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ABSTRACT

Black-box adversarial attack has attracted much attention for its practical use in
deep learning applications, and it is very challenging as there is no access to the
architecture and weights of the target model. Based on the hypothesis that if an
example remains adversarial for multiple models, then it is more likely to trans-
fer to other models, the ensemble-based attack methods are efficient and widely
used in the black-box setting. Nevertheless, existing ensemble-based approaches
simply aggregate the outputs of all models but ignore the variance of different
models, leading to a rather poor local optimum. To address this issue, we propose
a stochastic variance reduced ensemble attack method to boost the performance of
black-box adversarial attacks. By integrating the stochastic variance reduced gra-
dient technique into the model ensemble attack, our method can balance the gra-
dient of different models and leads to better local maximum, resulting in highly
transferable adversarial examples. Empirical results on the standard ImageNet
dataset demonstrate that our method can boost the ensemble attack performance
and significantly improve the transferability of the generated adversarial exam-
ples.

1 INTRODUCTION

Deep neural networks (DNNs) have shown impressive performance on various computer vision
tasks. However, recent researches have shown that DNNs are strikingly vulnerable to adversarial
examples crafted by adding human-imperceptible perturbations (Szegedy et al., 2014; Goodfellow
et al., 2015; Papernot et al., 2016). Moreover, adversarial examples are known to be transferable that
the examples crafted for one model can also mislead other unknown models (Papernot et al., 2017;
Liu et al., 2017; Moosavi-Dezfooli et al., 2017). Generating adversarial examples (i.e., adversarial
attack) has drawn enormous attention since it can help evaluate the robustness of different mod-
els (Carlini & Wagner, 2017; Tramer et al., 2020) and then improve their robustness by adversarial
training (Goodfellow et al., 2015; Madry et al., 2018)

Various adversarial attack methods have been proposed, including optimization-based methods such
as box-constrained L-BFGS (Szegedy et al., 2014) and Carlini & Wagner’s method (Carlini & Wag-
ner, 2017), gradient-based methods such as fast gradient sign method (Goodfellow et al., 2015) and
its iterative variants (Kurakin et al., 2017a; Madry et al., 2018). In general, these adversarial attack
methods can achieve high success rates in the white-box setting (Carlini & Wagner, 2017), where the
attacker can access the complete information of the target model, including the model structure and
gradient information. However, these methods often exhibit low attack success rates in the black-
box setting (Dong et al., 2018), where the adversary can not access the information of the target
model but can only utilize the transferability of adversarial examples to fool the unknown models.

Recently, many methods have been proposed to enhance the transferability of adversarial exam-
ples so as to improve the attack success rates in the black-box setting. These methods include
the gradient-optimization attacks (Dong et al., 2018; Lin et al., 2020; Wang & He, 2021), input-
transformation attacks (Dong et al., 2019; Xie et al., 2019b; Lin et al., 2020), and model ensemble
attacks (Liu et al., 2017; Dong et al., 2018). Among these methods, the model ensemble attacks are
efficient and have been broadly adopted in boosting the black-box attack performance (Xie et al.,
2019b; Lin et al., 2020; Gao et al., 2020). As compared with the first two categories that many
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methods have been proposed, the model ensemble attack is rather less investigated, and existing
ensemble methods are actually very straightforward.

In this work, we observe that the existing model ensemble attacks just fuse the outputs of all models
directly but ignore the variance of different models, which may limit the potential performance of
the model ensemble attacks. However, the optimization paths of different models may differ widely,
indicating there exists considerable difference on the variance of optimization directions among
models. Such variance causes the optimization direction of ensemble attack to be less accurate. As
a result, the attack performance of the transferred adversarial examples decays considerably.

To address the above issue, we propose a stochastic variance reduced ensemble (SVR-Ens) method
to reduce the variance of different models during the adversarial attack, so as to improve the trans-
ferability of adversarial examples. Technically, at each iteration of the adversarial attack, we adopt
the idea of stochastic variance reduced gradient method (Johnson & Zhang, 2013) to obtain a more
accurate gradient, rather than the gradient from the ensemble models that simply fuses the outputs.
In this way, the proposed SVR-Ens method can surpass the existing model ensemble attacks in both
the white-box setting and the black-box setting. To the best of our knowledge, we are the first to
investigate the limitation of existing ensemble attack through the lens of variance on multiple mod-
els. By adopting the stochastic variance reduced gradient method, our proposed method reduces the
gradient variance to have a more stable gradient direction and avoid overfitting to the models being
attacked, leading to a better local optimum, which helps improve the attack performance and trans-
ferability. Extensive experiments on the ImageNet dataset demonstrate that our proposed method
consistently outperforms the vanilla ensemble model attack in both the white-box setting and the
black-box setting.

2 RELATED WORKS

Let x and y be a benign image and the corresponding true label, respectively. Let J(x, y) be the
loss function of the classifier and Bε(x) = {x′ : ‖x − x′‖p ≤ ε} be the Lp-norm ball centered at
x with radius ε. The goal of non-targeted adversarial attacks is to search an adversarial example
xadv ∈ Bε(x) that maximize the loss J(xadv, y). To align with previous works, we focus on L∞-
norm non-targeted adversarial attacks.

2.1 ADVERSARIAL ATTACKS

Existing adversarial attacks for crafting adversarial examples can be categorized into three groups,
namely gradient-optimization attacks (Goodfellow et al., 2015; Kurakin et al., 2017a; Dong et al.,
2018; Lin et al., 2020), input transformation attacks (Dong et al., 2018; Xie et al., 2019b; Lin et al.,
2020), and model ensemble attacks (Liu et al., 2017; Dong et al., 2018).

Gradient-optimization attacks. The most typical adversarial attack based on the gradient is the
Fast Gradient Sign Method (Goodfellow et al., 2015), which uses the gradient direction of the loss
function with respect to the input image to generate a fixed amount of perturbation. Kurakin et al.
(2017a) propose the Basic Iterative Method (BIM) to run multiple iterations of FGSM with a small
perturbation instead of a single step. Madry et al. (2018) propose the Projected Gradient Descent
(PGD), which is a noisy version of BIM. Although PGD is effective in the white-box attack set-
ting (Athalye et al., 2018), it overfits the target model easily and yields weaker transferability in
the black-box attack setting. In order to improve the transferability of adversarial attacks, Dong
et al. (2018) propose to boost the adversarial attack with momentum. More recently, Lin et al.
(2020) introduce Nesterov accelerated gradient method into the gradient-based attack to look ahead
effectively to avoid overfitting.

Input transformation attacks. Another line of adversarial attacks focus on adopting various input
transformations to improve the transferability of adversarial examples. Xie et al. (2019b) propose the
Diverse Input Method (DIM), which applies random resizing and padding to the input image before
feeding the example to the classifier to improve the transferability. Dong et al. (2019) propose the
Translation-Invariant Method (TIM), which evades the defense models by calculating the gradients
over a set of translated images. To reduce the gradient calculation, Dong et al. (2019) also develops
an efficient algorithm to calculate the gradients by convolving the gradient at untranslated images.
Lin et al. (2020) propose the Scale-Invariant Method (SIM), which introduces the scale-invariant
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property of deep learning models and calculates the gradient over a set of scaled images to avoid
overfitting and improve the transferability.

Model ensemble attacks. The model ensemble attacks are first introduced by Liu et al. (2017), in
which the predictions of multiple models are fused to get the loss of ensemble predictions, and they
apply existing adversarial attacks (e.g. FGSM and PGD) to generate adversarial examples. Dong
et al. (2018) propose two variants of model ensemble attacks, namely fusing the logits and fusing
the losses, respectively. Compared with various explorations on the gradient optimization or input
transformation attacks, the model ensemble attacks are far less investigated, and existing methods
only simply fuse the output predictions/logits/losses. In this work, motivated by the fact that there
is great variance of different models, we propose a stochastic variance reduced ensemble attack to
boost the adversarial attacks.

2.2 ADVERSARIAL DEFENSES

As the counterpart of adversarial attacks, numerous methods have been proposed to defend against
adversarial examples. One intuitive approach is the adversarial training (Szegedy et al., 2014;
Tramèr et al., 2018; Madry et al., 2018; Song et al., 2019; Xie et al., 2019a; Zhai et al., 2019;
Song et al., 2020), which augments the training data by generating adversarial examples during
the training process. Tramèr et al. (2018) propose ensemble adversarial training, which augments
the training data with perturbations transferred from other models, in order to further improve the
robustness against black-box attacks. Madry et al. (2018) propose PGD-Adversarial Training (PGD-
AT), which augments the training data with adversarial examples crafted by PGD attack. Xie
et al. (2019a) develop new network architectures that increase adversarial robustness by performing
feature denoising. By combining PGD-AT with feature denoising networks, they further improve the
adversarial robustness. Although adversarial training is promising, it is computationally expensive
and is hard to scale to large-scale datasets (Kurakin et al., 2017b).

Another line of defense aims to diminish the adversarial perturbations from the input data. Guo
et al. (2018) find that many image transformations, such as JPEG compression, have the poten-
tial to remove adversarial perturbations while preserving the visual information of the images. Xie
et al. (2018) mitigate adversarial effects through randomized transformations, including resizing and
padding (R&P). Liao et al. (2018) use high-level representation guided denoiser (HGD) to purify
the adversarial images. Xu et al. (2018) propose two feature squeezing methods: bit reduction (Bit-
Red) and spatial smoothing to detect adversarial examples. Liu et al. (2019) propose the feature
distillation (FD), which adopts a JPEG-based defensive compression framework to diminish adver-
sarial perturbations. Jia et al. (2019) propose the ComDefend, which utilizes an end-to-end image
compression model to defend against adversarial examples. Jia et al. (2020) leverage randomized
smoothing (RS) to train a certifiably robust ImageNet classifier. Naseer et al. (2020) develop a neu-
ral representation purifier (NRP) model, which learns to purify the adversarially perturbed images
through automatically derived supervision.

3 METHODOLOGY

We focus on addressing the transferability through the lens of reducing the variance of ensemble
model attack, and propose a stochastic variance reduced model ensemble attack method, which
can be integrated with any existing gradient-based attack method to boost the attack transferability.
Since our proposed method is based on the model ensemble attack, we first introduce the existing
ensemble attack methods, then present our motivation and elaborate our method in detail.

3.1 ENSEMBLE ATTACK METHOD

Ensemble attack method, which is an effective strategy to improve the transferability of adversarial
examples, is first studied by Liu et al. (2017) and has been extended by Dong et al. (2018). The
basic idea of ensemble attack is to generate adversarial examples for the ensemble models.

Ensemble on Predictions. Liu et al. (2017) propose to achieve an ensemble attack by averaging the
predictions (softmax outputs of logits) of K models as: p(x) =

∑K
k=1 wkpk(x) , where pk is the

prediction of the k-th model, and wk ≥ 0 is the ensemble weight constrained by
∑K
k=1 wk = 1.
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Then, the loss function of an ensemble model is defined as:

J(x, y) = −1y · log(p(x)), (1)

where 1y is the one-hot encoding of the ground-truth label y of x.

Ensemble on Logits. Dong et al. (2018) propose to fuse the logits (the output before the softmax)
for an ensemble of K models as: l(x) =

∑K
k=1 wklk(x), where lk is the logits information of the

k-th model, Then, the loss function of an ensemble model is defined as:

J(x, y) = −1y · log(softmax(l(x))), (2)

which is the same as in Eq. 1.

Ensemble on Loss. Dong et al. (2018) introduce an alternative ensemble attack of (Liu et al., 2017).
Specifically, they achieve the ensemble attack by averaging the loss of K models as:

J(x, y) =
∑K
k=1 wkJk(x, y), (3)

where Jk is the loss of the k-th model .

3.2 RETHINKING OF THE ENSEMBLE ATTACK

The ensemble attack method has been broadly adopted in enhancing the performance of black-box
attacks (Liu et al., 2017; Dong et al., 2018; Xie et al., 2019b; Lin et al., 2020; Gao et al., 2020).
To the best of our knowledge, however, most of the existing researches only utilize the ensemble
attack strategy as a plug-and-play to enhance their proposed attack methods, but did not delve into
the ensemble attack method itself.

Intuitively, the existing ensemble attack methods are useful for improving the adversarial transfer-
ability because attacking an ensemble model can help to find a better local maxima and makes it
easy to generalize to other black-box models. However, merely averaging the outputs (logits, pre-
dictions or loss) of all models to build an ensemble model for adversarial attack may limit the attack
performance, as the variance of different models is ignored, which may lead to a rather poor local
optimum. The optimization path of different models may vary significantly, indicating there exists
a considerable gap in the variance of optimization directions among models. Simply fusing the out-
puts of the models but ignore the variance of different models would lead to a suboptimal result,
which limits the performance on both white-box and black-box ensemble attacks. Moreover, exist-
ing ensemble attack methods compute the gradient information at each iteration, in which previously
computed gradient information is not utilized. After all, the current iteration point, i.e. adversarial
example here, is not too far from the previous point, and thus the gradient information from previous
adversarial examples may still be useful.

3.3 STOCHASTIC VARIANCE REDUCED ENSEMBLE ATTACK

Based on the aforementioned observation on existing model ensemble attacks, we propose a stochas-
tic variance reduced ensemble algorithm to take full advantage of the ensemble models. The stochas-
tic variance reduced gradient (SVRG) method (Johnson & Zhang, 2013) is a promising approach for
gradient descend for the classic continuous optimization problems. The basic idea of SVRG is to
reduce the inherent variance of Stochastic Gradient Descent (SGD) using predictive variance reduc-
tion. In this work, we adopt the idea of SVRG to design a new ensemble adversarial attack so as to
reduce the inherent gradient variance of multiple models.

We denote the traditional model ensemble algorithm as Ens, and our proposed stochastic variance
reduced ensemble algorithm as SVR-Ens. SVR-Ens can be integrated with any existing gradient-
based attack methods. The integration of SVR-Ens with I-FGSM, denoted by I-FGSM-SVR-Ens, is
summarized in Algorithm 1.

The biggest difference between SVR-Ens and Ens is in the inner update loop of SVR-Ens, where
SVR-Ens obtains a stochastic variance reduced gradient via M updates. Specifically, we first obtain
the gradient of the models, gens, by one pass over the models and maintain the value duringM inner
iterations. Then, we randomly pick a model from the ensemble models, obtain the stochastic variant
reduced gradient gsvrg, and update the inner adversarial example using gsvrg . Finally, we update the
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outer adversarial example using the last gsvrg of the inner update loop. Note that, for SVR-Ens, we
keep the gradient calculation and adversarial perturbation update of the inner loop the same as that
of the outer loop. In this way, SVR-Ens can easily combine with any existing attacks, just like the
integration of SVR-Ens with I-FGSM. In summary, Ens directly uses the gradient of the ensemble
models gens to update the adversarial example, while SVR-Ens uses the stochastic variance reduced
gradient gsvrg to update the adversarial example.

Algorithm 1 The I-FGSM-SVR-Ens attack algorithm

Require: a benign example x and its label y, a set of K surrogate models and corresponding losses
{J1, . . . , JK}, an ensemble loss J chosen from {Eq.(1), Eq.(2), Eq.(3)}

Require: the perturbation bound ε, number of iterations T , internal update frequency of SVR-Ens
M , internal step size β.

Ensure: An adversarial example xadv that fulfills ‖xadv − x‖∞ ≤ ε
1: α = ε/T ;
2: xadv0 = x;
3: for t = 0 to T − 1 do
4: # Calculate the gradient of the ensemble model
5: Input xadvt to have the loss of the ensemble model J(xadvt , y);
6: Obtain the gradient of the ensemble model by gens =

1
m∇xJ(x

adv
t , y);

7: # Stochastic variance reduction via M updates
8: x0 = xadvt ;
9: for m = 0 to M − 1 do

10: Randomly pick a model index k ∈ {1, . . . ,K}
11: Obtain the corresponding loss Jk ∈ {J1, . . . , JK}
12: Obtain gsvrg by gsvrg = ∇xJk(xm, y)−∇xJk(x0, y) + gens
13: # Update the inner adversarial example
14: Update xm+1 by xm+1 = Clipεx{xm + β · sign(gsvrg)}
15: # Update the outer adversarial example
16: xadvt+1 = Clipεx{xadvt + α · sign(gsvrg)}
17: return xadv = xadvT

4 EXPERIMENTS

For experiments, we first introduce the experimental setup, then measure the attack success rate on
normally trained models and defense models, and show that SVR-Ens outperform Ens significantly
on both cases for black-box attacks. We continue to compare from the perspective of loss to show
that SVR-Ens improves the average loss on black-box models by a large margin. In the end, we
perform ablation studies to show the effectiveness of the key parameters in SVR-Ens.

4.1 EXPERIMENTAL SETUP

Dataset. We conduct experiments on an ImageNet-compatible dataset 1 which comprises of 1,000
images and is widely used in recent FGSM-based attacks (Dong et al., 2019; Gao et al., 2020).

Networks. We consider four normally trained networks, i.e., Inception-v3 (Inc-v3) (Szegedy
et al., 2016), Inception-v4 (Inc-v4), Resnet-v2-152 (Res-152) (Szegedy et al., 2017), and Inception-
Resnet-v2 (IncRes-v2) (He et al., 2016). For adversarially trained models, we consider Inc-v3ens3,
Inc-v3ens4 and IncRes-v2ens (Tramèr et al., 2018).

Furthermore, we consider nine defense models which are shown to be robust against black-box
attacks, including the top-3 defense methods in the NIPS competition: HGD (Liao et al., 2018),
R&P (Xie et al., 2018), NIPS-r3 2 and six recently proposed defense methods: Bit-R (Xu et al.,
2018), JPEG (Guo et al., 2018), FD (Liu et al., 2019), ComDefend (Jia et al., 2019), RS (Jia et al.,
2020) and NRP (Naseer et al., 2020).

1https://github.com/tensorflow/cleverhans/tree/master/examples/nips17_
adversarial_competition/dataset

2https://github.com/anlthms/nips-2017/tree/master/mmd
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Table 1: The attack success rates (%) of adversarial examples against the hold-out model. We study
four normal models: Inc-v3, Inc-v4, IncRes-v2 and Res-101. The adversarial examples are crafted
via an ensemble of the other three. We run the SVR-Ens attack for 5 times with different random
seeds to reduce the randomness.

Base Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Average

I-FGSM Ens 77.30 66.70 58.50 48.80 62.83
SVR-Ens 89.24 83.64 77.60 65.58 79.02

MI-FGSM Ens 90.30 86.60 82.20 77.40 84.13
SVR-Ens 96.84 95.30 92.80 89.40 91.59

TIM Ens 91.70 88.70 84.30 79.20 85.98
SVR-Ens 96.10 93.66 90.18 85.36 91.33

TI-DIM Ens 95.70 94.10 93.20 90.10 93.28
SVR-Ens 97.78 96.86 95.92 93.98 96.14

SI-TI-DIM Ens 97.60 97.60 97.20 95.90 97.08
SVR-Ens 98.80 98.88 97.90 97.82 98.35

Baselines. We compare the proposed SVR-Ens with Ens based on the advanced gradient-based
attacks, including I-FGSM (Goodfellow et al., 2015), MI-FGSM (Dong et al., 2018), TIM (Dong
et al., 2019), TI-DIM (Dong et al., 2019), and SI-TI-DIM (Lin et al., 2020).

Hyper-parameters. To align with the previous works (Dong et al., 2018; Xie et al., 2019b; Dong
et al., 2019), we set the maximum perturbation ε = 16/255, the number of iterations is 10, and the
step size is α = 1.6. For MI-FGSM, we set the decay factor µ to 1.0. For TIM, we adopt the Gaussian
kernel with size 7 × 7. For TI-DIM, the transformation probability p is set to 0.5. For SI-TI-DIM,
we set the number of copies m to 5. For SVR-Ens, we set the internal update frequency M to four
times the number of ensemble models and the internal step size β is set the same as α.

4.2 ATTACKING NORMALLY TRAINED MODELS

We first compare the performance of our method on the normally trained models, including Inc-v3,
Inc-v4, Res-152 and IncRes-v2. We keep one model as the hold-out black-box model and attack
an ensemble of the other three models by various attacks with or without the SVR-Ens strategy. As
shown in Table 1, SVR-Ens improves the attack success rate across all experiments over the normal
ensemble strategy. For instance, under the base attack of I-FGSM, SVR-Ens increases the attack
success rate on Res-101 from 48.80% to 65.58%. Under the SI-TI-DIM attack, which is integrated
with multiple techniques, SVR-Ens can still effectively increase the attack success rate on Inc-v4
from 97.60% to 98.88% even though the previous value has already been very high. On average,
SVR-Ens increases the attack success rate on I-FGSM, MI-FGSM, TIM, DIM, and SI-TI-DIM by
16.19%, 7.46%, 5.35%, 2.86% and 1.27%, respectively. The results demonstrate that SVR-Ens can
effectively improve the transferability of adversarial examples on normally trained models.

4.3 ATTACKING ADVANCED DEFENSE MODELS

To further demonstrate the efficacy of the proposed SVR-Ens in practice, we continue to evaluate
our method on various defense models. Specifically, we attack the ensemble of the four normally
trained models introduced in Section 4.2, and test the transferability of the crafted adversaries on
several defense models.

Adversarially trained defense models are shown to be resistant to adversarial examples. We first test
the transferability of the adversaries on three adversarially trained models, Inc-v3ens3, Inc-v3ens4

and IncRes-v2ens. The results are shown in Table 2. We can observe that SVR-Ens improves the
black-box attack success rate of the three adversarially trained models by a large margin over Ens
for all the base attack methods that the two ensemble methods integrated with. Among various
attack base methods, SVR-Ens exhibits the highest improvement on TIM, as TIM-SVR-Ens yields
a 17.30% higher average attack success rate than TIM-Ens. In addition, for the SI-TI-DIM base
attack, SVR-Ens outperforms Ens by 3.04% on average even though the average value of Ens is
already very high at 94.34% on the three models. Besides, SVR-Ens performs well in the white-box
setting, and can slightly improve the white-box attack performance in most cases.
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Table 2: The attack success rates (%) of adversarial examples against seven models in the multi-
model setting. We run the SVR-Ens attack for 5 times with different random seeds to reduce the
randomness.

Base Attack White-Box Black-Box
Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens Average

I-FGSM Ens 100.00 100.00 99.06 99.80 27.10 24.50 15.70 22.43
SVR-Ens 99.80 99.60 99.38 99.58 40.08 37.30 24.76 34.05

MI-FGSM Ens 99.90 99.90 99.70 99.50 50.50 49.30 32.30 44.03
SVR-Ens 99.96 99.96 99.86 99.82 64.54 59.02 39.08 54.21

TIM Ens 99.80 99.70 99.40 99.20 73.50 68.10 59.70 67.10
SVR-Ens 99.84 99.90 99.80 99.70 87.88 85.62 79.70 84.40

TI-DIM Ens 99.50 99.40 99.00 98.70 87.40 84.30 77.60 83.10
SVR-Ens 99.86 99.80 99.68 99.34 95.32 93.66 90.08 93.02

SI-TI-DIM Ens 99.70 99.40 99.30 99.40 95.60 95.10 92.40 94.34
SVR-Ens 99.98 99.96 99.90 99.80 98.56 97.78 95.80 97.38

Table 3: The attack success rates (%) of adversarial examples against nine models with advanced
defense mechanism. We run the SVR-Ens attack for 5 times with different random seeds to reduce
the randomness.

Base Attack HGD R&P NIPS-r3 Bit-R JPEG FD ComDefend RS NRP Average

I-FGSM Ens 27.00 15.20 18.90 26.00 41.80 37.10 56.00 25.20 17.30 29.39
SVR-Ens 45.48 25.02 34.10 30.96 62.06 50.42 66.98 26.98 21.60 40.40

MI-FGSM Ens 41.30 33.00 44.60 39.70 75.90 62.80 77.50 36.90 27.30 48.78
SVR-Ens 44.06 40.72 59.54 43.42 89.06 73.28 86.60 39.12 28.46 56.03

TIM Ens 72.50 60.50 67.20 49.30 82.60 74.80 85.10 47.80 37.60 64.16
SVR-Ens 87.10 80.16 83.84 62.26 91.96 83.96 92.22 62.46 52.24 77.36

TI-DIM Ens 87.40 81.20 85.70 63.00 91.70 84.30 91.90 57.90 49.80 76.99
SVR-Ens 94.86 91.92 93.22 72.88 96.48 90.76 95.98 73.60 65.38 86.12

SI-TI-DIM Ens 95.70 93.20 94.10 82.70 96.70 93.30 97.90 78.00 76.80 89.82
SVR-Ens 97.70 96.12 97.48 86.64 98.54 95.60 99.06 85.72 85.44 93.59

In addition to the adversarially trained models, we also evaluate our methods on another nine models
with advanced defense methods as noted in Section 4.1. In Table 3, we show the results of ensemble
attacks against the nine defense models. The proposed method also improves the attack success rates
across all experiments over the baseline attacks. We can observe that the SI-TI-DIM integrated with
SVR-Ens can achieve an average attack success rate of 93.59% on these defense models in the
black-box setting, which raises a new security issue for the robust deep neural networks.

4.4 COMPARISON ON LOSS

The above experiments have demonstrated that SVR-Ens has a significant impact in improving the
attack success rate of adversarial attacks. To provide more intuitive evidence to show that SVR-
Ens can effectively boost the transferability of adversarial examples, we average the loss over the
adversarial images generated in Section 4.3 on four white-box models and three black-box models
and depict the improvement curve for the average loss. Loss can indirectly reflect the adversarial
effect: a higher loss indicates a stronger adversarial effect, and a higher loss on the black-box model
indicates a stronger transferability.

The results are shown in Figure 1. Compared with Ens, SVR-Ens improves the average loss on
black-box models by a large margin. Specially, the loss of the adversarial examples generated by
TIM-SVR-Ens is more than twice of the TIM-Ens in the black-box setting. In terms of the white-box
setting, SVR-Ens and Ens are comparable, showing that the improvement of SVR-Ens in transfer-
ability is not based on the premise of sacrificing the performance of white-box attack.

4.5 ABLATION STUDY

In this subsection, we conduct a series of ablation experiments to study the impact of the param-
eters in SVR-Ens. We attack the ensemble of Inc-v3, Inc-v4, Res-152 and IncRes-v2 and test the
transferability of the adversaries on Inc-v3ens3, Inc-v3ens4 and IncRes-v2ens, as the setting in 4.2.

7



Under review as a conference paper at ICLR 2022

I-FGSM MI-FGSM TIM TI-DIM SI-TI-DIM
10

15

20

25

30

35

40

Av
er

ag
e 

lo
ss

 
Inc-v3
Inc-v4
IncRes-v2
Res-101

Ens SVR-Ens

(a) white-box

I-FGSM MI-FGSM TIM TI-DIM SI-TI-DIM

2

4

6

8

10

Av
er

ag
e 

lo
ss

 
Inc-v3ens3
Inc-v3ens4
IncRes-v2ens

Ens SVR-Ens

(b) black-box

Figure 1: The average loss on seven models against five attacks integrated with Ens and SVR-Ens,
respectively.
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(b) MI-FGSM
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(c) SI-TI-DIM

Figure 2: The attack success rate (%) of the I-FGSM, MI-FGSM and SI-TI-DIM base attacks after
integrated with SVR-Ens. It degenerates to the integration with Ens when M = 0.

On the internal update frequency M . We first analyze the effectiveness of the internal update
frequency M on the attack success rate of SVR-Ens. We integrate I-FGSM, MI-FGSM and SI-
MI-DIM attacks with SVR-Ens respectively and range the internal update frequency M from 0 to
32 with granularity 4. Note that if M = 0, SVR-Ens trivially degenerates to the normal ensemble
method of Ens. Since the attack success rate in the white-box setting is close to 100%, we only show
results for black-box attacks. A first glance shows that our SVR-Ens has achieved an impressive
improvement than Ens (M = 0). As the number of iterations increases, the attack success rate
increases and reaches the peak at about M = 16. We also observe from the convex curve that either
too high or too low number of iterations may cause the adversarial examples overfit to the current
model and reduce the attack transferability.

On the internal step size β. The internal step size β plays a key role in improving the attack
success rate, as it determines the extent of the data point update of each inner loop. Similarly, we
perform I-FGSM, MI-FGSM and SI-MI-DIM attacks integrated with SVR-Ens with β ranging from
0.1 doubled to 25.6. As shown in Figure 3, the performance of SVR-Ens varies with the step size,
and the best step length varies for different methods. In the above experiments for comparison, we
did not deliberately set different best parameters for each method. So for practical applications, we
can adopt the best step size for a specific attack to obtain higher performance.

On the number of iterations T . For the same number of iterations, SVR-Ens has more gradient
calculations due to its internal update process. To show that the improvement of SVR-Ens is not
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(c) SI-TI-DIM

Figure 3: The attack success rate (%) of I-FGSM, MI-FGSM and SI-TI-DIM after integrated with
SVR-Ens on different internal step size β of SVR-Ens.
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Figure 4: The attack success rate (%) of the MI-FGSM base attack after integrated with Ens or
SVR-Ens.

simply caused by increasing the number of gradient calculations, we perform additional analysis on
the number of iterations. Taking the internal update frequency M = 16 and the number of ensemble
models K = 4 as an example, each iteration requires 4 queries of the model in Ens, while integrated
SVR-Ens, the additional inner loop requires 16 × 2 = 32 additional queries. The overall number
of queries for SVR-Ens is 9 times that of Ens. Then, what if we increase the number of iterations
for other methods? It can be observed that the attack success rate of Ens against black-box model
gradually decays with the increment on the number of iterations, and there is a big gap even when
their iterations reach 360. This experiment shows that simply increasing the number of iterations on
Ens could not gain the high attack performance of SVR-Ens.

5 CONCLUSION

In this work, we study the model ensemble attacks and propose a novel stochastic variance reduced
ensemble attack (SVR-Ens) method. Different from the existing model ensemble attacks, which
simply fuse the outputs of multiple models, the proposed SVR-Ens takes the variance of different
models into account and leverages the stochastic variance reduce method to address this issue. In
this way, the SVR-Ens can generate adversarial examples with larger loss and better transferability.
Extensive experiments demonstrate that our method surpasses the vanilla model ensemble attack in
both the loss and attack transferability.
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REPRODUCIBILITY STATEMENT

In Section 4.1, we provide a complete description of the setup of our experiments. All the dataset and
models are open source, the dataset comes from the NIPS 2017 Adversarial Attacks and Defenses
Competition, which was widely used in the liteature, and all the models have the corresponding
references or download links. And the implementation details for the attack methods are introduced
in the Hyper-parameters part in Section 4.1. Furthermore, we repeat the experiments in Table 1,
Table 2, Table 3 for five times to reduce the variance. We also provide the code for integrating
SVR-Ens on I-FGSM as an example. We promise to provide the complete source code for the final
version.
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