
Proceedings of Machine Learning Research 304, 2025 ACML 2025

Graph Mediator Networks: Bridging Local and Global
Semantics via Serial Message Passing

Jiangfeng Sun sun2017@bupt.edu.cn

SiHao He sihaohe@bupt.edu.cn

Yanlong Lin starim@bupt.edu.cn

Zhonghong Ou zhonghong.ou@bupt.edu.cn

Meina Song mnsong@bupt.edu.cn

School of Computer Science, Beijing University of Posts and Telecommunications, Beijing, China

Editors: Hung-yi Lee and Tongliang Liu

Abstract

Graph Neural Networks (GNNs) have achieved remarkable success in modeling structured
data through local message passing. However, their effectiveness diminishes on graphs
with low homophily or irregular structures, where long-range dependencies are hard to
capture and features tend to suffer from over-smoothing and noise amplification. To ad-
dress these limitations, we propose GMN, a novel dual-path Graph Mediator Network
that explicitly enhances both global information propagation and spectral stability. In
the spatial path, GMN introduces a lightweight Mediator node connected to all graph
nodes, allowing long-range communication to occur in a single hop without increasing net-
work depth. In parallel, the spectral path leverages multi-scale Chebyshev filtering along
with a spectral energy regularization term that suppresses high-frequency noise, leading
to smoother and more stable node embeddings. These two complementary pathways are
adaptively integrated via a gated fusion mechanism, which dynamically balances their
contributions based on structural context. Final graph-level representations are obtained
through task-specific pooling strategies, enabling GMN to generalize effectively across dif-
ferent tasks. Extensive experiments on benchmark datasets with varying homophily levels
and structural perturbations demonstrate that GMN consistently achieves state-of-the-art
performance in terms of accuracy, robustness, and generalization. Code is available at:
https://github.com/sun2017bupt/GMN.

Keywords: Graph Neural Networks, Long-Range Dependency Modeling.

1. Introduction

Graph-structured data is ubiquitous in domains ranging from social networks and molecular
chemistry to biological interaction systems. To extract rich, task-relevant representations
from such data, Graph Neural Networks (GNNs) have emerged as the leading framework,
achieving state-of-the-art results in a variety of prediction tasks. Prominent GNN architec-
tures—Graph Convolutional Networks (GCNs) Kipf and Welling (2016), Graph Attention
Networks (GATs) Veličković et al. (2017)—employ a local message-passing paradigm in
which each node iteratively aggregates and transforms features from its immediate neigh-
bors to build expressive embeddings.
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Figure 1: Motivation of GMN. Top: Message propagation comparison. Left: GMN
introduces a Mediator node (red star) for efficient one-hop global communication.
Right: Standard GNNs rely on multi-hop local propagation, which may cause
information bottlenecks. Bottom: t-SNE visualization of node embeddings from
GAT (blue) and GMN (orange), where GMN exhibits clearer class separation.
In addition to the Mediator, GMN incorporates spectral energy regularization to
enhance representation stability.

However, the inductive bias toward local neighborhood aggregation in most GNNs in-
herently constrains their ability to capture high-order and long-range dependencies. In het-
erophilic graphs—where adjacent nodes often belong to different classes or exhibit dissimilar
features—this bias propagates noisy or conflicting information, diluting the discriminative
power of node embeddings. Deepening the network only aggravates the effect, leading to
over-smoothing in which embeddings converge to nearly identical values Oono and Suzuki
(2019). These shortcomings undermine both the expressive capacity and generalization of
GNNs, highlighting the need for mechanisms that explicitly enable global communication
while preserving feature integrity.

To address these limitations, we propose GMN, a unified framework that combines
explicit global routing with frequency-aware regularization to learn robust graph represen-
tations. Figure 1 provides an overview of our design, which stems from two complementary
insights. The first insight addresses the inherent locality bias in standard GNNs, which
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confines message passing to each node’s immediate neighbors and thus struggles to capture
high-order dependencies in sparse or heterophilic graphs. To overcome this, GMN intro-
duces Mediator node, which connects to every original vertex, forming a star-like topology
that approximates global connectivity. In each propagation step, any two vertices can ex-
change information via a Mediator node in at most two hops distance (≤ 2 hops), thereby
expanding the receptive field without increasing network depth. This global relay mitigates
over-squashing of long-range signals and preserves discriminative features, while the addi-
tional O(|V |) edges incur only linear computational and memory overhead. The second
insight adopts a spectral perspective on graph signals, where the graph Laplacian’s eigen-
modes decompose node features into low- and high-frequency components. Low-frequency
modes capture smooth, global structures, whereas high-frequency modes reflect local vari-
ations and are prone to noise amplification Shuman et al. (2013); Chien et al. (2020). To
enforce spectral stability, GMN introduces a spectral energy regularization that penalizes
the magnitude of high-frequency activations in the node embeddings. By suppressing these
unstable components, the model yields smoother representations, reduces sensitivity to
structural perturbations, and improves generalization across graphs with diverse topolo-
gies. These complementary mechanisms are integrated within a dual-path architecture. In
the spatial path, standard message passing is performed on the mediator-augmented graph,
enabling both local neighborhood aggregation and direct global routing through the me-
diator node. Simultaneously, the spectral path applies multi-scale filtering—implemented
via a Chebyshev polynomial expansion—to extract structural patterns across a range of
frequency bands. Outputs from the two paths are then merged by a learnable gated fu-
sion module that adaptively balances spatial and spectral information. Finally, a global
pooling layer aggregates the fused features into a compact graph-level embedding for down-
stream prediction. In the next section, we describe each component in detail and outline
the end-to-end training procedure.

The main contributions are summarized as follows:

• Mediator Node for Global Routing: We introduce a Mediator node connected to all
graph vertices, enabling direct long-range message propagation without increasing net-
work depth. This design effectively mitigates locality bottlenecks and over-squashing,
enhancing the model’s ability to capture high-order dependencies.

• Spectral Energy Regularization: We propose a regularization term that penalizes high-
frequency components in the spectral domain, promoting smoother node embeddings
and improving robustness to structural noise and perturbations.

• Dual-Path Architecture with Gated Fusion: GMN employs a dual-path architecture
that combines spatial aggregation on the Mediator-augmented graph with multi-scale
spectral filtering. A learnable gated mechanism adaptively fuses these two streams,
yielding expressive and balanced representations.

• Comprehensive Empirical Evaluation: We conduct extensive experiments on bench-
marks with varying levels of homophily and graph scales. The results demonstrate
that GMN achieves superior accuracy, robustness, and generalization compared to
state-of-the-art baselines.
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2. Related Work

Graph Neural Networks (GNNs) are a leading approach for representation learning on
graphs, with notable examples including GCNs Kipf andWelling (2016) and GATs Veličković
et al. (2017). Most rely on local message passing, where nodes aggregate features from
immediate neighbors. While effective for local structure, this bias limits modeling of long-
range dependencies and often leads to over-smoothing in deeper networks Oono and Suzuki
(2019); Li et al. (2020). Recent attempts, such as label propagation Wang and Leskovec
(2020) and distance-aware encodings Li et al. (2020), provide partial solutions but still rely
on heuristic designs, lacking fully learnable global interaction modeling.

Spectral-based methods provide an alternative approach to overcome the inherent local-
ity constraints of traditional message-passing GNNs by explicitly operating in the frequency
domain of graph signals. Initial approaches such as ChebNet Defferrard et al. (2016) utilize
polynomial spectral filters derived from the eigenbasis of the graph Laplacian to capture
multi-scale structural patterns. More recent advances, including adaptive spectral propaga-
tion methods Chien et al. (2020); Dwivedi et al. (2021) and graph wavelet frameworks Shen
et al. (2021), further illustrate the benefit of decomposing signals into frequency components:
low-frequency signals correspond to smooth global structures, while high-frequency signals
typically capture local details and abrupt structural variations. Despite their conceptual
appeal, spectral methods remain susceptible to noise and instability due to high-frequency
components, particularly in small-scale or irregularly structured graphs. Moreover, explicit
regularization of these spectral responses is rarely considered in prior works, leaving these
methods prone to spectral instability and potential overfitting.

In parallel, a separate line of research has explored hierarchical and pooling-based GNNs
designed to extract coarse-grained, global graph representations Ying et al. (2018); Lee et al.
(2019); Gao and Ji (2019); Sun et al. (2024a). Notably, DiffPool Ying et al. (2018) em-
ploys differentiable hierarchical clustering, SAGPool Lee et al. (2019) leverages graph self-
attention to identify salient structures, and Graph Filter Networks (GFN) Chen et al. (2019)
utilize graph filtering operations for structural summarization. More recent approaches
explicitly target structural bottlenecks and over-squashing issues by strategies such as ex-
panding the width of central nodes to facilitate broader information flow Choi et al. (2024),
or employing graphon-based fine-tuning techniques to align graph structures at different
scales Sun et al. (2024b). Nevertheless, these approaches typically overlook the explicit use
of dedicated mediator structures that can directly bridge distant nodes and systematically
alleviate long-range communication bottlenecks. In contrast to these prior works, our pro-
posed GMN framework integrates a Mediator node explicitly designed to enhance global
message propagation that circumvents the locality constraints of traditional pooling opera-
tions, together with a spectral energy regularization mechanism, thereby jointly improving
the robustness, stability, and expressive power of learned representations.

3. Proposed Method

To effectively capture long-range dependencies and stabilize spectral representations in
graph-structured data, we propose GMN, a novel framework explicitly designed to en-
hance global communication and enforce frequency-domain robustness for graph classifica-
tion tasks. As illustrated in Figure 2, GMN consists of three tightly integrated modules.
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Figure 2: Overall architecture of GMN.GMN learns graph-level representations by first
adding a Mediator node (red star) connected to all nodes, enabling global message
exchange. Node features are processed through two parallel paths: a spatial path
with local attention and a spectral path with Chebyshev filtering and spectral
energy regularization. The outputs are fused via a gating mechanism and pooled
to form a graph-level representation for downstream classification.

First, the Mediator node is introduced, which directly connects to all vertices, significantly
extending the receptive field to efficiently propagate global context without increasing model
depth. Second, the Spectral Graph Filter module utilizes Chebyshev polynomial approxima-
tions to extract structural patterns across multiple frequency bands, effectively capturing
both global smoothness and local variations. Third, the Spectral Energy Regularization
component explicitly penalizes high-frequency components, promoting smoother, more sta-
ble node embeddings and mitigating sensitivity to structural perturbations. These com-
ponents are jointly incorporated into a dual-path architecture, where spatial and spectral
signals are processed in parallel and integrated through a learnable gated fusion mechanism.
The fused representations are then aggregated via global pooling to produce compact, dis-
criminative graph-level embeddings. In the following subsections, we formally define the
learning problem and detail each module of the GMN framework.

3.1. Problem Formulation

Given a dataset of labeled graphsD = {(Gi, yi)}Ni=1, each graph is denoted byG = (V,E,X),
where V is a set of vertices, E ⊆ V × V represents edges, and X ∈ R|V |×d contains the
associated node features. The primary task addressed in this paper is graph classification,
aiming to learn a predictive function f : G → Y that maps each graph to a discrete label
y ∈ Y.

Specifically, we formulate the prediction process as:

ŷ = f(G) = ϕ(F(G)), (1)
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where F is a representation learning module responsible for capturing comprehensive struc-
tural patterns at both local and global scales from input graph G. Subsequently, the
classification head ϕ maps the learned representation into the label space. Our ultimate
objective is to optimize the parameters of f by minimizing the classification error over the
training set, thus ensuring accurate predictions on unseen graphs.

3.2. Mediator as Semantic Relay for Global Interaction

Conventional message-passing schemes aggregate information only from local neighbor-
hoods, inherently restricting their capability to capture distant semantic relationships, espe-
cially in sparse or heterophilic graphs. To overcome this limitation, we introduce Mediator
node, a dedicated semantic relay designed to explicitly facilitate global message propagation.

Specifically, we augment G = (V,E,X) with a virtual Mediator node vM to form G̃ =
(Ṽ , Ẽ, X̃) where Ṽ = V ∪ {vM} and Ẽ = E ∪ {(vi, vM ) | vi ∈ V }. For any two nodes
u, v ∈ V , there exists a path u→ vM → v of length exactly 2 (or 1 if (u, v) ∈ E), which
guarantees global communication without increasing layer depth. This augmentation adds
O(|V |) edges and makes deg(vM ) = |V |, preserving linear-time message passing on sparse
graphs.

At layer l, we update node embeddings using a normalized aggregator that includes the
mediator:

h
(l+1)
i = AGG

(
{h(l)

j : j ∈ N (i)} ∪ {h(l)
M}

)
, h

(l+1)
M = AGG

(
{h(l)

j : j ∈ V }
)
, (2)

where AGG can be implemented as attention or degree-normalized convolution to prevent
vM from dominating due to its high degree.

By leveraging Mediator node, GMN significantly expands the receptive field of message
passing without increasing the depth of the network, effectively alleviating over-squashing is-
sues that commonly occur in deep GNN architectures. The resulting embeddings inherently
capture richer global context, facilitating more discriminative and robust representations.

3.3. Spectral Graph Filter and Energy Regularization

While the spatial pathway equipped with Mediator node effectively facilitates global mes-
sage propagation, graph signals inherently possess rich structural information that can be
more naturally interpreted in the spectral domain. Specifically, from the viewpoint of graph
spectral theory, node representations can be decomposed into eigenmodes of the normal-
ized graph Laplacian, where low-frequency components capture smooth, global structural
patterns, and high-frequency components characterize local variations and rapid structural
changes. However, it has been empirically observed that high-frequency components are
more susceptible to noise and structural perturbations, leading to unstable and inconsistent
node embeddings Shuman et al. (2013); Chien et al. (2020).

To explicitly leverage multi-scale spectral information while mitigating instability from
high-frequency signals, we incorporate a Spectral Graph Filter module based on Chebyshev
polynomial approximation Defferrard et al. (2016). Given a graph Laplacian L, the spectral
filtering operation is defined as:

Z =
K−1∑
k=0

θkTk(L̃)X, (3)
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where L̃ = 2L/λmax − In denotes the scaled Laplacian, Tk(·) represents the k-th Cheby-
shev polynomial, θk are learnable filter coefficients, and Z are the filtered node features.
This approach efficiently captures structural patterns across multiple frequency bands with-
out explicit eigen-decomposition, thus significantly reducing computational complexity and
enabling scalability to large graphs.

We optimize a composite loss that combines the primary supervised objective with a
pre-fusion consistency regularization, and the term LNLL denotes the supervised negative
log-likelihood on the training labels. The overall loss is:

L = LNLL + Lspec. (4)

Let Hspatial,Hspectral ∈ R|V |×d denote the node embeddings produced by the spatial and
spectral paths (before fusion). We define:

Lspec = log

(
1 +

1

|V |d

∥∥∥Hspectral −Hspatial
∥∥∥2
F

)
, (5)

which encourages the two paths to remain consistent prior to gating, thereby suppressing
unstable high-frequency deviations while preserving complementary information at fusion
time.

This regularization penalizes large discrepancies between spatial and spectral branches,
encouraging their consistency and promoting more stable, robust embeddings across vary-
ing graph structures. By jointly employing spectral filtering and explicit energy regular-
ization, GMN effectively leverages the complementary strengths of spatial and spectral
domains, providing graph representations that are simultaneously expressive, robust, and
stable across diverse graph topologies.

3.4. Gated Fusion and Graph-level Representation

Given the distinct yet complementary characteristics captured by the spatial and spectral
pathways, we propose a gated fusion mechanism to adaptively integrate these features into
unified node representations. Specifically, for node i, let hspatial

i ∈ Rd and hspectral
i ∈ Rd

denote embeddings derived from the spatial and spectral paths respectively. We compute
gating weights gi ∈ Rd as:

gi = σ
(
Wg

[
hspatial
i ∥hspectral

i

]
+ bg

)
, (6)

where Wg ∈ Rd×2d and bg ∈ Rd are learnable parameters, σ(·) is the sigmoid activation,
and ∥ represents concatenation.

The fused node embedding is then obtained as a weighted combination:

hfused
i = gi ⊙ hspatial

i + (1− gi)⊙ hspectral
i , (7)

where ⊙ denotes element-wise multiplication. This adaptive fusion strategy enables the
model to dynamically balance local spatial information and global spectral patterns, result-
ing in more expressive and discriminative node-level representations.
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Table 1: Statistics of graph classification datasets used in our experiments.

Category Dataset #Graphs Avg. #Nodes Avg. #Edges #Classes

Social
COLLAB 5000 74.49 2457.78 3
IMDb-B 1000 19.77 96.53 2
IMDb-M 1500 13.00 65.94 3

Bioinfo
PROTEINS 1113 39.06 72.82 2

COX2 467 41.22 86.89 2

Molecule
MUTAG 188 17.93 19.79 2
PTC-MR 344 14.29 14.69 2

BZR 405 35.75 76.72 2

Finally, to obtain a graph-level representation, we employ global pooling (e.g., sum or
mean pooling) over all node embeddings:

hG = Pooling
(
{hfused

i }i∈V
)
. (8)

The resulting embedding hG serves as the graph-level feature, subsequently used by a
classifier head for prediction.

4. Experiments

4.1. Datasets and Metrics

We evaluate GMN on eight widely-used benchmark datasets spanning three domains: social
networks, bioinformatics, and molecular graphs. These datasets encompass a wide
spectrum of graph topologies and label semantic complexities, establishing a comprehensive
evaluation framework for assessing model robustness and generalization capabilities.

Social network graphs, including COLLAB, IMDB-BINARY (IMDb-B), and IMDB-
MULTI (IMDb-M), where nodes represent people (e.g., actors or researchers), and edges
denote collaborations or co-occurrence. These graphs often exhibit heterophilic patterns,
making it challenging for standard GNNs to propagate meaningful information across dis-
tant regions.

Bioinformatics datasets, such as PROTEINS and COX2, describe macromolecular
structures where nodes are amino acids or atoms, and edges reflect spatial or chemical
interactions. These graphs are medium-sized with varying degrees of structural complexity.

Molecular datasets, including MUTAG, PTC-MR, and BZR, represent chemical com-
pounds as graphs, where nodes are atoms and edges are chemical bonds. These graphs tend
to be small and highly sensitive to structural noise, which makes them ideal for evaluating
spectral stability.

All datasets are framed as graph-level classification tasks. Following prior work, we
randomly split the data into 80% training, 10% validation, and 10% testing. We apply clas-
sification accuracy (%) as the main evaluation metric and report the average performance
across 10 random seeds to ensure stability.
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Table 2: Graph Classification Test Accuracy (%) on Benchmark Datasets.

Method
SOCIAL NETWORKS BIOINFO MOLECULES

COLLAB IMDb-B IMDb-M PROTEINS COX2 MUTAG PTC-MR BZR

GAT-based Methods

CapsGNN 79.62 73.10 50.27 76.28 - 86.67 - -
AutoGCL 70.12 73.30 53.54 75.80 77.98 88.64 68.21 83.34
RGCL 70.92 71.85 53.88 75.03 78.15 85.67 59.87 81.48
ESA 81.76 76.52 54.38 78.26 80.74 88.12 66.09 84.87

GCN-based Methods

GIN 80.20 75.10 52.30 76.20 77.87 89.40 64.60 85.73
DGCNN 68.34 70.00 47.80 75.10 76.48 85.80 65.43 81.34
GFN 81.50 73.00 51.80 76.46 - 90.84 66.83 -
GFN-light 81.34 73.00 51.20 77.44 - 89.89 61.32 -
GIUNet 82.02 74.92 53.26 79.38 81.40 90.32 67.10 86.00
TFGW 84.33 78.34 56.81 82.93 88.94 96.42 72.45 92.28

Other Methods

PPGN 81.38 72.20 44.73 76.39 75.75 88.88 64.70 86.54
WEGL 79.80 75.40 52.00 76.50 - 88.30 58.60 -
PANDA 82.44 76.85 54.99 78.90 81.28 89.21 66.80 85.76
G-TUNING 80.45 75.60 52.90 77.12 79.20 89.63 65.42 85.31

GMN (Ours) 91.44 81.00 61.00 85.71 91.66 96.57 83.33 97.59

4.2. Comparison with SOTA Methods

To evaluate the effectiveness of GMN, we compare it with a wide range of state-of-the-
art methods, categorized into GAT-based models, GCN-based models, and other advanced
graph learning frameworks.

GAT-based methods. CapsGNN Xinyi and Chen (2019) integrates capsule networks
with attention mechanisms and dynamic routing to improve graph-level representation.
AutoGCL Yin et al. (2022) adopts graph-level contrastive learning with GAT encoders
and automatically learns augmentation distributions. RGCL Li et al. (2022) further en-
hances contrastive learning by extracting rationale-aware subgraphs and leveraging GATs
to perform instance discrimination. ESA Buterez et al. (2024) discards message passing
and treats graphs as edge sets, using interleaved masked and vanilla self-attention layers to
learn edge-level representations that outperform classical GATs in long-range tasks.

GCN-based models. GIN Xu et al. (2018) designs an injective aggregation scheme
that enhances the expressive power of standard GCNs. DGCNN Wu et al. (2018) uses disor-
dered graph convolution followed by a sort pooling layer to preserve critical structure. GFN
and GFN-light Chen et al. (2019) decouple graph filtering and permutation-invariant set
functions to build fast and accurate classifiers. TFGWVincent-Cuaz et al. (2022) introduces
a template-based approach using Fused Gromov-Wasserstein (FGW) distances, learning
graph representations by measuring dissimilarities to learnable template graphs, combin-
ing both structural and feature information through optimal transport. GIUNet Amouzad
et al. (2024) applies a GIN-based U-Net architecture with spectral-aware pooling, utilizing
node centrality and low-frequency components for hierarchical graph learning.

Other competitive models. PPGN Maron et al. (2019) achieves powerful repre-
sentation by combining MLPs with tensor-based aggregation. PANDA Choi et al. (2024)
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Table 3: Ablation Study of GMN Components (Test Accuracy %).

Variant
SOCIAL NETWORKS BIOINFO MOLECULES

COLLAB IMDb-B IMDb-M PROTEINS COX2 MUTAG PTC-MR BZR

GMN (Full) 91.44 81.00 61.00 85.71 91.66 96.57 83.33 97.59

w/o Spectral Energy Regularization 87.20 78.10 57.24 81.39 86.00 90.31 76.20 91.42
Sum Fusion (No Gate) 80.01 77.84 53.10 79.41 80.55 89.48 66.73 91.20
Concat Only (No Fusion) 77.42 74.93 51.28 76.13 77.91 85.79 63.21 83.26

w/o Mediator & Spectral Transformation 65.56 52.53 46.12 65.00 64.12 63.55 52.42 72.86
w/ Mediator only 73.20 63.80 50.00 70.20 72.00 78.20 61.85 82.13
w/ Spectral Transformation only 75.40 69.33 52.44 74.80 76.30 83.70 66.10 84.52

avoids graph rewiring and instead expands the hidden dimensions of high-centrality nodes
to mitigate over-squashing. G-TUNING Sun et al. (2024b) addresses structural divergence
in transfer learning by approximating downstream graph patterns. Finally, WEGL Kolouri
et al. (2020) serves as a non-neural baseline that computes global graph embeddings via
Wasserstein distances between node distributions.

Table 2 shows that GMN achieves the highest accuracy on all datasets, outperforming
GAT-based, GCN-based, and long-range-aware models. It yields large gains on social graphs
(e.g., +5.2% on COLLAB) due to effective long-range modeling via the Mediator, and
strong improvements on small or irregular datasets (e.g., +4.3% on PTC-MR) from spectral
regularization. These results validate the robustness of GMN’s unified spatial–spectral
design across diverse graph types.

4.3. Ablation Study

We conduct ablation studies on all datasets (Table 3) to evaluate each component.
Fusion and regularization. Removing spectral regularization reduces accuracy, es-

pecially on small or noisy graphs, confirming its role in controlling high-frequency noise.
Replacing gated fusion with summation or removing it entirely causes clear drops, showing
the need for adaptive integration.

Backbone modules. Removing both the Mediator and spectral module leads to severe
degradation, indicating local aggregation alone is insufficient. The Mediator benefits social
graphs by enabling long-range communication, while the spectral module performs better
on bio/molecular data, highlighting its structural modeling strength.

Overall, the spectral path, Mediator, fusion, and regularization are all critical, and their
combination consistently achieves the best results.

4.4. Efficiency and Interpretability

We evaluate GMN in terms of computational efficiency and interpretability.

Parameter and Runtime Comparison. Figure 3 shows model parameter counts (log
scale), training time per epoch, and inference time per graph. GMN is lightweight and close
to GCN in runtime, while being much smaller and faster than GAT, indicating that the
dual-path design and Mediator node add minimal overhead.
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Figure 3: Model size and efficiency. Bars represent parameter counts; lines show per-
epoch training time and per-graph inference time. GMN achieves high efficiency
with modest complexity.

Figure 4: Mediator Gate Ratio (MGR). Top: MGRmean distribution, showing high
stability across nodes. Bottom: MGRmediator distribution, reflecting Mediator
adaptivity between spectral and spatial paths.

Mediator Gate Ratio (MGR) Analysis. To study the fusion mechanism, we compute
gating metrics for node v with gate gv ∈ [0, 1]d:

MGRmean =
1

|V |d
∑
v∈V

d∑
c=1

gv,c, MGRmediator =
1

d

d∑
c=1

gvM ,c,
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Table 4: Robustness Analysis. Top: Generalization across different node proportions
(small / medium / large). Bottom: Test accuracy under increasing edge deletion.
Bold denotes best results.

Robustness to Node Percentiles (30%, 60%, 90%)

Model
COLLAB (Social) PROTEINS (Bioinfo) BZR (Molecule) Avg
30% 60% 90% 30% 60% 90% 30% 60% 90% Acc.

GIN 74.12 78.35 80.03 70.83 75.22 77.80 78.84 81.20 83.14 77.95
DGCNN 64.12 66.37 68.20 70.14 71.59 74.07 78.91 79.85 81.03 72.70
ESA 79.05 80.90 81.32 75.38 76.88 78.40 82.20 83.21 84.55 80.21
TFGW 80.88 82.24 84.10 78.45 80.19 81.32 89.55 91.76 92.23 84.52
GMN (Ours) 82.30 85.25 88.41 78.22 80.25 83.50 90.74 93.31 95.78 86.42

Robustness to Edge Deletion (10%, 15%, 20%)

Model
COLLAB PROTEINS BZR Avg

10% 15% 20% 10% 15% 20% 10% 15% 20% Acc.

GIN 77.85 75.34 73.00 72.15 70.06 68.30 78.26 76.31 74.00 73.47
DGCNN 70.12 67.48 65.10 69.21 67.93 65.89 76.34 74.21 71.92 69.91
ESA 80.16 78.05 75.80 75.70 74.21 72.60 83.12 80.84 78.90 77.60
TFGW 83.10 81.54 78.46 78.85 76.93 74.18 90.10 88.47 85.93 81.95
GMN (Ours) 85.62 82.34 78.50 81.45 79.58 75.40 92.45 91.83 89.01 84.02

where vM is the Mediator node. MGRmean measures overall fusion stability; MGRmediator

reflects Mediator adaptivity.
As shown in Figure 4, MGRmean is concentrated near 0.485, showing consistent gating

across nodes. MGRmediator varies more (mean 0.44–0.46, occasional peaks > 0.5), indicating
adaptive adjustment between spectral and spatial paths based on graph structure.

4.5. Robustness Analysis

As shown in Table 4, we evaluate the robustness of all models under two perturbation set-
tings: node percentiles and edge deletion. For the node percentile experiment, we evaluate
model performance on graphs with 30%, 60%, and 90% of nodes, using proportional splits
to account for the large variation in graph sizes and to avoid bias from graphs with few
nodes. GMN consistently achieves the highest accuracy across all datasets and node pro-
portion levels, demonstrating superior generalization across graphs of varying scales and
an enhanced ability to capture long-range dependencies. In the edge deletion experiment,
GMN maintains the highest test accuracy under increasing levels of edge removal, showing
substantially smaller performance degradation compared to baseline models (e.g., 89.01%
on BZR at 20% edge deletion).

Figure 5 shows robustness curves under increasing edge deletion. GMN consistently
suffers smaller or comparable performance drops than GCN and GAT. On datasets such as
COLLAB, COX2, and MUTAG, its degradation curve is noticeably flatter, demonstrating
strong resilience to connectivity loss. Even on datasets with similar decline trends (e.g.,
BZR, IMDb-M, PROTEINS), GMN maintains higher accuracy, confirming its ability to
preserve key structural information under severe perturbations. These results highlight
GMN’s robustness in noisy or incomplete graphs.
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Figure 5: Robustness of GAT, GCN, and GMN under increasing edge drop rates on BZR,
COLLAB, and PROTEINS datasets. GMN demonstrates significantly smaller
accuracy degradation under both small and large drop rates.

Figure 6: Node-level feature heatmaps of a BZR molecule without and with the mediator
node. The mediator amplifies key node activations (e.g., 15, 40, 44), enhancing
global context and highlighting important molecular substructures.

4.6. Case Study

We conduct a case study on a BZR molecule to examine the effect of the mediator node.
Figure 6 presents node-level feature heatmaps without (left) and with (right) the mediator.
Without the mediator, feature activations remain uniformly low, suggesting a reliance on
local neighborhoods. With the mediator, key nodes (e.g., 15, 40, 44) show heightened
activations, corresponding to chemically meaningful substructures such as branch points and
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Figure 7: Pairwise node similarity heatmaps of a BZR molecule with and without the me-
diator node, showing improved global connectivity and cross-region interactions
with the mediator.

functional groups. This indicates that the mediator enhances global context propagation
and helps the model focus on structurally important regions.

Figure 7 further shows pairwise similarity heatmaps. Without the mediator, the ma-
trix exhibits isolated local blocks, reflecting poor long-range connectivity. In contrast, the
mediator induces a more globally coherent similarity pattern, bridging distant regions and
enabling better integration of local and global structure. These results highlight the me-
diator’s role in enhancing representation expressiveness and improving molecular property
modeling.

5. Conclusion

In this paper, we propose GMN, a graph neural network that captures multi-scale dependen-
cies by integrating spatial and spectral features, enhanced by a mediator node for efficient
long-range communication. Through gated fusion and spectral energy regularization, GMN
effectively mitigates feature degradation. Extensive experiments on social, biological, and
molecular graphs show that GMN consistently outperforms state-of-the-art baselines in ac-
curacy and robustness. Our analyses further demonstrate its interpretability and resilience,
making it well-suited for real-world noisy graph scenarios. The mediator-based, multi-scale
design of GMN offers a promising direction for future robust graph learning.

Acknowledgments

This work is supported by the National Key Research and Development Program of China
under Grant 2024YFC3308500, National Natural Science Foundation of China under Grant
62406036, Beijing Municipal Natural Science Foundation under Grant L251042, the State
Key Laboratory of Networking and Switching Technology under Grant NST20250110, and
also sponsored by SMP-Zhipu. AI Large Model Cross-Disciplinary Fund under Grant
ZPCG20241029322.



Graph Mediator Networks: Bridging Local and Global Semantics via Serial Message Passing

References

Alireza Amouzad, Zahra Dehghanian, Saeed Saravani, Maryam Amirmazlaghani, and
Behnam Roshanfekr. Graph isomorphism u-net. Expert Systems with Applications, 236:
121280, 2024.

David Buterez, Jon Paul Janet, Dino Oglic, and Pietro Lió. An end-to-end attention-
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Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and
Yoshua Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.
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