
Under review as a conference paper at ICLR 2023

FASTER HYPERPARAMETER SEARCH FOR GNNS VIA
CALIBRATED DATASET CONDENSATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Dataset condensation aims to reduce the computational cost of training multiple
models on a large dataset by condensing the training dataset into a small synthetic
set. State-of-the-art approaches rely on matching the model gradients for the real
and synthetic data and have recently been applied to condense large-scale graphs
for node classification tasks. Although dataset condensation may be efficient when
training multiple models for hyperparameter optimization, there is no theoretical
guarantee on the generalizability of the condensed data: data condensation often
generalizes poorly across hyperparameters/architectures in practice, while we find
and prove this overfitting is much more severe on graphs. In this paper, we consider
a different condensation objective specifically geared towards hyperparameter
search. We aim to generate the synthetic dataset so that the validation-performance
rankings of the models, with different hyperparameters, on the condensed and
original datasets are comparable. We propose a novel hyperparameter-calibrated
dataset condensation (HCDC) algorithm, which obtains the synthetic validation
data by matching the hyperparameter gradients computed via implicit differen-
tiation and efficient inverse Hessian approximation. HCDC employs a supernet
with differentiable hyperparameters, making it suitable for modeling GNNs with
widely different convolution filters. Experiments demonstrate that the proposed
framework effectively maintains the validation-performance rankings of GNNs and
speeds up hyperparameter/architecture search on graphs.

1 INTRODUCTION

Graph neural networks (GNNs) have found remarkable success in tackling a variety of graph-related
tasks (Hamilton, 2020). However, the prevalence of large-scale graphs in real-world contexts, such
as social, information, and biological networks (Hu et al., 2020), which frequently scale up to
millions/billions of nodes and edges, poses significant computational issues for training GNNs. While
training a single model can be expensive, designing deep learning models for new tasks requires
substantially more computation, as this involves training multiple models on the same dataset many
times to verify the design choice (e.g., the architecture and hyperparameter choice (Elsken et al.,
2019)). Towards this end, we consider the following question: how can we reduce the computational
cost for training multiple models on the same dataset, for hyperparameter search/optimization?

Natural approaches to reduce the training set size include methods such as graph coreset selec-
tion (Baker et al., 2020), graph sparsification (Batson et al., 2013), graph coarsening (Loukas, 2019)
and graph sampling (Zeng et al., 2019). However, all of these methods involve selecting samples
from the given training set, which limits the performance. A more effective alternative is to synthesize
informative samples rather than select from the given samples. Dataset condensation (Zhao et al.,
2020) has emerged as a competent data mechanism to synthesize data, with promising results. It aims
to produce a small synthetic training set such that a model trained on the synthetic set obtains testing
accuracy comparable to that trained on the original training set.

Although dataset condensation achieves the state-of-the-art performance for neural networks
trained on condensed samples, this technique is inadequate for accelerating hyperparameter
search/optimization, as: (1) theoretically, dataset condensation obtains synthetic samples that mini-
mize the performance drop of a specific model; however, there is no performance guarantee when
using this condensed data to train other models, and (2) in practice, it is unclear how condensation

1

Under review as a conference paper at ICLR 2023

methods compare with strong baselines such as various coreset methods, in terms of their ability to
preserve the outcome of architecture/hyperparameter optimization.

In this paper, we identify the poor generalizability of existing condensed data approaches on
graphs (Jin et al., 2021) across architectures/hyperparameters, as this topic has been overlooked in
the existing literature, which focuses more on image condensation. We prove that graph condensation
fails to preserve validation performance rankings of GNN architectures, and identify two dominant
reasons for this failure: (1) most GNNs differ from each other in terms of their convolution filter
design. Thus, when performing condensation with a single GNN, the condensed data is overfitted
to the corresponding GNN filter, a single biased point in the set of GNN filters; and (2) the learned
adjacency matrix of the synthetic graph considerably overfits the condensed data, and thus fails to
maintain the characteristics of the original adjacency matrix.

To solve the poor generalizability issue, we develop a new dataset condensation framework that
preserves the outcome of hyperparameter search/optimization on the condensed data. We propose
to learn synthetic data as well as its validation split such that the validation performance ranking of
architectures on the synthetic and original datasets are comparable.

Under the assumption of a continuous hyperparameter space or a generic supernet which interpolates
all architectures, we find and prove that the goal of preserving validation performance rankings can
be realized by matching the hyperparameter gradients on the synthetic and original validation data.
The hyperparameter gradients (or hypergradients for short) can be efficiently computed with constant
memory overhead by the implicit function theorem (IFT) and the Neumann series approximation of
an inverse Hessian (Lorraine et al., 2020). Consequently, we propose a hyperparameter calibrated
dataset condensation (HCDC) framework assuming continuous hyperparameters, which is suitable
to modeling GNNs with different convolution matrices. Experiments demonstrate the effectiveness
of the proposed framework in preserving the performance rankings of GNNs.

Although beyond the scope of this paper, HCDC also has the potential to be combined with the
supernets in differentiable neural architecture search (differentiable NAS) methods (Liu et al., 2018)
to tackle the general neural architecture space for image and text data.

Our contributions can be summarized as follows: (1) We formulate a new dataset condensation
objective for hyperparameter optimization and propose the hyperparameter calibrated dataset con-
densation (HCDC) framework that learns synthetic validation data by matching the hypergradients.
(2) We prove the hardness of generalizing the condensed graph across GNN architectures, and the
validity of HCDC in preserving the validation performance rankings of GNNs. (3) Experiments
demonstrate the effectiveness of HCDC in further reducing the search time of off-the-shelf graph
NAS algorithms, from several hours to minutes on graphs with millions of nodes.

2 SETTINGS, BACKGROUND, AND CHALLENGES

2.1 SETTINGS: NODE CLASSIFICATION AND GNNS

This paper adopts graph learning notations, but HCDC is generally applicable to other data, tasks,
and models; see Appendix B for discussions.
Node classification on a graph considers a graph T = (A,X,y) with adjacency matrix
A ∈ {0, 1}n×n, node features X ∈ Rn×d, node class labels y, and mutually disjoint node-splits
Vtrain

⋃
Vval

⋃
Vtest = [n]. Using a graph neural network (GNN) fθ,λ : Rn×n

≥0 × Rn×d → Rn×K ,
where θ ∈ Θ denotes the parameters and λ ∈ Λ denotes the hyper-parameters (if they exist), we aim
to find θT = argminθ Ltrain

T (θ, λ), where Ltrain
T (θ, λ) :=

∑
i∈Vtrain

ℓ([fθ,λ(A,X)]i, yi) and ℓ(ŷ, y)
is the cross-entropy loss. The node classification loss Ltrain

T (θ, λ) is under the transductive setting,
which can be easily generalized to the inductive setting by assuming only {Aij | i, j ∈ Vtrain} and
{Xi | i ∈ Vtrain} are used during training.

2.2 BACKGROUND: STANDARD DATASET CONDENSATION METHODS

Now, we review the standard dataset condensation (SDC) and its natural bilevel optimization (BL)
formulation (Wang et al., 2018).

2

Under review as a conference paper at ICLR 2023

SDC’s objective. Standard dataset condensation aims to find a synthetic graph S = (A′, X ′,y′)
of size c≪ n, with (weighted) adjacency matrix A′ ∈ Rc×c

≥0 , node features X ′ ∈ Rc×d, node labels
y′ ∈ [K]c, and (possibly) train/validation1 splits V ′

train

⋃
V ′
val = [c]. The goal of SDC is to obtain

comparable generalization performance on the real graph by training on the condensed graph, i.e.,
Ltest
T (θT , λ) ≈ Ltest

T (θS , λ) where θS = argminθ Ltrain
S (θ, λ) is the model parameters (of the same

GNN fθ,λ) optimized on the synthetic graph. By posing θS as a function of the condensed graph S,
SDC can be formulated as a bilevel optimization problem,

S∗ = argminS Ltrain
T (θS(S), λ) s.t. θS(S) := argminθ Ltrain

S (θ, λ). (1)

However, the above problem involves a nested-loop optimization and solving the inner loop for θS(S)
at each iteration requires a computationally expensive procedure: unrolling the neural network’s
computational graph for S over multiple optimization steps of θ.

SDC in a gradient matching formulation. Zhao et al. (2020) alleviate this computational issue
by introducing a gradient matching (GM) formulation.

Parameter-matching formulation. To start, we assume neural network fθ,λ is a locally smooth
function, and thus similar weights θS ≈ θT imply similar mappings. Then one can formulate the
condensation objective as matching the optimized parameters (which depends on initialization θ0), i.e.,
finding S∗ = argminS Eθ0∼Pθ0

[D(θS(S, θ0), θT (θ0))]s.t.θS(S, θ0) := argminθ Ltrain
S (θ(θ0), λ),

where θT (θ0) := argminθ Ltrain
T (θ(θ0), λ) and D(·, ·) is a distance function.

Reduction to gradient matching via approximations. The parameter-matching problem is still a
bilevel optimization but can be simplified via several approximations. (1) Firstly, θS(S, θ0) is
approximated by the output of an incomplete gradient-descent optimization, θS(S, θ0) ≈ θSt+1 ←
θSt −η∇θLtrain

S (θSt , λ). However, the target parameter θT (θ0) may be far away from θSt+1. Zhao et al.
(2020) propose to match θSt+1 with incompletely optimized θTt+1 ← θTt − η∇θLtrain

T (θTt , λ) at each
iteration t. Consequently, the SDC’s objective is now S∗ = argminS Eθ0∼Pθ0

[
∑T−1

t=0 D(θSt , θ
T
t)].

(2) Secondly, if we assume θSt can always track θTt (i.e., θSt ≈ θTt) from the initialization θ0 up to
iteration t, then we can replace D(θSt+1, θ

T
t+1) by D(∇θLtrain

S (θSt , λ),∇θLtrain
T (θTt , λ)) and then by

this approximation D(∇θLtrain
S (θSt , λ),∇θLtrain

T (θSt , λ)). Repeating this inductive argument, the
standard condensation objective is finally approximated by matching the gradients at each iteration t,

S∗ = argminS Eθ0∼Pθ0

[∑T−1
t=0 D

(
∇θLtrain

S (θSt , λ),∇θLtrain
T (θSt , λ)

)]
. (2)

With this gradient matching objective, we obtain a single deep network with parameters θ trained
on the condensed graph S. The condensed graph S is optimized such that the distance between
the gradient vectors of Ltrain

T and of Ltrain
S w.r.t. the parameters θ is minimized. Cosine distance

D(·, ·) = cos(·, ·) works well in practice (Zhao et al., 2020).

2.3 CHALLENGES: STANDARD DATASET CONDENSATION IS PROBLEMATIC ACROSS GNNS

For ease of theoretical discussions, in this subsection, we consider single-layer message passing
GNNs. Message passing GNNs can be interpreted as iterative convolution over nodes (i.e., message
passing) (Ding et al., 2021) where X(0) = X , X(l+1) = σ(Cα(l)(A)X(l)W (l)) for l ∈ [L], and
f(A,X) = X(L), where Cα(l)(A) is the convolution matrix parametrized by α(l), W (l) is the
learnable linear weights, and σ(·) denotes the non-linearity. One-dimensional convolution neural
networks (1D-CNNs) can be expressed by a similar formula, f(X) = (

∑k=K
k=−K α(k)P k)XW ,

parameterized by θ = [α,W] where α = [α(−K), . . . , α(K)]. P is the cyclic permutation matrix (of
a unit shift). The kernel size is (2K + 1),K ≥ 0; see Appendix B.2 for details.

Despite the success of the gradient matching algorithm in preserving the model performance when
trained on the condensed dataset (Wang et al., 2022), it naturally overfits the model fθ,λ used during
condensation and generalizes poorly to others. There is no guarantee that the condensed synthetic data
S∗ which minimizes the objective (Eq. (2)) for a specific model fθ,λ (marked by its hyperparameter
λ) can generalize well to other models fθ,λ′ where λ′ ̸= λ. We aim to demonstrate that this overfitting
issue can be much more severe on graphs than on images, where our main theoretical results can be
informally summarized as follows.

1The train/validation split of synthetic data is only required by HCDC; see Eq. (1) vs. Eq. (3).

3

Under review as a conference paper at ICLR 2023

Proposition. Standard dataset condensation using gradient matching algorithm (Eq. (2)) is prob-
lematic across GNNs. The condensed graph using a single-layer message passing GNN may fail to
generalize to the other GNNs with a different convolution matrix.

We first show the successful generalization of SDC across one-dimensional convolution neural
networks (1D-CNN). Then, we show a contrary result on GNNs: failed generalization of SDC across
GNNs. These theoretical analyses demonstrate the hardness of data condensation on graphs. Our
analysis is based on the achievability condition of a gradient matching objective; see Assumption 1
in Appendix A.

In Lemma 1 of Appendix C.1, under least square regression with linear GNN/CNN (see Appendix B.4
for formal definitions), if the standard dataset condensation GM objective is achievable, then the
optimizer on the condensed dataset S is also optimal on the original dataset T . Now, we study
the generalizability of the condensed dataset across different models. We first show a successful
generalization of SDC across different 1D-CNN networks; see Proposition 1 in Appendix A. As long
as we use a 1D-CNN with a sufficiently large kernel size K during condensation, we can generalize
the condensed dataset to a wide range of models, i.e., 1D-CNNs with a kernel size K ′ ≤ K.

However, we obtain a contrary result for GNNs in terms of the generalizability of condensed datasets
across models. Two dominant effects, which cause the failure of the condensed graph’s ability to
generalize across GNNs, are discovered.

Firstly, the learned adjacency A′ of the synthetic graph S can easily overfit the condensation objective
(see Proposition 2), and thus can fail to maintain the characteristics of the original structure and
distinguish between different architectures; see Proposition 2 in Appendix A for the theoretical result
and Table 1 for relevant experiments.

Ratio (c/n) A′ learned A′ = Ic

0.05% 59.2± 1.1 61.3± 0.5
0.25% 63.2± 0.3 64.2± 0.4

(a) Test accuracy of graph condensation
with learned or identity adjacency.

Condense\Test GCN SGC (K = 2) GIN

GCN 60.3± 0.3 59.2± 0.7 42.2± 4.3
SGC 59.2± 1.1 60.5± 0.6 39.0± 7.1
GIN 47.5± 3.6 43.6± 5.8 59.1± 1.1

(b) Generalization accuracy of graphs con-
densed with different GNNs (row) across
GNNs (column) under c/n = 0.25%.

Table 1: Test accuracy of GNNs trained
on condensed Ogbn-arxiv (Hu et al., 2020)
graph verifying the two effects (Proposi-
tions 2 and 3) that hinders the generaliza-
tion of the condensed graph across GNNs.
(a) Condensed adjacency is overfitted to the
SDC Objective, (b) Convolution filters and
inductive bias mismatch across GNNs.

(a) Condense ratio c/n = 0.2 (b) Condense ratio c/n = 0.8

Figure 1: The manifold of GNNs with convolution filters Cλ=

I+λ(1)L+λ(2)(2
λmax

L−I)
(
linear combination of first two orders

of ChebNet (Defferrard et al., 2016), λ’s are hyperparameters;
see Appendices B.2 and E

)
projected to the plane of validation

accuracy on condensed (x-axis) and original (y-axis) graphs under
two ratios c/n on Cora (Yang et al., 2016). The GNN with
C = (2

λmax
−1)L∝L (red dot) is a biased point in this model

space.

Secondly, GNNs differ from each other mostly on the design of convolution filter C(A), i.e., how
the convolution weights C depend on the adjacency information A. The convolution filter C(A)
used during condensation is a single biased point in “the space of convolutions”; see Fig. 1 for
a visualization, thus there is a mismatch of inductive bias when transferring to a different GNN.
These two effects lead to the obstacle when transferring the condensed graph across GNNs, which is
formally characterized by Proposition 3 in Appendix A.

Proposition 3 provides an effective lower-bound on the relative estimation error of optimal model
parameters when a different convolution filter C ′(·) ̸= C(·) is used.2 According to the spectral char-
acterization of convolution filters of GNNs (Table 1 of (Balcilar et al., 2021)), we can approximately
compute the maximum eigenvalue of Q for some GNNs. For example, if we condense with fC graph

2If C′(·) = C(·) Lemma 1 guarantees WS
C′ = W T

C′ and the lower bound in Proposition 3 is 0.

4

Under review as a conference paper at ICLR 2023

isomorphism network (GIN-0) (Xu et al., 2018) but train fC
′

GCN on the condensed graph, we have
∥WS

C′ −W T
C′∥/∥W T

C′∥ ⪆ deg + 1 where deg is the average node degree of the original graph. This
large lower bound hints the catastrophic failure when transferring across GIN and GCN; see Table 1.

3 HYPERPARAMETER CALIBRATED DATASET CONDENSATION

Our goal is to develop an optimal and reliable condensation method for architecture/hyperparameter
search. Standard dataset condensation objective (Eq. (1)/Eq. (2)) does not accomplish this goal since
it does not generalize across GNNs, as proven in Section 2.3. In this section, we propose a new
condensation objective specifically for preserving the outcome of hyperparameter optimization (HPO)
on the condensed dataset.

HPO’s objective. HPO finds the optimal hyperparameter λT such that the corresponding model
fθ,λT minimizes the validation loss after training, i.e.,

λT = argminλ∈Λ L∗
T (λ) where L∗

T (λ) := Lval
T (θT (λ), λ) and θT (λ) := argminθ Ltrain

T (θ, λ). (HPO)

We see HPO itself is a bilevel optimization, where the optimal parameter θT (λ) is posed as a function
of the hyperparameter λ, and so is the optimized validation loss L∗

T (λ); see Fig. 3 for illustration.

Dataset condensation for HPO. If both the train and validation sets are defined on the condensed
dataset S , the optimal hyperparameter λS is well-defined. Our goal is to find the synthetic dataset S
such that we can obtain comparable validation performance if the hyperparameters are optimized on
the condensed dataset, i.e., L∗

T (λ
T) ≈ L∗

T (λ
S). Clearly, this goal looks very similar to the goal of

standard dataset condensation, preserving generalization performance Ltest
T (θT) ≈ Ltest

T (θS), which
inspires us to formulate the new objective as a bilevel optimization problem too,

S∗ = argminS L∗
T
(
λS(S)

)
s.t. λS(S) = argminλ∈Λ L∗

S(λ), (3)

where optimized validation losses L∗
T (·) and L∗

S(·) are defined following Eq. (HPO).

However, two challenges exist: (1) This formulation (Eq. (3)) is a nested optimization (for dataset
condensation) over another nested optimization (for HPO) which is challenging to solve as high
order gradients are required. (2) In addition, another challenge lies in the search space/feasible set
of the hyperparameters Λ. In contrast to parameter optimization, where the search space is usually
assumed to be the continuous and unbounded Euclidean space, the search space of hyperparameters
Λ can be either a discrete set or a continuous one. Examples of discrete hyperparameters include
neural network type, width, depth, batch size, etc. Often we face compositions of these discrete- and
continuous-natured hyperparameters, and we can either model them all as discrete ones and search
by grid search, Bayesian optimization, and reinforcement learning; or relax the discrete search space
to a continuous one.

Hyperparameter calibration: a sufficient alternative to HPO’s objective. To solve the afore-
mentioned two challenges, we propose an sufficient alternative to Eq. (HPO). Specifically, we propose
to identify the condensed dataset that preserves the outcome of HPO on Λ without solving the HPO
objective. We call this hyperparameter calibration, which is formally defined in Definition 1.
Definition 1 (Hyperparameter Calibration). Given original dataset T , generic model fθ,λ, and
hyperparameter search space Λ, we say a condensed dataset S is hyperparameter calibrated, if for
any λ1 ̸= λ2 ∈ Λ, it holds that,(

L∗
T (λ1)− L∗

T (λ2)
)(
L∗
S(λ1)− L∗

S(λ2)
)
> 0, (HC)

In other words, changes of the optimized validation loss on T and S always have the same sign
between hyperparameters λ1 ̸= λ2.

It is clear that if hyperparameter calibration (HC) is satisfied, HPO on the original and condensed
datasets yields the same result. Therefore, our mission changes to ensuring hyperparameter calibra-
tion for a single pair of hyperparameters (λ1, λ2).

HCDC: hypergradient alignment objective for dataset condensation. To proceed, we assumes
the existence of a continuous extension of the search space: the (possibly discrete) search space Λ
can be extended to a compact and connected set Λ̃ ⊃ Λ, where we can define continuation of the

5

Under review as a conference paper at ICLR 2023

(a) Discrete Λ = {λi} (b) Continuous Λ ∋ λS

Figure 2: Illustration of the constructed ex-
tended search space Λ̃ illustrated as the or-
ange trajectory for both a) discrete Λ and
(b) continuous Λ. The trajectory starts from
λS
i,0 = λi ∈ Λ for discrete Λ (or random

points for continuous Λ), and updates through
λS
i,t+1 ← λS

i,t − η∇λL∗
S(λ

S
i,t).

(a) Train loss Ltrain
T (b) Validation loss Lval

T

Figure 3: Loss landscape w.r.t. θ and λ. A hyperparameter λ has
an optimal parameter θT (λ)

(
blue curve in (θ, λ)-plane in (a)

)
that minimizes the train loss. In (b), injecting optimal parameters
θT (λ) into the validation loss, we obtain a function of validation
loss w.r.t. λ

(
denoted as L⋆

T (λ)
)

in (L, λ)-plane, shown as the
orange curve. The purple dash line illustrates the hypergradients,
i.e., gradient of L⋆

T (λ) w.r.t. λ.

generic model fθ,λ on Λ̃ so that fθ,λ is differentiable anywhere in Λ̃. In Section 4, we will elaborate
on how to construct such an extended search space Λ̃.

Now, with the existence of such a continual extension of the search space, if we limit our step size to
be small, we only need to ensure hyperparameter calibration in Eq. (HC) under the special case that
λ1 is within the neighborhood of λ2, i.e., λ1 ∈ Br(λ2) for some r > 0. The change in validation loss
is approximated up to first-order by the hypergradients, i.e., L∗

T (λ1)−L∗
T (λ2) ≈ ⟨∇λL∗

T (λ),∆λ⟩,
where λ1 = λ + ∆λ, λ2 = λ with r ≥ ∥∆λ∥2 → 0+. The hyperparameter calibration condition
within this tiny neighborhood Br(λ) is then simplified to ∇λL∗

T (λ) ∥ ∇λL∗
S(λ), i.e., the two

hypergradient vectors are aligned and pointing to the same direction.

Assuming the extended search space Λ̃ can be covered by the union of many small neighborhoods,
we derive the following notion and equivalence relation of hypergradient alignment.
Definition 2 (Hypergradient Alignment). We say hypergradients are aligned in an extended search
space Λ̃, if for any λ ∈ Λ̃, it holds that∇λL∗

T (λ) ∥ ∇λL∗
S(λ), i.e., cos(∇λL∗

T (λ),∇λL∗
S(λ)) = 0.

Theorem 1 (Equivalence between Hypergradient Alignment and Hyperparameter Calibration). Hy-
pergradient alignment (Definition 2) is equivalent to hyperparameter calibration (Definition 1) on
the connected and compact set, e.g., the extended search space Λ̃.

We summarize the relations between the two notions (Definitions 1 and 2) as follows,
Hypergrad. Alignment in Λ̃⇐⇒ Hyperpara. Calibration in Λ̃ =⇒ Hyperpara. Calibration in Λ.

Therefore, hypergradient alignment on Λ̃ is sufficient to ensure hyperparameter calibration on Λ, and
hence the outcome of HPO over Λ is preserved. Consequently, as the core of our hyperparameter
calibrated dataset condensation (HCDC), we propose the hypergradient alignment objective below

S∗ = argminS
∑

λ∈Λ̃D
(
∇λLval

T (θT (λ), λ),∇λLval
S (θS(λ), λ)

)
, (HCDC)

where cosine distance D(·, ·) = cos(·, ·) is used.

4 IMPLEMENTATIONS OF HCDC AND APPLICATIONS TO GNNS

Finally, we work on implementing and simplifying the hyperparameter calibrated dataset condensation
(HCDC) objective and apply it to the graph architecture/hyperparameter search problem.

Constructing the extended search space Λ̃. The HCDC objective requires hypergradient
alignment over all λ’s in an extended space Λ̃ that is a compact and connected superset of Λ.
Under the discrete search space Λ, which consists of p candidate hyperparameters, one can naively
construct Λ̃ as O(p2) continuous paths connecting pairs of candidate hyperparameters (shown as blue
lines in Fig. 2a). This is apparently undesirable due to its quadratic complexity in p. We propose
a construction of Λ̃ with a linear complexity in p, which works as follows. For any i ∈ [p], we
construct a “representative” path, named i-th HPO trajectory, which starts from λSi,0 = λi ∈ Λ and

6

Under review as a conference paper at ICLR 2023

updates through λSi,t+1 ← λSi,t − η∇λL∗
S(λ

S
i,t), shown as the orange dashed lines in Fig. 2a. All

of the p trajectories will approach the optima λS , forming “connected” paths between any pair of
hyperparameters λi ̸= λj ∈ Λ. This construction is also used in a continuous search space to save
computation (except that we randomly select the starting points λi ∼ PΛ). To extend general discrete
neural architecture space Λ into a continuously differentiable Λ̃, differentiable NAS approaches
surveyed in Appendix D.3 can be used, and we leave exploration in this direction to future work.

Computing hypergradients and optimizing hypergradient alignment loss in Eq. (HCDC). The
hypergradients are the gradients of the optimized validation loss L∗

T (λ) = Lval
T (θT (λ), λ) w.r.t

the hyperparameters λ; see Fig. 3 for the illustration. The efficient computation of hypergradients
∇λL∗

T (λ) and ∇λL∗
S(λ) uses the implicit function theorem (IFT),

∇λL∗
T (λ) = −

[∂2Ltrain
T (θ,λ)
∂λ∂θT

][∂2Ltrain
T (θ,λ)
∂θ∂θT

]−1∇θLval
T (θ, λ) +∇λLval

T (θ, λ), (IFT)

where∇λLval
T (θ, λ) is the direct gradient, which is 0 when λ only affects the loss through the model

fθ,λ. The first term is the product of the training mixed partials
[∂2Ltrain

T (θ,λ)
∂λ∂θT

]
, inverse training

Hessian
[∂2Ltrain

T (θ,λ)
∂θ∂θT

]−1
, and the validation gradients ∇θLval

T (θ, λ). While the other parts can be
computed by back-propagation, the inverse Hessian needs to be approximated. Instead of using the
conjugate gradient method, Lorraine et al. (2020) propose a stable, tractable and efficient Neumann
series approximation,

[∂2Ltrain
T (θ,λ)
∂θ∂θT

]−1
= limi→∞

∑i
j=0

[
I − ∂2Ltrain

T (θ,λ)
∂θ∂θT

]j
with constant memory

constraint. To optimize the synthetic validation set Sval w.r.t. the cosine hypergradient matching
loss in Eq. (HCDC), we only need to take gradients of ∇θLval

S (θ, λ) and ∇λLval
S (θ, λ) w.r.t. Sval,

which can be handled by the same back-propagation technique in SDC, where we take gradients of
∇θLtrain

S (θ, λ) w.r.t Strain.

Connecting HCDC to SDC (Eq. (2)). Theoretically speaking, the objective of HCDC, preserving
the outcome of hyperparameter optimization (HPO), is orthogonal to the objective of SDC, which pre-
serves the generalization performance. Therefore, we use SDC to learn the synthetic training dataset
Strain in Eq. (2) and HCDC to learn the synthetic validation dataset Sval in Eq. (HCDC). Learning
the synthetic training and validation dataset may result in disconnected training and validation set,
which is allowed in graph learning.

Which graph architecture/hyperparameter search problems can HCDC solve? We illus-
trate how to tackle the two types of search spaces: (1) discrete and finite Λ and (2) continuous
and bounded Λ with two typical examples originated from the problem of searching for the best
convolution matrix C(A) on a large graph T = (A,X,y). (1) Discrete and finite search space Λ:
often the most important question of architecture search on large graphs is what design of convolution
filter performs best on the given graph? One may simply train the set of p prior-defined GNNs
{fC(i)

[α(i),W]
| i = 1, . . . , p} whose convolution matrices are C = {C(1)

α(1)(A), . . . , C
(p)

α(p)(A)} and
compare their validation performance. We can formulate this problem as HPO, by defining an “inter-
polated” model fC[α,W],λ whose convolution matrix isCα,λ(A) = λ(1)C

(1)

α(1)(A)+· · ·+λ(p)C
(p)

α(p)(A),
where hyperparameters λ = [λ(1), . . . , λ(p)] ∈ Λ and parameters α = [α(1), . . . , α(p)]. The search
space Λ = {λ1 = ep1, . . . , λp = epp} is the set of unit vectors in Rp. (2) Continuous and bounded
search space Λ: one may also use a continuous generic formula, e.g., truncated series, to model a wide
range of convolution filters, i.e., Cλ(A) =

∑p
i=1 λ

(i)C(i)(A), for example in ChebNet (Defferrard
et al., 2016) or SIGN (Frasca et al., 2020) (see Appendix B.2). The formula of Cλ(A) is a special
case of the Cα,λ(A) in (1), despite the search space Λ is now continuous.

The complete pseudo-code of HCDC. We conclude this section by summarizing the implementa-
tion of HCDC in Algorithm 1. We assume a discrete and finite search space Λ.

In Line 8, to compute ∇Sval
D
(
∇λL∗

T (λ),∇λL∗
S(λ)

)
, we note that only ∇λL∗

S(λ) depends on

Sval. By Eq. (IFT), ∇λL∗
S(λ) = −

[∂2Ltrain
S (θ,λ)
∂λ∂θS

][∂2Ltrain
S (θ,λ)
∂θ∂θS

]−1∇θLval
S (θ, λ) (there is no direct

gradients since λ only affects the loss through the model fθ,λ). Since only the validation loss term
∇θLval

S (θ, λ) depends on Sval, we only need to compute∇Sval
∇θLval

S (θ, λ) by back-propagation.

7

Under review as a conference paper at ICLR 2023

Algorithm 1 HCDC: hyperparameter calibrated dataset condensation, which aims to preserve the
validation performance ranking of architectures/hyperparameters.
Require: Original dataset T . A set of NN architectures fθ,λ where λ ∈ Λ = {λ1, . . . , λp}.
Require: Condensed training data Strain learned by standard gradient-matching algorithm (Eq. (2)). Randomly

initialized synthetic graph Sval for C classes.
1 for repeat k = 0, . . . ,K − 1 do
2 for λ = λ1, . . . , λp do
3 Initialize θ ← θ0 ∼ Pθ0

4 for epoch t = 0, . . . , Tθ − 1 do
5 Update θ ← θ − ηθ∇θLtrain

S (θ, λ).
6 if t mod Tλ = 0 then
7 Update λ← λ− ηλ∇λL∗

S(λ). ▷ Hypergradients calculated using Eq. (IFT).
8 Update Sval ← Sval − ηS∇SvalD

(
∇λL∗

T (λ),∇λL∗
S(λ)

)
9 return Condensed validation data Sval.

5 RELATED WORK

Graph condensation (Jin et al., 2021) achieved the state-of-the-art on preserving GNNs’ performance
on the simplified graph. Jin et al. (2021) adapted the gradient matching algorithm (Zhao et al.,
2020) (Eq. (2)) to graph data, together with a MLP-based graph generative model (Anand & Huang,
2018), leaving out several major issues on its efficiency, performance, and generalizability. While
the efficiency was improved by reducing the number of gradient matching steps (Jin et al., 2022),
the performance degradation on medium- and large-sized graphs still renders graph condensation
impractical. Our HCDC is designed for hyperparameter/architecture search, where we train multiple
models on the same dataset and the efficiency gain is much more significant.

Implicit differentiation methods apply the implicit function theorem (IFT) (Eq. (IFT)) to nested-
optimization problems (Wang et al., 2019). Lorraine et al. (2020) approximated the inverse Hessian
by Neumann series, which is a stable alternative to conjugate gradients (Shaban et al., 2019) and
scales IFT to large networks with constant memory. Lorraine et al. (2020) also showed that unrolling
differentiation around locally optimal parameters for i steps is equivalent to approximating the inverse
Hessian by Neumann series up to the first i terms.

In addition, we summarize graph reduction methods (including graph coreset selection, graph
sampling, graph sparsification, and graph coarsening), as well as more dataset condensation and
coreset selection methods beyond graphs and differentiable NAS methods in Appendix D.

6 EXPERIMENTS

In this section we validate the effectiveness of hyperparameter calibrated dataset condensation
(HCDC) when applied to speed up graph architecture/hyperparameter search. Spearman’s rank
correlation coefficient rs between two rankings of the ordered list of hyperparameters on the original
and condensed datasets, which is concisely referred to as correlation, is used as an important
evaluation metric, in addition to the percentage accuracy metric (referred to as performance).

Synthetic experiments on CIFAR-10. We first consider a synthetically created set of hyperparam-
eters on an image dataset, CIFAR-10. Consider the M -fold cross validation, where a fraction of 1/M
samples are used as the validation dataset each time. The M -fold cross-validation process can be
modeled by a set of M hyperparameters {φi ∈ {0, 1} | i = 1, . . . ,M}, where φi = 1 if and only if
the i-th fold is used for validation. The problem of finding the best validation performance among
the M results can be modeled as a hyperparameter optimization problem with a discrete search
space |Λ| =M . We compare HCDC with the gradient matching (Zhao et al., 2020) and distribution
matching (Zhao & Bilen, 2021b) baselines. We also consider a uniform random sampling baseline
and an early-stopping baseline where we train the same number of iterations (with the same batchsize)
as the other methods but on the original dataset. The results of M = 20 and c/n = 2% and 4% are
reported in Table 2, where we see HCDC achieves the highest rank correlation. This experiment
shows that HCDC can be applied to general types of data and tasks as long as the extended search
space can be effectively and efficiently constructed.

8

Under review as a conference paper at ICLR 2023

Ratio (ctrain/n)
Method 2% 4%

Random −0.03 0.07
SDC-GM 0.64 0.78
SDC-DM 0.77 0.86

Early-Stopping 0.11 0.24
HCDC 0.91 0.94

Table 2: The rank correlation and validation performance
on the original dataset of the M -fold cross validation
ranked/selected on the condensed dataset on CIFAR-10.

Figure 4: Speed-up of the search process of graph
NAS when combined with HCDC on Ogbn-arxiv,
best test performance so far vs. time spent.

Finding the best convolution filter on (large) graphs. One application of HCDC we analyzed
in Section 4 is to speed up the selection of the best-suited convolution filter design on large graphs.
Following the method discussed in Section 4, we test HCDC against (1) Random: the random
uniform sampling of nodes and find their induced subgraph, (2) GCond-X: graph condensation (Jin
et al., 2021) but fix the synthetic adjacency to identity, (3) GCond: graph condensation algorithm
in (Jin et al., 2021), and (4) Whole Graph: when the model selection is performed on the original
dataset. We use random uniform sampling to find the training synthetic subgraph before we apply
HCDC. For the other coreset/condensation methods, which do not define the validation split, we
randomly split the train and validation nodes according to the original split ratio. We report not
only the Spearman’s rank correlation, but also the test performance (on the original dataset) of the
model selected by the condensed dataset. In Table 3, we see HCDC consistently outperforms the
other approaches, and the test performance of selected architecture is close to the ground-truth best
performance.

Method Ratio Random GCond-X GCond HCDC Whole Graph
Dataset (ctrain/n) Corr. Perf. (%) Corr. Perf. (%) Corr. Perf. (%) Corr. Perf. (%) Perf. (%)

Cora
0.9% 0.29± .08 81.2± 1.1 0.16± .07 79.5± 0.7 0.61± .03 81.9± 1.6 0.80± .03 83.0± 0.2

83.8± 0.41.8% 0.40± .04 81.9± 0.5 0.21± .07 80.3± 0.4 0.76± .06 83.2± 0.9 0.85± .03 83.4± 0.2
3.6% 0.51± .04 82.2± 0.6 0.23± .04 80.9± 0.6 0.81± .04 83.2± 1.1 0.90± .01 83.4± 0.3

Citeseer
1.3% 0.38± .11 71.9± 0.8 0.15± .07 70.7± 0.9 0.68± .03 71.3± 1.2 0.79± .01 73.1± 0.2

73.7± 0.62.6% 0.56± .06 72.2± 0.4 0.29± .05 70.8± 0.5 0.79± .05 71.5± 0.7 0.83± .02 73.3± 0.5
5.2% 0.71± .05 73.0± 0.3 0.35± .08 70.2± 0.4 0.83± .03 71.1± 0.8 0.89± .02 73.4± 0.4

Ogbn-arxiv
0.1% 0.59± .08 70.1± 1.7 0.39± .06 69.8± 1.4 0.59± .07 70.3± 1.4 0.77± .04 71.9± 0.8

73.2± 0.80.25% 0.63± .05 70.3± 1.3 0.44± .03 70.1± 0.7 0.64± .05 70.5± 1.0 0.83± .03 72.4± 1.0
0.5% 0.68± .07 70.9± 1.0 0.47± .05 70.0± 0.7 0.67± .05 71.1± 0.6 0.88± .03 72.6± 0.6

Reddit
0.1% 0.42± .09 92.1± 1.6 0.39± .04 90.9± 0.8 0.53± .06 90.9± 1.7 0.79± .03 92.1± 0.9

94.1± 0.70.25% 0.50± .06 92.7± 1.3 0.41± .05 90.9± 0.5 0.61± .04 91.2± 1.2 0.83± .01 92.9± 0.7
0.5% 0.58± .06 92.8± 0.7 0.42± .03 91.5± 0.6 0.66± .02 92.1± 0.9 0.87± .01 93.1± 0.5

Table 3: Spearman’s rank correlation and test performance of convolution filter selected on the condensed graph.

Speeding up off-the-shelf graph architecture search algorithms. Finally, we test HCDC on
how much speed-up it can provide to the off-the-shelf graph architecture search methods. We use
graph NAS (Gao et al., 2019) on Ogbn-arxiv with a condensation ratio of c/n = 0.5%. The search
space of architectures is the same as the set used in Table 3 with a focus on graphs with different
convolution filters. We plot the best test performance of searched architecture (so far) versus the time
spent during searching (in seconds) in Fig. 4. We see HCDC, as a dataset condensation approach, can
further speed up the search process of graph NAS and is orthogonal to the efficient search algorithms
like Bayesian optimization or reinforcement learning used by NAS methods.

7 CONCLUSION

This paper considers a novel objective for dataset condensation: preserving the outcome of hyperpa-
rameter search/optimization. We propose the hyperparameter calibration formulation for this goal,
which is then realized by aligning the hyperparameter gradients. We demonstrate both theoretically
and experimentally that HCDC can effectively preserve the validation performance rankings of GNNs
and accelerate the hyperparameter/architecture search on graphs. However, the overall performance
of HCDC can be affected by (1) how the supernet generalize to unseen architectures; (2) where we
align hypergradients in the search space; (3) how we learn the synthetic training set; (4) how we
parameterize the synthetic graph/dataset; and leave the heuristic exploration of all possible techniques
for these design choices for future work. Beyond graph datasets, HCDC has the potential to be
integrated with differentiable neural architecture search (NAS) methods (Liu et al., 2018; Wang et al.,
2020) to address general neural architecture space. We hope our work opens up a promising new
avenue for speeding up hyperparameter/architecture search by compressing the underlying dataset.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection for
online continual learning. Advances in neural information processing systems, 32, 2019.

Namrata Anand and Possu Huang. Generative modeling for protein structures. Advances in neural
information processing systems, 31, 2018.

Daniel Baker, Vladimir Braverman, Lingxiao Huang, Shaofeng H-C Jiang, Robert Krauthgamer, and
Xuan Wu. Coresets for clustering in graphs of bounded treewidth. In International Conference on
Machine Learning, pp. 569–579. PMLR, 2020.

Muhammet Balcilar, Renton Guillaume, Pierre Héroux, Benoit Gaüzère, Sébastien Adam, and Paul
Honeine. Analyzing the expressive power of graph neural networks in a spectral perspective. In
Proceedings of the International Conference on Learning Representations (ICLR), 2021.

Joshua Batson, Daniel A Spielman, Nikhil Srivastava, and Shang-Hua Teng. Spectral sparsification
of graphs: theory and algorithms. Communications of the ACM, 56(8):87–94, 2013.

Yoshua Bengio. Gradient-based optimization of hyperparameters. Neural computation, 12(8):
1889–1900, 2000.

Ondrej Bohdal, Yongxin Yang, and Timothy Hospedales. Flexible dataset distillation: Learn labels
instead of images. arXiv preprint arXiv:2006.08572, 2020.

Zalán Borsos, Mojmir Mutny, and Andreas Krause. Coresets via bilevel optimization for continual
learning and streaming. Advances in Neural Information Processing Systems, 33:14879–14890,
2020.

Vladimir Braverman, Shaofeng H-C Jiang, Robert Krauthgamer, and Xuan Wu. Coresets for clustering
in excluded-minor graphs and beyond. In Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 2679–2696. SIAM, 2021.

Chen Cai, Dingkang Wang, and Yusu Wang. Graph coarsening with neural networks. In International
Conference on Learning Representations, 2020.

Yutian Chen, Max Welling, and Alex Smola. Super-samples from kernel herding. In Proceedings of
the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence, pp. 109–116, 2010.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An
efficient algorithm for training deep and large graph convolutional networks. In Proceedings of the
25th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 257–266,
2019.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Advances in neural information processing systems,
volume 29, 2016.

Mucong Ding, Kezhi Kong, Jingling Li, Chen Zhu, John Dickerson, Furong Huang, and Tom
Goldstein. Vq-gnn: A universal framework to scale up graph neural networks using vector
quantization. Advances in Neural Information Processing Systems, 34:6733–6746, 2021.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. The
Journal of Machine Learning Research, 20(1):1997–2017, 2019.

Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael Bronstein, and Federico
Monti. Sign: Scalable inception graph neural networks. arXiv preprint arXiv:2004.11198, 2020.

Yang Gao, Hong Yang, Peng Zhang, Chuan Zhou, and Yue Hu. Graphnas: Graph neural architecture
search with reinforcement learning. arXiv preprint arXiv:1904.09981, 2019.

Chengcheng Guo, Bo Zhao, and Yanbing Bai. Deepcore: A comprehensive library for coreset
selection in deep learning. arXiv preprint arXiv:2204.08499, 2022.

10

Under review as a conference paper at ICLR 2023

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

William L Hamilton. Graph Representation Learning. Morgan & Claypool Publishers, 2020.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118–22133, 2020.

ZHAO Huan, YAO Quanming, and TU Weiwei. Search to aggregate neighborhood for graph neural
network. In 2021 IEEE 37th International Conference on Data Engineering (ICDE), pp. 552–563.
IEEE, 2021.

Zengfeng Huang, Shengzhong Zhang, Chong Xi, Tang Liu, and Min Zhou. Scaling up graph
neural networks via graph coarsening. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, pp. 675–684, 2021.

Rishabh Iyer, Ninad Khargoankar, Jeff Bilmes, and Himanshu Asanani. Submodular combinatorial
information measures with applications in machine learning. In Algorithmic Learning Theory, pp.
722–754. PMLR, 2021.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
International Conference on Learning Representations, 2017.

Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah. Graph condensation
for graph neural networks. In International Conference on Learning Representations, 2021.

Wei Jin, Xianfeng Tang, Haoming Jiang, Zheng Li, Danqing Zhang, Jiliang Tang, and Bing Yin.
Condensing graphs via one-step gradient matching. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 720–730, 2022.

Jang-Hyun Kim, Jinuk Kim, Seong Joon Oh, Sangdoo Yun, Hwanjun Song, Joonhyun Jeong, Jung-
Woo Ha, and Hyun Oh Song. Dataset condensation via efficient synthetic-data parameterization.
In International Conference on Machine Learning, pp. 11102–11118. PMLR, 2022.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2016.

Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph
learning. In Advances in neural information processing systems. PMLR, 2019.

Suraj Kothawade, Vishal Kaushal, Ganesh Ramakrishnan, Jeff Bilmes, and Rishabh Iyer. Prism: A
rich class of parameterized submodular information measures for guided data subset selection. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 10238–10246, 2022.

Jan Larsen, Lars Kai Hansen, Claus Svarer, and M Ohlsson. Design and regularization of neural
networks: the optimal use of a validation set. In Neural Networks for Signal Processing VI.
Proceedings of the 1996 IEEE Signal Processing Society Workshop, pp. 62–71. IEEE, 1996.

Liam Li and Ameet Talwalkar. Random search and reproducibility for neural architecture search. In
Uncertainty in artificial intelligence, pp. 367–377. PMLR, 2020.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In
International Conference on Learning Representations, 2018.

Mengyang Liu, Shanchuan Li, Xinshi Chen, and Le Song. Graph condensation via receptive field
distribution matching. arXiv preprint arXiv:2206.13697, 2022.

Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters by
implicit differentiation. In International Conference on Artificial Intelligence and Statistics, pp.
1540–1552. PMLR, 2020.

Andreas Loukas. Graph reduction with spectral and cut guarantees. J. Mach. Learn. Res., 20(116):
1–42, 2019.

11

Under review as a conference paper at ICLR 2023

Andreas Loukas and Pierre Vandergheynst. Spectrally approximating large graphs with smaller
graphs. In International Conference on Machine Learning, pp. 3237–3246. PMLR, 2018.

Jelena Luketina, Mathias Berglund, Klaus Greff, and Tapani Raiko. Scalable gradient-based tuning
of continuous regularization hyperparameters. In International conference on machine learning,
pp. 2952–2960. PMLR, 2016.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. In International Conference on Learning Representations,
2017.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In International conference on machine learning, pp. 2408–2417. PMLR, 2015.

Timothy Nguyen, Zhourong Chen, and Jaehoon Lee. Dataset meta-learning from kernel ridge-
regression. In International Conference on Learning Representations, 2020.

Timothy Nguyen, Roman Novak, Lechao Xiao, and Jaehoon Lee. Dataset distillation with infinitely
wide convolutional networks. Advances in Neural Information Processing Systems, 34:5186–5198,
2021.

Peter Ochs, René Ranftl, Thomas Brox, and Thomas Pock. Bilevel optimization with nonsmooth
lower level problems. In International Conference on Scale Space and Variational Methods in
Computer Vision, pp. 654–665. Springer, 2015.

Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet: Finding
important examples early in training. Advances in Neural Information Processing Systems, 34:
20596–20607, 2021.

Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In International
conference on machine learning, pp. 737–746. PMLR, 2016.

Omri Puny, Heli Ben-Hamu, and Yaron Lipman. From graph low-rank global attention to 2-fwl
approximation. In International Conference on Machine Learning. PMLR, 2020.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pp. 2001–2010, 2017.

Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou Huang.
Self-supervised graph transformer on large-scale molecular data. In Advances in neural information
processing systems, volume 33, 2020.

Venu Satuluri, Srinivasan Parthasarathy, and Yiye Ruan. Local graph sparsification for scalable
clustering. In Proceedings of the 2011 ACM SIGMOD International Conference on Management
of data, pp. 721–732, 2011.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. In International Conference on Learning Representations, 2018.

Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. Truncated back-propagation
for bilevel optimization. In The 22nd International Conference on Artificial Intelligence and
Statistics, pp. 1723–1732. PMLR, 2019.

Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs using
variational autoencoders. In International conference on artificial neural networks, pp. 412–422.
Springer, 2018.

Felipe Petroski Such, Aditya Rawal, Joel Lehman, Kenneth Stanley, and Jeffrey Clune. Generative
teaching networks: Accelerating neural architecture search by learning to generate synthetic
training data. In International Conference on Machine Learning, pp. 9206–9216. PMLR, 2020.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio, and
Geoffrey J Gordon. An empirical study of example forgetting during deep neural network learning.
In International Conference on Learning Representations, 2018.

12

Under review as a conference paper at ICLR 2023

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Kai Wang, Bo Zhao, Xiangyu Peng, Zheng Zhu, Shuo Yang, Shuo Wang, Guan Huang, Hakan
Bilen, Xinchao Wang, and Yang You. Cafe: Learning to condense dataset by aligning features.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
12196–12205, 2022.

Ruochen Wang, Minhao Cheng, Xiangning Chen, Xiaocheng Tang, and Cho-Jui Hsieh. Rethinking ar-
chitecture selection in differentiable nas. In International Conference on Learning Representations,
2020.

Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation. arXiv
preprint arXiv:1811.10959, 2018.

Yuanhao Wang, Guodong Zhang, and Jimmy Ba. On solving minimax optimization locally: A
follow-the-ridge approach. In International Conference on Learning Representations, 2019.

Zhili Wang, Shimin Di, and Lei Chen. Autogel: An automated graph neural network with explicit
link information. Advances in Neural Information Processing Systems, 34:24509–24522, 2021.

Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas: stochastic neural architecture search. In
International Conference on Learning Representations, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2018.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International conference on machine learning, pp. 40–48. PMLR, 2016.

Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Marrakchi, Thomas Brox, and Frank Hutter.
Understanding and robustifying differentiable architecture search. In International Conference on
Learning Representations, 2019.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. In International Conference on Learning
Representations, 2019.

Jiawei Zhang, Haopeng Zhang, Congying Xia, and Li Sun. Graph-bert: Only attention is needed for
learning graph representations. arXiv preprint arXiv:2001.05140, 2020.

Bo Zhao and Hakan Bilen. Dataset condensation with differentiable siamese augmentation. In
International Conference on Machine Learning, pp. 12674–12685. PMLR, 2021a.

Bo Zhao and Hakan Bilen. Dataset condensation with distribution matching. arXiv preprint
arXiv:2110.04181, 2021b.

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient matching. In
International Conference on Learning Representations, 2020.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8697–8710, 2018.

13

Under review as a conference paper at ICLR 2023

Supplementary Material

A STANDARD DATASET CONDENSATION IS PROBLEMATIC ACROSS GNNS

In this section, we complete the theoretical details behind Section 2.3, which shows standard dataset
condensation is problematic across GNNs.
Assumption 1 (Achievability of a gradient matching Objective). A gradient matching objective is
defined to be achievable if there exists a non-degenerate trajectory (θSt)

T−1
t=0 (i.e., a trajectory that

spans the entire parameter space Θ, i.e., span(θS0 , . . . , θ
S
T−1) ⊇ Θ), such that the gradient matching

loss (the objective of Eq. (2) without expectation) on this trajectory is 0.
Proposition 1 (Successful Generalization of SDC across 1D-CNNs). Consider least-squares regres-
sion with one-dimensional linear convolution f2K+1(X)θ = (

∑k=K
k=−K α(k)P k)XW parameterized

by θ = [α,W] where α = [α(−K), . . . , α(K)]. P is the cyclic permutation matrix (of a unit shift).
The kernel size is (2K + 1),K ≥ 0. If the gradient matching objective of f2K+1 is achievable, then
the condensed dataset S∗ achieves the gradient matching objective on any trajectory {θ′St }T−1

t=0 for
any linear convolution f2K

′+1
θ′ with kernel size (2K ′ + 1),K ≥ K ′ ≥ 0.

The intuition behind Proposition 1 is that the 1D-CNN of kernel size (2K + 1) is a “supernet” of
the 1D-CNN of kernel size (2K ′ + 1) if K ′ ≤ K, and the condensed dataset via a bigger model
can generalize well to smaller ones. This result suggests us to use a sufficiently large model during
condensation, to enable the generalization of the condensed dataset to a wider range of models.
Proposition 2 (Condensed Adjacency Overfits SDC Objective). Consider least-squares regression
with a linear GNN, f(A,X) = C(A)XW parameterized by W and C(A) which depends on graph
adjacency A. For any (full-ranked) synthetic node features X ′ ∈ Rc×d, there exists a synthetic
adjacency matrix A′ ∈ Rc×c

≥0 such that the gradient matching objective is achievable.

Proposition 3 (Failed Generalization of SDC across GNNs). Consider least-squares regression with a
linear GNN, fCW (A,X) = C(A)XW parametrized by W , there always exists a condensed graph S∗,
such that the gradient matching objective for fC is achievable. However, if we train a new linear GNN
fC

′

W (A,X) with convolution matrix C ′(A′) on S∗, the relative error between the optimized model pa-
rameters of fC

′

W on the real and condensed graphs is ∥WS
C′−W T

C′∥/∥W T
C′∥ ≥ max{σmax(Q)−1, 1−

σmin(Q)}, where W T
C′ = argminW ∥y − fC

′

W (A,X)∥22, WS
C′ = argminW ∥y′ − fC′

W (A′, X ′)∥22,
and Q =

(
X⊤[C(A)]⊤[C(A)]X

)(
X⊤[C ′(A)]⊤[C ′(A)]X

)−1
.

B MORE PRELIMINARIES

In this section, we describe in greater details the types of data, downstream tasks, and neural network
models that our hyperparameter-calibrated dataset condensation (HCDC) applies to. Moreover, we
also religiously define the simplified linear convolution regression problem with least-square loss and
linear convolution models, which is the assumed setup for Lemma 1 and Propositions 1 to 3.

B.1 DOWNSTREAM TASKS

In Section 2 we have defined the downstream task that this paper mainly focus on, node clas-
sification on graphs. Where we are given a graph T = (A,X,y) with adjacency matrix
A ∈ {0, 1}n×n, node features X ∈ Rn×d, node class labels y ∈ [K]n, and mutually disjoint
node-splits Vtrain

⋃
Vval

⋃
Vtest = [n], and the goal is to predict the node labels.

Here, to give a background on the convolution neural networks (CNNs) applications discussed
in Section 2.3, we show as follows the settings above can be also used to describe per-pixel
classification on images (e.g., for semantic segmentation) where CNNs are usually used.

For per-pixel classification, we are given a set of n images of size w × h, so the pixel values of
the j-th image can be formatted as a tensor Xj ∈ Rw×h×c if there are c channels. We are also
given the pixel labels Yj ∈ [K]w×h for each image j ∈ [n] and the mutually disjoint image-
splits Itrain

⋃
Ival

⋃
Itest = [n]. Clearly, we can reshape the pixel values and pixel labels of

14

Under review as a conference paper at ICLR 2023

the j-th image to wh × c and wh respectively, and concatenate those matrices from all images.
Following this, denoting n = nwh, we obtain the concatenated pixel value matrix X ∈ Rn×c

and the concatenated pixel label vector y ∈ [K]n. The image-splits are translated into pixel-level
splits where Vtrain = {i | (j − 1)wh ≤ i ≤ jwh, j ∈ Itrian} (similar for Vval and Vtest) and
Vtrain

⋃
Vval

⋃
Vtest = [n]. We can also define the auxiliary adjacency matrix A ∈ {0, 1}n×n on

the n = nwh pixels, where A is block diagonal A = diag(A1, . . . , An) and Aj ∈ {0, 1}wh×wh is
the assumed adjacency (e.g. a two-dimensional grid) of the j-th image.

B.2 NEURAL NETWORK MODELS

This paper mainly focus on graph neural networks (GNNs) fθ,λ : Rn×n
≥0 × Rn×d → Rn×K , where

θ ∈ Θ denotes the parameters and λ ∈ Λ denotes the hyperparameters. In Section 2 we have seen
that most GNNs can be interpreted as iterative convolution / message passing over nodes (Ding et al.,
2021; Balcilar et al., 2021) where X(0) = X and f(A,X) = X(L), and for l ∈ [L], the update-rule
is,

X(l+1) = σ
(
Cα(l)(A)X(l)W (l)

)
, (4)

where Cα(l)(A) is the convolution matrix parametrized by α(l), W (l) is the learnable linear weights,
and σ(·) denotes the non-linearity. Thus the parameters θ consists of all α’s (if they exist) and W ’s,
i.e., θ = [α(0), . . . , α(L−1),W (0), . . . ,W (L−1)].

More specifically, it is possible for GNNs to have more than one convolution filters per layer (Ding
et al., 2021; Balcilar et al., 2021) and we may generalize Eq. (4) to,

X(l+1) = σ
(p∑

i=1

C
(i)

α(l,i)(A)X
(l)W (l,i)

)
. (5)

Within this common framework, GNNs differ from each other by the choice of convolution filters
{C(i)}, which can be either fixed or learnable. If C(i) is fixed, there is no parameters α(l,i) for any
l ∈ [L]. IfC(i) is learnable, the convolution matrix relies on the learnable parameters α(l,i) and can be
different in each layers (thus should be denoted as C(l,i)). Usually for GNNs, the convolution matrix
depends on the parameters in two possible ways: (1) the convolution matrix C(l,i) is scaled by the
scalar parameter α(l,i) ∈ R, i.e., C(l,i) = α(l,i)C(i) (e.g. GIN (Xu et al., 2018), ChebNet (Defferrard
et al., 2016), and SIGN (Frasca et al., 2020)); or (2) the convolution matrix is constructed by
node-level self-attentions [C(l,i)]ij = hα(l,i)

(
X

(l)
i,: , X

(l)
j,:

)
[C(i)]i,j (e.g., GAT (Veličković et al., 2018),

Graph Transformers (Rong et al., 2020; Puny et al., 2020; Zhang et al., 2020)). Based on (Ding et al.,
2021; Balcilar et al., 2021), we summarize the popular GNNs reformulated into the convolution over
nodes / message-passing formula (Eq. (5)) in Table 4.

Convolutional neural networks can also be reformulated into the form of Eq. (5). For simplicity
we only consider one-dimensional convolution neural network (1D-CNN) and the generalization to
2D/3D-CNNs is trivial. If we denote the constant cyclic permutation matrix (which corresponds to
a unit shift) as P ∈ Rn×n, the update rule of a 1D-CNN with kernel size (2K + 1),K ≥ 0 can be
written as,

X(l+1) = σ
(k=K∑

k=−K

αkP
kX(l)W (l,k)

)
. (6)

We will use this common convolution formula of GNNs (Eq. (5)) and 1D-CNNs (Eq. (6)) in Ap-
pendix B.4 and Proposition 1.

B.3 OTHER TYPES OF DATA, TASKS, AND MODELS

In Appendices B.1 and B.2 we have discussed the formal definition of two possible tasks (1) node
classification on graphs and (2) per-pixel classification on images, and reformulated many popular
GNNs and CNNs into a general convolution form (Eqs. (5) and (6)). However, we want to note that
the application of dataset condensation methods (including the standard dataset condensation (Wang
et al., 2018; Zhao et al., 2020; Zhao & Bilen, 2021b) and our HCDC) is not limited by the specific
types of data, tasks, and models.

15

Under review as a conference paper at ICLR 2023

Model Name Design Idea Conv. Matrix Type # of Conv. Convolution Matrix

GCN1 (Kipf & Welling, 2016) Spatial Conv. Fixed 1 C = D̃−1/2ÃD̃−1/2

SAGE-Mean2 (Hamilton et al., 2017) Message Passing Fixed 2

{
C(1) = In

C(2) = D−1A

GAT3 (Veličković et al., 2018) Self-Attention Learnable # of heads


C(s) = A+ In and

h
(s)

a(l,s)(X
(l)
i,: , X

(l)
j,:) = exp

(
LeakyReLU(

(X
(l)
i,: W

(l,s) ∥ X(l)
j,:W

(l,s)) · a(l,s))
)

GIN1 (Xu et al., 2018) WL-Test
Fixed +

Learnable
2

{
C(1) = A

C(2) = In and h
(2)

ϵ(l)
= 1 + ϵ(l)

SGC2 (Defferrard et al., 2016) Spectral Conv. Learnable order of poly.


C(1) = In, C(2) = 2L/λmax − In,

C(s) = 2C(2)C(s−1) − C(s−2)

and h
(s)

θ(s) = θ(s)

ChebNet2 (Defferrard et al., 2016) Spectral Conv. Learnable order of poly.


C(1) = In, C(2) = 2L/λmax − In,

C(s) = 2C(2)C(s−1) − C(s−2)

and h
(s)

θ(s) = θ(s)

GDC3 (Klicpera et al., 2019) Diffusion Fixed 1 C = S

Graph Transformers4 (Rong et al., 2020) Self-Attention Learnable # of heads


C
(s)
i,j = 1 and h

(s)

(W
(l,s)
Q ,W

(l,s)
K)

(X
(l)
i,: , X

(l)
j,:)

= exp
(

1√
dk,l

(X
(l)
i,: W

(l,s)
Q)(X

(l)
j,:W

(l,s)
K)T

)
1 Where Ã = A + In, D̃ = D + In. 2 C(2) represents mean aggregator. Weight matrix in (Hamilton et al., 2017) is
W (l) = W (l,1) ∥ W (l,2). 3 Need row-wise normalization. C(l,s)

i,j is non-zero if and only if Ai,j = 1, thus GAT follows
direct-neighbor aggregation. 4 The weight matrices of the two convolution supports are the same, W (l,1) = W (l,2).
5 Where normalized Laplacian L = In −D−1/2AD−1/2 and λmax is its largest eigenvalue, which can be approximated as
2 for a large graph. 6 Where S is the diffusion matrix S =

∑∞
k=0 θkT

k, for example, decaying weights θk = e−t tk

k!
and

transition matrix T = D̃−1/2ÃD̃−1/2. 7 Need row-wise normalization. Only describes the global self-attention layer,
where W

(l,s)
Q ,W

(l,s)
Q ∈ Rfl,dk,l are weight matrices which compute the queries and keys vectors. In contrast to GAT, all

entries of C(l,s)
i,j are non-zero. Different design of Graph Transformers (Puny et al., 2020; Rong et al., 2020; Zhang et al.,

2020) use graph adjacency information in different ways, and is not characterized here, see the original papers for details.

Table 4: Summary of GNNs formulated as generalized graph convolution.

For HCDC, we can follow the conventions in (Zhao et al., 2020) to define the train/validation losses
on iid samples and define the notion of dataset condensation as learning a smaller synthetic dataset
with less number of samples. Here we leave the readers to (Zhao et al., 2020) for formal definitions
of condensation on datasets with iid samples.

More generally speaking, our HCDC can be applied as long as (1) the train and validation losses, i.e.,
Ltrain
T (θ, λ) and Lval

T (θ, λ) can be defined (as functions of the parameters and hyperparameters);
and (2) we have an well-defined notion of the learnable synthetic dataset S, (e.g., which includes
prior-knowledge like what is the format of the synthetic data in S and how the same model fθ,λ is
applied).

B.4 THE LINEAR CONVOLUTION REGRESSION PROBLEM

For the ease of theoretical analysis, in Lemma 1 and Propositions 1 to 3 we consider a simplified
linear convolution regression problem as follows,

θT = arg min
θ=[α,W]

∥Cα(A) XW − y∥2 (7)

where we are given continuous labels y and use sum-of-squares loss ℓ(ŷ, y) = ∥ŷ − y∥22 instead
of the cross entropy loss used for node/pixel classification. We also assume a linear GNN/CNN
fθ=[α,W](A,X) = Cα(A)XW is used, where Cα(A) is the convolution matrix which depends on
the adjacency matrix A and the parameters α ∈ Rp, and W is the learnable linear weights with d
elements (hence, the complete parameters consists of two parts, i.e., θ = [α,W]).

As explained in Appendix B.2, this linear convolution model fθ=[α,W](A,X) = Cα(A)XW already
generalizes a wide variety of GNNs and CNNs. For example, it can represents the (single-layer)
graph convolution network (GCN) (Kipf & Welling, 2016) whose convolution matrix is defined as
C(A) = D̃− 1

2 ÃD̃− 1
2 where Ã and D̃ are the “self-loop-added” adjacency and degree matrix (for

16

Under review as a conference paper at ICLR 2023

GCNN there is no learnable parameters inC(A) so we omitα). It also generalizes the one-dimensional
convolution neural network (1D-CNN), where the convolution matrix is Cα(A) =

∑k=K
k=−K [θ]kP

k

and P is the cyclic permutation matrix correspond to a unit shift.

It is important to note that although we considered this simplified linear convolution regression
problem in some of our theoretical results, which is both convex and linear. We argue that most of the
theoretical phenomena reflected by Lemma 1 and Propositions 1 to 3 can be generalized to the general
non-convex losses and non-linear models; see Appendix C.4 for the corresponding discussions.

C PROOFS AND EXTENDED THEORETICAL RESULTS

In this section, we provide the proofs to the theoretical results Lemma 1 and Propositions 1 to 3 and
Theorem 1, together with some extended theoretical discussions, including generalizing the linear
convolution regression problem to non-convex losses and non-linear models (see Appendix C.4).

To proceed, please recall the linear convolution regression problem defined in Appendix B.4, the
achievability of gradient-matching objective (Eq. (2)) defined as Assumption 1 in Section 2.3.

C.1 VALIDITY OF STANDARD DATASET CONDENSATION

As the first step, we verify the validity of the standard dataset condensation (SDC) using the gradient-
matching objective Eq. (2) for the linear convolution regression problem.
Lemma 1. (Validity of SDC) Consider least square regression with linear convolution model
fW (A,X) = C(A)XW parameterized byW . If the gradient-matching objective of fW is achievable,
then the optimizer on the condensed dataset S , i.e., WS = argminW LS(W) is also optimal for the
original dataset, i.e., LT (W

S) = minW LT (W).

Proof. In the linear convolution regression problem, sum-of-squares loss is used, and LT (W) =
∥CXW−y∥22 (similarlyLS(W) = ∥C ′X ′W−y′∥22 whereC ′ = C(A′)). We assumeX⊤C⊤CX ∈
Rd×d is invertible and we can apply the optimizer formula for ordinary least square (OLS) regression
to find the optimizer W T of LT (W) as,

W T = (X⊤C⊤CX)−1X⊤C⊤y.

Also, we can compute the gradients of LT (W) w.r.t W as,

∇WLT (W) = 2X⊤C⊤(CXW − y),

and similarly for∇WLS(W).

Given the achievability of the gradient-matching objective of fW , we know there ex-
ists a non-degenerate trajectory (WS

t)T−1
t=0 which spans the entire parameter space, i.e.,

span(WS
0 , . . . ,W

S
T−1) = Rd, such that the gradient-matching loss (the objective of Eq. (2) without

expectation) on this trajectory is 0. Assuming D(·, ·) is the L2 norm (Zhao et al., 2020), this means,

∇WLT (W
S
t) = ∇WLS(W

S
t) for t ∈ [T].

Substitute in the formula for the gradients∇WLT (W) and ∇WLS(W), we then have,

X⊤C⊤(CXWS
t − y) = X ′⊤C ′⊤(C ′X ′WS

t − y′) for t ∈ [T].

Since the set of {WS
t }T−1

t=0 spans the complete parameter space Rd, we can transform the set of
vectors {ωt ·WS

t }T−1
t=0 to the set of unit vectors {edi }

d−1
i=0 ∈ Rd by a linear transformation. Meanwhile,

the set of T equations above can be transformed to,

X⊤C⊤(CXedi − y) = X ′⊤C ′⊤(C ′X ′edi − y′) for i ∈ [d].

This directly leads to X⊤C⊤CX = X ′⊤C ′⊤C ′X ′ and X⊤C⊤y = X ′⊤C ′⊤y′.

Using the formula for the optimizers W T and WS above, we readily get,

W T = (X⊤C⊤CX)−1X⊤C⊤y = (X ′⊤C ′⊤C ′X ′)−1X ′⊤C ′⊤y′ =WS .

And hence,
LT (W

S) = LT (W
T) = min

W
LT (W),

which concludes the proof.

17

Under review as a conference paper at ICLR 2023

Despite its simplicity, Lemma 1 directly verifies the validity of the gradient-matching formulation of
standard dataset condensation on some specific learning problems. Although the gradient-matching
formulation (Eq. (2)) is an efficient but weaker formulation than the bilevel formulation of SDC
(Eq. (1)), we see it is strong enough for some the linear convolution regression problem.

C.2 GENERALIZATION ISSUES OF SDC

Now, we move forward and focus on the generalization issues of (the gradient-matching formulation
of) the standard dataset condensation (SDC) across GNNs.

To start with, we prove the successful generalization of SDC across 1D-CNNs as follows, which is
very similar to the proof of Lemma 1.

Proof of Proposition 1: In Proposition 1, we consider one-dimensional linear convolution models
f2K+1(X) = (

∑k=K
k=−K α(k)P k)XW parameterized by α ∈ Rp and W ∈ Rd (where p = 2K + 1).

If we denote,

C =

k=K∑
k=−K

α(k)P k and θ = [α,W] ∈ Rp+d

then from the proof of Lemma 1 we know the gradients of LT (W) w.r.t W is again,

∇WLT (W) = 2X⊤C⊤(CXW − y).

We know the achievability of the gradient-matching objective means there exists a non-degenerate
trajectory (θSt)

T−1
t=0 which spans the entire parameter space, i.e., span(θS0 , . . . , θ

S
T−1) = Rp+d. By

decomposing θSt into [αS
t ,W

S
t], we know that there exists (αS

t)
T−1
t=0 which spans Rp and there exists

(WS
t)T−1

t=0 which spans Rd.

Since the gradient-matching objective is minimized to 0 on (WS
t)T−1

t=0 which spans Rd, following the
same procedure as the proof of Lemma 1, we again obtain,

X⊤C⊤y = X ′⊤C ′⊤y′.

Mean while, since the same gradient-matching objective is also minimized to 0 on (αS
t)

T−1
t=0 which

spans Rp, we have,

X⊤
(k=K∑

k=−K

(αS
t)

(k)P k
)⊤

y = X ′⊤
(k=K∑

k=−K

(αS
t)

(k)P ′k
)⊤

y′ for t ∈ [T].

Again by linear combining the above T equations and because (αS
t)

T−1
t=0 can be transformed to the

unit vectors in Rp, we have,

X⊤(P k
)⊤

y = X ′⊤(P ′k)⊤y′ for k = −K, . . . ,K.

Hence, for any new trajectory (α′S
t)T−1

t=0 which spans Rp′
where p′ = 2K ′ + 1, by linear combining

the above equations, we have,

X⊤
(k=K∑

k=−K

(α′S
t)(k)P k

)⊤
y = X ′⊤

(k=K∑
k=−K

(α′S
t)(k)P ′k

)⊤
y′ for t ∈ [T ′].

With similar procedure for the X⊤C⊤CX part, we conclude that on the new trajectory (θ′St)T−1
t=0

∇WLT (α,W) = ∇WLS(α,W).

It remains to prove that on any new trajectory ∇αLT (α,W) = ∇αLS(α,W). Only need to note
that,

∇α(k)LT (α,W) = 2W⊤X⊤P k(CXW − y).

Hence, by the p equations above we can readily show,

X⊤P ky = X ′⊤P ′ky′ for k = −K, . . . ,K.

18

Under review as a conference paper at ICLR 2023

Again with similar procedure for the X⊤C⊤CX part, we finally can show that on the new trajectory
(θ′St)T−1

t=0
∇αLT (α,W) = ∇αLS(α,W).

This concludes the proof. □

Then we focus on the linear GNNs, we want to verify the insight that the learned adjacency A′ of the
condensed graph has “too many degrees of freedom” so that can easily overfit the gradient-matching
objective, no matter what learned synthetic features X ′ are. Again, the proof of Proposition 2 uses
some results in the proof of Lemma 1.

Proof of Proposition 2: Now, we consider a linear GNN defined as f(A,X) = C(A)XW . From
the proof of Lemma 1, we know that for the gradient-matching objective of f to be achievable, it is
equivalent to require that,

X⊤C⊤CX = X ′⊤C ′⊤C ′X ′ and X⊤C⊤y = X ′⊤C ′⊤y′,

where C and C ′ refer to C(A) and C(A′) respectively.

Firstly we note that once we find C ′ and X ′ such that satisfy the first condition X⊤C⊤CX =
X ′⊤C ′⊤C ′X ′, we can always find y′ ∈ Rc such that X⊤C⊤y = X ′⊤C ′⊤y′ since X⊤C⊤y ∈ R is
a scalar.

Now, we focus on finding the convolution matrix C ′ and the node feature matrix X ′ of the condensed
synthetic graph to satisfy X⊤C⊤CX = X ′⊤C ′⊤C ′X ′. We assume n ≫ c ≫ d and consider
the diagonalization of X⊤C⊤CX ∈ Rd×d. Since X⊤C⊤CX is positive semi-definite, it can be
diagonalized as X⊤C⊤CX = V S2V ⊤ where V ∈ Rd is an orthogonal matrix and S ∈ Rd is a
diagonal matrix that S = diag(s1, . . . , sd).

For any (real) semi-unitary matrix U ∈ Rc×d such that U⊤U = Id, we can construct C ′X ′ =
USV ⊤ ∈ Rc×d and we can easily verify they satisfy the condition,

X ′⊤C ′⊤C ′X ′ = V SU⊤USV ⊤ = V S2V ⊤ = X⊤C⊤CX.

Then since X ′ is full ranked, for any X ′, by considering the singular-value decomposition of X ′, we
see that we can always find a convolution matrix C ′ such that C ′X ′ = USV and this concludes the
proof. □

Finally, we use some results of Proposition 2 to prove Proposition 3, the failure of SDC when
generalizating across GNNs.

Proof of Proposition 3: We prove by two steps.

For the first step, we aim to show that there always exist a condensed synthetic dataset S such
that achieves the gradient-matching objective but the learned adjacency matrix A′ = Ic is the
identity matrix. Clearly this directly follows form the proof of Proposition 2, where we only require
C ′X ′ = USV (see the proof of Proposition 2 for details). If the learned adjacency matrix A′ = Ic,
the for any GNNs, the corresponding convolution matrix C ′ is also (or proportional to) identity, thus
we only need to set the learned node feature matrix X ′ = USV to satisfy the condition. The first
step is proved.

For the second step, we evaluate the relative estimation error of the optimal parameter when transfer
to a new GNN fCW with convolution filter C(·), i.e., ∥WS

C −W T
C ∥/∥W T

C ∥. Using the formula for the
optimal parameter in the proof of Lemma 1 again, we have,

W T
C = (X⊤C⊤CX)−1X⊤C⊤y,

and
WS

C = (X ′⊤C′⊤C′X)−1X ′⊤C′⊤y′,

where C′ = C(A′) = C(Ic) = C(Ic) (the last equation use the fact that the convolution matrix of
GNNs are the same if the underlying graph is identity).

Moreover, by the validity of SDC on fCW , we know, (see the proof of Lemma 1 for details),

X ′⊤C ′⊤C ′X ′ = X⊤C⊤CX and X ′⊤C ′⊤y′ = X⊤C⊤y

19

Under review as a conference paper at ICLR 2023

Thus, altogether we derive that X ′⊤C′⊤C′X = X⊤C⊤CX and X ′⊤C′⊤y′ = X⊤C⊤y. And
therefore,

WS
C = (X⊤C⊤CX)−1X⊤C⊤y.

Now, note that,

∥WS
C −W T

C ∥/∥W T
C ∥

=
∥∥∥((X⊤[C(A)]⊤[C(A)]X

)(
X⊤[C(A)]⊤[C(A)]X

)−1
)− Id

)
X⊤C⊤y

∥∥∥/∥X⊤C⊤y∥

≥max{σmax(Q)− 1, 1− σmin(Q)}

where Q =
(
X⊤[C(A)]⊤[C(A)]X

)(
X⊤[C(A)]⊤[C(A)]X

)−1
. This concludes the proof. □

C.3 VALIDITY OF HCDC

Finally, we complete the proof of Theorem 1 with more detials.

Proof of Theorem 1: Firstly, we prove the necessity by contradiction.

If there exists λ0 ∈ Λ̃ s.t. the two gradient vectors are not aligned at λ0, then there exists small
perturbation ∆λ0 such that L∗

T (λ0 +∆λ0)− L∗
T (λ0) and L∗

S(λ0 +∆λ0)− L∗
S(λ0) have different

signs.

Secondly, we prove the sufficiency by path-integration.

For any pair λ1 ̸= λ2 ∈ Λ̃, we have a path γ(λ1, λ2) ∈ Λ̃ from λ2 and λ1, then integrating hypergra-
dients∇λL∗

T (λ) along the path recovers the hyperparameter-calibration condition. More specifically,
along the path we have L∗

T (λ1)− L∗
T (λ2) =

∫
γ(λ1,λ2)

∇λL∗
T (λ)dλ (similar for ∇λL∗

S(λ)). Thus
we have,

(L∗
T (λ1)− L∗

T (λ2))(L∗
S(λ1)− L∗

S(λ2))

=
(∫

γ(λ1,λ2)

∇λL∗
T (λ)dλ

)(∫
γ(λ1,λ2)

∇λL∗
S(λ)dλ

)
≥
∫
γ(λ1,λ2)

〈√
∇λL∗

T (λ),
√
∇λL∗

S(λ)
〉
dλ

≥0
the second last inequality by Cauchy-Schwarz inquality and the last inequality by
cos(∇λL∗

T (λ),∇λL∗
T (λ)) = 0 for any λ ∈ γ(λ1, λ2) ∈ Λ̃.

This concludes the proof. □

C.4 GENERALIZE TO NON-CONVEX AND NON-LINEAR CASE

Although the results above are obtained for least squares loss and linear convolution model, it still
reflects the nature of general non-convex losses and non-linear models. Since dataset condensation is
effectively matching the local minima {θT } of the original loss Ltrain

T (θ, ψ) with the local minima
{θS} of the condensed lossLtrain

S (θ, ψ), within the small neighborhoods surrounding the pair of local
minima (θT , θS), we can approximate the non-convex loss and non-linear model with a convex/linear
one respectively. Hence the generalizability issues with convex loss and liner model may hold.

D EXTENDED RELATED WORK

This section contains the extensive discussions of many related work/areas which cannot be fitted
into the main paper due to the page limit.

D.1 DATASET CONDENSATION AND CORESET SELECTION

Firstly, we review the two main approaches to reducing the training set size while preserving model
performance.

20

Under review as a conference paper at ICLR 2023

Dataset condensation (or distillation) is first proposed in (Wang et al., 2018) as a learning-to-learn
problem by formulating the network parameters as a function of synthetic data and learning them
through the network parameters to minimize the training loss over the original data. However, the
nested-loop optimization precludes it scaling up to large-scale in-the-wild datasets. Zhao et al. (2020)
alleviate this issue by enforcing the gradients of the synthetic samples w.r.t. the network weights
to approach those of the original data, which successfully alleviates the expensive unrolling of
the computational graph. Based on the meta-learning formulation in (Wang et al., 2018), Bohdal
et al. (2020) and Nguyen et al. (2020; 2021) propose to simplify the inner-loop optimization of a
classification model by training with ridge regression which has a closed-form solution, while Such
et al. (2020) model the synthetic data using a generative network. To improve the data efficiency
of synthetic samples in gradient-matching algorithm, Zhao & Bilen (2021a) apply differentiable
Siamese augmentation, and Kim et al. (2022) introduce efficient synthetic-data parametrization.
Recently, a new distribution-matching framework (Zhao & Bilen, 2021b) proposes to match the
hidden features rather than the gradients for fast optimization, but may suffer from performance
degradation compared to gradient-matching (Zhao & Bilen, 2021b), where Kim et al. (2022) provide
some interpretation.

Graph condensation (Jin et al., 2021) achieves the state-of-the-art performance for preserving GNNs’
performance on the simplified graph. However, Jin et al. (2021) only adapt the gradient-matching
algorithm of dataset condensation Zhao et al. (2020) to graph data, together with a MLP-based
generative model for edges (Anand & Huang, 2018; Simonovsky & Komodakis, 2018), leaving out
several major issues on efficiency, performance, and generalizability. Subsequent work aims to apply
the more efficient distribution-matching algorithm (Zhao & Bilen, 2021b; Wang et al., 2022) of
dataset condensation to graph (Liu et al., 2022) or speed up gradient-matching graph condensation by
reducing the number of gradient-matching-steps (Jin et al., 2022). While the efficiency issue of graph
condensation is mitigated (Jin et al., 2022), the performance degradation on medium- and large-sized
graphs still renders graph condensation practically meaningless. Our HCDC is specifically designed
for repeated training in architecture search, which is, in contrast, well-motivated.

Coreset selection methods choose samples that are important for training based on heuristic criteria,
for example, minimizing the distance between coreset and whole-dataset centers (Chen et al., 2010;
Rebuffi et al., 2017), maximizing the diversity of selected samples in the gradient space (Aljundi
et al., 2019), discovering cluster centers (Sener & Savarese, 2018), and choosing samples with the
largest negative implicit gradient (Borsos et al., 2020). Forgetting (Toneva et al., 2018) measures
the forgetfulness of trained samples and drops those that are not easy to forget. GraNd (Paul et al.,
2021) selects the training samples that contribute most to the training loss in the first few epochs.
Prism (Kothawade et al., 2022) select samples to maximize submodular set-functions which are
combinatorial generalizations of entropy measures (Iyer et al., 2021). Recent benchmark (Guo et al.,
2022) of a variety of coreset selection methods for image classification indicates Forgetting, GraNd,
and Prism are among the best performing corset methods but still evidently underperform the dataset
condensation baselines. Although coreset selection can be very efficient, most of the methods above
suffer from three major limitations: (1) their performance is upper-bounded by the information in
the selected samples; (2) most of them do not directly optimize the synthetic samples to preserve
the model performance; and (3) most of them select samples incrementally and greedily, which are
short-sighted.

D.2 GRAPH REDUCTION

Secondly, we summarize the traditional graph reduction method for graph neural network training.

Graph coreset selection is a non-trivial generalization of the above method coreset methods given
the non-iid nature of graph nodes and the non-linearity nature of GNNs. The very few off-the-shelf
graph coreset algorithms are designed for graph clustering (Baker et al., 2020; Braverman et al., 2021)
and are not optimal for the training of GNNs.

Graph sampling methods (Chiang et al., 2019; Zeng et al., 2019) can be as simple as uniformly
sampling a set of nodes and finding their induced subgraph, which is understood as a graph-counterpart
of uniform sampling of iid samples. However, most of the present graph sampling algorithms (e.g.,
ClusterGCN (Chiang et al., 2019) and GraphSAINT (Zeng et al., 2019)) are designed for sampling
multiple subgraphs (mini-batches), which forms a cover of the original graph for training GNNs

21

Under review as a conference paper at ICLR 2023

with memory constraint. Therefore those graph mini-batch sampling algorithms are effectively graph
partitioning algorithms and not optimized to find just one representative subgraph.

Graph sparsification (Batson et al., 2013; Satuluri et al., 2011) and graph coarsening (Loukas
& Vandergheynst, 2018; Loukas, 2019; Huang et al., 2021; Cai et al., 2020) algorithms are usually
designed to preserve specific graph properties like graph spectrum and graph clustering. Such
objectives are often not aligned with the optimization of downstream GNNs and are shown to be
sub-optimal in preserving the information to train GNNs well (Jin et al., 2021).

D.3 OTHER RELATED AREAS

Lastly, we list two important relevant areas to this work, implicit differentiation methods based on the
implicit function theorem (IFT), and the differentiable neural architecture search (NAS) algorithms.

Implicit differentiation methods apply the implicit function theorem (IFT) to the nested-optimization
problems (Ochs et al., 2015; Wang et al., 2019). The IFT requires inverting the training Hessian with
respect to the network weights, where early work either computes the inverse explicitly (Bengio,
2000; Larsen et al., 1996) or approximates it as the identity matrix (Luketina et al., 2016). Conjugate
gradient (CG) is applied to invert the Hessian approximately (Pedregosa, 2016), but is difficult to
scale to deep networks. Several methods have been proposed to efficiently approximate Hessian
inverse, for example, 1-step unrolled differentiation (Luketina et al., 2016), Fisher information
matrix (Larsen et al., 1996), NN-structure aided Kronecker-factored inversion (Martens & Grosse,
2015). Lorraine et al. (2020) use the Neumann inverse approximation, which is a stable alternative to
CG (Shaban et al., 2019) and successfully scale gradient-based bilevel-optimization to large networks
with constant memory constraint. It is shown that unrolling differentiation around locally optimal
weights for i steps is equivalent to approximating the Neumann series inverse approximation up to
the first i terms.

Differentiable NAS methods, e.g., DARTS (Liu et al., 2018) explore the possibility of transforming
the discrete neural architecture space into a continuously differentiable form and further uses gradient
optimization to search the neural architecture. DARTS follows a cell-based search space (Zoph et al.,
2018) and continuously relaxes the original discrete search strategy. Despite its simplicity, several
work cast double on the effectiveness of DARTS (Li & Talwalkar, 2020; Zela et al., 2019). SNAS (Xie
et al., 2018) points out that DARTS suffers from the unbounded bias issue towards its objective, and
it remodels the NAS and leverages the Gumbel-softmax trick (Jang et al., 2017; Maddison et al.,
2017) to learn the exact architecture parameter. Differentiable NAS techniques have also been applied
to graphs to automatically design data-specific GNN architectures (Wang et al., 2021; Huan et al.,
2021).

E IMPLEMENTATION DETAILS

In this section we list more implementation details on the experiments in Section 6.

For the synthetic experiments on CIFAR-10, we randomly split the CIFAR-10 images into M = 20
splits and perform cross validation. For the baseline methods (Random, SDC-GM, SDC-DM), the
dataset condensation is performed independently for each split. For HCDC, we first condense the
training set of the synthetic dataset by SDC-GM. Then, we learn a separate validation set of with
1/M -size of the training set and train with the HCDC objective on the M -HPO trajectories as
described in Section 4. We report the correlation between the ranking of splits (in terms of their
validation performance on this split). For the Early-Stopping method, we only train the same number
iterations as the other methods (with the same batchsize), which means there are only c/n ∗ 500
epochs.

For the experiments about finding the best convolution filter on (large) graphs, we create the set
of ten candidate convolution filters as (see Table 4 for definitions and references) GCN, SAGE-
Mean, SAGE-Max, GAT, GIN-ϵ, GIN-0, SGC(K=2), SGC(K=3), ChebNet(K=2), ChebNet(K-3).
The implementations are provided by PyTorch Geometric https://pytorch-geometric.
readthedocs.io/en/latest/modules/nn.html. We also select the GNN width from
{128, 256} and the GNN depth from {2, 4} so there are 10× 2× 2 = 40 models in total.

22

https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html

Under review as a conference paper at ICLR 2023

For the experiments about speeding up off-the-shelf graph architecture search algorithms, we adopt
GraphNAS (Gao et al., 2019) togher with their proposed search space from their official repository
https://github.com/GraphNAS/GraphNAS. We apply to Ogbn-arxiv with condensation
ratio ctrain/n = 0.5%.

23

https://github.com/GraphNAS/GraphNAS

	Introduction
	Settings, Background, and Challenges
	Settings: Node Classification and GNNs
	Background: Standard Dataset Condensation Methods
	Challenges: Standard Dataset Condensation Is Problematic Across GNNs

	Hyperparameter calibrated Dataset Condensation
	Implementations of HCDC and Applications to GNNs
	Related Work
	Experiments
	Conclusion
	Standard Dataset Condensation is Problematic Across GNNs
	More Preliminaries
	Downstream Tasks
	Neural Network Models
	Other Types of Data, Tasks, and Models
	The Linear Convolution Regression Problem

	Proofs and Extended Theoretical Results
	Validity of Standard Dataset Condensation
	Generalization Issues of SDC
	Validity of HCDC
	Generalize to Non-Convex and Non-Linear Case

	Extended Related Work
	Dataset Condensation and Coreset Selection
	Graph Reduction
	Other Related Areas

	Implementation Details

