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Abstract001

With the growing adoption of Large Language002
Models (LLMs) for open-ended tasks, accu-003
rately assessing epistemic uncertainty, which004
reflects a model’s lack of knowledge, has be-005
come crucial to ensuring reliable outcomes.006
However, quantifying epistemic uncertainty007
in such tasks is challenging due to the pres-008
ence of aleatoric uncertainty, which arises from009
multiple valid answers. While bias can intro-010
duce noise into epistemic uncertainty estima-011
tion, it may also reduce noise from aleatoric012
uncertainty. To investigate this trade-off, we013
conduct experiments on Visual Question An-014
swering (VQA) tasks and find that mitigating015
prompt-introduced bias improves uncertainty016
quantification in GPT-4o. Building on prior017
work showing that LLMs tend to copy input018
information when model confidence is low, we019
further analyze how these prompt biases affect020
measured epistemic and aleatoric uncertainty021
across varying bias-free confidence levels with022
GPT-4o and Qwen2-VL. We find that all con-023
sidered biases induce greater changes in both024
uncertainties when bias-free model confidence025
is lower. Moreover, lower bias-free model con-026
fidence leads to greater underestimation of epis-027
temic uncertainty (i.e. overconfidence) due to028
bias, whereas it has no significant effect on the029
direction of changes in aleatoric uncertainty030
estimation. These distinct effects deepen our031
understanding of bias mitigation for uncertainty032
quantification and potentially inform the devel-033
opment of more advanced techniques.034

1 Introduction035

Robust quantification of Large Language Models’036

(LLMs) confidence in their answers is vital for trust037

and safety in critical applications (Hendrycks et al.,038

2021; Rudner and Toner, 2024). Without effective039

confidence ranking, accurate predictions may be040

overlooked, while inaccurate predictions may be041

prioritized and lead to harmful outcomes (Geifman042

and El-Yaniv, 2017).043

Question: Output ONE number in the image

Aleatoric Uncertainty Epistemic Uncertainty

Output: ... [uncertain]

42 or 15 ? 42 or 40 ?
Epistemic Uncertainty

16 or 15 ?

...

...

Figure 1: Uncertainty between valid answers (42 and 15)
reflects aleatoric uncertainty, while uncertainty between
40 and 42, or between 16 and 15, reflects epistemic
uncertainty due to the model’s lack of knowledge.

Much of the existing literature leverages uncer- 044

tainty to estimate a model’s confidence in its an- 045

swers (Guo et al., 2017; Malinin and Gales, 2020). 046

Model uncertainty can stem from aleatoric un- 047

certainty, epistemic uncertainty, or both. Impor- 048

tantly, only epistemic uncertainty is indicative of 049

the model’s confidence, as it captures the limita- 050

tions of the underlying knowledge. In contrast, 051

aleatoric uncertainty stems from the irreducible 052

randomness of the true answer distribution and per- 053

sists even if the model has perfect knowledge. As 054

such, the true goal of “uncertainty quantification” 055

is to quantify the epistemic uncertainty. When 056

two predictions exhibit similar total uncertainty, 057

the one driven by aleatoric uncertainty indicates a 058

more knowledgeable and confident model than one 059

dominated by epistemic uncertainty. Figure 1 illus- 060

trates this distinction through an example where the 061

model is uncertain for different underlying reasons. 062

Traditional uncertainty quantification methods 063

typically estimate total uncertainty, as they often 064

operate under the single-answer assumption, where 065

aleatoric uncertainty is absent. Yet in real-world 066

scenarios with multiple valid answers, distinguish- 067

ing between the two becomes crucial. 068

In settings where each question has only one 069

valid answer and uncertainty is thus purely epis- 070
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temic, it may be intuitive that the presence of bias,071

namely spurious features that models rely on with-072

out understanding the true semantic meanings, can073

lead to inaccurate uncertainty estimation based on074

biased generation probabilities. Therefore, miti-075

gating bias can improve the effectiveness of uncer-076

tainty quantification based on generation probabil-077

ities (Jiang et al., 2023). However, the potential078

presence of aleatoric uncertainty introduces addi-079

tional complexity. Bias may also reduce aleatoric080

uncertainty by concentrating probability mass on081

a single or smaller subset of valid answers. In082

such cases, bias may reduce the noise introduced083

by aleatoric uncertainty, potentially facilitating a084

clearer estimation of epistemic uncertainty.085

We investigate whether mitigating prompt-086

introduced biases can enhance uncertainty quan-087

tification with the presence of aleatoric uncertainty,088

using GPT-4o, one of the most advanced multi-089

modal LLMs. These biases arise from arbitrary090

and unavoidable choices in spurious features that091

do not alter the underlying semantics when using a092

single prompt, such as phrasing, answer position,093

verbalizer assignment, and image shape (Wang094

et al., 2023; Liu et al., 2024; Gavrikov et al., 2024;095

Ye et al., 2024). Our results show that bias mit-096

igation consistently enhance uncertainty quantifi-097

cation with the presence of aleatoric uncertainty,098

without requiring access to the internal model state.099

Specifically, removing text-based biases boosts AU-100

ROC (Hanley and McNeil, 1983; McDermott et al.,101

2024) by approximately 7%. Motivated by this,102

we further examine how bias affects epistemic and103

aleatoric uncertainty separately.104

Earlier research predominantly tackles the105

aleatoric uncertainty from different phrasings of the106

same semantic meaning, often by semantic equiv-107

alence calculations (Kuhn et al., 2023; Farquhar108

et al., 2024; Lin et al., 2023). Recent work (Ahdritz109

et al., 2024; Yadkori et al., 2024) has shifted focus110

towards more general scenarios, where multiple111

distinct semantic meanings are valid (Jiang et al.,112

2022; Jia et al., 2024; Barandas et al., 2024). These113

two studies find that models are more likely to copy114

information from prompts under high epistemic115

uncertainty than under high aleatoric uncertainty,116

which may be interpreted as a form of confirmation117

bias (Nickerson, 1998; Shi et al., 2024). There-118

fore, we hypothesize that the impact of the prompt-119

introduced biases examined in our earlier exper-120

iments on epistemic uncertainty amplifies with121

lower true model confidence, whereas its impact on122

Greater 
Overestimation 
of Confidence

Less 
Overestimation

Figure 2: Systematically greater overestimation of con-
fidence in lower-confidence instances can flatten the
estimated confidence curve, undermining ranking ro-
bustness. Sometimes it even reverses the correct order.

aleatoric uncertainty remains relatively insensitive 123

to confidence levels. 124

Most multi-label Natural Language Processing 125

datasets were introduced early and are now well- 126

studied, allowing LLMs to achieve near-perfect 127

performance with minimal uncertainty. We there- 128

fore construct visual-language datasets where LLM 129

performance is not yet saturated, enabling analysis 130

of both text-based and image-based prompt biases. 131

For both closed-source model GPT-4o (Hurst 132

et al., 2024) and open-source model Qwen2-VL 133

(Wang et al., 2024), our findings show that lower 134

bias-free model confidence correlates with stronger 135

bias effects, estimated by the absolute change in 136

both epistemic and aleatoric uncertainty measured 137

with and without bias. However, this correlation is 138

notably weaker for aleatoric uncertainty than for 139

epistemic uncertainty. 140

As illustrated in Figure 2, greater overestima- 141

tion of confidence in lower-confidence instances, a 142

pattern observed in human behavior (Sulistyawati 143

et al., 2011), can undermine the robustness of the 144

ranking performance of the measured confidence. 145

In extreme cases, such distortions may even reverse 146

the correct ranking: when the true confidence in A 147

exceeds that in B, the biased estimated confidence 148

incorrectly favor B over A. Therefore, we further 149

examine this directional change in uncertainty. We 150

find that epistemic uncertainty is significantly more 151

likely to be underestimated (i.e., overestimation of 152

confidence) under bias when the model is genuinely 153

less confident. In contrast, model confidence does 154

not significantly affect the direction of aleatoric 155

uncertainty shifts under bias. 156

The distinct effects of bias on epistemic and 157

aleatoric uncertainty deepen our understanding of 158
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bias mitigation for uncertainty quantification and159

may guide the development of more advanced160

methods.161

2 Related Work162

Uncertainty Quantification with a Single Valid163

Answer. Traditional machine learning models164

treat total uncertainty as a measure of confi-165

dence when each question has a single valid an-166

swer (Hendrycks and Gimpel, 2016; Lakshmi-167

narayanan et al., 2017; Guo et al., 2017; Wang et al.,168

2022). In single-choice classification problems like169

MMLU (Hendrycks et al., 2020), studies (Rae et al.,170

2021; Kadavath et al., 2022) show that LLMs are171

generally well-calibrated.172

Reinforcement Learning with Human Feedback173

(RLHF) has complicated uncertainty estimation174

(Ouyang et al., 2022). Studies (Xiong et al., 2023;175

Zhou et al., 2024) show that RLHF-trained LLMs176

often overestimate their confidence, raising con-177

cerns about the reliability of self-reported uncer-178

tainty. Moreover, Huang et al. (2023a) and Feng179

et al. (2024) found that self-reflection alone is in-180

sufficient for accurately assessing uncertainty.181

Jiang et al. (2023) found that rephrasing and182

reordering prompts improve uncertainty quantifica-183

tion in single-answer settings. While their approach184

partially overlaps with ours in textual perturbation,185

we extend the analysis to multi-answer scenarios186

that involve aleatoric uncertainty and additional187

prompt-introduced biases, including image-based188

biases. Crucially, we further examine how these bi-189

ases affect the two uncertainties differently across190

varying confidence levels, offering a deeper under-191

standing of the bias mitigation method.192

Uncertainty Quantification with a Single Seman-193

tic Valid Answer. Prior work on LLM uncer-194

tainty with aleatoric components mainly focuses195

on variability in generating semantically equivalent196

outputs, using benchmarks such as CoQA (Reddy197

et al., 2019), TriviaQA (Joshi et al., 2017), and198

AmbigQA (Min et al., 2020).199

Proposed techniques include training auxiliary200

classifiers (Kamath et al., 2020; Cobbe et al., 2021)201

and leveraging internal model states (Ren et al.,202

2022; Burns et al., 2022; Lin et al., 2023), requir-203

ing additional training or model access. Semantic204

equivalence has proven to be effective in reduc-205

ing aleatoric uncertainty from phrasing variability206

without access to internal model states (Kuhn et al.,207

2023; Farquhar et al., 2024). Research by Huang208

et al. (2023b) observed that sample-based methods 209

outperform single-inference approaches. 210

Building on these findings, we shift focus from 211

phrasing variation to the challenge of multiple se- 212

mantically valid answers, aiming to capture the 213

distinct characteristics of epistemic and aleatoric 214

uncertainty. 215

Uncertainty Quantification with Multiple Se- 216

mantic Valid Answers. Uncertainty estimation 217

becomes more complex with multiple semantically 218

valid answers. Ahdritz et al. (2024) tackled this 219

by assuming larger models capture aleatoric un- 220

certainty, while a smaller model head is trained to 221

predict it. They also observed that LLMs are more 222

likely to copy input information when epistemically 223

uncertain compared to aleatorically uncertain. Yad- 224

kori et al. (2024) built on similar findings by using 225

mutual information to estimate epistemic uncer- 226

tainty, measuring answer distribution dependency 227

on provided hints through iterative prompting. 228

This growing body of work underscores the need 229

to distinguish epistemic from aleatoric uncertainty 230

with multiple semantically valid answers. We ex- 231

tend this by analyzing how biases introduced by re- 232

lying on a single prompt affect these two measured 233

uncertainties across different model confidences. 234

In addition, Yadkori et al. (2024) preselected multi- 235

label queries with high entropy (> 0.7) from the 236

WordNet dataset (Fellbaum, 1998), where LLMs 237

achieve near-perfect performance. This approach 238

results in instances with high total uncertainty but 239

correct outputs, which may not reflect real-world 240

data distributions. We use unfiltered datasets to 241

better capture practical challenges. 242

3 The role of Bias in Uncertainty 243

Quantification 244

While bias might add noise to epistemic uncer- 245

tainty estimation, it also may reduce the noise in- 246

troduced by aleatoric uncertainty. We evaluate this 247

trade-off using GPT-4o, one of the most advanced 248

multimodal LLMs, to assess whether mitigating 249

the prompt-introduced biases improves uncertainty 250

quantification under aleatoric uncertainty. 251

Ahdritz et al. (2024) and Yadkori et al. (2024) 252

both found that LLMs are more likely to copy input 253

information under high epistemic uncertainty but 254

not high aleatoric uncertainty. Inspired by these 255

findings, we further analyze how these prompt- 256

introduced biases impact each type of uncertainty 257

estimation, aiming to provide deeper insight. 258
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Prob: 0.7 (sign on a pole next to a man on a sidewalk. 
there is a parking meter...)

Prob: 0.1 (man and people on a mall next to a 
parking meter... )

Prob: 0.1 (a car on a street with a cone and dark)

Prob: 0.1 (a man, a boy, and a sign on a sidewalk. the 
boy is wearing a jacket and there is a parking meter 
next to him)

Perturb Bias of Inputs

High Entropy of Average Probabilities: 
{0.25, 0.25, 0.25, 0.25}

High
Uncertainty

P: 0.1

P: 0.7

P: 0.1

P: 0.1

P: 0.1

P: 0.1

P: 0.7

P: 0.1

P: 0.1

P: 0.1

P: 0.1

P: 0.7

Figure 3: Perturb prompts to shuffle bias factors to estimate bias-free uncertainty.

3.1 Epistemic and Aleatoric Uncertainty259

Epistemic uncertainty arises from uncertainty in260

distinguishing correct from incorrect predictions,261

reflecting the model’s lack of knowledge or confi-262

dence. In contrast, aleatoric uncertainty stems from263

uncertainty among multiple valid answers and ex-264

ists even with perfect world knowledge.265

Building on the proven effectiveness of semantic266

equivalence in addressing phrasing variability, par-267

ticularly the use of LLM-based Natural Language268

Inference (Farquhar et al., 2024), we focus on the269

challenge of multiple valid answers with distinct270

meanings. We adopt a multiple-choice format with271

two semantically distinct correct options and two272

incorrect ones. This setup ensures sufficient data273

points while providing a conceptual framework for274

our analysis without first resolving semantic equiv-275

alence. For generalizing uncertainty quantifica-276

tion from classification to open-ended generation,277

please refer to Appendix B of Jiang et al. (2023).278

In uncertainty quantification (see Section 3.3),279

ground-truth information is unavailable. However,280

for analyzing bias impact, we use ground-truth la-281

bels to quantify epistemic and aleatoric uncertainty282

separately. We estimate epistemic and aleatoric283

uncertainty using epistemic entropy and aleatoric284

entropy, respectively. We define epistemic entropy285

as the entropy over the probability of a correct pre-286

diction (i.e., the summed probabilities of all valid287

answers) and the individual probabilities of each288

incorrect prediction. Let i denote a potential output,289

and “correct” the set of valid answers:290

P (correct) =
∑

i∈correct

P (i) (1)291

Epistemic Entropy = − P (correct) logP (correct)292

−
∑

i/∈correct

P (i) logP (i) (2)293

Aleatoric entropy is defined as the entropy over the294

normalized distribution of correct answers:295

Aleatoric Entropy = −
∑

i∈correct

P (i)

P (correct)
log

P (i)

P (correct)
(3) 296

Consequently, the total entropy over the full output 297

distribution, which is commonly used to estimate 298

model uncertainty, can be decomposed into epis- 299

temic and aleatoric entropy as follows. A detailed 300

proof is provided in Appendix A.1. 301

Entropy = Epistemic Entropy + P (correct) × Aleatoric Entropy (4) 302

3.2 Prompt-Introduced Biases 303

We consider three text-based biases and three 304

image-based biases. The text-based biases include: 305

306

Phrasing Bias. LLMs often rely on spurious lin- 307

guistic correlations, making predictions without 308

fully understanding context (Wang et al., 2021; Si 309

et al., 2023). We mitigate phrasing bias by rephras- 310

ing prompts while preserving semantic meaning to 311

average out probability shifts caused by bias. 312

Positional Bias. LLMs are known to exhibit sen- 313

sitivity to the positions of input options (Wang et al., 314

2023; Liu et al., 2024). We shuffle the positions of 315

the options to neutralize the probability shift from 316

positional bias across prompts. 317

Label Bias. While label bias falls under linguis- 318

tic features like phrasing bias, shuffling assigned 319

labels offers a more targeted intervention than gen- 320

eral paraphrasing. Liu et al. (2024) highlighted its 321

significant impact in GPT-3.5 and GPT-4. 322

Although image-based biases are often re- 323

duced through image perturbations during training 324

(Shorten and Khoshgoftaar, 2019), we remain inter- 325

ested in exploring whether insights from text-based 326

biases can also be applied to image-based biases. 327

The three image-based biases we consider are: 328

Shape Bias. The shape bias of vision models has 329

been discussed in several studies (He et al., 2023; 330

Gavrikov et al., 2024), where models rely on shape 331

cues to generate their outputs. 332
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Orientation Bias. The orientation of images can333

influence the predictions of vision models, a phe-334

nomenon known as orientation bias (Henderson335

and Serences, 2021; Ye et al., 2024).336

Low-level Feature Bias. Injecting noise into im-337

ages can mitigate biases by reducing reliance on338

low-level features, such as texture, lighting, and339

contrast (Shorten and Khoshgoftaar, 2019).340

More details of prompts perturbation strategies341

to mitigate biases are provided in Appendix A.2.342

3.3 Uncertainty Quantification in the343

Presence of Aleatoric Uncertainty344

We explore bias mitigation for uncertainty quantifi-345

cation, aiming to estimate a model’s confidence in346

its outputs without ground truth access by reducing347

prompt-introduced biases, as depicted in Figure 3.348

Unlike the mutual information approach pro-349

posed by the recent work (Yadkori et al., 2024),350

which injects hints into prompts to measure copy-351

ing behavior, our method operates in a smaller352

search space by directly targeting biases in default353

prompts, avoiding broader searches. Specifically,354

we address both text- and image-based biases un-355

avoidably introduced by a single prompt, as iden-356

tified in prior work (Wang et al., 2023; Liu et al.,357

2024; Gavrikov et al., 2024; Ye et al., 2024).358

3.4 Bias Effects on Measured Uncertainties359

As many top-performing models are closed-source,360

understanding their behavior as observable without361

internal states is crucial. We examine how prompt-362

introduced biases affect measured epistemic and363

aleatoric uncertainty, offering insights that can be364

leveraged for both open- and closed-source models.365

To assess the impact of bias, we compare en-366

tropy values from single prompts to those aver-367

aged over multiple bias-shuffled prompts (see Fig-368

ure 3). Specifically, we measure: (1) bias impact369

as the absolute change in epistemic and aleatoric370

entropy, and (2) bias-induced overconfidence as371

the decrease in entropy from the averaged distri-372

bution to the single prompt. While the averaged373

distribution across bias-shuffled prompts may not374

be entirely bias-free, it is relatively bias-reduced375

reference (Wang et al., 2023; Liu et al., 2024) and376

we refer to it as “bias-free” for convenience.377

We perform two separate linear regressions to378

examine the relationship between bias-free confi-379

dence levels (independent variable) and each of the380

two bias effect measures (dependent variable).381

4 Experiments 382

Prompt Template
You are given an image and a set of descriptions. Your
task is to evaluate each description and determine
whether it is true based on the image.
Below are the descriptions:
{Label_0}: {Option_0}
{Label_1}: {Option_1}
{Label_2}: {Option_2}
{Label_3}: {Option_3}
Provide one index of the descriptions that are true,
regardless of the number of descriptions that you
believe are true. Return your response as a single
index without any additional explanations or text.
Here is an example format for your response:
0
Use the provided format and structure for your re-
sponse.

Table 1: The Vanilla Prompt used to obtain greedy out-
puts from Large Language Models for evaluating their
correctness. An example is provided in Appendix A.2.

Dataset. We use the VL_checklist (Zhao et al., 383

2022) and CREPE datasets (Ma et al., 2023), which 384

contain numerous images with human-verified pos- 385

itive and negative descriptions. In contrast, some 386

datasets (Thrush et al., 2022; Tong et al., 2024) con- 387

tain image descriptions but lack multiple correct 388

and incorrect ones per image, while others (Ray 389

et al., 2023; Liu et al., 2023) include only a lim- 390

ited number. We randomly select two correct and 391

two incorrect descriptions and present them in a 392

random order to ensure unbiased LLM evaluation. 393

These datasets evaluate more advanced model 394

capabilities, compositional reasoning (Hua et al., 395

2024), compared to early multi-label datasets such 396

as WordNet where current LLMs achieve near- 397

perfect performance. To balance data coverage 398

and budget, we create 1,000 questions from 1,000 399

images per dataset. 400

Evaluation Metrics. We adopt the AUROC met- 401

ric for uncertainty quantification, following prior 402

studies (Band et al., 2022; Kuhn et al., 2023; Lin 403

et al., 2023; Farquhar et al., 2024). AUROC is ro- 404

bust to class imbalance and effectively captures the 405

ranking performance (McDermott et al., 2024). 406

For further analysis, we use linear regression co- 407

efficients and p-values to examine how bias-free 408

model confidence influences bias-induced changes 409

in measured epistemic and aleatoric uncertainty. 410

Regression coefficients indicate the direction and 411

magnitude of this relationship: a positive coeffi- 412

cient suggests greater bias effects at higher confi- 413

dence levels, while a negative coefficient implies 414

that higher confidence reduces bias impact. P- 415
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values assess statistical significance, with low val-416

ues (typically ≤ 0.05) indicating a meaningful ef-417

fect rather than one due to chance.418

Models. Given the popularity and strong perfor-419

mance of the GPT series, we select the latest stable420

version of GPT-4o (‘gpt-4o-2024-11-20’) available421

at the time. Additionally, we extend our empiri-422

cal analysis to the open-source LLM Qwen2-VL423

(‘Qwen2-VL-72B-Instruct-GPTQ-Int4’).424

Experimental Settings. With OpenAI’s closed-425

source LLMs now providing top-20 token proba-426

bilities, we compute prediction probabilities across427

all options directly, rather than approximating via428

sampling (Farquhar et al., 2024). We approximate429

bias-free model confidence by summing correct430

options from averaging probabilities across bias-431

shuffled prompts. We also extend our experiments432

by approximating model inconfidence using bias-433

free epistemic entropy (higher entropy indicates434

lower confidence), presented in Appendix A.5.435

Following Kuhn et al. (2023) and Farquhar et al.436

(2024), we approximate greedy decoding by using437

a single output generated at a very low temperature438

(1e-15) as the model’s ‘best generation’ for assign-439

ing correctness labeling, using the prompt shown440

in Table 1. While closed-source LLMs may still441

exhibit variation at zero temperature, this approach442

remains consistent with established research.443

Farquhar et al. (2024) found that sampling set-444

tings, like temperature and top-P, minimally affect445

sampling-based uncertainty quantification. Based446

on this, we fix generation parameters (temperature447

= 0.9, top-P = 1) for sampling from bias-shuffled448

prompts to ensure consistency and avoid unneces-449

sary tuning. We run ten shuffled prompts for each450

type of bias, aligning with the sample sizes used451

in previous sampling-based methods (Huang et al.,452

2023b; Kuhn et al., 2023; Farquhar et al., 2024) and453

the per-iteration sample count in iterative-based454

methods (Yadkori et al., 2024).455

5 Results and Analysis456

5.1 Uncertainty Quantification Through Bias457

Mitigation458

When model confidence (self-perception) aligns459

with its true knowledge, it serves as a good esti-460

mate of the probability of correctness. As shown461

in Equation (4), the model’s total uncertainty incor-462

porates both epistemic uncertainty that indicates463

model confidence, and aleatoric uncertainty which464

Methods #Inference VL_Checklist CREPE

Mutual Information 20 0.6782 0.5973

Repetitive-based #Answers 10 0.6763 0.5821
Rephrased-based #Answers (proposed) 10 0.7328 0.6106

Single-inference Prob 1 0.7349 0.5801
Repetitive-based Prob 10 0.7233 0.6017
Rephrase-based Prob (proposed) 10 0.7762 0.6513

Single-inference Entropy 1 0.7492 0.5870
Repetitive-based Entropy 10 0.7412 0.6084
Rephrase-based Entropy (proposed) 10 0.7779 0.6442
Reorder-based Entropy (proposed) 10 0.7844 0.6299
Relabel-based Entropy (proposed) 10 0.7665 0.6406
Rephrase+Reorder+Relabel-based Entropy (proposed) 10*3 0.8123 0.6588
Resize-based Entropy (proposed) 10 0.7605 0.6219
Rotate-based Entropy (proposed) 10 0.7565 0.6204
Noise-based Entropy (proposed) 10 0.7535 0.6252
Resize+Rotate+Noise-based Entropy (proposed) 10*3 0.7699 0.6287

Table 2: This table presents the AUROC scores for epis-
temic uncertainty quantification with GPT-4o. While the
Repetitive-based method shows minimal improvement,
mitigation of any single bias consistently enhances per-
formance on both datasets. Furthermore, combining
methods targeting different biases further improves per-
formance over individual methods.

does not. We use GPT-4o to evaluate the trade-off 465

that bias mitigation introduces between these two 466

types of uncertainty for uncertainty quantification. 467

Baselines. We focus on Entropy as our main 468

baseline, given its strong performance in recent 469

studies targeting closed-source LLMs (Kuhn et al., 470

2023; Farquhar et al., 2024; Yadkori et al., 2024). 471

We also include two commonly used baselines: the 472

Prob (probability of the prediction) and the #An- 473

swers (number of answers), as well as the recently 474

proposed Mutual Information approach (Yadkori 475

et al., 2024), which adopts iterative prompting to 476

estimate confidence based on the model’s tendency 477

to copy provided hints. 478

To address potential variation in token probabili- 479

ties under identical decoding in closed-source mod- 480

els, we also introduce a Repetitive-based baseline 481

that averages probabilities over multiple runs of the 482

same prompt. This allows us to examine whether 483

performance gains stem from better probability es- 484

timation simply through repeated sampling. 485

Analysis. As shown in Table 2, we observe that 486

simple Repetitive-based samplings have minimal 487

improvement over single-inference estimations. 488

Bias mitigation consistently improves perfor- 489

mance across all baselines. While no single bias 490

mitigation method clearly outperforms the others, 491

summing the entropy obtained from each bias re- 492

moval leads to further performance gains. Simi- 493

lar accuracies across the ten bias-shuffled prompts 494

shown in Appendix A.3 suggest that the improve- 495

ment is not due to prompt quality differences. 496

Among bias mitigation strategies, combining 497

three text-based methods yields the greatest per- 498
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Dataset Bias Metrics GPT-4o Qwen2-VL

Epistemic Aleatoric Ratio Epi./Ale. Epistemic Aleatoric Ratio Epi./Ale.

VL_Checklist

Phrasing Coefficients - 0.2300 - 0.0579 3.97 - 0.0332 - 0.0123 2.70
P-value *** ** *** ns

Positional Coefficients - 0.6098 - 0.0629 9.69 - 0.1571 - 0.0844 1.86
P-value *** ns *** ***

Label Coefficients - 0.3572 - 0.0911 3.92 0.0602 0.0757 0.80
P-value *** ** *** ***

Shape Coefficients - 0.1679 - 0.0707 2.37 - 0.0664 - 0.0081 8.20
P-value *** *** *** *

Orientation Coefficients - 0.1746 - 0.0671 2.60 - 0.1073 - 0.0230 4.67
P-value *** *** *** ns

Low-level Feature Coefficients - 0.1466 - 0.0457 3.21 - 0.0493 - 0.0214 2.30
P-value *** ** *** *

CREPE

Phrasing Coefficients - 0.1149 - 0.0481 2.39 - 0.0025 - 0.0011 2.27
P-value *** *** ns ns

Positional Coefficients - 0.2914 - 0.1162 2.51 0.0192 0.0525 0.37
P-value *** *** ns **

Label Coefficients - 0.1663 - 0.1147 1.45 0.0638 0.0407 1.57
P-value *** *** *** ***

Shape Coefficients - 0.0952 - 0.0215 4.43 - 0.0196 - 0.0188 1.04
P-value *** * * *

Orientation Coefficients - 0.0797 - 0.0347 2.30 - 0.0320 - 0.0106 3.02
P-value *** ** ** ns

Low-level Feature Coefficients - 0.0919 - 0.0336 2.74 - 0.0202 - 0.0044 4.59
P-value *** ** ** ns

Table 3: Both GPT-4o and Qwen2-VL exhibit greater bias impact at lower confidence levels, as reflected in absolute
changes in both epistemic and aleatoric entropy with and without bias. This is supported by the consistent negative
coefficients. Moreover, the bias impact on epistemic uncertainty correlates more strongly with confidence than
on aleatoric uncertainty, as indicated by coefficient Ratio Epi./Ale.> 1 (bolded) and the relatively lower statistical
significance of p-values for aleatoric entropy. (***p ≤ 0.001, **p ≤ 0.01, *p ≤ 0.05, ns=not significant p > 0.05)

formance improvement, increasing AUROC by499

6.39% on VL_Checklist and 7.18% on CREPE.500

In comparison, combining three image-based meth-501

ods yields more modest improvement (2.07% and502

4.17%, respectively), likely because image pertur-503

bation during training has already mitigated much504

of the image-based bias. Combining image- and505

text-based bias mitigation yields no further gains,506

suggesting text-based corrections capture most bi-507

ases affecting uncertainty estimation. These find-508

ings highlight that bias removal is not only impor-509

tant for fairness but also critical for quantifying510

(epistemic) uncertainty when bias is significant.511

The low performance of the Mutual Information512

method can be attributed to the concentration of its513

values as shown in Figure 4 in Appendix, a limita-514

tion shared by the #Answers baseline. Specifically,515

the prevalence of identical Mutual Information val-516

ues, especially in low-uncertainty instances, limits517

its discriminative power and results in a low AU-518

ROC score. This makes it less suitable for high-519

stakes applications that demand a high abstention520

rate. In contrast, the text-based bias mitigation ap-521

proaches remain robust across different thresholds.522

5.2 Relationship Between Model Confidence523

and Bias Impact524

We compute bias-free model confidence using the525

sum of the bias-free probabilities of correct options,526

which serves as the independent variable. We then 527

examine its relationship to absolute changes in mea- 528

sured epistemic and aleatoric entropy, comparing 529

outputs with and without bias. Larger change indi- 530

cates stronger bias impact. Results from two mod- 531

els and two datasets, as shown in Table 3, reveal 532

consistent patterns across all biases: 533

Lower model confidence correlates with greater 534

bias impact. When the model exhibits lower bias- 535

free confidence, its outputs tend to be more sensi- 536

tive to bias, as evidenced by consistently negative 537

coefficients for GPT-4o with only three exceptions 538

in Qwen-2. 539

Bias impact on epistemic uncertainty estimates 540

is more strongly correlated with model confi- 541

dence than on aleatoric uncertainty estimates. 542

This is evidenced by consistently higher coeffi- 543

cients for epistemic entropy compared to aleatoric 544

entropy, as indicated by Ratio Epi./Ale. greater 545

than one for GPT-4o, with only two exceptions 546

for Qwen2-VL. In some cases, the bias impact on 547

aleatoric uncertainty shows no significant correla- 548

tion with bias-free model confidence, as indicated 549

by large p-values (p > 0.05). 550

Similar results are obtained using bias-free epis- 551

temic entropy as the approximated model inconfi- 552

dence, as shown in Appendix A.5. 553
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Dataset Bias Metrics GPT-4o Qwen2-VL

Epistemic Aleatoric Ratio Epi./Ale. Epistemic Aleatoric Ratio Epi./Ale.

VL_Checklist

Phrasing Coefficients - 0.1651 0.0157 10.52 - 0.0158 - 0.0198 0.80
P-value *** ns * *

Positional Coefficients - 0.7585 - 0.0499 15.2 - 0.1827 - 0.0722 2.53
P-value *** ns *** *

Label Coefficients - 0.3811 - 0.0898 4.24 -0.0338 -0.0233 1.45
P-value *** * ns ns

Shape Coefficients - 0.1542 - 0.0344 4.48 - 0.0620 - 0.0013 47.69
P-value *** ns *** ns

Orientation Coefficients - 0.1441 - 0.0181 7.96 - 0.1309 - 0.0235 5.57
P-value *** ns *** ns

Low-level Feature Coefficients - 0.1188 - 0.0121 9.82 - 0.0257 - 0.0011 23.36
P-value *** ns *** ns

CREPE

Phrasing Coefficients - 0.1019 0.0184 5.54 - 0.0242 0.0097 2.49
P-value *** ns *** ns

Positional Coefficients - 0.3929 - 0.0772 5.09 - 0.0951 0.0392 2.43
P-value *** * *** ns

Label Coefficients - 0.2641 - 0.1082 2.44 - 0.0152 0.0184 0.83
P-value *** *** ns ns

Shape Coefficients - 0.0580 0.0068 8.52 - 0.0147 - 0.0082 1.79
P-value *** ns ns ns

Orientation Coefficients - 0.0586 - 0.0206 2.84 - 0.0776 - 0.0095 8.17
P-value *** ns *** ns

Low-level Feature Coefficients - 0.0741 - 0.0181 4.09 - 0.0152 - 0.0079 1.92
P-value *** ns ns ns

Table 4: Both GPT-4o and Qwen2-VL exhibit greater overconfidence in epistemic uncertainty estimation due to
bias when their confidence is lower, demonstrated by the negative coefficients and statistically significant p-values.
In contrast, model confidence has no significant effect on the direction of aleatoric entropy changes caused by bias,
supported by mostly insignificant p-values and mixed coefficient directions. The coefficient ratio Epi./Ale. > 1 is
bolded. (***p ≤ 0.001, **p ≤ 0.01, *p ≤ 0.05, ns=not significant p > 0.05)

5.3 Relationship Between Model Confidence554

and Bias-Induced Overconfidence555

While lower model confidence leads to greater bias-556

induced changes, the direction of change is crucial.557

Greater under-confidence (i.e. higher measured558

entropy) in lower bias-free confidence instances559

improves the robustness of estimated confidence560

ranking under estimation noise by amplifying the561

contrast between instances with low and high bias-562

free confidence. However, greater over-confidence563

in lower-confidence instances hurts the ranking per-564

formance of estimated confidence (see Figure 2).565

Therefore, we further examine how model confi-566

dence relates to bias impact on entropy reduction,567

subtracting measured entropy from a single prompt568

from that of bias-shuffled prompts. Results from569

two models and two datasets, as shown in Table 4,570

reveal consistent patterns across all biases:571

Lower model confidence is associated with572

greater underestimation of epistemic entropy573

(i.e., overconfidence) in the presence of bias.574

When bias-free model confidence is lower, bias575

causes a larger reduction in epistemic entropy. This576

is evidenced by consistently negative coefficients577

for epistemic entropy reduction, with the majority578

of p-values indicating statistical significance.579

Model confidence has no significant effect on the580

direction of aleatoric entropy changes caused581

by bias. This is supported by the predominance 582

of non-significant p-values and inconsistent coeffi- 583

cient signs for aleatoric entropy reduction. 584

Using bias-free epistemic entropy to approxi- 585

mate model inconfidence yields similar results, as 586

shown in Appendix A.5. 587

6 Conclusion 588

Removing three text-based biases and three image- 589

based biases improves uncertainty quantification in 590

the presence of aleatoric uncertainty, as measured 591

by AUROC on GPT-4o. However, the improvement 592

from image-based bias removal is smaller, likely 593

due to existing image perturbation during training. 594

While entropy decomposes into epistemic and 595

aleatoric components, our findings show that lower 596

model confidence amplifies bias effects on mea- 597

sured uncertainties, with a greater amplification ob- 598

served on epistemic than on aleatoric uncertainty. 599

Moreover, while model confidence does not signif- 600

icantly affect the direction of measured aleatoric 601

changes under bias, lower model confidence is as- 602

sociated with greater underestimation of epistemic 603

uncertainty (i.e. overconfidence) under bias. 604

Future work may leverage the distinct effects of 605

bias on these two types of uncertainty across vary- 606

ing confidence levels to develop more advanced 607

techniques for disentangling them. 608
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Limitations609

Reliance on Token Probabilities. While Ope-610

nAI provides token probabilities for its closed-611

source models, other LLMs impose stricter lim-612

itations. Some return only the predicted token’s613

probability without alternatives, while others, like614

Gemini, limit usage to one query per day. These615

constraints hinder the entropy-based uncertainty616

quantification method we use, which may require617

more samples to approximate the token probabili-618

ties.619

Increase in Inference Cost. While bias mitiga-620

tion enhances the robustness of uncertainty quan-621

tification, it comes at the expense of the increased622

number of inferences. Shuffling prompts to ac-623

count for each individual bias requires multiple624

model queries, increasing costs compared to single-625

inference methods.626
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A Appendix888

A.1 Mathematical Proof of Equation (4)889

The entropy over the full distribution is890

Entropy = −
∑
i

P (i) logP (i) (5)891

= −
∑

i∈correct

P (i) logP (i)−
∑

i/∈correct

P (i) logP (i)

(6)

892

The aleatoric entropy is defined as the entropy over the condi-893
tional distribution among correct options:894

Aleatoric Entropy = −
∑

i∈correct

P (i)

P (correct)
log

(
P (i)

P (correct)

)
,

(7)

895

where P (correct) =
∑

i∈correct P (i).896
897

Multiply both sides by P (correct) to get:898

P (correct) · Aleatoric Entropy899

= −
∑

i∈correct

P (i) log

(
P (i)

P (correct)

)
(8)900

= −
∑

i∈correct

P (i) logP (i) +
∑

i∈correct

P (i) logP (correct)

(9)

901

= −
∑

i∈correct

P (i) logP (i) + P (correct) logP (correct)

(10)

902

Substitute this back into the total entropy:903

Entropy904

= −
∑

i∈correct

P (i) logP (i)−
∑

i/∈correct

P (i) logP (i) (11)905

=

[
−

∑
i∈correct

P (i) logP (i) + P (correct) logP (correct)

]
(12)

906

− P (correct) logP (correct)−
∑

i/∈correct

P (i) logP (i)

(13)

907

= P (correct) · Aleatoric Entropy+ (14)908 [
−P (correct) logP (correct)−

∑
i/∈correct

P (i) logP (i)

]
︸ ︷︷ ︸

Epistemic Entropy

(15)

909

= P (correct) · Aleatoric Entropy + Epistemic Entropy
(16)

910

A.2 Details of Prompt Design911

Table 5 gives an example of vanilla prompt we used912

in our experiments.913

Phrasing Bias. We utilize GPT-4o to help para-914

phrase our default prompt shown in Table 1 while915

keeping the options unchanged. Table 10 lists all916

the rephrased prompts used in our experiments to917

perturb bias related to phrasing.918

Prompt Example
You are given an image and a set of descriptions. Your
task is to evaluate each description and determine
whether it is true based on the image.
Below are the descriptions:
0: person sitting in a boat with a paddle in the water.
there is another paddle and boat in the water. the boat
has writing on the side of it.
1: person wearing shirt and captain on boat in water
2: a boat with a paddle and captain on it, in dioxide
3: captain of ground with yacht in water
Provide one index of the descriptions that are true,
regardless of the number of descriptions that you
believe are true. Return your response as a single
index without any additional explanations or text.
Here is an example format for your response:
0
Use the provided format and structure for your re-
sponse.

Table 5: The Vanilla Prompt example used to obtain
greedy outputs.

Positional Bias. To perturb positional bias, we 919

shuffle the assignments of option_0, option_2, op- 920

tion_3, and option_4 in the prompt template shown 921

in Table 1, while keeping the four labels in their 922

natural order: 0, 1, 2, 3. 923

Label Bias. To perturb label bias, we maintain 924

the original positions of the options but shuffle the 925

labels assigned to Label_0, Label_1, Label_2, and 926

Label_3, such as 2, 0, 3, 1. 927

Shape Bias. We resize images across different 928

inputs by varying the length-to-width ratio from 0.5 929

to 1.5, intentionally distorting the shapes of objects 930

in the images. 931

Orientation Bias. We rotate images across dif- 932

ferent inputs by varying the rotated degrees from 933

-45° to 45°. The rotation angles are kept relatively 934

small to preserve the overall spatial relationships 935

within the images. 936

Low-level Feature Bias. We add random Gaus- 937

sian noise with mean=0 and std=25 to the images 938

across different inputs to disrupt local features 939

while preserving their overall semantic meaning. 940

A.3 Accuracy Comparison Between Default 941

Prompt and Single Perturbed Prompt 942

Table 6 presents the accuracy comparison between 943

the default prompt with greedy generation and each 944

single bias-perturbed prompt used in our sampling 945

method. The ranking of prompt performance does 946

not correlate with their effectiveness in uncertainty 947

quantification, indicating that the improvements in 948

uncertainty quantification cannot be attributed to 949

prompt quality. 950
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Model Dataset Bias Accuracy (%)

GPT-4o

VL_Checklist

Default 89.1
Phrasing 86.5

Positional 85.8
Label 83.6
Shape 87.5

Orientation 86.5
Low-level Feature 86.7

CREPE

Default 73.3
Phrasing 73.7

Positional 71.7
Label 70.7
Shape 73.1

Orientation 72.9
Low-level Feature 72.8

Qwen2-VL

VL_Checklist

Default 92.1
Phrasing 82.1

Positional 82.8
Label 77.9
Shape 82.2

Orientation 81.4
Low-level Feature 81.5

CREPE

Default 78.7
Phrasing 78.5

Positional 78.7
Label 77.9
Shape 76.7

Orientation 75.6
Low-level Feature 74.9

Table 6: This table presents the accuracy achieved by
the default prompt and the average accuracy achieved
by each perturbed prompt with regard to each bias.

A.4 Details of Uncertainty Quantification951

Performance952

Figure 4 shows the ROC curves for text-based bias953

mitigation and baselines, providing more details954

of their performance across different threshold re-955

gions.956

A.5 More Empirical Results957

Dataset GPT-4o Qwen2-VL
VL_Checklist 1.01 1.06

CREPE 1.27 1.22

Table 7: This table presents the ratio of Epistemic en-
tropy to Aleatoric entropy across both datasets and mod-
els using the default prompt. Ratios closer to one indi-
cate that aleatoric entropy is comparable in magnitude
to epistemic entropy.

Table 7 shows that the magnitude of aleatoric958

entropy is comparable to that of epistemic entropy.959

We further validate our empirical findings by960

using the epistemic entropy after bias reduction,961

calculated from the average probabilities of ten962

shuffled prompts, as an approximation of the un-963

derlying model confidence. The results remain964

consistent with those obtained when approximating965

model confidence using the sum of the probabilities966

of correct options from the average probabilities.967

More specifically, the effects of bias, measured968

by changes in measured uncertainties, are more969

pronounced when model confidence is lower; in 970

other words, when debiased epistemic entropy is 971

higher. This is evidenced by consistently positive 972

and statistically significant coefficients for changes 973

in measured epistemic uncertainty due to biases 974

in GPT-4o. Qwen2-VL follows the same pattern, 975

with exceptions for Label bias. For aleatoric uncer- 976

tainty, GPT-4o also shows predominantly positive 977

coefficients, whereas Qwen2-VL exhibits inconsis- 978

tent coefficient directions with much smaller val- 979

ues, as indicated by Epi./Ale. ratios greater than 980

one-except for the same two exceptions, and non- 981

significant p-values. These results are detailed in 982

Table 8. 983

Lower model confidence is more strongly asso- 984

ciated with greater underestimation of measured 985

epistemic uncertainty, whereas it has no signifi- 986

cant effect on the direction of changes in measured 987

aleatoric uncertainty. This is supported by the con- 988

sistently positive and largely significant coefficients 989

for the decrease in measured epistemic uncertainty, 990

while the coefficients for the decrease in measured 991

aleatoric uncertainty are predominantly insignifi- 992

cant except the same two Qwen2-VL cases. 993
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(a) ROC curves on VL_Checklist. (b) ROC curves on CREPE.

Figure 4: Comparison of ROC curves for the text-based bias mitigation methods and baselines on two datasets
using GPT-4o. The high prevalence of identical Mutual Information estimates makes it less suitable when a high
abstention rate is required. The bias mitigation approach maintains robustness across different thresholds.

Dataset Bias Metrics GPT-4o Qwen2-VL

Epistemic Aleatoric Ratio Epi./Ale. Epistemic Aleatoric Ratio Epi./Ale.

VL_Checklist

Phrasing
Coefficients 0.2622 0.0739 3.55 0.0347 - 0.0056 6.20

P-value *** *** *** ns

Positional
Coefficients 0.4719 0.0379 12.45 0.1326 - 0.0654 2.03

P-value *** ns *** ***

Label
Coefficients 0.2999 0.0575 5.22 -0.0255 -0.0828 0.31

P-value *** ** ns ***

Shape
Coefficients 0.2023 0.0822 2.46 0.0644 0.0144 4.47

P-value *** *** *** ns

Orientation
Coefficients 0.2126 0.0876 2.43 0.0916 0.0316 2.90

P-value *** *** *** **

Low-level Feature
Coefficients 0.1851 0.0536 3.45 0.0476 0.0205 2.32

P-value *** *** *** **

CREPE

Phrasing
Coefficients 0.1825 0.0558 3.27 0.0067 - 0.0020 3.30

P-value *** *** * ns

Positional
Coefficients 0.3344 0.0476 7.03 0.0139 -0.0508 0.27

P-value *** * ns ***

Label
Coefficients 0.2129 0.0721 2.95 - 0.0744 - 0.0676 1.10

P-value *** *** *** ***

Shape
Coefficients 0.1694 0.0423 4.00 0.0173 - 0.0029 5.97

P-value *** *** * ns

Orientation
Coefficients 0.1723 0.0689 2.50 0.0227 - 0.0084 2.70

P-value *** *** * ns

Low-level Feature
Coefficients 0.1565 0.0517 3.03 0.0184 0.0064 2.88

P-value *** *** *** ns

Table 8: Both GPT-4o and Qwen2-VL exhibit greater bias impact at lower confidence levels, as reflected in absolute
changes in both epistemic and aleatoric entropy with and without bias. This is supported by the consistent positive
coefficients. Moreover, the bias impact on epistemic uncertainty correlates more strongly with confidence than
on aleatoric uncertainty, as indicated by coefficient Ratio Epi./Ale.> 1 (bolded) and the relatively lower statistical
significance of p-values for aleatoric entropy. (***p ≤ 0.001, **p ≤ 0.01, *p ≤ 0.05, ns=not significant p > 0.05)
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Dataset Bias Metrics GPT-4o Qwen2-VL

Epistemic Aleatoric Ratio Epi./Ale. Epistemic Aleatoric Ratio Epi./Ale.

VL_Checklist

Phrasing
Coefficients 0.1537 0.0187 8.22 0.0230 - 0.0071 3.24

P-value *** ns *** ns

Positional
Coefficients 0.4874 0.0330 14.8 0.1311 - 0.0449 2.92

P-value *** ns *** *

Label
Coefficients 0.2942 0.0486 6.05 0.0267 -0.0070 3.81

P-value *** ns ns ns

Shape
Coefficients 0.1277 0.0438 2.92 0.0387 - 0.0033 47.69

P-value *** * *** ns

Orientation
Coefficients 0.1590 0.0289 5.50 0.0883 0.0108 8.18

P-value *** ns *** ns

Low-level Feature
Coefficients 0.1219 0.0192 6.35 0.0272 - 0.0080 3.4

P-value *** ns *** ns

CREPE

Phrasing
Coefficients 0.1577 - 0.008 197.13 0.0116 0.0070 1.66

P-value *** ns * ns

Positional
Coefficients 0.4043 0.0327 12.36 0.0975 - 0.0433 2.25

P-value *** ns *** *

Label
Coefficients 0.2890 0.0863 3.35 0.0171 - 0.0419 0.41

P-value *** *** ns **

Shape
Coefficients 0.1425 0.0108 13.19 0.0282 - 0.0060 4.70

P-value *** ns ** ns

Orientation
Coefficients 0.1478 0.0579 2.55 0.0738 - 0.0022 33.55

P-value *** *** *** ns

Low-level Feature
Coefficients 0.1299 - 0.0083 15.65 0.0186 0.0033 5.64

P-value *** ns ** ns

Table 9: Both GPT-4o and Qwen2-VL exhibit greater overconfidence in measured epistemic entropy due to bias
when their confidence is lower, supported by positive coefficients and statistically significant p-values. In contrast,
model confidence has no significant effect on the direction of aleatoric entropy changes caused by bias, as the
directions of coefficients are inconsistent and p-values are not statistically significant. The coefficient ratio Epi./Ale.
> 1 is bolded. (***p ≤ 0.001, **p ≤ 0.01, *p ≤ 0.05, ns=not significant p > 0.05)
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Prompt Template 1
You are given an image and a set of descriptions. Your task is to evaluate each description and determine whether it is
true based on the image.
Below are the descriptions:
<Options >
Provide one index of the descriptions that are true, regardless of the number of descriptions that you believe are true.
Return your response as a single index without any additional explanations or text. Here is an example format for your
response:
0
Use the provided format and structure for your response.
Prompt Template 2
You are presented with an image and a list of descriptions. Your task is to assess each description and judge if it is true
based on the image.
The descriptions are listed below:
<Options >
Indicate one index of the descriptions that are true, regardless of how many you think are correct. Return your response
as a single index without any additional explanations or text. Here is an example format for your response:
0
Use the provided format and structure for your response.
Prompt Template 3
You have an image and several descriptions. Your task is to evaluate each description and determine its validity based
on the image.
Below are the descriptions:
<Options >
List one index of the descriptions that are true, even if multiple descriptions seem accurate. Return your response as a
single index without any additional explanations or text. Here is an example format for your response:
0
Use the provided format and structure for your response.
Prompt Template 4
Given an image and a set of descriptions, your task is to evaluate each description and determine if it is true based on
the image.
Here are the descriptions:
<Options >
Provide one index of the descriptions that are true, even if multiple descriptions are accurate. Respond with a single
index without any additional explanations or text. Here is an example format for your response:
0
Use the provided format and structure for your response.
Prompt Template 5
You have an image and a series of descriptions. Your task is to evaluate each description to determine its truthfulness
based on the image.
Below are the descriptions:
<Options >
Indicate one index of the true descriptions, even if there are multiple true descriptions. Return your response as a single
index without any additional explanations or text. Here is an example format for your response:
0
Use the provided format and structure for your response.
Prompt Template 6
Given an image and several descriptions, your task is to evaluate each description and determine whether it is true based
on the image.
Here are the descriptions:
<Options >
Provide one index of the true descriptions, even if multiple descriptions are valid. Return your response as a single
index without any additional explanations or text. Here is an example of how your response should look:
0
Use the provided format and structure for your response.
Prompt Template 7
You are provided with an image and a series of descriptions. Evaluate each description to determine if it is true based on
the image.
Below are the descriptions:
<Options >
Provide one index of the descriptions that are true, even if there are multiple descriptions that seem valid. Return your
response as a single index without any additional explanations or text. Here is an example format for your response:
0
Use the provided format and structure for your response.
Prompt Template 8
Your task is to evaluate an image and a set of descriptions to determine if each description is true based on the image.
Here are the descriptions:
<Options >
Provide an index of the true description(s), even if multiple descriptions seem correct. Return your response as a single
index without any additional explanations or text. Here is an example format for your response:
0
Use the provided format and structure for your response.
Prompt Template 9
You have been given an image and a list of descriptions. Your task is to evaluate each description and determine if it is
true based on the image.
The descriptions are as follows:
<Options >
Provide one index of the descriptions that are true, even if you think more than one description is correct. Return your
response as a single index without any additional explanations or text. Here is an example format for your response:
0
Use the provided format and structure for your response.
Prompt Template 10
You’ve been presented with an image alongside a series of descriptions. Your objective is to assess each description to
determine its accuracy based on the image.
The descriptions are listed below:
<Options >
You need to identify one description that is true, regardless of how many you think are correct. Please format your
response as a single index without any additional explanations or text. Here is an example of how your response should
look:
0
Ensure you adhere to this format and structure in your response..

Table 10: The ten prompts used to average the output distribution of Large Language Models in order to reduce
phrasing bias through paraphrasing.
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