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Abstract

As language agents tackle increasingly com-
plex tasks, they struggle with effective error
correction and knowledge reuse across differ-
ent domains. We present Agent KB, a hierar-
chical memory framework that enables cross-
domain agent learning through a novel Reason-
Retrieve-Refine pipeline. Our dual-phase
approach combines workflow-level knowledge
retrieval with targeted execution pattern refine-
ment, allowing agents to break free from lim-
ited reasoning pathways by incorporating di-
verse problem-solving strategies. Evaluations
on GAIA benchmark demonstrate substantial
performance gains, with Agent KB improving
success rates by up to 16.28 percentage points
overall. Most notably, on challenging tasks,
Claude-3.7 with Agent KB increased perfor-
mance from 38.46% to 57.69%, while GPT-
4.1 showed similar improvements on intermediate
tasks (53.49% to 73.26%). For SWE-bench
code repair tasks, our system significantly im-
proved resolution rates, with Claude-3.7 achiev-
ing a 12.0 percentage point gain (41.33% to
53.33%). Agent KB provides a modular, agent-
agnostic infrastructure that facilitates continuous
improvement through knowledge sharing across
task boundaries and agent architectures. Our code
is publicly available at https://anonymous.
4open.science/r/agent_kb-35C6/.

1. Introduction
As artificial intelligence advances, language agents are be-
coming increasingly vital for solving complex problems
(Chan et al., 2023; Hong et al., 2023; Guo et al., 2024; Liu
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<anon.email@domain.com>.
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Figure 1. Comparison of PDB distance-calculation workflows
with and without AGENT KB. (A) Original pipeline: indis-
criminately reads the first two ATOM/HETATM/ANISOU lines,
often selecting solvent records and yielding a spurious O–H dis-
tance ( 0.961 Å). (B) AGENT KB-enhanced agent workflow:
applies memory-driven rules—filter out all ANISOU/HETATM,
use only genuine ATOM entries in file order, and sanity-check
against known N–CA bond-length ranges—to correctly extract the
backbone N–CA pair and report the distance of 1.456 Å.

et al., 2025b). While these agents have shown impressive
capabilities through supervised learning, they continue to
struggle with complex, long-horizon tasks requiring sophis-
ticated planning and tool use (Jimenez et al., 2023; Huang
et al., 2024; Xiong et al., 2025). The integration of au-
tonomous improvement modules has demonstrated perfor-
mance gains (Zheng et al., 2023; Zhang et al., 2024b; Wang
et al., 2024b; Hu et al., 2024; Shah et al., 2025; Xu et al.,
2025), yet a critical bottleneck persists.

The fundamental limitation lies in error correction during
complex problem-solving. When agents encounter difficul-
ties, self-feedback proves insufficient—they lack access to
the diverse problem-solving strategies and implicit reward
signals that guide human experts. Recent work (Wang et al.,
2024b) shows that learning reusable workflows from past
experiences improves performance, yet current approaches
remain limited to task-specific memories that operate in
isolation. Agents cannot benefit from experiences across
different tasks, domains, or frameworks, forcing them to
repeatedly rediscover solutions to similar problems (Silver
& Sutton, 2025).

To understand why current approaches fall short, we iden-
tify three critical design flaws in agent memory systems:
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(1) Agent Isolation—agents cannot learn from others’ suc-
cesses or access diverse problem-solving strategies beyond
their own experience. Single-framework experiences con-
tain inherent reasoning biases constrained by their imple-
mentation design, leaving the cognitive diversity from differ-
ent agent frameworks—each with unique reasoning patterns
and optimization objectives—largely untapped. (2) Undif-
ferentiated Knowledge Organization—retrieval mecha-
nisms fail to distinguish between high-level workflow plan-
ning and precise execution details, preventing effective
knowledge adaptation. (3) Retrieval Without Reason-
ing—systems attempt direct knowledge matching without
first engaging in preliminary reasoning to determine relevant
knowledge targets.

We propose the Agent Knowledge Base (AGENT KB),
a framework that transforms how agents utilize cross-
domain experiences through our novel Reason-Retrieve-
Refine pipeline. Unlike existing systems, AGENT KB first
engages agents in preliminary reasoning about the problem,
directing subsequent knowledge retrieval toward relevant
solution patterns rather than merely matching surface fea-
tures. Our teacher-student dual-phase retrieval mechanism
addresses the key challenge of knowledge application: stu-
dent agents first retrieve workflow-level patterns to structure
their approach, while teacher agents subsequently identify
specific execution patterns to refine implementation details.
This hierarchical process enables agents to break out of
their limited reasoning pathways by incorporating diverse
problem-solving strategies from external sources, provid-
ing implicit reward signals that guide refinement toward
successful solutions.

Our experimental evaluations on the GAIA benchmark
demonstrate substantial performance gains, with AGENT
KB-enhanced models achieving improvements of up to
16.28 percentage points in overall success rates. Notably, on
medium-difficulty GAIA tasks (Level 2), GPT-4.1 with
+AGENT KB ✓♡ (as defined in Section 4.1) shows remark-

able improvement from 53.49% to 73.26% success rate.
Even more impressive gains are observed on challenging
Level 3 tasks, where Claude-3.7 with +AGENT KB ✓♡

increases performance from 38.46% to 57.69%, demonstrat-
ing AGENT KB’s effectiveness in bridging the capability
gap for complex problem solving. For issue resolving tasks
in SWEbench, our ablation studies reveal that the hybrid
retrieval approach outperforming both pure text similarity
and semantic similarity methods. Further analysis shows
that automatically generated knowledge sometimes outper-
forms manually crafted examples, highlighting the value of
our knowledge acquisition pipeline in capturing and struc-
turing diverse agent experiences. Designed to be modular
and agent-agnostic, AGENT KB retrieves experiences from
other tasks to bootstrap decision making.

2. Related Work
2.1. Memory Systems in LLM Agents
Memory systems in LLM agents have evolved from simple
storage mechanisms to sophisticated architectures support-
ing complex reasoning (Piao et al., 2025; Zeng et al., 2024;
Liu et al., 2025b; Zhang et al., 2024a). Early implemen-
tations like MemoryLLM (Wang et al., 2024a) embedded
knowledge in the latent space, while subsequent approaches
introduced structured organization through Zettelkasten-
style-graph-based systems (A-MEM (Xu et al., 2025), Ari-
Graph (Anokhin et al., 2024)) and hierarchical frameworks
(MemGPT (Packer et al., 2023), Unified Mind Model (Hu
& Ying, 2025)). Knowledge integration approaches address
planning capabilities and hallucination mitigation through
frameworks like Agent Workflow Memory (Wang et al.,
2024b), which enables automatic induction and reuse of
sub-workflows, and KnowAgent (Zhu et al., 2024), which
augments prompts with action-knowledge bases. More so-
phisticated approaches include parametric world-knowledge
models (WKM) (Qiao et al., 2024) and multi-agent adap-
tation systems MARK (Ganguli et al., 2025). EcoAssis-
tant (Zhang et al., 2024a) demonstrated the effectiveness
of knowledge reuse and transfer across agents, establish-
ing a foundation for collaborative reasoning ReAct (Yao
et al., 2022) synergizes reasoning and acting by interleaving
chain-of-thought with tool calls, allowing real-time plan
adaptation, while Reflexion (Shinn et al., 2023) enables
agents to learn from verbalized self-critiques. Toolformer
(Schick et al., 2023) demonstrates that LLMs can learn to
use external tools in an unsupervised manner, patching capa-
bility gaps mid-execution. Retrieval mechanisms for mem-
ory have progressed beyond basic RAG paradigms (Lewis
et al., 2020), with innovations like HippoRAG’s (Gutiérrez
et al., 2024) hippocampal-inspired indexing, Echo’s (Liu
et al., 2025a) temporal cues, and HiAgent’s (Hu et al., 2024)
sub-goal chunking.

2.2. Multi-Agent Collaboration and Shared Memory
Most existing memory systems remain agent-specific, de-
signed for recalling interaction history (Lu et al., 2023),
modeling user preferences (Zhong et al., 2024), and etc.
Memory-augmented embodied agents (Glocker et al., 2025)
have begun to explore collaborative architectures, where spe-
cialized agents (routing, planning, knowledge base) work
together, leveraging in-context learning and RAG to retrieve
context from past interactions. However, these systems typ-
ically maintain separate memory structures rather than a
unified knowledge ecosystem. Limited work exists on cross-
agent knowledge sharing and adaptation. Synapse (Zheng
et al., 2023) introduces exemplar memory for trajectory stor-
age but primarily focuses on single-agent contexts. Even-
tWeave (Zhao et al., 2025) addresses incomplete context
tracking by identifying both core and supporting events in a
dynamic event graph but doesn’t fully extend to multi-agent
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Figure 2. System architecture of AGENT KB, showing the integra-
tion of knowledge abstraction, dual-phase retrieval, and adaptive
refinement into a unified framework. The dual-phase retrieval
framework of AGENT KB. The student agent retrieves workflow-
level patterns for structuring the approach, while the teacher agent
retrieves step-level patterns for execution precision. Cross-agent
and cross-domain knowledge transfer through adaptive refinement.
Knowledge is dynamically adapted rather than directly copied,
enabling effective transfer even between dissimilar domains

scenarios. Some researchers have explored pre-conditions
for memory-learning agents (Shah et al., 2025), revealing
that memory induction quality significantly impacts perfor-
mance. This suggests that creating high-quality shared mem-
ory structures could benefit multiple agents simultaneously,
particularly if stronger agents can induce memories that
weaker agents can later leverage. Case-Based Reasoning
(CBR) approaches (Hatalis et al., 2025) provide promising
directions for multi-agent knowledge sharing, as they enable
solving new problems by referencing past experiences.

3. Methodology
As shown in Figure 2, AGENT KB consists of two intercon-
nected components: knowledge base construction and dual-
phase inference. These innovations are achieved through our
novel pipeline Reason-Retrieve-Refine that both the
student and the teacher agents implement during different
phases of problem solving.

3.1. AGENT KB Construction
During construction, we transform successful agent work-
flows from diverse tasks into abstracted knowledge patterns
through systematic generalization operations. Our funda-
mental hypothesis is that experience gained from simpler
tasks provides substantial benefits when addressing novel,
more complex challenges.

The process begins by collecting execution logs from pre-
viously completed tasks across various domains. These
logs undergo quality assessment to select the most valuable
experiences based on success rates, efficiency, and gener-
alizability. We incorporate human expert annotations as
few-shot examples to help agents better synthesize and ab-
stract experiential knowledge. These patterns are organized
in a hierarchical graph structure for efficient retrieval.

Formally, each source experience is structured as a tuple
E = ⟨π, γ,S, C,R⟩, where π represents the problem; γ
denotes the goal or objective; S = {s1, s2, . . . , sn} is an
abstracted solution trajectory with reasoning templates, op-
tionally with observed failure modes; C captures problem
characteristics such as domain and difficulty level; R con-
tains relational links to other knowledge patterns in the hier-
archical structure of AGENT KB. Rather than storing raw
experiences, our knowledge base maintains abstracted rea-
soning patterns, creating a more generalizable and efficient
knowledge structure.

3.2. Teacher-Student Dual-Phase Inference

We implement a hierarchical teacher-student framework,
where both agents operate using complementary Reason-
Retrieve-Refine (RRR) cycles to solve complex tasks. The
teacher supervises the student by detecting and correcting
errors to enhance overall performance.

In the student phase, the agent first analyzes query Q to
identify the problem (π̂) and goal (γ̂), generating initial
thoughts T about potential solutions. Next, it retrieves
relevant workflow patterns from the knowledge base:

Ew = top-k
Ei∈K

[
α · ϕr(Ei, T , π̂, γ̂) + β · ϕs(Ei)

]
,

where K is the knowledge base, ϕr measures relevance,
ϕs assesses historical success, and α, β are weights. The
student then refines these workflows by integrating them
with initial reasoning to create and execute a structured plan,
resulting in a series of reasoning steps.

In the teacher phase, the agent evaluates the student’s rea-
soning steps by summarizing them and identifying errors
along with their types and causes. It retrieves targeted step-
level experiences from the knowledge base to address these
execution issues:

Es = top-m
Ej∈K

∑
si∈Z

[
α · ϕr(si,Sj) + β · ϕp(Ej)

]
,

where ϕr measures similarity and ϕp evaluates precision
quality. The teacher refines these step-level patterns into
precise guidance, providing targeted interventions. This
iterative feedback loop progressively enhances the student’s
performance.

4. Experiment
4.1. Setup
Datasets Our evaluation employs two representative
benchmarks that assess diverse agent capabilities. The
GAIA benchmark (Mialon et al., 2023) provides a compre-
hensive evaluation framework for general AI assistants, con-
taining 165 evaluation instances carefully stratified across
three difficulty levels: 53 tasks in Level 1 (basic), 86 tasks in
Level 2 (intermediate), and 26 tasks in Level 3 (advanced).
These tasks span information retrieval, multi-step reasoning,
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and complex problem-solving scenarios. The SWE-Bench
(Jimenez et al., 2023) serves as our second benchmark, fo-
cusing on realistic software engineering challenges extracted
from GitHub issues, requiring agents to understand existing
codebases and implement appropriate fixes.

The knowledge base for AGENT KB draws from diverse
sources. For general assistant tasks, we aggregate expe-
riences from four complementary datasets: BrowseComp
(Wei et al., 2025) (1,266 tasks), HopRAG (Liu et al., 2025c)
(2,556 tasks), a text-based subset of HLE (Phan et al., 2025)
(3,000 tasks), and WebWalkerQA (Wu et al., 2025) (680
tasks). For software engineering knowledge, we incorporate
structured experiences from three major repositories: Re-
poClassBench (Deshpande et al., 2024), SWE-Gym-Raw
(Pan et al., 2024), and RepoEval (Zhang et al., 2023), collec-
tively comprising approximately 3,000 structured problem-
solving traces.

Model Configurations We evaluate three distinct config-
urations across multiple foundation models to assess the
effectiveness of AGENT KB. We use smolagents 1 with-
out any knowledge integration to serve as our base agent
framework. To enhance performance on complex tasks,
we augment smolagents with audio-visual comprehension
modules and a multi-source retrieval system, thereby im-
proving multimodal input processing and facilitating more
efficient access to diverse information sources. For SWE-
Bench benchmark, we employ OpenHands framework 2 as
our base agent framework. Default settings are used for all
hyperparameters unless noted. The +AGENT KB configura-
tion implements a two-round, teacher-student knowledge
transfer process: first, the student agent attempts to solve
the task; then the teacher agent reviews the student’s work,
searches the knowledge base for relevant experiences, and
provides feedback without knowing whether the student’s
solution was correct (unsupervised). The student agent then
makes a second attempt incorporating this feedback. The
+AGENT KB ✓ configuration enhances this approach by pro-

viding supervision signals to the teacher agent, explicitly
indicating whether the student’s initial solution was correct.
This allows the teacher to focus more precisely on under-
standing why the solution succeeded or failed and provide
more targeted guidance. The teacher still must indepen-
dently analyze the student’s reasoning to identify specific er-
rors or correct approaches before providing feedback for the
student’s second attempt. To ensure fair comparison with ex-
isting baselines that employ various performance-enhancing
techniques, we incorporate equivalent optimization meth-
ods by +AGENT KB ✓♡ across all configurations, including
optimized retrieval mechanisms, fine-grained knowledge

1https://github.com/huggingface/
smolagents

2https://github.com/All-Hands-AI/
OpenHands

extraction patterns, majority voting across multiple solution
candidates, and consistent output formatting corrections.

4.2. Main Results
In Table 1, our approach demonstrates significant improve-
ments over baselines across all GAIA’s difficulty levels.
GPT-4.1 with +AGENT KB ✓♡ shows an overall improve-
ment of 18.79 percentage points, with the largest gains
(19.77 points) observed in medium-difficulty tasks (Level
2). Claude models exhibit similar benefits from AGENT
KB integration, with Claude-3.7 with +AGENT KB ✓♡

improving from 58.79% to 75.15% in overall performance.
Figure 3 also demonstrates consistent performance improve-
ments across all six base LLMs tested. A 19.23 percentage
point gain (Claude-3.7 rising from 38.46% to 57.69%)
in the most complex scenario category (level 3) validates our
approach’s effectiveness in supporting sophisticated multi-
step reasoning and planning. Such improvements indicate
that the bottleneck in handling complex tasks lies in their
ability to effectively leverage relevant past experiences.

Notably, the +AGENT KB ✓♡ -enhanced Claude-3.7model
achieves an average GAIA score of 75.15%, surpassing
closed-source systems like h2oGPTe (63.64%) and open-
source frameworks like OWL (69.09%). This performance
is particularly impressive given that our approach builds
upon a relatively straightforward agent framework (smola-
gents).

For the SWE-bench lite benchmark (Jimenez et al., 2023),
we set the max limit for agent iterations to 50 and 100
and conduct experiments respectively. Table 2 shows sim-
ilar patterns of improvement across different model types.
Claude-3.7 achieves the most substantial gains, with
performance increasing from 30.00% to 51.00% at 50 it-
erations. Interestingly, we observe that the relative magni-
tude of improvement correlates with model sophistication,
with larger and more capable models like Claude-3.7
and GPT-4.1 showing more substantial gains than smaller
models like Qwen-3 32B. This suggests that more ad-
vanced models are better able to leverage the retrieved
knowledge, potentially due to their enhanced reasoning ca-
pabilities.

Level 2 Level 3

Average Level 1

49.7 63.6

35.8 49.7

75.258.8

32.1

55.1

40.6

73.9

58.845.1

62.3 79.2

75.547.2

47.2

64.2 84.9

52.8

84.9
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34.6

15.4

38.5

26.9
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Figure 3. Score improvements (%) across difficulty levels for mul-
tiple base LLMs enhanced with AGENT KB.
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Table 1. Performance of various agent frameworks on GAIA benchmark

Method Models Average Level 1 Level 2 Level 3

Single Model

Search-o1-32B (Li et al., 2025a) - 39.8 53.8 34.6 16.7
WebThinker-32B-RL (Li et al., 2025b) - 48.5 56.4 50.0 16.7

Closed-source Agent Frameworks

Langfun Agent (Peng, 2023) Claude 3.7 71.52 83.02 68.60 57.69
TraseAgent (Trase, 2024) Claude 70.30 83.02 69.77 46.15
Deep Research (OpenAI, 2024) Unknown 67.36 74.29 69.06 47.60
h2oGPTe (H2O.ai, 2024) Claude-3.5 63.64 67.92 67.44 42.31
Desearch (AI, 2024) GPT-4o 56.97 71.70 58.14 23.08

Open-Source Agent Frameworks

AWorld (at Ant Group, 2025) DeepSeek V3 69.70 86.79 69.77 34.62
OWL (Hu et al., 2025) Claude 3.7 69.09 84.91 67.44 42.31
TapeAgents (Bahdanau et al., 2024) Claude 3.7 55.76 71.70 53.49 30.77
AutoAgent (Tang et al., 2025) Claude 3.5 55.15 71.70 53.40 26.92
smolagents (LangChain, 2024) OpenAI o1 55.15 67.92 53.49 34.62
Magnetic-1 (Fourney et al., 2024) OpenAI o1 46.06 56.60 46.51 23.08
FRIDAY (Wu et al., 2024) GPT-4 turbo 34.55 45.28 34.88 11.54

smolagents Baseline GPT-4.1 55.15 67.92 53.49 34.62
smolagents +AGENT KB GPT-4.1 61.21 ↑6.06 79.25 ↑11.33 58.14 ↑4.65 34.62
smolagents +AGENT KB ✓ GPT-4.1 67.27 ↑12.12 83.02 ↑15.07 67.44 ↑13.95 34.62
smolagents +AGENT KB ✓♡ GPT-4.1 73.94 ↑18.79 84.91 ↑16.99 73.26 ↑19.77 53.85 ↑19.23

smolagents Baseline Claude 3.7 58.79 64.15 61.63 38.46
smolagents +AGENT KB Claude 3.7 65.45 ↑6.66 75.47 ↑11.32 66.28 ↑4.65 38.46
smolagents +AGENT KB ✓ Claude 3.7 69.70 ↑10.91 79.25 ↑15.1 69.77 ↑8.14 50.00 ↑11.54

smolagents +AGENT KB ✓♡ Claude 3.7 75.15 ↑16.36 84.91 ↑20.76 74.42 ↑12.79 57.69 ↑19.23

Table 2. Main results on the SWE-bench lite with maximum itera-
tion limits of 50 and 100.

Method Models Max Iter 50
Success Rate

Max Iter 100
Success Rate

OpenHands Baseline

GPT-4o

16.33 26.00
OpenHands +AGENT KB 20.33 ↑+4.00 29.67 ↑+3.67

OpenHands +AGENT KB ✓ 29.33 35.67
OpenHands +AGENT KB ✓♡ 31.33 39.33

OpenHands Baseline

GPT-4.1

24.33 28.67
OpenHands +AGENT KB 28.33 ↑+4.00 31.67 ↑+3.00

OpenHands +AGENT KB ✓ 37.33 42.33
OpenHands +AGENT KB ✓♡ 38.67 45.67

OpenHands Baseline

o3-mini

23.00 29.33
OpenHands +AGENT KB 31.67 ↑+8.67 33.67 ↑+4.34

OpenHands +AGENT KB ✓ 35.33 36.33
OpenHands +AGENT KB ✓♡ 37.00 40.00

OpenHands Baseline

Claude-3.7

30.00 41.33
OpenHands +AGENT KB 46.67 ↑+16.67 48.33 ↑+7.00

OpenHands +AGENT KB ✓ 49.67 51.67
OpenHands +AGENT KB ✓♡ 51.00 53.33

OpenHands Baseline

DeepSeek-R1

24.33 30.00
OpenHands +AGENT KB 26.67 ↑+2.34 33.33 ↑+3.33

OpenHands +AGENT KB ✓ 31.00 35.67
OpenHands +AGENT KB ✓♡ 32.67 37.33

OpenHands Baseline

Qwen-3 32B

18.33 25.67
OpenHands +AGENT KB 20.67 ↑+2.34 28.67 ↑+3.00

OpenHands +AGENT KB ✓ 28.67 34.33
OpenHands +AGENT KB ✓♡ 30.33 36.67

4.3. Ablation Studies

To assess the contribution of each core component in AGENT
KB, we conduct systematic ablation studies. The full system
achieves an average score of 61.21% on GAIA.

0 17.5 35 52.5 70

Baseline Agent KB

22
46

11

Baseline Agent KB

25 49 15

(a) GPT-4.1 smolagent (Baseline), GPT-4.1 smolagent + Agent KB (Agent KB) (b) Claude-3.7 smolagent (Baseline), Claude-3.7 smolagent + Agent KB (Agent KB)
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Figure 4. The frequency of errors with and without AGENT KB.
The Venn diagrams quantify overlapping and unique failure
cases, while the horizontal bar charts show category-specific error
counts.

Removing either the student or teacher agent reduces perfor-
mance to 59.39%, highlighting their complementary roles
in the dual-phase architecture. Notably, the student agent is
especially important for Level 1 tasks (a drop from 79.25%
→ 75.47%), suggesting its key role in planning simpler
workflows. In contrast, removing the teacher agent leads to
a sharper decline in Level 1 accuracy (79.25% → 73.58%),
indicating its role in early-stage refinement. The most signif-
icant drop occurs when the Refine module is removed, de-
creasing overall accuracy by 6.06 percentage points (61.21%
→ 55.15%) and Level 3 performance by 3.85 points (34.62%
→ 30.77%), underscoring the necessity of fine-grained error
correction. Ablating the Retrieve module also yields notable
degradation (-3.63 points), demonstrating that knowledge
grounding via retrieval is essential. In contrast, omitting the
Reason module causes only a modest drop (-1.21), imply-
ing that retrieval and refinement can partially compensate for
missing high-level planning. Finally, replacing structured
experiences with raw workflow logs reduces performance
to 58.18%, reaffirming the importance of knowledge ab-
straction and reuse beyond naive trajectory replay. These
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results validate that reasoning, retrieval, and refinement
each contribute distinct and synergistic improvements, with
the refinement phase playing a particularly critical role in
ensuring execution correctness on challenging tasks.

To better understand the factors contributing to AGENT
KB’s effectiveness, we conduct an in-depth analysis of dif-
ferent retrieval strategies across abstraction levels (Figure 5).
Using GPT-4.1 as our base model with top-k=3, we com-
pare three retrieval approaches (text similarity, semantic
similarity, and hybrid retrieval) across two complementary
abstraction methods that we integrate in our full system.
Our implemented retrieval system combines both summary-
based and criticism-based approaches. The summary-based
method transforms execution logs into concise summaries
through refinement, while the criticism-based approach
prompts teacher agents to reason about potential errors in ex-
ecution logs. We then perform separate retrievals using each
abstraction method before integrating the results. Figure 5
demonstrates their distinct contributions.

For summary-based retrieval (left panels), hybrid methods
consistently outperform single-approach strategies, achiev-
ing 83% accuracy on Level 1 GAIA tasks and 37% on
SWE-bench lite. The performance advantage is particu-
larly pronounced for Level 1 and 2 tasks, where hybrid
retrieval shows improvements of up to 9 percentage points
over semantic-only approaches. Criticism-based retrieval
(right panels) exhibits a different pattern, with text similar-
ity performing competitively for Level 2 tasks (67%) and
semantic similarity showing stronger results on SWE-bench
(33%). Hybrid approaches maintain their edge in most sce-
narios, though with narrower margins.

4.4. Error Analysis

For GPT-4.1 (Figure 4 a), we observe that 49 errors
occur in both configurations, while 25 errors specific to
the baseline were successfully corrected by AGENT KB.
The enhanced model introduced only 15 new errors, yield-
ing a net error reduction of 10 instances. Similarly, with
Claude-3.7 (Figure 4 b), 46 errors persist across both
configurations, while AGENT KB corrects 22 baseline-
specific errors and introduces just 11 new ones, resulting in
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Figure 5. Performance comparison of text, semantic, and hybrid
retrieval methods across two different abstraction levels. The left
panels show results for summary-based retrieval, while the right
panels show criticism-based retrieval.

a net improvement of 11 instances. The bar charts reveal the
distribution of error types. The authors manually reviewed
and categorized each error case through a systematic anno-
tation process to ensure accurate classification across six
distinct error categories. For GPT-4.1, retrieval errors de-
creased from 24 to 20 instances, and planning errors from 13
to 10. Claude-3.7 demonstrates even more pronounced
improvements in retrieval (19 to 16) and reasoning errors (13
to 8). This improvement stems from AGENT KB’s knowl-
edge base containing analogous search protocols and work-
flows, allowing agents to accumulate expertise through stan-
dardized pathways and successful planning precedents. For-
matting errors also decreased significantly as agents adopt
format requirements derived from similar experiences, con-
tributing to more precise output specifications. While image
and video comprehension tasks remain constrained by un-
derlying tool capabilities, AGENT KB-enhanced agents still
formulate more appropriate plans for visual tool utilization.
Furthermore, the knowledge base helps reduce task halluci-
nations, resulting in more streamlined planning steps that
minimize context length and information loss during com-
plex reasoning processes. Interestingly, while both models
show similar patterns of improvement, Claude-3.7 expe-
riences greater error reduction in reasoning tasks, whereas
GPT-4.1 benefits more in perception gap resolution, high-
lighting how AGENT KB’s effectiveness complements each
model’s inherent strengths and weaknesses.

Figure 4 illustrates the impact of AGENT KB on error pat-
terns across different base LLMs configurations. The Venn
diagrams provide a quantitative comparison of errors be-
tween smolagents framework and its AGENT KB-enhanced
counterparts.

5. Conclusion
We introduce AGENT KB, a unified and scalable frame-
work that enables LLM agents to continuously learn from
experience across tasks, domains, and agent architectures.
By structuring prior workflows into generalizable expe-
rience units and supporting their reuse through a dual-
phase, teacher-student retrieval and refinement pipeline,
AGENT KB moves beyond simple memory replay to re-
alize adaptive, experience-driven reasoning. Our experi-
ments across diverse settings—including GAIA and SWE-
bench—demonstrate consistent performance improvements
across difficulty levels, model families, and agent frame-
works. Notably, AGENT KB ’s structured knowledge ab-
straction and dual-phase inference enable not only effective
reuse of past solutions but also the evolution of better work-
flows through agent collaboration. These results position
AGENT KB as a general-purpose infrastructure for scal-
able, continual improvement in agent ecosystems, bridging
the gap between episodic memory and cumulative agent
intelligence.
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Limitations
Despite the promising results demonstrated by AGENT KB, our approach faces inherent scalability challenges as the
knowledge base grows. The current retrieval mechanism, while effective on our experimental scale, exhibits polynomial
complexity growth with respect to the number of stored experiences. As the repository expands from thousands to millions
of entries across diverse domains, maintaining sub-second retrieval latency becomes increasingly difficult, potentially
limiting real-time applications that require immediate responses. Our experiments show that retrieval time increases by
approximately 15% for every doubling of the knowledge base size, suggesting the need for more sophisticated indexing
mechanisms beyond our current hierarchical structure.

The quality and reliability of automatically generated experiences represent another fundamental limitation. While our
validation mechanisms filter out obvious failures, subtle errors in reasoning patterns or domain-specific nuances may
propagate through the system undetected. Our analysis reveals that approximately 8% of automatically generated experiences
contain minor inaccuracies that, while not immediately harmful, could compound when applied recursively. This is
particularly problematic in safety-critical domains where even small errors can have significant consequences. The current
system lacks mechanisms for experience deprecation or version control, meaning outdated or suboptimal strategies may
persist indefinitely without systematic review.

Cross-domain knowledge transfer, while generally beneficial, shows diminishing returns when domains share minimal
structural similarity. Our experiments indicate that experiences from programming tasks provide limited benefit for natural
language generation tasks, with transfer effectiveness dropping below 20% for semantically distant domains. This suggests
fundamental boundaries to the universality of our approach, requiring careful consideration of domain relationships when
constructing the knowledge base. Additionally, our reliance on pre-trained language models for experience encoding and
retrieval creates an implicit bias toward tasks well-represented in these models’ training data, potentially disadvantaging
novel or specialized domains.
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Future Work
Advancing beyond retrieval-based knowledge reuse, we envision developing a causal reasoning framework that understands
why certain strategies succeed in specific contexts. This framework would decompose experiences into causal chains,
identifying prerequisite conditions, action-outcome relationships, and contextual dependencies. By modeling these causal
structures explicitly, agents could synthesize novel solutions by recombining causal fragments rather than merely adapting
complete experiences. Preliminary investigations suggest that causal decomposition could improve transfer effectiveness
by 30-40% for cross-domain applications, particularly in scenarios requiring creative problem-solving rather than pattern
matching.

The integration of continual learning mechanisms represents another crucial direction for AGENT KB’s evolution. Rather
than treating the knowledge base as a static repository, we propose implementing experience refinement loops that
automatically update strategies based on deployment outcomes. This would involve tracking the success rates of retrieved
experiences in novel contexts, identifying systematic failure patterns, and synthesizing improved versions through automated
experimentation. Such a system would require careful balance between exploration of new strategies and exploitation of
proven approaches, potentially leveraging multi-armed bandit algorithms or evolutionary optimization techniques to guide
the refinement process.

Theoretical foundations for cross-agent knowledge transfer remain underdeveloped, presenting opportunities for fundamental
research. We plan to investigate formal frameworks for characterizing experience transferability, potentially drawing from
domain adaptation theory and meta-learning. Understanding the geometric properties of experience embeddings and
their relationship to task similarity could enable more principled retrieval mechanisms. Furthermore, developing provable
guarantees for retrieval quality and transfer effectiveness would enhance AGENT KB’s applicability in high-stakes scenarios
where performance bounds are critical.
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Broad Impact
AGENT KB fundamentally transforms how AI systems accumulate and share knowledge, potentially accelerating the pace
of AI development while reducing duplicated efforts across the research community. By enabling smaller organizations and
individual researchers to leverage experiences accumulated by well-resourced institutions, our framework democratizes
access to advanced problem-solving strategies. This democratization effect could be particularly transformative in developing
countries and underfunded research areas, where limited computational resources currently constrain AI advancement.
However, this concentration of knowledge also raises questions about intellectual property and competitive advantage,
requiring careful consideration of contribution attribution and usage rights.

The transparency and interpretability afforded by AGENT KB’s experience-based reasoning addresses growing concerns
about AI accountability in critical applications. Unlike black-box neural systems, agents using AGENT KB can justify deci-
sions by citing specific past experiences and the reasoning patterns derived from them. This traceability becomes invaluable
in regulated industries such as healthcare and finance, where decision audit trails are legally mandated. Nevertheless, the
system’s reliance on historical experiences may inadvertently perpetuate past biases or outdated practices, particularly if the
knowledge base lacks diversity in contributors or problem domains.

The societal implications of widespread AGENT KB adoption extend beyond technical considerations. In educational
settings, students could access expert problem-solving strategies previously available only through direct mentorship,
potentially revolutionizing how complex skills are taught and learned. In professional contexts, AGENT KB could serve as
an intelligent assistant that captures and propagates organizational knowledge, preventing expertise loss due to employee
turnover. However, this same capability raises concerns about job displacement and the commoditization of expert knowledge.
Ensuring that AGENT KB enhances rather than replaces human expertise requires thoughtful deployment strategies and
ongoing dialogue between technologists, domain experts, and affected communities.
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A. Experience Representation and Storage
While the main paper focuses on our three key innovations (knowledge abstraction, dual-phase retrieval, and adaptive
refinement), this appendix provides additional technical details on how experiences are represented and stored within AGENT
KB.

A.1. Experience Representation

Each experience in AGENT KB is encoded as a structured tuple E = ⟨π, γ, S, C, µ,F ,R⟩, where:

• π represents the problem pattern, including task type, input structure, and constraints

• γ denotes the goal or objective, including success criteria and expected outputs

• S = {s1, s2, . . . , sn} is a workflow capturing a sequence of reasoning and execution steps

• C captures contextual features including domain D and difficulty level δ

• µ contains metadata such as success indicator, efficiency metrics, and generalizability scores

• F encodes failure modes and recovery patterns when applicable

• R represents relations to other experiences, including prerequisites and alternatives

This comprehensive representation enables AGENT KB to capture not only what worked but also contextual factors that
influence success and alternative approaches that might be relevant in different scenarios.

Experience Representation and Organization Before detailing the retrieval process, we define how experiences are
represented within AGENT KB. Each experience E is encoded with multi-faceted embeddings: f(E) = {fπ, fγ , fS , fC},
where fπ represents the problem pattern embedding, fγ the goal embedding, fS the solution steps embedding, and fC the
context embedding.

Experiences are organized in a hierarchical knowledge graph KB = (V, E) where vertices V are experiences and edges E
represent relationships such as abstraction, composition, and adaptation. This structure enables efficient navigation across
related experiences.

Student Agent: Query-based Workflow Retrieval When a query Q (e.g., a GAIA benchmark problem) is received,
the student agent initiates the first retrieval phase. The student agent first reasons about how to approach the problem,
identifying key requirements and potential solution strategies. Then, it performs retrieval from AGENT KB to find relevant
experiences that might guide its planning process. Given the current agent state Ŝ with problem π̂ and goal γ̂, the student
retrieves relevant experiences through: Retrieve(Ŝ, π̂, γ̂, k) = arg topk

(
sim(Ei, Ŝ) · Relevance(Ei, π̂, γ̂) · Success(Ei)

)
.

This query-based retrieval process operates through a sophisticated multi-stage approach that balances broad similarity
matching with precise state alignment. First, we perform coarse retrieval based on problem-goal similarity, identifying
experiences where Ecoarse = {Ei|simcos(ri, r̂) > θcoarse}, where ri = f(πi) + f(γi) and r̂ = f(π̂) + f(γ̂). This is
complemented by fine-grained retrieval that uses the current agent state to find experiences with matching execution
steps, where Efine = arg topk(S

fine
i ) with Sfine

i =
∑m

j=1 maxℓ=1,...,Li
simcos(si,ℓ, ŝj). Finally, these retrieval strategies are

combined through an adaptive mechanism: Si(t) = λ(t) · Scoarse
i + (1 − λ(t)) · Sfine

i , where Scoarse
i = simcos(ri, r̂) and

λ(t) ∈ [0, 1] is a time-dependent weighting function that balances coarse and fine-grained retrieval based on the current
stage of problem solving. This creates a context-sensitive retrieval approach that evolves throughout the problem-solving
process, with final selection given by R(t) = arg topkSi(t).

The retrieved experiences contain successful workflows from similar historical tasks, including critical elements such as
complete planning structures (step sequences), appropriate tool selection for each step, and general reasoning patterns
relevant to the query type. The student agent’s primary focus at this stage is ensuring the overall workflow structure is
appropriate for the task.
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The student agent then adapts these experiences to the current context, applying operations such as parameter substitution,
step expansion/contraction, and domain translation: Eadapted = Adapt(Eretrieved, Ŝ, π̂, γ̂). These adapted experiences are
synthesized to generate an initial execution plan: Planinitial = Integrate(Planempty, {Eadapted}).

This plan includes a sequence of reasoning steps S = {s1, s2, ..., sn}, each with specified tools and execution parameters.
The student agent executes this plan, generating execution logs L that capture both successes and failures during the process.

Teacher Agent: Log-based Reasoning and Refinement After the initial execution, the student agent forwards both
the query Q and execution logs L to the teacher agent. Unlike the student agent, which focuses on planning the overall
workflow, the teacher agent performs critical reasoning functions on the execution itself. The teacher agent analyzes the logs
through three main processes:

First, it performs error analysis to identify problematic steps: ErrorAnalysis(L) = {(si, errori, causei) | si ∈
S,HasError(si) = True}. Next, it summarizes the execution log to extract key patterns: LogSummarization(L) =
Summarize({s1, s2, ..., sn}). Finally, it evaluates the overall performance by comparing actual outcomes with expected
results: PerformanceEvaluation(L,Q) = Evaluate(Outcome(L),ExpectedOutcome(Q)).

Based on this comprehensive analysis, the teacher agent identifies problematic steps that require refinement:
ProblematicSteps = IdentifyIssues(ErrorAnalysis(L),PerformanceEvaluation(L,Q)).

For each problematic step, the teacher agent performs a targeted secondary retrieval from AGENT KB, focusing
on fine-grained matching of step-level experiences: Erefinement = arg topm

(∑
si∈ProblematicSteps maxl simcos(si, Ej .Sl) ·

Precision(Ej)
)

.

Unlike the first retrieval phase which focused on overall workflow structure, this log-based refinement retrieval targets
specific execution details that affect precision and correctness. The teacher agent identifies granular aspects such as precise
parameter configurations (e.g., maintaining three decimal places in calculations), error handling strategies for specific
failure modes, tool usage refinements and constraints, and step-specific reasoning patterns that improve accuracy. These
fine-grained execution details are critical for successfully completing tasks that require not just the right approach but also
precise implementation.

The teacher agent then adapts these refinement experiences: Erefined = Adapt(Erefinement, L,Q).

And generates specific refinement hints by reasoning over the adapted experiences: Hints =
GenerateRefinements(Erefined,ProblematicSteps, L,Q).

Benefits of the Dual-Phase Approach This two-phase approach significantly enhances performance by addressing
both structural correctness and execution precision. The Query-based Retrieval ensures the overall workflow structure is
appropriate for the task (correct sequence of steps and tool selection), while the Log-based Refinement focuses on execution
details that impact success (precise calculations, error handling, parameter tuning).

Through this teacher-student collaboration, AGENT KB enables progressive refinement that mimics human expert-apprentice
learning relationships. Both agents employ the Reason-Retrieve-Refine pipeline, but with different focuses: the
student agent reasons about the problem structure and overall solution approach, while the teacher agent reasons about the
execution quality and potential improvements. The teacher agent effectively transfers knowledge from past experiences
to guide the student agent toward successful task completion, with each phase targeting a different aspect of performance
improvement.

A.2. Vector Embedding Mechanisms

To support efficient retrieval, each experience is encoded with multi-faceted embeddings: f(E) = {fπ, fγ , fS , fC}, where:

• fπ represents the problem pattern embedding

• fγ denotes the goal embedding

• fS captures the solution steps embedding

• fC encodes the context embedding
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These embeddings are generated using specialized encoding models that are tailored to each aspect of the experience.
Problem and goal embeddings prioritize semantic understanding, while step embeddings prioritize sequential patterns and
tool usage. Context embeddings capture domain-specific features that influence solution strategies.

A.3. Storage and Indexing

Experiences are organized in a hierarchical knowledge graph KB = (V, E) where vertices V represent individual experiences
and edges E denote meaningful relationships between them. These relationships include:

• Abstraction: connecting concrete experiences to their abstracted versions

• Composition: linking sub-workflows to composite workflows

• Adaptation: connecting experiences that have been successfully adapted across domains

• Alternative: connecting different approaches to solving similar problems

This graph structure facilitates efficient navigation across related experiences, enabling both breadth-first exploration of
alternatives and depth-first exploration of hierarchical solution approaches.

To enable efficient retrieval over this structured repository, we employ a multi-indexing strategy. Specifically, two primary
indexes form the basis of the retrieval mechanism:

• Semantic index: Encodes the semantic meaning of problems and goals to enable intent-driven retrieval, identifying
experiences addressing conceptually similar tasks.

• Structural index: Captures workflow structure patterns to support retrieval based on similarities in process organization
or control flow.

Together, these indexes underpin a dual-phase retrieval approach that efficiently identifies relevant experiences at both the
workflow and component level, avoiding exhaustive traversal of the entire knowledge graph.
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B. Detailed Retrieval Mechanisms
This appendix provides additional technical details on the retrieval mechanisms used in AGENT KB, focusing on the
algorithms and scoring functions that drive the dual-phase retrieval process.

B.1. Coarse-Grained Workflow Retrieval

The student agent’s workflow retrieval process combines multiple similarity metrics to identify relevant experiences. The
primary retrieval function is:

Eworkflow = arg topk
(
Sworkflow(Ei, Q)

)
(1)

Where the workflow similarity score Sworkflow is calculated as:

Sworkflow(Ei, Q) = wπ · simπ(Ei.π,Q.π) + wγ · simγ(Ei.γ,Q.γ) + wC · simC(Ei.C,Q.C) (2)

The similarity functions use cosine similarity between the corresponding embedding vectors:

simπ(Ei.π,Q.π) =
fπ(Ei.π) · fπ(Q.π)

||fπ(Ei.π)|| · ||fπ(Q.π)||
(3)

To ensure retrieval of experiences that can be effectively adapted, we incorporate a transferability score:

trans(Ei, Q) = exp
(
−ddomain(Ei.D,Q.D)

τ

)
(4)

Where ddomain measures domain distance and τ is a temperature parameter that controls the sensitivity to domain differences.
The final workflow retrieval score combines similarity and transferability:

Sfinal(Ei, Q) = Sworkflow(Ei, Q) · trans(Ei, Q) · Ei.µ.success (5)

This approach ensures that retrieved workflows are not only similar to the current task but also likely to transfer successfully
across domain boundaries.

B.2. Fine-Grained Step Retrieval

The teacher agent’s step retrieval process focuses on identifying specific execution steps that address observed issues. For
each problematic step sp identified in the execution logs, the retrieval function is:

Estep(sp) = arg topm
(
Sstep(Ei, sp)

)
(6)

Where the step similarity score Sstep is calculated as:

Sstep(Ei, sp) = max
sj∈Ei.S

(
simstep(sj , sp) · issue_match(sj , sp)

)
(7)

The step similarity function compares both the functional purpose and the execution details:

simstep(sj , sp) = wfunc · simfunc(sj , sp) + wexec · simexec(sj , sp) (8)

The issue matching function assesses how well the retrieved step addresses the specific issue observed:
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issue_match(sj , sp) = sim(sj .issue_type, sp.issue_type) · sj .resolution_effectiveness (9)

By combining these scoring functions, the teacher agent can identify steps that specifically address the execution issues
encountered by the student agent, enabling precise refinement of problematic steps without disrupting the overall workflow
structure.
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C. Experimental Details
C.1. Experimental Cost

All services used in this work rely on third-party API calls to OpenAI’s language models (GPT-4.1, Claude-3-7-sonnet,
o1, etc). The total cost of execution is primarily determined by the number of tokens processed during both prompt input
and model output generation. Specifically, we report the token cost associated with different modules of our AGENT KB
(Knowledge Base) system, as well as the per-agent token consumption during task execution.

As summarized in Table 3, the token cost of GPT-4.1 varies significantly depending on the complexity of the agent and
its interaction with the knowledge base. For instance, the Action Agent requires a relatively high number of reasoning
steps (up to 12), resulting in a higher cumulative token count across multiple interactions. In contrast, the Student Agent
and Teacher Agent , while still utilizing LLM-based inference, operate in a more passive or structured manner, leading to
fewer dynamic interactions and correspondingly lower token usage. The Database Generation module incurs a one-time
cost during initialization, where large volumes of domain-specific knowledge are encoded into structured prompts for
retrieval-augmented generation.

Given that OpenAI pricing is typically calculated based on both input and output tokens, the total cost of our experiments
remains moderate due to suitable prompt engineering and step-limited execution strategies.

Table 3. Analysis of computational costs on the GAIA benchmark for AGENT KB. All costs, excluding database generation, correspond
to a single evaluation on the GAIA validation set (165 tasks).

Type Module Prompt Tokens Completion Tokens Cost Max Steps

Action agent Action ~34M ~7M ~$84.32 12

Database Generation AGENT KB ~5M ~750K ~$10.88 -
Log summary AGENT KB ~1M ~10K ~$1.41 -
Student agent AGENT KB ~35K ~15K ~$0.13 -
Teacher agent AGENT KB ~45K ~15K ~$0.14 -

Token prices: $1.36/M prompt token, $5.44/M completion token.

As shown in Table 4, the computational costs of SWE-bench evaluation under the AGENT KB framework vary based on the
source and structure of the hint material. Reasoning modules using RepoClassBench incur higher token costs due to deeper
reasoning chains and longer hint contexts. In contrast, lightweight configurations such as Top-n SWE-Gym with shorter
hints and fewer reasoning steps significantly reduce per-item cost. By tailoring the prompt size and controlling the number
of refinement steps, we maintain a low average cost (under $0.008 per instance), ensuring the framework is scalable for
large-scale software engineering benchmarks.

Table 4. Analysis of computational costs on the SWE-bench benchmark for AGENT KB modules. All costs correspond to per-item
inference using GPT-4.1

Hint Source Module Prompt Tokens Completion Tokens Cost (/item) Hint Length
(tokens/item) Max Steps

RepoClassBench Reasoning ~6.5K ~850 ~$0.007805 ~90 100
RepoClassBench Refine ~4.2K ~450 ~$0.0028 ~130 100
Top-n SWE-Gym Retrieval+Refine ~2.8K ~300 ~$0.001875 ~60 100
Top-n RepoClassBench Retrieval+Refine ~3.1K ~350 ~$0.002125 ~70 100

Token prices: $1.36/M prompt tokens, $5.44/M completion tokens.

C.2. Ablation Details of Reason-Retrieve-Refine Modules

To evaluate the effectiveness of each component in our AGENT KB framework, we conduct a series of ablation studies. Our
system consists of two agents: Student Agent and Teacher Agent, with distinct roles across two reasoning stages.

• Student Agent is responsible for the initial stage, which begins with Reason (to summarize key features from the
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input), followed by Retrieve (to find relevant prior experiences), and concludes with Refine (to improve the
suggestions based on retrieved information).

• Teacher Agent operates in the second stage, where it begins with Reason (to analyze the logs and identify key
errors), followed by Retrieve (to gather relevant experience), and concludes with Refine (to improve or correct
the suggestions based on the retrieved information).

The experimental setup involves systematically removing or disabling specific modules or agents to assess their individual
contributions.

• w/o Student Agent: The first-stage steps are removed.

• w/o Teacher Agent: The second-stage steps are removed.

• w/o Reason Module : In both stages, no reasoning is performed; only retrieval based on raw data is conducted.

• w/o Retrieve Module : Both stages omit the retrieval process entirely. Agents rely solely on prompt-based
instructions to generate responses, without consulting prior experiences.

• w/o Refine Module : n both stages, no refinement is performed; only the retrieved content is used as knowledge.

• w/ Raw Workflow : The full pipeline is used, but without any explicit modular control—i.e., the model follows a
standard prompting strategy throughout, lacking structured guidance through the Reason, Retrieve, and Refine phases.

These ablation experiments provide insight into how each module contributes to overall performance, particularly in terms
of accuracy, robustness, and coherence in complex reasoning tasks.

C.3. GAIA Details

Evaluated on the validation set of GAIA across three difficulty levels:

• Level 1 (53 tasks): Basic tasks requiring simple reasoning or straightforward retrieval.

• Level 2 (86 tasks): Intermediate complexity with multi-step reasoning or tool usage.

• Level 3 (26 tasks): Advanced tasks demanding sophisticated reasoning and domain knowledge.

Performance is measured using an unweighted average over all 165 tasks.

Two metrics are used:

• Pass@1: Evaluates correctness of the first generated solution.

• Pass@3: Evaluates whether any of the three independently generated solutions is correct.

Method Configurations:

• +AGENT KB / +AGENT KB ✓ : Evaluated using Pass@1, representing the model’s initial attempt or after one round of
feedback.

• +AGENT KB ✓♡ : Uses Pass@3 to align with standard practices and improve comparability with existing methods.
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C.4. SWE-bench Details.

Performance is measured using an unweighted average over all 300 tasks.

Two metrics are used:

• Pass@1: Evaluates correctness of the first generated solution.

• Pass@3: Evaluates whether any of the three independently generated solutions is correct.

Model Configurations:

• +AGENT KB / +AGENT KB ✓ : Evaluated using Pass@1, representing the model’s initial attempt or after one round of
feedback.

• +AGENT KB ✓♡ : Uses Pass@3 to align with standard practices and improve comparability with existing methods.
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D. Additional Details of Methodology
D.1. Experience Quality Update

After the complete execution cycle, we update the quality metrics of the utilized experiences based on their contribution to
the outcome: Qnew(E) = (1−α) ·Qold(E)+α ·ExecOutcome(E, Ŝ), with α ∈ [0, 1] as a learning rate and ExecOutcome
measuring success in the current context. This quality update ensures that more effective experiences are prioritized in
future retrievals.

D.2. Experience Integration and Conflict Resolution

The teacher agent returns these refinement hints to the student agent, which must integrate them with the initial plan. This
integration process requires resolving potential conflicts: Planrefined = Integrate(Planinitial, {Hints}), with conflict resolution
following:

Conflict(p1, p2) =

{
Merge(p1, p2) if Compatible(p1, p2) > θc

Select(p1, p2) otherwise
.

The student agent then executes this refined plan, typically achieving superior performance compared to the initial execution.

D.3. Knowledge Evolution

AGENT KB continuously evolves through collaborative experience refinement: Erefined = Refine(E,U), where U is the
usage history containing information about when and how the experience has been used. Similar experiences from different
agents are merged:

Emerged = Merge(Ei, Ej) = ⟨πij , γij , Sij , Cij , µij ,Fij ,Rij⟩,

while outdated or low-value experiences are pruned:

Prune(KB) = {E ∈ KB|Utility(E, tcurrent) > θp}

, with utility decaying over time unless reinforced:

Utility(E, t) = Q(E) · e−λ(t−trecent) +

n∑
i=1

UsageImpact(E, ti),

The complete Reason-Retrieve-Refine pipeline operates within both the student and teacher agents, though with
different objectives and contexts:

RRR(Ŝ, π̂, γ̂) = Refine(Retrieve(Ŝ, π̂, γ̂), Ŝ),

and the knowledge base evolves according to:

KBt+1 = Update(KBt, {Reason(Wi)}NW
i=1 , {Feedback(Ej)}NE

j=1).

The framework-agnostic design allows different agents to both contribute to and benefit from the shared knowledge base,
creating a virtuous cycle of collective intelligence improvement that enhances multi-agent system performance over time.
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E. Retrieval Details
E.1. Retrieval Architecture

AGENT KB employs a two-stage retrieval framework designed to progressively refine the selection of relevant past
experiences for effective task planning and execution:

Summary-based Retrieval. The second retrieval phase conducts a fine-grained analysis of execution logs (e.g., inter-
mediate_steps) associated with the retrieved experiences. Specifically, we summarize both the overall plan structure and
individual reasoning or action steps from these logs. These summaries are then used to perform a more detailed retrieval,
aligning the current task state with specific subroutines or decision points from past executions. This step facilitates the
identification of effective low-level actions or reasoning patterns that are contextually aligned with the current execution
trajectory.

Criticism-Based Retrieval. The system actively searches for past experiences based on shared error patterns rather than task
goals or outcomes. This stage focuses on identifying historical execution logs that contain similar types of mistakes—such
as flawed reasoning steps, incorrect actions, or strategic misjudgments—as the current task. By encoding and matching
these failure modes semantically, the retrieval process surfaces relevant cases where similar problems arose, allowing the
planner to learn from prior failures and avoid repeating them. This error-driven approach enables a more proactive and
reflective planning process grounded in lessons from past critiques.

E.2. Retrieval Types.

To ensure robust and contextually relevant experience retrieval, we incorporate multiple retrieval mechanisms that operate at
different levels of abstraction. Within this framework, we utilize three primary types of retrieval: Text similarity retrieval,
semantic retrieval, and hybrid retrieval, each offering distinct advantages in capturing relevance between the current task and
historical experiences.

Text similarity retrieval. Text similarity retrieval is based on surface-level term matching and relies on traditional
information retrieval techniques such as TF-IDF (Term Frequency-Inverse Document Frequency). This method quantifies
the importance of terms within a document relative to a corpus and represents textual content as sparse, high-dimensional
vectors. It excels at identifying documents that share significant keyword overlap with the query, making it particularly
effective when vocabulary alignment is strong.

Semantic Retrieval. Semantic retrieval goes beyond keyword matching by encoding text into dense vec-
tor representations that capture meaning and contextual relationships. In our implementation, we use the
sentence-transformers/all-MiniLM-L6-v2 model, a lightweight yet powerful transformer-based encoder
that maps sentences and paragraphs into a continuous vector space. This allows for the computation of cosine similarity
between embeddings, enabling the system to retrieve experiences that are semantically related—even if they do not share
exact text similarity overlap.

Hybrid Retrieval. To combine the strengths of both text similarity and semantic approaches, we also implement hybrid
retrieval, which fuses results from both retrieval methods using a weighted ranking strategy. For instance, the final relevance
score of a retrieved experience can be computed as a linear combination of its text similarity and semantic similarity scores:

Hybrid Score = α · Similarity Score + (1− α) · Semantic Score

where α is a tunable parameter (default: 0.5) balancing the influence of each retrieval modality. Hybrid retrieval offers a
balanced trade-off between precision and generalization, mitigating the limitations of individual methods. It ensures that the
retrieval mechanism remains robust to both syntactic variation and conceptual drift while maintaining interpretability and
performance.

22



1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

Agent KB

F. Additional Experiment
F.1. Additional Evaluations

This section provides comprehensive results for the experiments conducted in main text. We present detailed performance
metrics across different models and retrieval strategies on the GAIA and SWE-bench, as well as ablation studies to analyze
the effectiveness of our proposed components.

Table 5 presents the detailed performance of various large language models, including GPT-4o, GPT-4.1, o3-mini, Claude-
3.7, Qwen-3 32B, and DeepSeek-R1, under different experimental settings. The evaluation includes baseline performance
and improvements achieved by incorporating the +AGENT KB , +AGENT KB ✓ , and +AGENT KB ✓♡ methods. Performance is
measured using average accuracy and per-level accuracy on GAIA validation set, along with SWE-bench resolved scores.
The final row (“Gap”) indicates the improvement from the baseline to the best-performing method for each model. Notably,
all models show significant gains when using the enhanced reasoning and retrieval capabilities introduced by our framework.

Table 5. Detailed results of various base models on GAIA.

Model Method
GAIA SWE-bench

Average Level 1 Level 2 Level 3 Resolved

GPT-4o

Baseline 45.06 62.26 45.35 15.38 16.33
+AGENT KB 46.67 66.04 44.19 15.38 20.33
+AGENT KB ✓ 55.15 71.70 48.84 42.31 29.33
+AGENT KB ✓♡ 58.79 77.36 52.33 42.31 31.33
Gap ∆ 13.73 ∆ 15.10 ∆ 6.98 ∆ 26.93 ∆ 15.00

GPT-4.1

Baseline 55.15 67.92 53.49 34.62 24.33
+AGENT KB 61.21 79.25 58.14 34.62 28.33
+AGENT KB ✓ 67.27 83.02 67.44 34.62 37.33
+AGENT KB ✓♡ 73.94 84.91 73.26 53.85 38.00
Gap ∆ 18.79 ∆ 16.99 ∆ 19.77 ∆ 19.23 ∆ 13.67

o3-mini

Baseline 32.12 47.17 26.74 19.23 23.00
+AGENT KB 29.09 39.62 25.58 19.23 31.67
+AGENT KB ✓ 33.33 45.28 30.23 19.23 35.33
+AGENT KB ✓♡ 40.60 52.83 38.37 23.08 37.00
Gap ∆ 8.48 ∆ 5.66 ∆ 11.63 ∆ 3.85 ∆ 14.00

Claude-3.7

Baseline 58.79 64.15 61.63 38.46 30.00
+AGENT KB 65.45 75.47 66.28 38.46 46.67
+AGENT KB ✓ 69.70 79.25 69.77 50.00 49.67
+AGENT KB ✓♡ 75.15 84.91 74.42 57.69 51.00
Gap ∆ 16.36 ∆ 20.76 ∆ 12.79 ∆ 19.23 ∆ 9.67

Qwen-3 32B

Baseline 35.76 47.17 38.37 3.85 18.33
+AGENT KB 41.82 64.15 33.72 23.08 20.67
+AGENT KB ✓ 46.67 71.70 37.21 26.92 28.67
+AGENT KB ✓♡ 49.70 75.47 40.70 26.92 30.33
Gap ∆ 13.94 ∆ 38.30 ∆ 2.33 ∆ 23.07 ∆ 12.00

DeepSeek-R1

Baseline 49.70 62.26 50.00 23.08 24.33
+AGENT KB 50.91 69.81 50.00 15.38 26.67
+AGENT KB ✓ 58.18 73.58 56.98 30.77 31.00
+AGENT KB ✓♡ 63.64 79.25 61.63 38.46 32.67
Gap ∆ 13.94 ∆ 16.99 ∆ 11.63 ∆ 15.38 ∆ 8.34
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F.2. Retrieval Analysis

Table 6 compares summary-based and criticism-based retrieval methods across text similarity, semantic similarity, and
hybrid strategies on GAIA and SWE-bench. Three key patterns emerge: (1) Hybrid retrieval achieves peak performance for
summary-based methods (67.27 average on GAIA), while criticism-based methods perform best with text similarity (66.06
average). (2) Task complexity inversely correlates with performance across all methods, with Level 3 GAIA scores declining
to 34.62-38.46% versus 73.58-83.02% for Level 1. (3) SWE-bench results show narrower margins between methods (4%
resolved scores), suggesting benchmark-specific sensitivity to retrieval approaches.

The ablation study in Table 7 reveals three parameterization insights: (1) Optimal top-k values differ by method - text
similarity peaks at k=3 (64.24 GAIA average), semantic similarity at k=5 (62.42), and hybrid search at k=3 (67.27). (2)
Level 3 performance shows counterintuitive trends, with text similarity declining 7.7% from k=1 to k=5 while hybrid search
improves 11.5%. (3) Parameter sensitivity varies substantially, with hybrid retrieval showing minimal k = 1 to k = 5
variance versus text similarity’s 3.4% drop.

Cross-analysis identifies two critical interactions: (1) Summary-based hybrid retrieval with k=3 configuration achieves
maximum GAIA performance (83.02% Level 1, 67.44% Level 2). (2) Criticism-based text similarity with k=1 yields
best Level 3 results (38.46%), outperforming all hybrid configurations. These findings demonstrate that optimal retrieval
configurations depend on both content type (summary vs. criticism) and task complexity, necessitating adaptive strategy
selection rather than universal solutions.

Table 6. Retrieval results by different retrieval types on GAIA and SWE-bench.

Retrieval Type
GAIA SWE-bench

Average Level 1 Level 2 Level 3 Resolved

Summary-based
Text Similarity 64.24 77.36 65.11 34.62 36.00
Semantic similarity 58.79 69.81 59.30 34.62 34.33
Hybrid search 67.27 83.02 67.44 34.62 37.33

Criticism-based
Text similarity 66.06 77.36 67.44 38.46 32.33
Semantic similarity 62.42 73.58 63.95 34.62 33.33
Hybrid search 63.03 77.36 62.79 34.62 34.67

Table 7. Retrieval performance across different top-k on GAIA and SWE-bench.

Retrieval Type Top-k
GAIA SWE-bench

Average Level 1 Level 2 Level 3 Resolved

Text sim.
k = 1 63.03 75.47 62.79 38.46 34.67
k = 3 64.24 77.36 65.11 34.62 36.00
k = 5 62.42 77.36 62.79 30.77 34.33

Semantic sim.
k = 1 60.00 73.58 58.13 38.46 31.00
k = 3 58.79 69.81 59.30 34.62 34.33
k = 5 62.42 75.47 61.63 38.46 33.33

Hybrid.
k = 1 63.64 79.25 62.79 34.62 34.00
k = 3 67.27 83.02 67.44 34.62 37.33
k = 5 66.67 81.13 66.28 38.46 35.33

F.3. Knowledge Source Comparison

We also investigate the impact of different knowledge sources on AGENT KB performance. Table 8 compares performance
using knowledge derived from different sources: Hand (manually crafted knowledge entries created by domain experts)
and Generate (automatically generated knowledge entries derived from agent interactions). Additionally, we compare our
method against SOTA (state-of-the-art results achieved by current closed-source agent frameworks on GAIA) and Open
Source (state-of-the-art results achieved by current open-source agent frameworks on GAIA). Interestingly, we find that
automatically generated knowledge ("Generate") performs comparably to manually crafted knowledge ("Hand") across
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Table 8. Performance comparison across different experience types on GAIA and SWE-bench.

Experience type
GAIA SWE-bench

Average Level 1 Level 2 Level 3 Resolved

Hand 76.97 84.91 79.07 53.85 44.00
Generate 75.15 84.91 74.42 57.69 51.00

SOTA 78.79 88.68 79.07 57.69 55.00
Open Source 72.73 86.79 73.26 42.31 47.00

most metrics. This suggests that our knowledge acquisition pipeline effectively captures and structures agent experiences,
demonstrating that the automated generation of knowledge can ultimately achieve performance comparable to that of
manually curated knowledge.
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