
Domain Specific Question Answering Over Knowledge Graphs Using Logical
Programming and Large Language Models

Navid Madani, Kenneth Joseph, Rohini K. Srihari
Computer Science and Engineering

Davis Hall, Buffalo, New York 14260-2500
{smadani,kjoseph,rohini}@buffalo.edu

Abstract

Answering questions over domain-specific graphs requires
a tailored approach due to the limited number of relations
and the specific nature of the domain. Our approach inte-
grates classic logical programming languages into large lan-
guage models (LLMs), enabling the utilization of logical rea-
soning capabilities to tackle the KGQA task. By represent-
ing the questions as Prolog queries, which are readable and
near close to natural language in representation, we facilitate
the generation of programmatically derived answers. To vali-
date the effectiveness of our approach, we evaluate it using a
well-known benchmark dataset, MetaQA. Our experimental
results demonstrate that our method achieves accurate identi-
fication of correct answer entities for all test questions, given
only a very small fraction of the training data. Overall, our
work presents a promising approach to addressing question
answering over domain-specific graphs, offering an explain-
able and robust solution by incorporating logical program-
ming languages. Code and models are publicly available on
Github.1

Introduction
Question Answering over Knowledge Graphs (KGQA)
poses significant challenges in the field of Natural Language
Processing (NLP). As structured knowledge graphs captur-
ing rich semantic information become prevalent, there is a
pressing need for intelligent systems that can reason effec-
tively and provide accurate answers to intricate questions
within specific domains. The primary focus of KGQA is
to bridge the gap between human language and structured
knowledge representations. When presented with a ques-
tion in natural language, KGQA systems aim to traverse the
knowledge graph consisting of entities and their relation-
ships, extracting relevant information to generate precise an-
swers. This task demands not only language comprehension
but also the ability to perform logical reasoning across the
edges of the graph to derive meaningful insights. Although
large language models (LLMs) powered by deep learning
have shown remarkable capabilities in natural language un-
derstanding and generation, they may not be specifically
trained on a particular knowledge source or possess a deep

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1https://github.com/navidmdn/logic based qa

understanding of domain-specific facts. However, LLMs can
serve as a valuable tool to represent questions within a do-
main, extracting query or question meanings. Leveraging
logical programming approaches, these representations can
be processed to handle reasoning and knowledge represen-
tation. One notable advantage of this approach is that it em-
powers users of the system to manage knowledge dynami-
cally. They can modify, delete, or add new entries into the
knowledge graph without requiring changes to the system
itself. By integrating logical programming techniques with
LLMs, KGQA systems gain the flexibility to adapt to evolv-
ing knowledge requirements while maintaining their func-
tionality.

In this paper, we address the challenges of domain-
specific KGQA by combining the strengths of large lan-
guage models and logical programming. We propose an ap-
proach that utilizes LLMs to represent questions within a
specific domain, extracting their meanings, while employing
logical programming techniques for reasoning and knowl-
edge representation. Our objective is to demonstrate how
this integration enables robust and adaptable KGQA sys-
tems that can navigate domain-specific knowledge graphs
and provide accurate answers to complex questions. To eval-
uate the effectiveness of our proposed approach, we conduct
experiments using the MetaQA dataset (Zhang et al. 2018),
a widely adopted benchmark in KGQA research. By com-
paring our method against state-of-the-art approaches, we
demonstrate its capability to accurately identify the correct
answer entities for a range of questions. Notably, our ex-
periments show promising results even when our model is
trained on only a small fraction of the available training data,
indicating its efficiency and generalization ability.

The contributions of this paper are two-fold:

• We propose a novel approach to equip LLMs with logi-
cal programming languages for domain-specific KGQA,
enhancing their reasoning capabilities and providing ex-
plainable solutions.

• We demonstrate the effectiveness of our approach
through comprehensive experiments on the MetaQA
dataset, showcasing its ability to accurately represent
questions given only a small set of annotated data.

https://github.com/navidmdn/logic_based_qa


Figure 1: The complete inference pipeline of our proposed method. Note that the inference tree on the right side is a subset of
the answer drawn here to clarify the schema of the model’s output.

Related Work
A variety of approaches have been taken to address the prob-
lem of multi-hop question answering. A number of prior
works have used graph embedding models to encode enti-
ties and relations in a knowledge graph and then score the
triples in a KG and construct a scoring function so that the
score for a correct triple is higher than the score of an in-
correct one (Nickel, Tresp, and Kriegel 2011; Yang et al.
2014a; Balazevic, Allen, and Hospedales 2019; Dettmers
et al. 2017; Vashishth et al. 2019). Others have approached
the problem by constructing a function that maps the ques-
tion embedding along with an embedding of the graph or a
subgraph around the question entity to the answer entity’s
embedding in knowledge graph (Sun et al. 2018; Saxena,
Tripathi, and Talukdar 2020; Sun, Bedrax-Weiss, and Cohen
2019; He et al. 2021). Still others adapt a slightly different
method, training a teacher model to learn intermediate sig-
nals and a student model to answer the questions (He et al.
2021). There also has been efforts by (Xie, Hao, and Zhang
2022) that pushed the performance of these models on 2 and
3 hop splits to the limits. They propose a sequential reason-
ing self-attention mechanism which is guided by a GRU-
inspired Flow Control (GFC) and their work is inspired by
(Shi et al. 2021). Finally, most relevant to our work, (Yang
et al. 2014b) and (Yang et al. 2015) try to learn the logical
form of the natural language questions by building a seman-
tic embedding space. However, our work differs from theirs
in that we use LLMs to represent the question in logical form
instead of manually building a semantic mapping space. The
present work is thus the first to use large language models to
represent questions in logical form and equip LLMs with
logical programming tools to answer questions.

Dataset
The MetaQA dataset is a widely used benchmark dataset for
question answering over knowledge graphs (KGQA). The
MetaQA dataset consists of questions that require reasoning
over a given knowledge graph. The knowledge graph repre-
sents a structured database of 134,741 facts and 9 relations,

MetaQA train dev test
1-hop 96106 9992 9947
2-hop 118980 14872 14872
3-hop 114196 14274 14274

Table 1: Statistics for MetaQA dataset

providing a rich source of information for answering domain
specific questions. Each question in the MetaQA dataset is
associated with the provided knowledge graph, comprising
entities, relations, and their connections. The dataset incor-
porates a diverse range of questions, covering various do-
mains and types of queries. These questions often involve
multiple hops or intermediate steps to reach the correct an-
swer. These multi-hop paths guide the reasoning process
required to answer the questions accurately. By traversing
these paths, the model must navigate through different enti-
ties and relations to arrive at the correct answer. The dataset
also provides the intermediate steps that leads us from ques-
tion entity to the answer . This is one of the important rea-
sons that we chose MetaQA dataset. Table 1 briefly de-
scribes the statistics of this dataset.

Approach
Question to Logical Form Annotation
Each question in MetaQA dataset comes with the infer-
ence path inside the knowledge graph. For example, for the
2-hop question ”the movies written by [Hilary Brougher]
were directed by who?” there exists an inference path of
writer movie director which shows the sequence of rela-
tions we need to traverse in the graph to reach the answer
entity from the question entity Hilary Brougher. We use
this inference path and annotate the question with the cor-
rect prolog query. To do so, we first break down the infer-
ence path into pairs. For the example above we would get
writer movie and movie director pairs. Then we map each of
the pairs to their corresponding predicate. Table 2 provides
a list of all mappings that are available in the dataset. To



ensure that the model focuses solely on the representation of
the question itself, we employ a substitution strategy. Specif-
ically, we replace the question entity with a designated string
placeholder denoted as ENT. For example, if we have the
question ”Which movies directed by [ENT] were written by
whom?” we construct the corresponding Prolog query as di-
rected by reverse(ENT, X), written by(X, Y). This query
captures the essence of the original question while preserv-
ing its logical structure.

Inference Pair Predicate
actor movie starred actors reverse

director movie directed by reverse
movie actor starred actors

movie director directed by
movie genre has genre

movie imdbrating has imdb rating
movie imdbvotes has imdb votes
movie language in language

movie tags has tags
movie writer written by
movie year release year
tag movie has tags reverse

writer movie written by reverse

Table 2: Mapping between different inference pairs and Pro-
log predicates

Question to Logical Form Translation
To facilitate the translation of questions into their corre-
sponding logical forms, we begin by developing a ques-
tion comprehension module. To accomplish this task, we
harness the power of encoder-decoder transformer mod-
els, known for their exceptional potential in sequence to
sequence transformation ability (Vaswani et al. 2017). To
collect the dataset necessary for fine-tuning a sequence-to-
sequence transformer model, we leverage the multi-hop path
information provided by the MetaQA dataset and annotate
each question with the corresponding query as described in
the previous section. From the total pool of 329,282 multi-
hop training examples in MetaQA, we randomly sample and
annotate subsets consisting of 100, 250, 500, and 1000 sam-
ples with each subset consisting of equal number of exam-
ples from each of the 1, 2 and 3 hop samples. These subsets
are respectively labeled as s100, s250, s500 and s1000. To
transform the question into an intermediate query represen-
tation, we employ a T5-small sequence-to-sequence trans-
former model (Raffel et al. 2019). This model effectively
learns to generate accurate representations of the questions,
serving as a bridge between natural language input and log-
ical query output. For the training process, we fine-tune the
model using each of the annotated training sets, iterating
through 5000 training steps. The best-performing model is
selected based on the exact match score obtained from the
development dataset.To optimize the model’s performance,
we utilize the AdamW optimizer with an initial learning rate
of 5e-5. Additionally, a linear learning rate scheduler is em-

ployed. The training is conducted using a batch size of 8,
making efficient use of a single A100 GPU for computa-
tional acceleration.

Question Answering
The question answering process in our proposed model is
illustrated in Figure 1. To begin, we transform each triple
in the knowledge base of the MetaQA dataset into a first-
order logic predicate. For instance, given the triple (In-
nocence — written by — Hilary Brougher), we construct
the corresponding predicate written by(Innocence, Hilary
Brougher).

When processing a specific question, we generate its logi-
cal form using the transformer model. The logical form pro-
vides a structured representation of the question’s meaning.
Subsequently, we replace the ENT token in the logical form
with the corresponding entity ID from the knowledge graph.
This substitution results in the final Prolog query. Finally,
we execute the Prolog query, which involves querying the
knowledge graph. By executing the query, we retrieve both
the answers to the question and the logical path that connects
the question entity to the answer entities. This path provides
valuable insights into the reasoning process and the infor-
mation flow within the knowledge graph.

Experiments and Results
MetaQA questions mostly come with multiple answers.
Prior methods have used hit@1 as a metric to measure the
performance of their model. This means that they measure if
the highest ranked entity given by their model exists in the
answer set. Our approach produces the exact solution path
inside the knowledge graph and consequently it outputs all
of the answers to the question instead of producing a score
distribution over graph entities (as depicted in Figure 1). For
the sake of comparison, we also measure the hit@1 metric
for our model over multi hop test datasets. In other words,
we randomly pick one of the answer entities and assume it
is the rank 1 answer of the model and consequently we cal-
culate the hit@1 score. Table 3 compares our method with
prior work.

In order to get robust results we repeat the process of sam-
pling training data and annotating it 5 times and each time
we sampled 100, 250, 500 and 1000 samples. The sampling
process was straightforward; each time we sample randomly
and equally from each of the 1-hop, 2-hop and 3-hop train-
ing datasets. We also annotated 3000 samples from the val-
idation and test set of the MetaQA dataset. Figure 2 shows
the variance of performance on each of these datasets. Since
the variance was high on the test set with 100 samples we
only reported s250, s500 and s1000 in table 3. According
to these results the 3-hop test set’s representation is the eas-
iest to learn since it doesn’t come with many variations of
natural language to describe. On the other hand the 2-hop
dataset is the hardest to learn. However, all of these sam-
ples are collected randomly. But with a manual and care-
ful sample collection, we can see that even 500 samples are
enough to learn the whole dynamics of this dataset and learn
to represent questions in logical form. We conclude that our



Models MetaQA-1hop MetaQA-2hop MetaQA-3hop
GraftNet (Sun et al. 2018) 97.0 94.8 77.7
PullNet (Sun, Bedrax-Weiss, and Cohen 2019) 97.0 99.9 91.4
EmbedKGQA (Saxena, Tripathi, and Talukdar 2020) 97.5 98.8 94.8
NSM (He et al. 2021) 97.1 99.9 98.9
TransferNet (Shi et al. 2021) 97.5 100.0 100.0
GFC (Xie, Hao, and Zhang 2022) 97.7 100.0 100.0
T5-small+prolog+250 samples 98.67 97.77 100.0
T5-small+prolog+500 samples 100.0 99.33 100.0
T5-small+prolog+1000 samples 100.0 100.0 100.0

Table 3: Comparison of hit@1 score of previous methods compared to our method over multi-hop test datasets. The scores for
the best model among 5 iterations of sampling is reported for our proposed method.

model is capable of correctly answering all questions in the
test dataset with only 1000 annotated examples.

Figure 2: The variance of hit@1 of each model based on
the number of training examples available in each training
dataset

Robustness of the method

In order to get robust results we repeat the process of sam-
pling training data and annotating it 5 times and each time
we sampled 100, 250, 500 and 1000 samples. The sampling
process was straightforward; each time we sample randomly
and equally from each of the 1-hop, 2-hop and 3-hop train-
ing datasets. We also annotated 3000 samples from the val-
idation and test set of the MetaQA dataset. Figure 2 shows
the variance of performance on each of these datasets. Since
the variance was high on the test set with 100 samples we
only reported s250, s500 and s1000 in table 3. According to
these results the 3-hop test set’s representation is the easiest
to learn since it doesn’t come with many variations of natu-
ral language to describe. On the other hand the 2-hop dataset
is the hardest to learn.

However, all of these samples are collected randomly. But
with a manual and careful sample collection, we can see that
even 500 samples are enough to learn the whole dynamics of
this dataset and learn to represent questions in logical form.

Conclusion
In this work, we have presented a framework that leverages
logical programming languages as a powerful tool for large
language models (LLMs) for domain specific question an-
swering over knowledge graphs. By utilizing logical pro-
gramming languages such as Prolog which benefits from the
inherent similarity between the representations of meaning
in logical programming languages and natural language, we
have showcased the ability to bridge the gap between natu-
ral language understanding and logical reasoning. We evalu-
ated our model on a relatively small dataset and showed that
it is able to fully answer questions given a small subset of
annotated representations due to the pre-trained knowledge
encoded even in relatively small LLMs.

Limitations
MetaQA dataset is a synthesized dataset focused on the
movie domain. Although it provides a comprehensive eval-
uation environment for a domain-specific question answer-
ing over knowledge graphs, it may not capture the full com-
plexity and diversity of real-world scenarios. For instance,
it does not encompass a wide range of relations found in
open-domain datasets like WebQuestions, which are based
on Freebase and cover a broader domain. To mitigate this
limitation, future research could explore approaches such as
relation and entity matching. By incorporating techniques to
match entities and relations in a more flexible and adaptive
manner, our model could potentially be extended to handle
datasets like WebQuestions and address a broader range of
real-world KGQA scenarios.

References
Balazevic, I.; Allen, C.; and Hospedales, T. M. 2019.
TuckER: Tensor Factorization for Knowledge Graph Com-
pletion. ArXiv, abs/1901.09590.
Dettmers, T.; Minervini, P.; Stenetorp, P.; and Riedel, S.
2017. Convolutional 2D Knowledge Graph Embeddings. In
AAAI Conference on Artificial Intelligence.
He, G.; Lan, Y.; Jiang, J.; Zhao, W. X.; and rong Wen, J.
2021. Improving Multi-hop Knowledge Base Question An-
swering by Learning Intermediate Supervision Signals. Pro-



ceedings of the 14th ACM International Conference on Web
Search and Data Mining.
Nickel, M.; Tresp, V.; and Kriegel, H.-P. 2011. A Three-Way
Model for Collective Learning on Multi-Relational Data. In
International Conference on Machine Learning.
Raffel, C.; Shazeer, N. M.; Roberts, A.; Lee, K.; Narang, S.;
Matena, M.; Zhou, Y.; Li, W.; and Liu, P. J. 2019. Exploring
the Limits of Transfer Learning with a Unified Text-to-Text
Transformer. ArXiv, abs/1910.10683.
Saxena, A.; Tripathi, A.; and Talukdar, P. P. 2020. Improv-
ing Multi-hop Question Answering over Knowledge Graphs
using Knowledge Base Embeddings. In Annual Meeting of
the Association for Computational Linguistics.
Shi, J.; Cao, S.; Hou, L.; Li, J.; and Zhang, H. 2021. Trans-
ferNet: An Effective and Transparent Framework for Multi-
hop Question Answering over Relation Graph. In Proceed-
ings of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, 4149–4158. Online and Punta
Cana, Dominican Republic: Association for Computational
Linguistics.
Sun, H.; Bedrax-Weiss, T.; and Cohen, W. W. 2019. PullNet:
Open Domain Question Answering with Iterative Retrieval
on Knowledge Bases and Text. ArXiv, abs/1904.09537.
Sun, H.; Dhingra, B.; Zaheer, M.; Mazaitis, K.; Salakhut-
dinov, R.; and Cohen, W. W. 2018. Open Domain Ques-
tion Answering Using Early Fusion of Knowledge Bases and
Text. In Conference on Empirical Methods in Natural Lan-
guage Processing.
Vashishth, S.; Sanyal, S.; Nitin, V.; Agrawal, N.; and Taluk-
dar, P. P. 2019. InteractE: Improving Convolution-based
Knowledge Graph Embeddings by Increasing Feature Inter-
actions. In AAAI Conference on Artificial Intelligence.
Vaswani, A.; Shazeer, N. M.; Parmar, N.; Uszkoreit, J.;
Jones, L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017.
Attention is All you Need. ArXiv, abs/1706.03762.
Xie, M.; Hao, C.; and Zhang, P. 2022. A Sequential Flow
Control Framework for Multi-hop Knowledge Base Ques-
tion Answering. In Conference on Empirical Methods in
Natural Language Processing.
Yang, B.; tau Yih, W.; He, X.; Gao, J.; and Deng, L. 2014a.
Embedding Entities and Relations for Learning and Infer-
ence in Knowledge Bases. CoRR, abs/1412.6575.
Yang, M.-C.; Duan, N.; Zhou, M.; and Rim, H.-C. 2014b.
Joint Relational Embeddings for Knowledge-based Ques-
tion Answering. In Conference on Empirical Methods in
Natural Language Processing.
Yang, M.-C.; Lee, D.-G.; young Park, S.; and Rim, H.-C.
2015. Knowledge-based question answering using the se-
mantic embedding space. Expert Syst. Appl., 42: 9086–
9104.
Zhang, Y.; Dai, H.; Kozareva, Z.; Smola, A. J.; and Song, L.
2018. Variational Reasoning for Question Answering with
Knowledge Graph. In AAAI.


	Introduction
	Related Work
	Dataset
	Approach
	Question to Logical Form Annotation
	Question to Logical Form Translation
	Question Answering

	Experiments and Results
	Robustness of the method

	Conclusion
	Limitations

