.2) indicate that adding such a regularizer
improves the model robustness to PGD attacks.

Uncertainty estimation. While standard DNN training performs a maximum likelihood estima-
tion of the parameters ω ∈ Ω, training Bayesian Neural Networks (BNNs) extends to estimating the
posterior distribution, providing a mathematically grounded framework for uncertainty. However,
due to the integration with respect to the whole parameter space Ω, BNNs come at a prohibitive
computational cost that is often intractable for DNNs. A popular epistemic uncertainty estimation
method is deep ensembles (Lakshminarayanan et al., 2017), which trains a large number of models
on the dataset and combines their predictions to estimate a predictive distribution over the weights.
Gal & Ghahramani (2016) further show that Dropout (Srivastava et al., 2014) when applied to a
neural network approximates Bayesian inference of a Gaussian processes (Rasmussen & Williams,
2005). The proposed Monte Carlo Dropout (MC Dropout)—which applies Dropout at inference
time—allows for computationally efficient uncertainty estimation.

3 PRELIMINARIES

Adversarial training. The inner maximization problem of Eq. AT can be implemented in several
ways. As in general the optimization is non-convex, Lyu & Liang (2015) propose approximating
the inner maximization problem with Taylor expansion and then applying a Lagrangian multiplier.
For `∞-bounded attacks, this linearization yields the FGSM (Goodfellow et al., 2015), with its
perturbation defined as:

δFGSM , ε · Sign
(
∇
x
L(Cω(x),y)

)
, (FGSM)

where Sign(·) denotes the sign function. To improve the catastrophic overfitting of FGSM, Tramèr
et al. (2018) propose adding a random vector ξ to FGSM as follows:

δR-FGSM , Π
‖·‖∞≤ε

(
ξ + α · Sign

(
∇
x
L(Cω(x),y)

))
, (R-FGSM)

where ξ ∼ U([−ε, ε]d), α ∈ [0, 1] is selected step size, and Π is projection on the `∞–ball. The
PGD method (Madry et al., 2018) applies FGSM for i = 1, . . . , k steps (with δ0

PGD , 0):

δiPGD , Π
‖·‖∞≤ε

(
δi−1

PGD + α · Sign
(
∇
x
L(Cω(x+ δi−1

PGD),y)
))
. (PGD)

PGD with k steps is often referred to as PGD-k.

Uncertainty estimation. Assuming an ensemble of M models {C(m)
ω }Mm=1 (e.g., trained indepen-

dently or sampled with MC Dropout, see § 2) where each model outputs non-scaled values–“logits”,
we define ŷ ∈ RC as the average prediction:

ŷ =
1

M

M∑
m=1

Softmax
(
C(m)
ω (x)

)
.

Given ŷ, there are several ways to estimate the model’s uncertainty, see (Gal, 2016, §3.3). We
use the entropy of the output distribution (over the classes) to quantify the uncertainty estimate of a
given sample x:

H(x,ω) = −
∑
c∈C

ŷc log ŷc . (E)

If approximating (E) using a single model M = 1, uncertainty estimation with entropy is equivalent
to the entropy of the model’s output distribution (and as we shall see in 4.2, uncertainty-based AT
can be seen as maximum entropy attacks).
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4 UNCERTAINTY TARGETED ATTACKS (UTA)

4.1 MOTIVATING EXAMPLE

In the context of computer vision, adversarial training aims at finding “imperceptible” perturbation
which does not change the label of the input data-point–see AT-Asm. Thus the selected ε value for
training–herein denoted with εtrain–is typically small. In this section, we argue that satisfying AT-
Asm “globally” can be in some cases very restrictive. As an example, Fig. 1 depicts a toy experiment
with non-isotropic distances between samples of opposite classes in R2. In particular, there are two
regions with notably different distances between samples from the opposite class, let us denote the
respective optimal ε values for each region with ε1 and ε2, and from Fig. 1, ε1 << ε2. In this section,
we focus on PGD—top row, and below we discuss two potential issues of loss-based attacks.

AT-Asm enforces that we select εtrain = ε1. In cases when ε1 << ε2 adversarial training only
marginally improves the model’s robustness in the second region where ε2 can be used locally during
training as such perturbations will not modify the class label of samples of that region. Moreover,
if the data is disproportionately concentrated—e.g. small mass of the ground truth data distribution
is concentrated in the first region, and the remaining is concentrated in the second region—one still
needs to select εtrain = ε1, as per AT-Asm.

To later contrast the behavior of loss-based PGD with uncertainty-based PGD, in Fig. 1a-1b we
consider loss-based PGD with εtrain which violates AT-Asm (thus this value would not be used in
practice by practitioners). From Fig. 1 we observe that PGD can perturb the sample by moving it
on the opposite side of the boundary—resulting in mislabeled samples. See Fig. 8 for such analysis
on CIFAR-10. While Fig. 1a-b illustrates the difference between attacks for a fixed model, Fig. 1c
illustrates the decision boundaries after adversarial training with PGD. Similarly, Fig. 1d shows
that for this “violating” case PGD training is characterized with large oscillations of the decision
boundary, resulting in inefficient training. See App. A for results on the same dataset but using
Gaussian Process as a model.

(a) 1 step (b) 20 steps (c) Decision boundary (d) Boundary oscillations

Figure 1: 2D experiment—performance of loss-based PGD (top) Vs. UTA-based PGD (bottom)
using ε which violates the AT-Asm. Columns a-b. Attacks to a fixed trained classifier, with 1
and 20 steps (columns), resp. ◦ and + depict the clean and perturbed samples, resp., and their
color blue/red depicts their class. Top row: background depicts the assigned probability to each
class of the attacked model, including its decision boundary. Bottom row: background depicts the
uncertainty estimates of a 10 model ensemble, where darker green is higher. Column c. Decision
boundaries after adversarial training with large ε (and k = 15, α=0.05). Column d. Summary of
the boundary oscillations over the updates, for a fixed mini-batch size for both PGD and UTA. For
each point x ∈ R2 we count how many times the classifier changed its prediction, and depict with
darker to lighter color zero to many changes, resp. See § 4.1 and § 4.3 for discussion.
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4.2 UNCERTAINTY & MAXIMUM-ENTROPY ADVERSARIAL TRAINING

Unlike standard loss-based attacks, we propose uncertainty-guided exploration. Uncertainty Tar-
geted Attacks (UTA) aim at finding perturbations which maximize the model’s uncertainty estimate
for the samples of the training dataset, and can be applied in either the data or the latent space:

min
ω

E(x,y)∼pd
[L(Cω(E(x) + δu),y)]

s.t. δu = arg max
δ∈∆

H(E(x) + δ,ω) ,
(UTA)

where the encoder E is the identity when perturbations are applied in the input space. The above
formulation also applies for latent space UTA perturbations, where with abuse of notation, the model
can be seen as having an encoder part E : x 7→ z and a classification part Cω : z 7→ y, and in that
case δ ∈ Rl, where l is the dimension of the latent space. When approximating UTA using a single
model M = 1, UTA can be seen as maximum entropy attacks.

Similar to loss-based AT, the inner maximization of UTA—for both image and latent-space
perturbations—can be implemented analogously to PGD and FGSM:

δiu , Π
‖·‖∞≤ε

(
δi−1

UTA + α · Sign
(
∇
x
H(E(x) + δi−1

UTA,ω)
))
, (UTA-PGD)

see Alg. 1 for details where for simplicity we use a single model M = 1. For brevity, we often refer
combining UTA-PGD with PGD and FGSM below as UTA and UTA with one step, resp.

Algorithm 1 Pseudocode of Uncertainty Targeted Attacks in input space using a single model.
1: Input: Classifier Cω0 with logits output and initial weights ω0, stopping time T , data distribu-

tion pd, learning rate γ, its loss L, L∞ ball radius ε, perturbation step size α, and number of
attack iterations K.

2: for t ∈ 0, . . . , T−1 do
3: Sample x,y ∼ pd
4: δ0

u ← 0
5: for i ∈ 0, . . . ,K−1 do
6: p← Softmax(Cωt

(x+ δiu))
7: H ← −

∑
c pc log(pc) (Compute entropy)

8: δi+1
u = δiu + α sign(∇δiuH) (Update the perturbations δu)

9: Projection δi+1
u ← Π

‖·‖∞≤ε
δi+1
u (Ensure

∥∥δi+1
u

∥∥
∞ ≤ ε )

10: end for
11: ωt+1 = ωt − γ∇ωL(Cωt

(x+ δKu ), y) (Update ωt using x̃ , x+ δKu )
12: end for
13: Output: ωT

4.3 ADVANTAGES OF UTA

In this section, we primarily argue that having ε values that differ in different regions of the input
data space leads to improved generalization while assuming infinite model capacity.

In the general case, the largest ε value which does not break the AT-Asm assumption locally would
differ among m non-overlapping local regions of the input data space, and let us denote these with
ε1, ε2, . . . , εm. Note that, as such none of the εi, i ∈ 1, . . . ,m when applied to the corresponding i-
th region changes the label class. Let without loss of generality ε1 < ε2 < · · · < εm. AT-Asm forces
that for training we select εtrain = min(ε1, ε2, . . . , εm) = ε1. The decision boundary of a model f
trained adversarially with εtrain lies within a margin that is far by at least εtrain

2 from any training
data point. Using that maximizing the margin of the decision boundary improves the generalization
of the model (Vapnik, 1995), implies that using the corresponding εi for the i-th region will lead
to improved generalization relative to when choosing single “global” εtrain value. Thus, having
“adaptive” ε-value which does not break the AT assumption locally improves the generalization of
the model, and in turn, its robustness.
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Uncertainty-based AT achieves the above desired goal in an elegant way: as UTA does not cross
the decision boundary, it effectively uses varying εi ≤ εtrain, for different local regions of the
input data space, where εtrain is selected beforehand. From Fig. 1, we observe that UTA-based
training or more precisely UTA-PGD is relatively less sensitive to the choice of εtrain. Importantly,
inline with the above discussion, using large ε for UTA-PGD during training does not deteriorate its
final clean accuracy, as Fig. 1c depicts. Finally, from Fig. 1d we observe that even for large selected
values of εtrain–which value breaks AT-Asm solely globally, the boundary decision of UTA training
oscillates relatively less to that of PGD and mostly close to the ground-truth decision boundary. By
being able to use larger values for ε, UTA allows for larger “exploration” of the input space and
in turn learn “better” latent representations and decision boundary, characterized by better clean-
accuracy and PGD robustness trade-off, as we shall see in § 5. This is in sharp contrast to PGD,
which is forced to use the smallest ε1 even in cases when ε1 << εm, as using εtrain value which
violates AT-Asm performs poorly. Moreover, we postulate that such non-isotropic margins as in
Fig. 1 are more likely to occur in real-world datasets.

Importantly, when training with a larger ε, we shall see in § 5 that the resulting robustness is com-
petitive also when evaluated on smaller ε. Hence, even if targeting solely robustness on small ε,
training with UTA and large ε can provide better small-ε robustness as well.

Additional advantages. Relative to standard AT methods, UTA is unsupervised, as it does not
use the ground truth labels y to compute the perturbations (note that in Eq. UTA the labels are used
solely to update the model, which is taken as supervised for simplicity). Thus it can be extended to
unsupervised methods which output probability estimates. Also, it includes more general perturba-
tions relative to loss-based AT as, depending on the proximity of the data point at hand, will either
move it toward the decision boundary, or toward “unexplored” regions of the training set.

5 EXPERIMENTS

Since in this work we propose a more abstract framework of using uncertainty-based adversarial
training, rather than loss-based, many of the existing AT methods can be combined with this frame-
work, e.g. PGD and UTA-PGD. Thus, the empirical evaluation does not aim to provide a new
state-of-art result, but rather verify that for a given fixed setup, uncertainty-based adversarial train-
ing achieves improved generalization-robustness trade-off.

We conduct three main types of experiments, (i) image-space perturbations—see § 5.1, (ii) laten-
t-space perturbations—see § 5.2, as well as (iii) experiments evaluating the robustness to catas-
trophic overfitting, see § 5.3.

Datasets. We evaluate on MNIST (Lecun & Cortes, 1998), Fashion-MNIST (Xiao et al., 2017),
SVHN (Netzer et al., 2011) and CIFAR-10 (Krizhevsky, 2009). Throughout our experiments, we use
three different architectures: multilayer perceptron (MLP) for MNIST, LeNet (Lecun et al., 1998)
for Fashion-MNIST and SVHN, with increased capacity for the latter, as well as ResNet-18 (He
et al., 2016) for CIFAR-10. See App. B for details on the implementation.

5.1 INPUT-SPACE EXPERIMENTS

Methods. We compare: (i) UTA: for which we only use a single model for fair comparison, see
App. C for additional results with an ensemble, and (ii) PGD (Madry et al., 2018).
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Fashion-MNIST MNIST

εtest .05 .1 .2 .3 .05 .1 .2 .3

PGD-AT
εtrain = .1 79.6 75.1 44.6 41.2 97.3 93.6 61.7 49.4
εtrain = .2 75.3 73.1 66.9 40.4 92.7 89.4 75.8 50.1
εtrain = .3 70.7 68.7 63.8 51.5 64.4 60.8 53.0 41.6
εtrain = .4 32.7 31.7 29.5 26.5 27.4 26.4 25.1 24.0

UTA-AT
εtrain = .1 82.3 71.9 44.1 43.9 97.2 92.5 55.4 49.5
εtrain = .2 81.3 77.1 62.9 42.5 96.9 94.3 75.9 50.3
εtrain = .3 78.9 75.3 67.9 47.1 95.6 93.1 79.8 52.0
εtrain = .4 76.2 72.72 65.6 56.3 93.8 90.6 76.8 53.0

SVHN

εtest .005 .01 .02 .04

PGD-AT
εtrain = .01 86.6 80.5 65.7 49.1
εtrain = .04 37.6 36.5 34.4 29.9
εtrain = .08 19.6 19.6 19.6 19.6
εtrain = .12 19.6 19.6 19.6 19.6
εtrain = .16 19.6 19.6 19.6 19.6

UTA-AT
εtrain = .01 86.0 78.3 61.1 47.3
εtrain = .04 84.8 81.0 71.8 55.7
εtrain = .08 79.3 75.8 68.7 55.6
εtrain = .12 72.9 69.8 63.7 52.7
εtrain = .16 65.7 63.0 57.8 48.3

Table 1: Robustness-generalization summary: comparison between PGD and single-model UTA
on Fashion-MNIST, MNIST and SVHN. For a given εtrain and εtest, the listed accuracies are the
average between the clean and robust accuracy, the latter given by AutoAttack (Croce & Hein, 2020),
results are averaged over multiple runs. The best score for each εtest is highlighted in yellow.
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Figure 2: Clean accuracy comparison between PGD and single-model UTA on MNIST, Fashion-
MNIST and SVHN, for varying ε used for training (x-axis). The results are averaged over multiple
runs.

MNIST and Fashion-MNIST setups. Both for UTA and PGD we train several models for εtrain ∈
{0.1, 0.2, 0.3, 0.4}. We use the standard AutoAttack pipeline (Croce & Hein, 2020) to evaluate the
robustness of each model to various attacks and for various εtest ∈ {0.05, 0.1, 0.2, 0.3}. During
training, the step size α is set to 0.01. The number of steps is always set to K = εtrain

0.01 .

SVHN setup. For both UTA and PGD, we train several models for εtrain ∈
{0.01, 0.04, 0.08, 0.12, 0.16}. We use the standard AutoAttack pipeline to evaluate the robustness
of each model for various εtest ∈ {0.005, 0.01, 0.02, 0.04}. During training, for both methods, we
use an α triangular scheduler. The initial and last step size α used for both methods is set to 0.005,
for steps between 0 and K/2, α is increased linearly from 0.005 to max(0.005, εtest/5), for steps
between K/2 and K, α is decreased linearly to 0.005.

Clean accuracy. In Fig. 2, we compare the clean test accuracy of PGD vs. UTA-PGD trained
models on Fashion-MNIST, SVHN and MNIST, resp. In all of our input-space experiments, we
observe the clean accuracy of UTA is consistently better than the clean accuracy of PGD trained
models, for all εtrain. We argue that this observation is in line with our hypothesis that UTA-perturbed
samples do not cross the decision boundary often or largely, resulting in better clean test accuracy.
These results on real data confirm the relevance of the toy experiment in § 4.1

Robustness-generalization trade-off. In Table 1, we compare the trade-offs between clean accu-
racy and robustness, for models trained with PGD and UTA, using different εtrain, and evaluated
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Figure 3: Catastrophic overfitting (CO)
on CIFAR-10 using ResNet 18, averaged
over 3 runs. PGD robustness (50 itera-
tions, 10 restarts) evaluated for multiple εtest
foor FGSM, Random-FGSM, PGD with two
steps, UTA with 1 step and an ensemble of
5 models, and UTA with 2 steps and and en-
semble of 5 models.

εtest .05 .1 .2 .3

LS-PGD-AT
εtrain = .1 27.9 22.7 18.9 18.9
εtrain = .2 11.3 11.3 11.3 11.3
εtrain = .3 11.3 11.3 11.3 11.3
εtrain = .4 11.3 11.3 11.3 11.3

LS-UTA-AT
εtrain = .1 94.1 64.6 49.6 49.6
εtrain = .2 93.5 66.0 49.6 49.6
εtrain = .3 93.8 65.6 49.6 49.6
εtrain = .4 93.2 67.0 49.5 49.5

Table 2: Latent-space robustness/ general-
ization trade-offs reached when training with
perturbations in latent space and testing with
input-space perturbations, on MNIST. Meth-
ods compared are UTA-AT in latent space
(LS-UTA-AT), and PGD-AT in latent space
(LS-PGD-AT). The scores given are the aver-
age between clean accuracy and robust accu-
racy obtained using AutoAttack. Results are
averaged over multiple runs, the best score
for each εtest is highlighted in yellow..

on several εtest. The robust accuracy is obtained using the standard pipeline of AutoAttack, which
considers four different attacks: APGDCE, APGDT

DLR, FABT, and Square Attacks. The trade-off
is expressed in terms of the average between the clean and robust accuracies. We observe that
with UTA it is possible to achieve better trade-offs between robustness and clean accuracy relative
to PGD. For the three datasets considered, for almost all εtest considered, UTA-AT gives a better
average between clean and robust accuracy, as highlight in yellow.

5.2 LATENT SPACE EXPERIMENTS

Methods & Setup. We compare: (i) UTA with ensemble of five models, and (ii) PGD (Madry
et al., 2018). As encoder E(x) we use the convolutional and the first fully connected layers of LeNet,
and the classifier consists of the last two fully connected layers of LeNet, see App. B for details. The
encoder maps everything into a latent space of dimension 120. Perturbations are computed in this
latent space. In our experiments we used εtrain ∈ {0.1, 0.2, 0.3, 0.4}. Both the encoder and the
classifier are trained together. As for previous experiments on MNIST, we test using the standard
pipeline of AutoAttack as done for the input space experiments in Section 5.1, with perturbations
in input space and εtest ∈ {0.05, 0.1, 0.2, 0.3}. For training, the values of α are computed with a
triagular scheduler, as described in Section 5.1 for the SVHN setup.

Results. Table 2 shows the image-space robustness, while training with latent-space UTA perturba-
tions and latent-space PGD, on the MNIST dataset. We observe that UTA-AT in latent space leads
to better robustness/generalization trade-offs for each considered value of εtest. For εtest ≥ 0.2, for
UTA-AT, the robust accuracy falls to 0, yet the clean accuracy remains high, in sharp contrast with
PGD-AT in latent space for which the clean accuracy falls to random for εtrain ≥ 0.2 (see Fig. 13).
See Fig. 13 for details on PGD robustness and clean accuracy.

5.3 CATASTROPHIC OVERFITTING

Fashion-MNIST. We used a LeNet model trained on the Fashion-MNIST dataset. Both for FGSM
and single model UTA with one step we used during training ε=0.2 and α = ε; and for testing we
used PGD with 20 iterations, ε=0.2 and α=0.01. See App. B for further details.
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CIFAR-10. For the experiments on CIFAR-10 we used five-model UTA sampled with MC Dropout,
using ResNet-18 (He et al., 2016), see App. B for details.
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(a) FGSM training

0 5000 10000 15000 20000
Iteration

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Clean Accuracy
PGD-20 Accuracy
FGSM Accuracy

(b) single model UTA training

Figure 4: Catastrophic Overfitting (CO) on the FashionMNIST dataset using a LeNet model; results
are averaged over 3 runs. Left: training with FGSM using a step size α= 0.2, ε = α; and testing
against PGD-20 with ε = 0.2 and α = 0.01. Soon after the beginning of the training the FGSM
accuracy suddenly jumps to very high values while the PGD-20 accuracy approaches 0. Note also
how the clean accuracy decreases and becomes lower than FGSM after CO. Right: training with
UTA-1 (single step) using a step size α= 0.2, ε = α; and testing against PGD-20 with ε= 0.2 and
α= 0.01. While the PGD robustness for UTA decreases to some extent, the drop is not as large as
for FGSM AT. Note also how UTA-1 AT lead to higher clean accuracy.

Results. Fig. 4a and 4b depict the results on FashionMNIST which evaluate if the methods are prone
to Catastrophic Overfitting (CO). Relative to FGSM, single model UTA notably improves CO, as
although there is a downward trend in PGD-20 accuracy after a certain number of iterations, it does
not reduce to 0.

6 DISCUSSION

Building on the well-established notion of uncertainty estimation—which gives high estimates both
at the decision boundary and at un-explored regions of the input space (epistemic uncertainty)—we
proposed uncertainty-targeted attacks that perturb a training sample in a direction that maximizes
the uncertainty of the model.

Our extensive results on MNIST, Fashion-MNIST, SVHN and CIFAR-10, with three different mod-
els, and in input data and latent space, indicate that this approach is promising as it degrades less
the clean test accuracy relative to PGD, while being as robust as PGD relative to standard training,
and its one-step variant improves the reported catastrophic overfitting of FGSM. Furthermore, in
contrast to PGD, our method supports very large training ε, which improves the model’s robustness
to ε larger than previously considered. Enhanced robustness to large ε is a desirable property as it
shows the boundary decision is optimally far away from data points.

Potential directions include exploring different uncertainty estimation methods, as well as finding
formal connections between UTA and online learning.
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A UNCERTAINTY-BASED TOY EXPERIMENTS WITH GAUSSIAN PROCESS

In this section, we consider additional uncertainty estimation methods, and we show that UTA can be
implemented with these too. To further improve the reader’s intuition of how this particular family
of attack works we show the results of some toy experiments using the same non-isotropic dataset
introduced in Section 4.1. However, in this section, we focus on estimating the uncertainty using
Gaussian Processes–considered a gold standard in uncertainty estimation with low dimensional data.

In particular, we use the Deterministic Uncertainty Estimation (DUE) method (van Amersfoort et al.,
2021). This method aims at estimating epistemic uncertainty using a single forward pass through the
network by exploiting Gaussian Processes applied to deep architectures (Wilson et al., 2015). We
choose this particular method because it is known to give higher uncertainty estimates to outliers
relative to other popular methods (see Fig. 1 van Amersfoort et al., 2021).

A.1 VISUALIZATIONS OF THE PGD AND UTA PERTURBATIONS

In this section, we first train a model using DUE on the clean (unperturbed) 2D dataset, and then we
depict the different attacks.

In Fig. 5 we can see the decision boundary and the uncertainty, measured in terms of entropy of
the model in classifying the clean dataset (without adversarial training). In this case, as in 4.1, we
observe that while the PGD-50 samples cross notably the boundary, the UTA perturbations do not.
Moreover, UTA perturbations push the samples both towards the decision boundary and towards
unexplored regions of the dataset. Both the PGD and UTA attacks are applied using ε = 1 and
α=0.1.

(a) PGD-50 attack on DUE (b) UTA-50 attack on DUE

Figure 5: PGD and UTA attacks on a fixed DUE (van Amersfoort et al., 2021) model trained solely
with clean data on the toy example from § 4.1. Light and dark blue crosses denote clean and per-
turbed samples of class 1, and similarly, pink and red crosses denote clean and perturbed samples of
class 0. Left: the background depicts the loss landscape of the model (and its decision boundary),
clean dataset and perturbed samples using the PGD-50 attack. Note how the PGD samples cross the
boundary and go to the other class’ region. Right: entropy of the model, clean dataset and UTA-50
perturbed samples. UTA samples do not cross the boundary and are able to go towards unexplored
regions of the dataset.

A.2 ADVERSARIAL TRAINING USING THE DUE CLASSIFIER

In this section, we use the same setup as in the previous section, however, we train adversarially the
DUE model using PGD and UTA attacks. For both PGD and UTA we use: ε=1 and α=0.1.
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Fig. 6 depicts the results. We observe that PGD-AT led to a very different decision boundary com-
pared to the one obtained by training only with clean samples and leads to a model that is not able to
classify the dataset with good performances. On the other hand, UTA-AT preserves a good decision
boundary, very similar to the one shown in Figure 5.

(a) Decision boundary of a PGD AT model. (b) Decision boundary of a UTA AT model.

Figure 6: PGD and UTA AT on a DUE model trained on a non-isotropic toy example dataset. Left:
decision boundary obtained by training adversarially with PGD-50 perturbed samples. The model is
not able to correctly classify the dataset. Right: decision boundary obtained by training adversarially
with UTA-50 perturbed samples. The model is not is now able to classify correctly the dataset and
the decision boudnary is much more similar to the one obtained by training with clean samples only
(shown in Figure 5).
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B DETAILS ON THE IMPLEMENTATION

Source code. Our source code is provided in this anonymous repository: https:
//anonymous.4open.science/r/Uncertainty-Targeted-Attacks-5BD3/
README.md. In this section, we list the details of the implementation.

B.1 ARCHITECTURES & HYPERPARAMETERS

In this section, we describe in detail the architecture used for our experiments for the various
datasets.

B.1.1 ARCHITECTURE FOR EXPERIMENTS ON MNIST IN THE IMAGE SPACE

For experiments on the MNIST dataset, we used a simple feedfoward network with 2 fully con-
nected layers: the first with 28×28 inputs and 256 outputs, while the second with 256 inputs and 10
outputs. A flattening layer was used before the first fully connected layer, aReLU function between
the first and the second layer and a Softmax activation function after the second fully connected
layer. The parameters of the models are initialized using PyTorch default initialization.

B.1.2 ARCHITECTURE FOR EXPERIMENTS ON FASHION-MNIST AND SVHN

FashionMNIST. We used a LeNet architecture as described in table 3. This network has been
trained for 100 epochs using the Adam optimizer (Kingma & Ba, 2015) with a learning rate of
0.001. The parameters of the models are initialized using PyTorch default initialization.

LeNet
Input: x ∈ R28×28

conv. (kernel: 5×5, 1→ 6; padding: 2; stride: 1)
ReLU

max pooling (kernel: 2× 2; stride: 2)
convolutional (kernel: 5×5, 6→ 16; stride: 1)

ReLU
max pooling (kernel: 2× 2; stride: 2)

Flattening
fully connected (16× 5× 5→ 120)

ReLU
fully connected (120→ 84)

ReLU
fully connected (84→ 10)

Softmax(·)

Table 3: LeNet architecture used for experiments on FashionMNIST and for latent-space MNIST
experiments. With h×w we denote the kernel size. With cin → yout we denote the number of
channels of the input and output, for the convolution layers, and the number of input and output
units for fully connected layers.

SVHN. For SVHN we increase the capacity of the LeNet model, as described in detail in Tab. 4.
We used Adam (Kingma & Ba, 2015) as an optimization method and step size of 0.001.

B.1.3 ARCHITECTURE FOR EXPERIMENTS ON MNIST IN THE LATENT SPACE

For the latent space experiments the same architecture and training setting is used, but the network
is split in an encoder part and a classifier part. For the encoder all the convolutional layers and the
first fully connected layer of the LeNet model are used. The classifier consisted in the last two fully
connected layer of model. Also in this case the network has been trained using the Adam optimizer
with a learning rate of 0.001. Model’s parameters are initialized using PyTorch default initialization.
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LeNet
Input: x ∈ R3×28×28

conv. (kernel: 5×5, 3→ 32; padding: 2; stride: 1)
ReLU

max pooling (kernel: 2× 2; stride: 2)
convolutional (kernel: 5×5, 32→ 64; stride: 1)

ReLU
max pooling (kernel: 2× 2; stride: 2)

Flattening
fully connected (64× 6× 6→ 256)

ReLU
fully connected (256→ 120)

ReLU
fully connected (120→ 10)

Softmax(·)

Table 4: LeNet architecture used for experiments on SVHN. With h×w we denote the kernel size.
With cin → yout we denote the number of channels of the input and output, for the convolution
layers, and the number of input and output units for fully connected layers.

ResBlock (part of the `–th layer)
Bypass:

conv. (ker: 1×1, 64→ 64× `; str: 2; pad: 1), if ` 6= 1
Batch Normalization, if ` 6= 1

Feedforward:
conv. (ker: 3×3, 64→ 64× `; str: 1`=1/2 6̀=1; pad: 1)

Batch Normalization
ReLU

MCD (p = 0.2)
conv. (ker: 3×3, 64× `→ 64× `; str: 1; pad: 1)

Batch Normalization
Feedforward + Bypass

ReLU
MCD (p = 0.2)

ResNet Classifier
Input: x ∈ R3×32×32

conv. (ker: 3× 3; 3→ 64; str: 1; pad: 1)
Batch Normalization

ReLU
MCD (p = 0.2)

3×ResBlock (` = 1)
6×ResBlock (l ∈ [2, 3, 4])

ReLU
AvgPool (ker:4×4 )
Linear(512→ 10)

Table 5: ResNet architectures for the experiments on CIFAR-10. Each ResNet block contains skip
connection (bypass), and a sequence of convolutional layers, normalization, and the ReLU non–
linearity. For clarity we list the layers sequentially, however, note that the bypass layers operate in
parallel with the layers denoted as “feedforward” (He et al., 2016). The ResNet block for the model
(right) differs if it is the first block in the network (following the input to the model).

B.2 ARCHITECTURE FOR EXPERIMENTS ON CIFAR-10

The ResNet-18 setup on CIFAR-10 is as in (Andriushchenko & Flammarion, 2020). Table 5 lists
the architecture used for the experiments on CIFAR-10. We use a ResNet18 (He et al., 2016) archi-
tecture, modified to accommodate the MC-dropout sampling procedure. The modification consists
of adding a dropout layer with dropout probability p = 0.2 after each convolutional layer. In order
to have a very fast version of the attack (same computational cost as FGSM) we use only one UTA
step, and sample only one model with MC-dropout. For 9b and 9b, our models were trained for 200
epochs using the SGD optimizer with Nesterov momentum and with an initial learning rate of 0.1
decayed by factor of 15 after 60, 120, 160 epochs. For Fig. 9c and Fig. 3 in order to reach faster
convergence we trained a ResNet18 model for 90 epochs with MCD using a cyclic learning rate
scheduling (Smith, 2017) with a maximum LR of 0.2 for the FGSM, R-FGSM and PGD-2 and of
0.1 for the UTA-1-5 and UTA-2-5 attacks.
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Figure 7: TRADES applied on our 2D toy example with λ = 1 and for a large ε similar to the
one used in 1c. Red samples in the top left corner end up being wrongly classified as the TRADES
objective tries to align predictions of both red and blue datapoints in this area.

C ADDITIONAL RESULTS AND ANALYSIS

C.1 TRADES

TRADES (Zhang et al., 2019) adds a regularizer to encourage the smoothness of the output around
samples from the data distribution. It is described by the following objective:

min
f

E
[
L(f(X), Y ) + λ max

X′∈B(X,ε)
L(f(X), f(X ′))

]

Where L is the loss, f the model, and B(X, ε) the ball centered on X of radius ε.

This approach differs from UTA in several important points:

• It finds a perturbation X ′ that maximizes the loss between f(X) and f(X ′), which makes
it more similar to standard PGD than to UTA. It will share a similar drawback as it will also
tend to cross the decision boundary.

• By minimizing L(f(X), f(X ′)), TRADES is increasing the similarity between f(X)
and f(X ′), hence smoothing the output in the neighborhood of X . In contrast, given
an input/label pair (X,Y ), given the adversarial sample X ′, UTA would try to minimize
L(f(X ′), Y ).

In Fig. 7 we apply TRADES to our 2D toy example. We observe TRADES share the same problem
as PGD as it can fail to cope with non-isotropic ε.

C.2 VISUAL APPEARANCE OF THE ATTACKS

In Fig. 8 we use large ε-ball to obtain clearly visible difference between the PGD and UTA-PGD
attacks, as well as to see if the insights from the experiment from Fig. 1, § 4.1 could extend to real
world setups. The topmost row depicts clean samples from CIFAR-10. Using an already trained
classifier on CIFAR-10, we show how UTA and PGD attacks look, in the middle and bottom rows,
respectively. We observe that for large ε-ball PGD attacks can make the content non-recognizable
for human eye, whereas the class of UTA perturbed samples remains perceptible.
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Figure 8: Illustration of the difference between PGD and UTA attacks to classifier trained on CIFAR-
10: (i) top row: clean samples, (ii) middle row: UTA perturbations, (iii) bottom row: PGD attacks,
where for UTA and PGD we use same setup (1000 steps, step size of 0.001, ε = ∞). We use large
number of steps to verify empirically if the difference between UTA and PGD depicted in Fig. 1
holds on real-world datasets as well. Contrary to the PGD-perturbed samples, the correct class of
the UTA-perturbed ones remains perceptible. See § C.2.

C.3 OMITTED RESULTS

In this section we show additional results omitted from the paper, obtained by applying adversarial
attacks both in the image and in the latent space.

In Fig. 9 we evaluate catastrophic overfitting (CO) on the CIFAR-10 (Krizhevsky, 2009) dataset,
where we use single model UTA with single step, see § B.2 for details on the implementation. We
observe that UTA is notably more robust to CO relative to FGSM.

(a) training with FGSM (b) training with UTA (c) Clean accuracy obtained from
AT models trained with different ε

Figure 9: Catastrophic overfitting (CO) on CIFAR-10 using ResNet 18, averaged over 3 runs. (a):
training with FGSM–with step size α = 8/255, ε = α; and testing against PGD–10 with ε = 8/255
and α = ε/4. CO occurs at around iteration 4700. (b): training with UTA with 1 step (fast version),
1 sampled model and α = ε = 8/255; testing against PGD-10 (ε = 8/255, α = ε/4) and FGSM
(ε = α = 8/255). We observe that UTA is more robust to CO relative to 9a. (c): Clean accuracy
comparison from different AT and UTA methods with different values of the perturbation radius ε.
We observe that UTA methods lead to higher clean accuracy than PGD methods. In Fig. 3 we show
the adversarial accuracy related to the same experiments.
Fig. 10 depicts additional results to those in Table 1 on Fashion-MNIST, whereas Fig. 11 uses
ensemble of five models. The robustness naturally decreases when increasing εtest. Note that the
PGD robustness for input data normalized between [0, 1] and for εtest =0.5 should be close to 0 as it
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Figure 10: Full comparison (in addition to the results in Table 1) between PGD and single-model
UTA on Fashion-MNIST, results are averaged over multiple runs. Left: accuracy on the unper-
turbed test dataset, for varying εtrain. Right: PGD robustness on the test data points, for varying εtest
(x-axis), where dashed-dotted curves are UTA, and solid curves are PGD.

is always possible for such large ε to find an intersection between any pair of L∞ balls. Similarly,
Fig. 12 shows the results on MNIST using an ensemble of five models. Finally, Fig. 13 depicts the
clean test accuracy on MNIST, where for the UTA attacks we use ensemble of five models.
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Figure 11: Comparison between PGD and UTA 5-model ensemble on Fashion-MNIST, results are
averaged over multiple runs. Left: accuracy on the unperturbed test dataset, for varying ε. Right:
PGD-10 robustness, for varying ε, where dashed-dotted curves are UTA, and solid curves are PGD.
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(a) Clean accuracy on test dataset
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(b) PGD robustness on test dataset

Figure 12: Comparison between PGD and five-model ensemble UTA on MNIST, results are av-
eraged over multiple runs. Left: accuracy on the unperturbed test dataset, for varying ε. Right:
PGD-10 robustness, for varying ε, where dashed-dotted curves are UTA, and solid curves are PGD.

Figure 13: Comparison between latent-space PGD and latent-space UTA attacks on MNIST, where
for the latter we use ensemble of five models. See § 5.2 for setup summary and discussion. Left:
accuracy on the unperturbed test dataset for varying ε. Training with UTA perturbations in latent
space is not affecting the clean accuracy, unlike PGD. Right: PGD robustness for varying ε, dashed-
dotted curves are UTA and solid curves are PGD. 10 random restarts are used for the PGD testing.
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