

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 UNDERSTANDING THE ROLE OF REHEARSAL MECHANISM IN CONTINUAL LEARNING UNDER VARYING MODEL CAPACITIES

Anonymous authors

Paper under double-blind review

ABSTRACT

Continual learning, which aims to learn from dynamically changing data distributions, has garnered significant attention in recent years. However, most existing theoretical work focuses on regularization-based methods, while theoretical understanding of the rehearsal mechanism in continual learning remains limited. In this paper, we provide a closed-form analysis of adaptation, memory and generalization errors for rehearsal-based continual learning within a linear-Gaussian regression framework, covering both underparameterized and overparameterized regimes. We derive explicit formulae linking factors such as rehearsal size to each error component, and obtain several insightful findings. Firstly, more rehearsal does not always better for memorability, and there exists a decreasing floor for memory error when tasks are similar and noise levels are low. Secondly, rehearsal enhances adaptability under underparameterization, but can be provably detrimental under overparameterization. Moreover, enlarging the rehearsal size can raise peaks in generalization error when slightly overparameterized, and may further degrade generalization when tasks are dissimilar or noise is high. Finally, numerical simulations validate these theoretical insights and we further extend the analysis to neural networks on MNIST, CIFAR-10, CIFAR-100 and Tiny-ImageNet. The empirical curves closely follow with the predicted trends, indicating that our linear analysis captures phenomena that persist in modern deep continual learning models.

1 INTRODUCTION

Intelligent systems need to acquire, update, and accumulate knowledge throughout their lifecycle to adapt to the dynamically changing real world, a capability known as continual learning (Thrun & Mitchell, 1995; Schlimmer & Fisher, 1986). Typically, continual learning machines are challenged by catastrophic forgetting (McCloskey & Cohen, 1989; Goodfellow et al., 2013; Ramasesh et al., 2021), where performance on previous tasks degrades dramatically due to parameter updates when learning new tasks. As new knowledge replaces previous knowledge, the model’s adaptation performance improves while memorability diminishes (Abraham & Robins, 2005; Lin et al., 2022; Kim et al., 2023). Earlier efforts have attempted to address this problem by preserving previously learned knowledge (Lopez-Paz & Ranzato, 2017; Yan et al., 2021; Sun et al., 2023). However, recent work has focused more on facilitating the adaptability of new knowledge and the generalizability of models (Raghavan & Balaprakash, 2021; Simon et al., 2022; Lin et al., 2023). These efforts have deepened the understanding of continual learning: an ideal continual learning learner should strike an effective balance between retaining previous learned knowledge and acquiring new knowledge, while also being sufficiently predictable to accommodate differences in unseen data distributions.

In biological systems, hippocampal replay (Davidson et al., 2009; Mallory et al., 2025) has been proposed as a system-level mechanism that consolidates memories and improves the generalization by reactivating previously experienced scenes. Although biological and artificial systems differ significantly, they exhibit intriguing parallels: both consolidate knowledge and accelerate learning from past experiences (Shin et al., 2017; Van de Ven et al., 2020; Shi et al., 2025). Similar to biological systems, the rehearsal mechanism performs better in continual learning to resist catastrophic forgetting (Castro et al., 2018; Tiwari et al., 2022; Gao & Liu, 2023; Bellitto et al., 2024; Van de Ven et al., 2020). Despite recent advances in the empirical performance of rehearsal-based continual learning, the

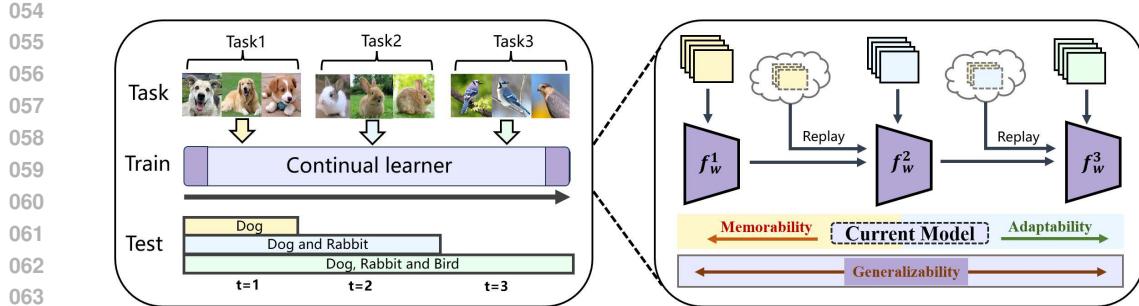


Figure 1: Continual learning addresses sequential tasks by progressively learning a unified model, and an ideal continual learning system should strike a delicate balance among the adaptation of newly acquired knowledge, the memorization of previously learned knowledge, and the generalization of unseen data distributions.

theoretical understanding of how the rehearsal mechanism impacts continual learning, even in simple models, is not yet fully understood: How is knowledge of previously learned tasks consolidated and learned through playback? When does a continual learning model benefit from rehearsal mechanism? Will replay samples potentially adversely affect generalization performance of the model?

In this paper, we attempt to theoretically understand rehearsal mechanisms in continual learning by answering the above questions. We establish a theoretical characterization of rehearsal-based continual learning within a linear regression framework, taking into account key factors such as rehearsal size, parameter size, and optimal parameter similarity. Furthermore, we provide a unified three-dimensional closed-form expression that captures the model’s adaptability, memorability, and generalizability. Specifically, our main contributions can be summarized as follows.

- We derive explicit expressions for memory, adaptation, and generalization errors for rehearsal-based continual learning under both underparameterized and overparameterized regimes, providing insights into key factors and their impact on performance.
- We demonstrate that increasing rehearsal size does not always lead to better performance, as additional rehearsal samples can impair adaptation in the overparameterized regime, while there is a decreasing floor in memory error as rehearsal size increases.
- We conducted numerical simulations and deep neural network experiments to validate and extend our theoretical findings. The results on the effects of rehearsal size, parameter size, and optimal parameter similarity are also consistent with our analysis.

2 RELATED WORK

Prior research on catastrophic forgetting in continual learning has primarily focused on empirical studies. These methods can be broadly categorized into three main categories: rehearsal-based methods (Lopez-Paz & Ranzato, 2017; Van de Ven et al., 2020; Bellitto et al., 2024), where a portion of the previous task data is stored and replayed to mitigate forgetting while learning new tasks. Expansion-based methods (Rusu et al., 2016; Gao et al., 2022; Douillard et al., 2022; Wang et al., 2024b) allocate separate network parameters to learn new tasks without interfering with previously learned ones, and recent research leverages pre-trained models with lightweight adaptations such as prompting or adapters (Zhou et al., 2025; Zhang et al., 2023; Wang et al., 2022c; Zhou et al., 2024). Regularization-based methods (Kirkpatrick et al., 2017; Akyürek et al., 2021; Song et al., 2023) constrain the parameters crucial to previous tasks when learning new tasks.

Recent theoretical studies on continual learning mainly focus on elucidating its dynamic evolutionary mechanisms through diverse frameworks and establishing links to related domains (Wang et al., 2024a; Evron et al., 2023; Zhao et al., 2024b). Kim et al. (2022) reformulates continual learning as a combination of within-task prediction and task-id prediction, with links to out-of-distribution detection. Peng et al. (2023) proposes a general formulation of ideal continual learning, linking it to related areas and providing generalization bounds for replayed samples. Lin et al. (2023) focuses on regularization-based continual learning estimators and demonstrates the phenomenon of benign

108 overfitting in continual learning. Connections between continual learning and alternating projections
 109 or Kaczmarz methods have also been explored, leading to worst-case forgetting bounds (Evron et al.,
 110 2022). The trade-off between forgetting and generalization is also modeled as a two-player game
 111 solved via dynamic programming (Raghavan & Balaprakash, 2021). Li et al. (2023) studies continual
 112 ridge regression with non-random features, focusing on the role of regularization parameters.

113 The most relevant work is Banayeeanzade et al. (2024), as both examine rehearsal-based continual
 114 learning methods. However, there are two key differences. Firstly, their work focuses on network
 115 width under overparameterization, highlighting the benefits of model dimensionality for multi-task
 116 and continual learning. In contrast, we focus on achieving a balance among adaptability, memorability,
 117 and generalizability under different parameterization regimes, thereby uncovering several interesting
 118 phenomena. Secondly, they assume an infinitely expanding memory buffer, which is unrealistic under
 119 storage constraints. In contrast, we consider a fixed-capacity memory with proportional sampling,
 120 enabling explicit analysis of error dynamics and prediction across arbitrary task numbers.

121 Recent studies have explored model performance under different sampling or rehearsal strategies
 122 (Deng et al., 2025; Zheng et al., 2024) and the effects of step size and network width (Ding et al.,
 123 2024; Goldfarb & Hand, 2023). While some of these studies also use the linear Gaussian model,
 124 they focus on different aspects of continual learning. [Recent work \[Deng et al., 2025\] studied replay](#)
 125 [strategies in continual learning, showing that sequential replay outperforms concurrent replay when](#)
 126 [tasks are dissimilar, and the Appendix E provides a more detailed comparison.](#) In contrast, our
 127 work examines the dynamic equilibrium of rehearsal across three dimensions and its behavior under
 128 underparameterized and overparameterized regimes. We show that increased rehearsal size does not
 129 always improve memorability, as a lower bound exists for error reduction, and that rehearsal affects
 130 adaptability differently depending on the parameterization regime. To our knowledge, this theoretical
 131 insight remains unexplored in prior literature. We further validated these findings through numerical
 132 simulations and deep neural network experiments on multiple real-world datasets.

3 PRELIMINARIES

133 **Data.** We consider a standard continual learning problem where tasks are introduced sequentially,
 134 indexed by $t = 1, 2, \dots, T$. Suppose that each task t holds a dataset $\mathcal{D}_t = \{(x_{t,i}, y_{t,i}) \in \mathbb{R}^p \times \mathbb{R}\}_{i=1}^{n_t}$,
 135 where n_t denotes its sample size. Here, $x_{t,i}$ denotes the feature vector and $y_{t,i}$ denotes the corre-
 136 sponding response variable. Assume that $\{(x_{t,i}, y_{t,i})\}_{i=1}^{n_t}$ are *i.i.d* sampled from a linear regression
 137 model, meaning each pair $(x_{t,i}, y_{t,i})$ follows the linear model $y_t = \mathbf{x}_t^\top \mathbf{w}_t^* + \epsilon_t$, where ϵ_t is random
 138 noise and \mathbf{w}_t^* represents the optimal parameter of the t -th task specific model. The equation above
 139 can be rewritten into a compact matrix equation for training samples:
 140

$$\mathbf{y}_t = \mathbf{X}_t^\top \mathbf{w}_t^* + \epsilon_t, \quad (1)$$

141 where $\mathbf{X}_t := [x_{t,1}, x_{t,2}, \dots, x_{t,n_t}] \in \mathbb{R}^{p \times n_t}$, $\mathbf{y}_t := [y_{t,1}, y_{t,2}, \dots, y_{t,n_t}]^\top \in \mathbb{R}^{n_t}$, and $\epsilon_t :=$
 142 $[\epsilon_{t,1}, \epsilon_{t,2}, \dots, \epsilon_{t,n_t}]^\top \in \mathbb{R}^{n_t}$. For analytical tractability, we adopt Gaussian features and noise, as
 143 formally stated in the following assumption.

144 **Assumption 1.** *For all $t \in T$, each element of \mathbf{X}_t follows *i.i.d* standard Gaussian $\mathcal{N}(0, 1)$. Similarly,
 145 the noise ϵ_t is independently drawn from Gaussian $\mathcal{N}(0, \sigma_t^2 I_{n_t})$, where $\sigma_t \geq 0$ denotes noise level.*

146 In Assumption 1, the Gaussian model is used to exploit the favorable properties of orthogonal
 147 projection matrices (Raventós et al., 2023; Li et al., 2025), and the work of Li et al. (2023) assumes
 148 fixed features. As we will demonstrate, in the random design setting, our analysis reveals interesting
 149 statistical properties of rehearsal-based continual learning methods that were previously unknown.

150 **Assumption 2.** *For all $t \in T$, the sample size satisfies $n_t = n$, and the noise level satisfies $\sigma_t = \sigma$.*

151 In Assumption 2, each task has the same number of training samples and the same noise level. This
 152 simplification facilitates our analysis, making the theoretical results more interpretable. Furthermore,
 153 our analysis can be extended to scenarios where Assumption 2 does not hold.

154 Note that we focus on rehearsal-based continual learning from the perspective of the linear Gaussian
 155 model, as analyzing this model provides a critical first step toward understanding deep neural
 156 networks, as shown in recent studies (Evron et al., 2022; Ji et al., 2023; Lin et al., 2023). And

162 these theoretical insights are further extended through deep neural network experiments on multiple
 163 real-world datasets, incorporating longer task sequences and deeper architectures in Section 5.
 164

165 **Evaluation metrics.** Our goal is to estimate \mathbf{w}_t^* in continual learning setting. For any estimator
 166 $\hat{\mathbf{w}}$, we denote its estimation error by $\mathcal{L}(\hat{\mathbf{w}}) = \|\hat{\mathbf{w}} - \mathbf{w}^*\|^2$. Based on $\mathcal{L}(\hat{\mathbf{w}})$, the adaptation error(\mathcal{A}),
 167 generalization error(\mathcal{G}) and memory error(\mathcal{M}) can be defined respectively as

$$168 \quad \mathcal{A}(\hat{\mathbf{w}}_t, t = 1, \dots, T) := \|\hat{\mathbf{w}}_t - \mathbf{w}_t^*\|^2, \quad (2)$$

$$169 \quad \mathcal{G}(\hat{\mathbf{w}}_t, t = 1, \dots, T) := \frac{1}{t} \sum_{i=1}^t \|\hat{\mathbf{w}}_t - \mathbf{w}_i^*\|^2, \quad (3)$$

$$170 \quad \mathcal{M}(\hat{\mathbf{w}}_t, t = 1, \dots, T) := \frac{1}{t-1} \sum_{i=1}^{t-1} \left[\|\hat{\mathbf{w}}_t - \mathbf{w}_i^*\|^2 - \|\hat{\mathbf{w}}_i - \mathbf{w}_i^*\|^2 \right], \quad (4)$$

171 for each $t \in T$, where $\hat{\mathbf{w}}_t$ denotes the parameters of the continual learning algorithm after task t has
 172 been learned. A continual learning algorithm obtains increasing performance on previous tasks if, for
 173 each $t \in T$, the forgetting measure satisfies $\mathcal{M}(\hat{\mathbf{w}}_t) < 0$. **Consigering that parameter differences
 174 in linear models reflect functional differences, we use the distance between optimal parameters to
 175 measure task similarity, consistent with the metric in (Evron et al., 2022; Zhao et al., 2024b).**

176 **Rehearsal-based Continual Learning Estimator.** The rehearsal-based continual estimator assumes
 177 tasks arrive sequentially and preserves knowledge of previous tasks by storing a subset of their samples
 178 (Parisi et al., 2019; De Lange et al., 2021; Rolnick et al., 2018; Wang et al., 2022a; Jeeveswaran
 179 et al., 2023). For each task $t = 2, \dots, T$, assume that a total of s samples are stored. Specifically,
 180 we assume that the feature vector matrix of the i -th previous task ($i = 1, 2, \dots, t-1$) stored in the
 181 memory buffer is $\mathbf{Z}_i \in \mathbb{R}^{p \times \frac{s}{t-1}}$, with the corresponding response variable denoted as $\mathbf{g}_i \in \mathbb{R}^{\frac{s}{t-1}}$.
 182 The training process converges to the optimal solution by minimizing the training loss, formulated
 183 as the following optimization problem: $\hat{\mathbf{w}}_t^{(\text{Reh})} := \arg \min_{\mathbf{w}} \|\mathbf{X}_t^\top \mathbf{w} - \mathbf{y}_t\|^2 + \sum_{i=1}^{t-1} \|\mathbf{Z}_i^\top \mathbf{w} - \mathbf{g}_i\|^2$.
 184

185 When $p > n + s$ (overparameterized), multiple solutions exist that achieve zero training loss.
 186 In this case, we select the solution with the minimum ℓ_2 -norm, i.e., the optimization problem:
 187 $\arg \min_{\mathbf{w}} \left\{ \|\mathbf{w} - \mathbf{w}_{t-1}\|^2, \text{s.t. } (\mathbf{X}_t)^\top \mathbf{w} = \mathbf{y}_t, (\mathbf{Z}_i)^\top \mathbf{w} = \mathbf{g}_i, i = 1, \dots, t-1 \right\}$. Among all overfitting
 188 solutions, we focus on the minimum ℓ_2 -norm solution and demonstrate that, in continual learning,
 189 it corresponds to the convergence point of stochastic gradient descent or gradient descent (proven in
 190 Appendix A). In Section 4, we provide theoretical results for rehearsal-based continual learner.

191 **Striking a balance among adaptability, memorability, and generalizability.** The adaptation error
 192 quantifies the model’s fitting performance for the current task, while the memory error measures the
 193 extent to which the model’s performance on previous tasks deteriorates after learning a new task.
 194 Complementary to these, the generalization error assesses the model’s ability to generalize to new
 195 tasks. An ideal continual learning learner should strike a balance between adaptability, memorability,
 196 and generalizability. We further explore the connection between these three aspects in Section 4.

201 4 MAIN RESULTS FOR REHEARSAL-BASED CONTINUAL LEARNING

202 In this section, we present the main results. For rehearsal-based continual learning methods, we
 203 establish three theorems that characterize the adaptation error, memory error, and generalization error
 204 of the model under both overparameterized and underparameterized regimes.

205 **Theorem 1** (Adaptation error). *Suppose that Assumption 1 and Assumption 2 hold. Then the
 206 adaptation error of the rehearsal-based continual learning model is formally given by*

$$207 \quad \mathbb{E}[\mathcal{A}(\hat{\mathbf{w}}_T)] = \begin{cases} \lambda^T \|\mathbf{w}_T^*\|^2 + \underbrace{\sum_{k=1}^T \lambda^{T-k} \frac{n+s}{p} \|\mathbf{w}_k^* - \mathbf{w}_T^*\|^2}_{\text{Term A1}} + a_{\text{noise}}, & \text{for } p > n + s + 1, \\ \frac{p\sigma^2}{n+s-p-1}, & \text{for } n + s > p + 1. \end{cases} \quad (5)$$

208 where $\lambda := \frac{p-n-s}{p}$ and $a_{\text{noise}} := \frac{(1-\lambda^T)p\sigma^2}{(p-n-s-1)}$, with larger λ indicating greater overparameterization.

216 The proof is provided in Appendix B. It describes the model’s ability to fit the current task, forming
 217 the basis for analyzing how it learns new knowledge and retains previous knowledge.
 218

219 **Increasing the rehearsal size enhances the model’s adaptation ability under underparameteriza-
 220 tion, whereas it can be detrimental under overparameterization.** Specifically, when $n + s > p + 1$
 221 in Equation (6), $\mathbb{E}[\mathcal{A}(\hat{w}_T)]$ decreases as s increases, indicating that more playback samples con-
 222 tribute to better adaptation performance. When slightly overparameterized in Equation (5), we have
 223 $p \approx n + s$ and thus $\lambda \approx 0$. At this point, Term A1 and the denominator in Term a_{noise} approach
 224 zero when tasks are similar, and thus a_{noise} dominates and causes $\mathbb{E}[\mathcal{A}(\hat{w}_T)]$ to be increasing w.r.t.
 225 s . When heavily overparameterized in Equation (5), Term A1 is close to zero, and thus $\mathbb{E}[\mathcal{A}(\hat{w}_T)]$
 226 decreases as s increases when the σ is low. Intuitively, when tasks are similar, the model can leverage
 227 replay samples more effectively, leading to improvements in performance on the current task.
 228

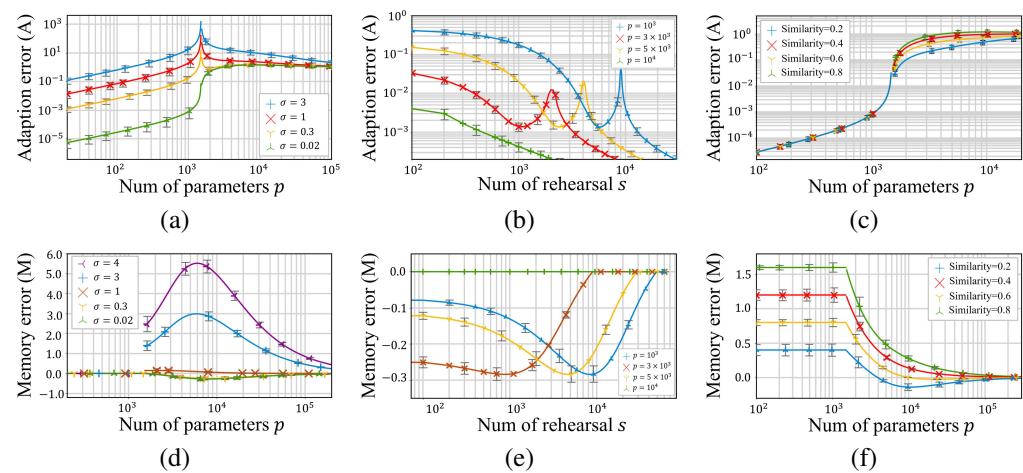
229 The impact of rehearsal size was also verified through numerical simulations in Figure 2(b), where
 230 average adaptation error is plotted against rehearsal size for different model parameters. The red
 231 curve marked with “ \times ”, decreases in the underparameterized regime ($s > p - n$) but first decreases
 232 and then increases in the overparameterized regime ($s < p - n$), which validates our earlier insights.
 233

234 **Remark 1 (Turning point.)** Based on the above analysis, it can be observed that under overpara-
 235 meterization, the adaptation error exhibits a non-monotonic trend with respect to the rehearsal size s .
 236 Furthermore, we compute the derivative to identify its turning point.
 237

$$\frac{\partial \mathbb{E}[A(w_2)]}{\partial s} = -\frac{2\lambda}{p} \|w_2^*\|^2 + \frac{2\lambda - 1}{p} \|w_2^* - w_1^*\|^2 + \frac{2\lambda \cdot (p - n - s - 1) + p \cdot (\lambda^2 - 1)}{(p - n - s - 1)^2} \cdot \sigma^2$$

238 Setting the derivative to zero, we can calculate that the inflection point s occurs near 2100 when
 239 $n = 1000$, $\sigma = 0.02$, and $p = 3000$. Furthermore, through computer simulation, we determine that
 240 the inflection point at $T = 8$ occurs near 1000, consistent with the curve shown in Figure 2(b).
 241

242 Beyond analyzing the impact of rehearsal size, we also examined the effects of inter-task similarity
 243 and model parameters. We found that under overparameterization, models require higher inter-task
 244 similarity to better adapt to the current task, whereas this does not hold in underparameterized settings
 245 (Figure 2(c)). Moreover, the overparameterization helps mitigate the impact of task variability and
 246 noise effects on model adaptability, as illustrated in Figure 2(a) and Figure 2(c). Due to space
 247 constraints, a more detailed discussion of these factors is provided in Appendix G.
 248



266 Figure 2: **Adaptation performance and memory performance of rehearsal-based continual learning under different
 267 setups, where $T = 8$, $n = 1000$ and $\|w_t^*\|^2 = 1$ for all $t \in T$.** The discrete points indicated by markers
 268 are calculated by simulation and are the average of 100 random simulation runs. Additional settings for each
 269 subfigure are as follows: (a) and (d) : $s = 500$; (b) and (e) : $\sigma = 0.02$; (c) and (f) : $s = 500$, $\sigma = 0.02$.

270 **Theorem 2** (Memory error). *Under Assumption 1 and Assumption 2, the memory error of the*
 271 *rehearsal-based continual learning model is formally given by*
 272

$$273 \quad \mathbb{E}[\mathcal{M}(\hat{\mathbf{w}}_T)] = \begin{cases} 274 \quad \underbrace{\frac{1}{T-1} \sum_{k=1}^{T-1} \sum_{j>k}^T \frac{n+s}{p} u_{kj} \|\mathbf{w}_j^* - \mathbf{w}_k^*\|^2}_{\text{Term M1}} & 275 \quad \text{for } p > n+s+1, \quad (7) \\ 276 \quad + \underbrace{\frac{1}{T-1} \sum_{i=1}^{T-1} (\lambda^T - \lambda^i) \|\mathbf{w}_i^*\|^2 + m_{noise},}_{\text{Term M2}} & 277 \\ 278 \quad \frac{1}{T-1} \sum_{k=1}^{T-1} \|\mathbf{w}_T^* - \mathbf{w}_k^*\|^2, & 279 \quad \text{for } n+s > p+1. \quad (8) \\ 280 \\ 281 \\ 282 \\ 283 \end{cases}$$

284 where $u_{kj} := \lambda^{T-k} - \lambda^{j-k} + \lambda^{T-j}$ and $m_{noise} := \frac{1}{T-1} \sum_{i=1}^{T-1} \frac{p\sigma^2}{p-n-s-1} (\lambda^i - \lambda^T)$. Specifically,
 285 when the number of tasks $T = 2$, the Equation (7) can be reformulated as
 286

$$287 \quad \mathbb{E}[\mathcal{M}(\hat{\mathbf{w}}_2)] = \frac{n+s}{p} \|\mathbf{w}_2^* - \mathbf{w}_1^*\|^2 - \frac{(n+s)(p-n-s)}{p^2} \|\mathbf{w}_1^*\|^2 + \frac{(n+s)(p-n-s)\sigma^2}{(p-n-s-1)p}, \quad (9)$$

290 Similarly, the corresponding case in Equation (8) can be reformulated as
 291

$$292 \quad \mathbb{E}[\mathcal{M}(\hat{\mathbf{w}}_2)] = \|\mathbf{w}_2^* - \mathbf{w}_1^*\|^2. \quad (10)$$

294 The detailed proof is provided in Appendix C. Based on Theorems 2, we further explore their analytical
 295 insights and examine the influence of factors such as rehearsal size, as well as the performance
 296 differences observed under both overparameterized and underparameterized regimes.
 297

298 **Increasing the rehearsal size does not always lead to better memory performance in continual**
 299 **learning models in the overparameterized regime.** Specifically, we consider the case where
 300 $T = 2$. For the overparameterized regime result in Equation (9), when tasks are similar and σ
 301 is low, the second term dominates and causes $\mathbb{E}[\mathcal{M}(\hat{\mathbf{w}}_T)]$ first decreases and then increases as s
 302 increases, indicating the existence of decreasing floor. For the underparameterized regime result
 303 in Equation (10), rehearsal no longer contributes to memory performance. In this situation, the
 304 $\mathbb{E}[\mathcal{M}(\hat{\mathbf{w}}_T)]$ depends solely on the inherent similarity between tasks (i.e. $\|\mathbf{w}_T^* - \mathbf{w}_k^*\|^2$), meaning
 305 that the memory error is fully determined by similarity between the final task and preceding ones.

306 In Figure 2(e), the yellow curve marked "Y" clearly illustrates how the average memory error varies
 307 with rehearsal size when $p = 3 \times 10^4$. In the overparameterized regime ($s < p - n$), the memory
 308 error first decreases and then increases, indicating the existence of a decreasing performance floor. In
 309 contrast, in the underparameterized regime ($s > p - n$), the error remains unaffected by rehearsal
 310 size, and zero forgetting is achieved when the task-optimal parameters remain consistent.

311 **Remark 2 (Turning point.)** For the turning point of memory error with respect to rehearsal s under
 312 overparameterization, we compute the derivative of memory error with respect to s for $T=2$ due to the
 313 ease of analysis.

$$314 \quad \frac{\partial \mathbb{E}[\mathcal{M}(\hat{\mathbf{w}}_2)]}{\partial s} = \frac{1-2\lambda}{p} \cdot \|\mathbf{w}_1^*\|^2 + \frac{1}{p} \cdot \|\mathbf{w}_2^* - \mathbf{w}_1^*\|^2 + \left(\frac{2\lambda-1}{p-n-s-1} + \frac{p \cdot (\lambda - \lambda^2)}{(p-n-s-1)^2} \right) \cdot \sigma^2$$

317 Setting the derivative to zero yields that when $n = 1000$, $\sigma = 0.02$, and $p = 3000$, the inflection
 318 point s occurs near 500. Furthermore, through computer simulation, we determine that the inflection
 319 point at $T = 8$ lies near 4600, consistent with the curve shown in Figure 2(e).
 320

321 Apart from rehearsal size, we also examined additional factors. For example, increasing task
 322 similarity enhances memory performance under underparameterization but can have adverse effects
 323 under overparameterization. In the overparameterized regime, parameter size influences memory
 324 performance more strongly than noise (Figure 2(d)). Further analysis is provided in Appendix G.

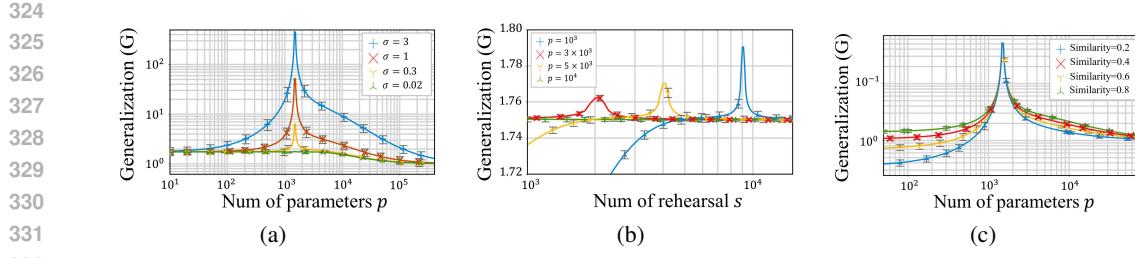


Figure 3: The trend of average generalization error w.r.t. the number of model parameters or rehearsal samples, with $T = 8$, $n = 1000$ and $\|\mathbf{w}_t^*\|^2 = 1$ for all $t \in T$. Discrete points denote averages over 100 random simulations for each setting. Subfigure settings: (a) : $s = 500$; (b) : $\sigma = 0.02$; (c) : $s = 500$, $\sigma = 0.02$.

Theorem 3 (Generalization error). *Under Assumption 1 and Assumption 2, the generalization error of the rehearsal-based continual learning model is formally given by*

$$\mathbb{E}[\mathcal{G}(\hat{\mathbf{w}}_T)] = \begin{cases} \underbrace{\frac{1}{T} \sum_{k=1}^T \sum_{j=1}^T \frac{n+s}{p} \lambda^{T-k} \|\mathbf{w}_k^* - \mathbf{w}_j^*\|^2}_{\text{Term G1}} & \text{for } p > n+s+1, \\ \underbrace{\frac{1}{T} \sum_{k=1}^T \lambda^T \|\mathbf{w}_k^*\|^2}_{\text{Term G2}} + g_{\text{noise}}, & \\ \frac{1}{T} \sum_{k=1}^T \|\mathbf{w}_T^* - \mathbf{w}_k^*\|^2 + \frac{p\sigma^2}{n+s-p-1}, & \text{for } n+s > p+1, \end{cases} \quad (11)$$

where $g_{\text{noise}}(\hat{\mathbf{w}}_T) := \frac{p\sigma^2}{p-n-s-1} (1 - \lambda^T)$. Specifically, when the number of tasks $T = 2$, we reformulate Equation (11) to provide a clearer interpretation of the error form, resulting in

$$\mathbb{E}[\mathcal{G}(\hat{\mathbf{w}}_2)] = \frac{1}{2} (1 - \lambda^2) \|\mathbf{w}_2^* - \mathbf{w}_1^*\|^2 + \frac{1}{2} \lambda^2 (\|\mathbf{w}_1^*\|^2 + \|\mathbf{w}_2^*\|^2) + \frac{p\sigma^2(1 - \lambda^2)}{p - n - s - 1}, \quad (13)$$

Similarly, in the case when the number of tasks $T = 2$, we can reformulate Equation (12) as

$$\mathbb{E}[\mathcal{G}(\hat{\mathbf{w}}_2)] = \frac{1}{2} \|\mathbf{w}_2^* - \mathbf{w}_1^*\|^2 + \frac{p\sigma^2}{n+s-p-1}. \quad (14)$$

Increasing rehearsal size can degrade generalization performance under overparameterization, especially when tasks are dissimilar. Consider the case where $T = 2$. When slightly overparameterized in Equation (13), the second term approaches zero, the denominator $p - n - s - 1$ in the third term approaches zero, and thus this term dominates. In this situation, increasing the rehearsal size raises the peak generalization error. In contrast, when heavily overparameterized in Equation (13), the second term dominates and decreases as s increases when tasks are similar and σ is low. Moreover, the $\mathbb{E}[\mathcal{G}(\hat{\mathbf{w}}_T)]$ decreases as s increases in Equation (14), indicating that larger rehearsal size consistently enhances generalization performance under underparameterization.

In Figure 3(b), average generalization error varies with rehearsal size under different model parameters, with optimal parameters being orthogonal. The yellow curve with markers “Y” decreases when underparameterized ($s > p - n$), but increases with rehearsal size when overparameterized ($s < p - n$), confirming these insights. Additionally, we examined other factors under different parameterization regimes. As shown in Figure 3(c), increasing similarity enhances generalization in both underparameterized and overparameterized settings. However, enlarging the parameter size reduces the influence of rehearsal and inter-task similarity on generalization (Figures 3(a), 3(c)).

Noted that in Figures 2–3, the logarithmic axes are used to capture variations in error under different parameterization regimes. The horizontal axis illustrates the transition from underparameterization to overparameterization, allowing an intuitive comparison, while the vertical axis highlights the differing

378 impact of noise levels. It is worth noting that logarithmic scaling provides a wider coordinate range
 379 while preserving the original trends. Similar configurations have been used in (Evron et al., 2022; Li
 380 et al., 2023; Zhao et al., 2024b) to reveal subtle variations in model error.
 381

382 In conclusion, we derive expressions for adaptation, memory, and generalization errors, and analyze
 383 key factors. The following proposition reveals the connection among adaptability, memorability and
 384 generalizability for $T = 2$, and presents conditions for effective generalization performance.
 385

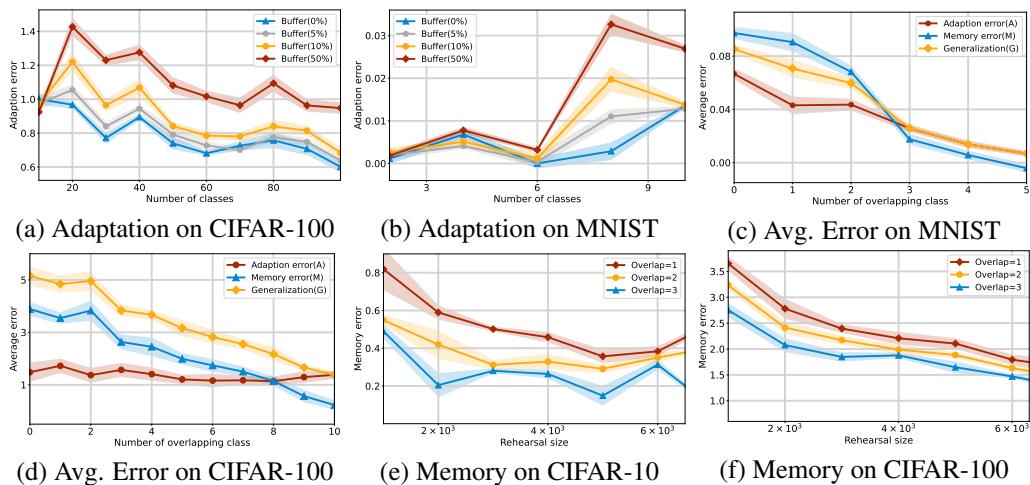
386 **Proposition 1.** *Assuming that Assumptions 1 and 2 hold. For $T = 2$, the generalization error*
 $\mathbb{E}[\mathcal{G}(\hat{w}_T)]$ *increases with the error on initial task when $\|\mathbf{w}_2^* - \mathbf{w}_1^*\|$ is low. Minimizing error requires*
 387 *small memory and adaptation errors while maintaining performance on the initial task.*

388 The detailed proof is provided in Appendix D. As indicated by Proposition 1, better generalization
 389 performance requires excelling at the current task while retaining knowledge from previous tasks. In
 390 addition, performance on the initial task is also crucial, consistent with the empirical analyses by Shi
 391 et al. (2022); Wang et al. (2024a). From the perspective of model’s memorability, failing to learn the
 392 initial task well can lead to error accumulation if knowledge retention is overemphasized.
 393

395 5 EMPIRICAL VALIDATION ON DEEP NEURAL NETWORKS

396 Thus far, we have explored different aspects influencing the performance of rehearsal-based continual
 397 learning. To validate whether our theoretical insights from linear models under overparameterization
 398 extend to deep neural networks, we conduct experiments on real datasets. After training each task,
 399 adaptation, memory, and generalization errors were evaluated. The experiments were conducted on
 400 MNIST (LeCun et al., 1989), CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al.,
 401 2009), and Tiny-ImageNet (Le & Yang, 2015). All experiments were repeated at least three times,
 402 and average results are reported, with additional experimental details provided in Appendix H.
 403

404 **More rehearsal is not always better for memory performance.** The impact of rehearsal size on
 405 memory error is illustrated in Figures 4(e)–(f) and Figure 5(a). The MNIST, CIFAR-10, CIFAR-100,
 406 and Tiny-ImageNet datasets were partitioned into 2, 2, 10, and 20 tasks, respectively, with each task
 407 containing 5, 5, 10, and 20 categories. As shown in the figures, the memory error initially decreases
 408 but then increases as the rehearsal size grows, with this effect being more pronounced when class
 409 overlap is two. These observations suggest that larger rehearsal sizes do not always lead to better
 410 performance, and that further gains become marginal once rehearsal reaches a certain level.
 411



420 Figure 4: Impact of rehearsal size and task similarity on adaptation, memory, and generalization errors in deep
 421 neural networks trained on MNIST, CIFAR-10 and CIFAR-100. Subfigures (a)-(b) show how accumulated
 422 classes affect adaptation error under different buffer sizes; (c)-(d) illustrate how overlapping classes affect all
 423 three errors; (e)-(f) illustrate how rehearsal size affects memory error for varying similarity levels.
 424

432
 433 **Different sampling strategies.** To evaluate sam-
 434 pling strategies, we compared model errors un-
 435 der Random, Herding, and Reservoir methods
 436 (Table 1). Herding achieved the lowest error by
 437 selecting samples near class centers, offering bet-
 438 ter representation of previous tasks.

439 **Various network architectures.** We further ana-
 440 lyzed performance across different architectures
 441 (Table 2). Deeper networks yielded lower aver-
 442 age errors, especially in memory and generaliza-
 443 tion, suggesting that larger models capture richer
 444 features and better mitigate forgetting.

445 **Longer training sequences.** The analysis was
 446 further extended to the Tiny-ImageNet dataset
 447 with more training tasks shown in Table 5. The
 448 results indicate that adaptation error increases
 449 with larger rehearsal size, highlighting the ad-
 450 verse effect of the rehearsal mechanism.

Methods	Forg. 1000	Diff. 1000	Forg. 2000	Diff. 2000	Forg. 3000	Diff. 3000
EWC(+Rehearsal)	61.744	-	49.513	12.232	42.356	7.157
LwF(+Rehearsal)	40.256	-	34.567	5.689	31.533	3.033
iCaRL	59.744	-	46.356	13.389	40.844	5.511
DER	23.467	-	16.656	6.811	12.522	4.133
FOSTER	18.589	-	27.156	-8.567	30.267	-3.111
MEMO	25.344	-	19.111	6.233	14.956	4.156
CSReL	56.733	-	44.689	12.044	31.411	13.278

Methods	Forg. 4000	Diff. 4000	Forg. 5000	Diff. 5000	Forg. 6000	Diff. 6000
EWC(+Rehearsal)	37.633	4.722	33.322	4.311	30.689	2.633
LwF(+Rehearsal)	30.622	0.911	28.422	2.200	26.367	2.056
iCaRL	35.811	5.033	31.856	3.956	31.013	0.843
DER	10.322	2.200	8.489	1.833	7.456	1.033
FOSTER	31.456	-1.189	31.090	0.366	30.811	0.279
MEMO	12.700	2.256	10.200	2.500	8.744	1.456
CSReL	27.822	3.589	27.833	-0.011	27.439	0.394

466 Table 3: Comparison of forgetting rates between continual learning baselines on CIFAR100.
 467

468 As shown in the table 3, the forgetting rate decreases for most algorithms as the replay size increases,
 469 but the rate of decrease gradually slows as the replay scale grows larger. When the number of replays
 470 reaches around 6000, the gain in forgetting resistance is only about 0.3% for some algorithms. Given
 471 the negative impact of rehearsal on current task performance, more effective techniques are needed to
 472 address this diminishing return and performance degradation.

474 Table 4: Comparison of model errors and traditional metrics with increasing training tasks on CIFAR-10.
 475

Training Tasks	T1	T2	T3	T4	T5
Adaptation Error	0.13±0.00	0.40±0.00	0.28±0.00	0.11±0.00	0.16±0.00
Memory Error	—	1.54±0.03	3.90±0.05	4.24±0.16	4.66±0.07
Generalization Error	0.13±0.00	1.04±0.01	2.87±0.04	3.41±0.12	3.94±0.05
Forgetting Ratio	—	7.30±0.63	22.35±0.54	27.23±0.43	38.38±0.14
Average Accuracy	95.05±0.26	65.78±0.34	39.20±0.41	35.78±0.18	32.06±0.33

482 In deep neural network experiments, model performance on continual learning is evaluated using
 483 adaptation, memory, and generalization errors rather than accuracy or forgetting rate, consistent with
 484 the theoretical analysis. Similar metrics are also used in research by Zhao et al. (2024b); Evron et al.
 485

(2022). Additionally, we also report accuracy and forgetting rate (Table 4). As shown in the table, average accuracy and generalization error reflect overall generalization, with accuracy gradually decreasing as training classes increase. And forgetting rate and memory error indicate the ability to retain previous knowledge, both rising during training to demonstrate the phenomenon of forgetting.

Table 5: Adaptation error across varying buffer sizes on Tiny-ImageNet

Tasks	T3	T6	T12	T16	T20
0%	1.120 ± 0.025	0.959 ± 0.027	0.888 ± 0.023	0.991 ± 0.022	1.012 ± 0.014
5%	1.180 ± 0.019	1.018 ± 0.030	0.909 ± 0.024	1.031 ± 0.003	1.050 ± 0.019
10%	1.257 ± 0.037	1.055 ± 0.022	0.938 ± 0.021	1.103 ± 0.017	1.115 ± 0.013
50%	1.454 ± 0.033	1.220 ± 0.051	1.085 ± 0.069	1.208 ± 0.039	1.271 ± 0.023

Rehearsal mechanism may impair adaptation performance. To examine the impact of the number of training classes under different buffer sizes, we divided the ten classes in MNIST and CIFAR-10 into five tasks, each containing two classes. The division scheme used in CIFAR-100 and Tiny-ImageNet follows the previous settings. In Figures 4(a)–(b) and Figure 5(b), the adaptation error varies with the number of training classes at different rehearsal sizes. As observed, the error increases with larger rehearsal sizes (e.g., the red curves in the figures). This observation indicates that rehearsal may impair the model’s adaptation performance, consistent with our analysis of linear models.

The impact of task similarity on memory performance is most pronounced. We regulate task similarity by adjusting the number of overlapping classes between tasks. Beyond class similarity metric, we also evaluate different similarity metrics (Appendix H). As shown in Figures 4(c)–(d), adaptation, memory, and generalization errors all decrease as similarity level increases, with memory error dropping most sharply, reflecting that stronger task similarity enhances knowledge retention.

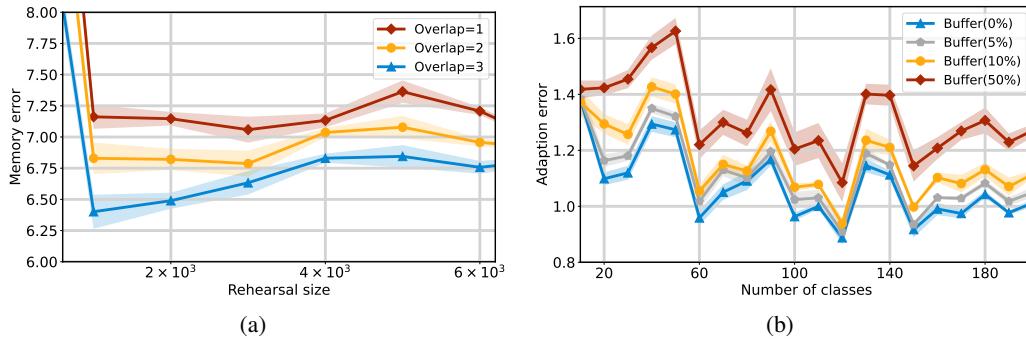


Figure 5: Impact of rehearsal size on adaptation error and memory error in deep neural networks trained on Tiny-ImageNet. Subfigures (a) illustrate how rehearsal size affects memory error for varying similarity levels. Subfigures (b) show how accumulated classes affect adaptation error under different buffer sizes.

6 CONCLUSION

In this work, we investigate rehearsal-based continual learning under both underparameterized and overparameterized regimes, formulating each task as a linear regression problem. We derive explicit expressions for memory, adaptation, and generalization errors, providing a foundational understanding of rehearsal-based continual learning. In contrast to common views, more rehearsal is not always beneficial; even for mitigating forgetting, there exists a lower bound on error reduction. Moreover, the rehearsal mechanism affects model adaptability differently in underparameterized and overparameterized scenarios. These findings provide valuable insights into the role and limitations of rehearsal mechanism. Furthermore, we validate these theoretical understanding through numerical simulations and further extend the analysis from linear models to deep neural networks. Experiments on MNIST, CIFAR-10, CIFAR-100, and Tiny-ImageNet further explore longer task sequences, deeper architectures, and various sampling strategies, supporting and extending these theoretical insights.

540 REFERENCES
541

542 Wickliffe C Abraham and Anthony Robins. Memory retention—the synaptic stability versus plasticity
543 dilemma. *Trends in neurosciences*, 28(2):73–78, 2005.

544 Afra Feyza Akyürek, Ekin Akyürek, Derry Tanti Wijaya, and Jacob Andreas. Subspace regularizers
545 for few-shot class incremental learning. *International Conference on Learning Representations*,
546 2021.

547 Amin Banayeeanzade, Mahdi Soltanolkotabi, and Mohammad Rostami. Theoretical insights into
548 overparameterized models in multi-task and replay-based continual learning. *arXiv preprint*
549 *arXiv:2408.16939*, 2024.

550 Giovanni Bellitto, Federica Proietto Salanitri, Matteo Pennisi, Matteo Boschini, Lorenzo Bonicelli,
551 Angelo Porrello, Simone Calderara, Simone Palazzo, and Concetto Spampinato. Saliency-driven
552 experience replay for continual learning. *Advances in Neural Information Processing Systems*, 37:
553 103356–103383, 2024.

554 Prashant Bhat, Bharath Renjith, Elahe Arani, and Bahram Zonooz. Imex-reg: Implicit-explicit
555 regularization in the function space for continual learning. *Transactions on Machine Learning
556 Research*, 2024.

557 Deblina Bhattacharjee, Tong Zhang, Sabine Süsstrunk, and Mathieu Salzmann. Mult: An end-to-end
558 multitask learning transformer. In *Proceedings of the IEEE/CVF conference on computer vision
559 and pattern recognition*, pp. 12031–12041, 2022.

560 Francisco M Castro, Manuel J Marín-Jiménez, Nicolás Guil, Cordelia Schmid, and Karteek Alahari.
561 End-to-end incremental learning. In *Proceedings of the European conference on computer vision
562 (ECCV)*, pp. 233–248, 2018.

563 Vivek Chavan, Paul Koch, Marian Schlüter, Clemens Briese, and Jörg Krüger. Active data collection
564 and management for real-world continual learning via pretrained oracle. In *Proceedings of the
565 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 4085–4096, 2024.

566 Thomas J Davidson, Fabian Kloosterman, and Matthew A Wilson. Hippocampal replay of extended
567 experience. *Neuron*, 63(4):497–507, 2009.

568 Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory
569 Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification
570 tasks. *IEEE transactions on pattern analysis and machine intelligence*, 44(7):3366–3385, 2021.

571 Junze Deng, Qinhang Wu, Peizhong Ju, Sen Lin, Yingbin Liang, and Ness Shroff. Unlocking
572 the power of rehearsal in continual learning: A theoretical perspective. *arXiv preprint*
573 *arXiv:2506.00205*, 2025.

574 Meng Ding, Kaiyi Ji, Di Wang, and Jinhui Xu. Understanding forgetting in continual learning with
575 linear regression. *arXiv preprint arXiv:2405.17583*, 2024.

576 Thang Doan, Mehdi Abbana Bennani, Bogdan Mazoure, Guillaume Rabusseau, and Pierre Alquier.
577 A theoretical analysis of catastrophic forgetting through the ntk overlap matrix. In *International
578 Conference on Artificial Intelligence and Statistics*, pp. 1072–1080. PMLR, 2021.

579 Arthur Douillard, Alexandre Ramé, Guillaume Couairon, and Matthieu Cord. Dytox: Transformers
580 for continual learning with dynamic token expansion. In *2022 IEEE/CVF Conference on Computer
581 Vision and Pattern Recognition (CVPR)*, pp. 9275–9285, 2022.

582 Itay Evron, Edward Moroshko, Rachel Ward, Nathan Srebro, and Daniel Soudry. How catastrophic
583 can catastrophic forgetting be in linear regression? In *Conference on Learning Theory*, pp.
584 4028–4079. PMLR, 2022.

585 Itay Evron, Edward Moroshko, Gon Buzaglo, Maroun Khriesh, Badea Marjeh, Nathan Srebro, and
586 Daniel Soudry. Continual learning in linear classification on separable data. In *International
587 Conference on Machine Learning*, pp. 9440–9484. PMLR, 2023.

594 Qiang Gao, Zhipeng Luo, Diego Klabjan, and Fengli Zhang. Efficient architecture search for continual
 595 learning. *IEEE Transactions on Neural Networks and Learning Systems*, 34(11):8555–8565, 2022.
 596

597 Rui Gao and Weiwei Liu. Ddgr: Continual learning with deep diffusion-based generative replay. In
 598 *International Conference on Machine Learning*, pp. 10744–10763. PMLR, 2023.

599 Daniel Goldfarb and Paul Hand. Analysis of catastrophic forgetting for random orthogonal transfor-
 600 mation tasks in the overparameterized regime. In *International Conference on Artificial Intelligence
 601 and Statistics*, pp. 2975–2993. PMLR, 2023.

602

603 Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical investi-
 604 gation of catastrophic forgetting in gradient-based neural networks. *arXiv preprint arXiv:1312.6211*,
 605 2013.

606 Kishaan Jeeveswaran, Prashant Bhat, Bahram Zonooz, and E. Arani. Birt: Bio-inspired replay
 607 in vision transformers for continual learning. *ArXiv*, abs/2305.04769, 2023. URL <https://api.semanticscholar.org/CorpusID:258557568>.

608

609 Wenlong Ji, Zhun Deng, Ryumei Nakada, James Zou, and Linjun Zhang. The power of contrast for
 610 feature learning: A theoretical analysis. *Journal of Machine Learning Research*, 24(330):1–78,
 611 2023.

612

613 Gyuhak Kim, Changnan Xiao, Tatsuya Konishi, Zixuan Ke, and Bing Liu. A theoretical study on
 614 solving continual learning. *Advances in neural information processing systems*, 35:5065–5079,
 615 2022.

616

617 Sanghwan Kim, Lorenzo Noci, Antonio Orvieto, and Thomas Hofmann. Achieving a better stability-
 618 plasticity trade-off via auxiliary networks in continual learning. In *Proceedings of the IEEE/CVF
 619 Conference on Computer Vision and Pattern Recognition*, pp. 11930–11939, 2023.

620

621 James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
 622 Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
 623 catastrophic forgetting in neural networks. *Proceedings of the national academy of sciences*, 114
 (13):3521–3526, 2017.

624

625 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

626

627 Yann Le and Xuan Yang. Tiny imagenet visual recognition challenge. *CS 231N*, 7(7):3, 2015.

628

629 Yann LeCun, Bernhard Boser, John Denker, Donnie Henderson, Richard Howard, Wayne Hubbard,
 630 and Lawrence Jackel. Handwritten digit recognition with a back-propagation network. *Advances
 631 in neural information processing systems*, 2, 1989.

632

633 Haoran Li, Jingfeng Wu, and Vladimir Braverman. Fixed design analysis of regularization-based
 634 continual learning. In *Conference on Lifelong Learning Agents*, pp. 513–533. PMLR, 2023.

635

636 Hongbo Li, Sen Lin, Lingjie Duan, Yingbin Liang, and Ness Shroff. Theory on mixture-of-experts
 637 in continual learning. In *The Thirteenth International Conference on Learning Representations*,
 638 2025.

639

640 Guoliang Lin, Hanlu Chu, and Hanjiang Lai. Towards better plasticity-stability trade-off in incremen-
 641 tal learning: A simple linear connector. In *Proceedings of the IEEE/CVF conference on computer
 642 vision and pattern recognition*, pp. 89–98, 2022.

643

644 Sen Lin, Peizhong Ju, Yingbin Liang, and Ness Shroff. Theory on forgetting and generalization of
 645 continual learning. In *International Conference on Machine Learning*, pp. 21078–21100. PMLR,
 646 2023.

647

648 David Lopez-Paz and Marc’ Aurelio Ranzato. Gradient episodic memory for continual learning.
 649 *Advances in neural information processing systems*, 30, 2017.

650

651 Caitlin S Mallory, John Widloski, and David J Foster. The time course and organization of hippocam-
 652 pal replay. *Science*, 387(6733):541–548, 2025.

648 Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
 649 sequential learning problem. In *Psychology of learning and motivation*, volume 24, pp. 109–165.
 650 Elsevier, 1989.

651

652 Mark D McDonnell, Dong Gong, Amin Parvaneh, Ehsan Abbasnejad, and Anton Van den Hengel.
 653 Ranpac: Random projections and pre-trained models for continual learning. *Advances in Neural
 654 Information Processing Systems*, 36:12022–12053, 2023.

655 German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual
 656 lifelong learning with neural networks: A review. *Neural networks*, 113:54–71, 2019.

657

658 Liangzu Peng, Paris Giampouras, and René Vidal. The ideal continual learner: An agent that never
 659 forgets. In *International Conference on Machine Learning*, pp. 27585–27610. PMLR, 2023.

660 Krishnan Raghavan and Prasanna Balaprakash. Formalizing the generalization-forgetting trade-off in
 661 continual learning. *Advances in Neural Information Processing Systems*, 34:17284–17297, 2021.

662

663 Vinay Venkatesh Ramasesh, Ethan Dyer, and Maithra Raghu. Anatomy of catastrophic forgetting:
 664 Hidden representations and task semantics. In *International Conference on Learning Representa-
 665 tions*, 2021.

666 Allan Raventós, Mansheej Paul, Feng Chen, and Surya Ganguli. Pretraining task diversity and the
 667 emergence of non-bayesian in-context learning for regression. *Advances in neural information
 668 processing systems*, 36:14228–14246, 2023.

669

670 David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy P. Lillicrap, and Greg Wayne. Experience
 671 replay for continual learning. In *Neural Information Processing Systems*, 2018. URL <https://api.semanticscholar.org/CorpusID:53860287>.

672

673 Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
 674 Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. *arXiv preprint
 675 arXiv:1606.04671*, 2016.

676

677 Jeffrey C Schlimmer and Douglas Fisher. A case study of incremental concept induction. In
 678 *Proceedings of the Fifth AAAI National Conference on Artificial Intelligence*, pp. 496–501, 1986.

679

680 Qianqian Shi, Faqiang Liu, Hongyi Li, Guangyu Li, Luping Shi, and Rong Zhao. Hybrid neural
 681 networks for continual learning inspired by corticohippocampal circuits. *Nature Communications*,
 16(1):1272, 2025.

682

683 Yujun Shi, Kuangqi Zhou, Jian Liang, Zihang Jiang, Jiashi Feng, Philip HS Torr, Song Bai, and Vin-
 684 cent YF Tan. Mimicking the oracle: An initial phase decorrelation approach for class incremental
 685 learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 686 pp. 16722–16731, 2022.

687

688 Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
 689 replay. *Advances in neural information processing systems*, 30, 2017.

690

691 Christian Simon, Masoud Faraki, Yi-Hsuan Tsai, Xiang Yu, Samuel Schulter, Yumin Suh, Mehrtash
 692 Harandi, and Manmohan Chandraker. On generalizing beyond domains in cross-domain continual
 693 learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 694 pp. 9265–9274, 2022.

695

696 Junha Song, Jungsoo Lee, In So Kweon, and Sungha Choi. Ecotta: Memory-efficient continual
 697 test-time adaptation via self-distilled regularization. In *Proceedings of the IEEE/CVF Conference
 698 on Computer Vision and Pattern Recognition*, pp. 11920–11929, 2023.

699

700 Zhicheng Sun, Yadong Mu, and Gang Hua. Regularizing second-order influences for continual
 701 learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 702 pp. 20166–20175, 2023.

703

704 Sebastian Thrun and Tom M Mitchell. Lifelong robot learning. *Robotics and autonomous systems*,
 705 15(1-2):25–46, 1995.

702 Rishabh Tiwari, Krishnateja Killamsetty, Rishabh Iyer, and Pradeep Shenoy. Gcr: Gradient coreset
 703 based replay buffer selection for continual learning. In *Proceedings of the IEEE/CVF Conference*
 704 *on Computer Vision and Pattern Recognition*, pp. 99–108, 2022.

705 Quyen Tran, Tung Lam Tran, Khanh Doan, Toan Tran, Dinh Phung, Khoa Than, and Trung Le.
 706 Boosting multiple views for pretrained-based continual learning. In *The Thirteenth International*
 707 *Conference on Learning Representations*, 2025.

708 Gido M Van de Ven, Hava T Siegelmann, and Andreas S Tolias. Brain-inspired replay for continual
 709 learning with artificial neural networks. *Nature communications*, 11(1):4069, 2020.

710 Liyuan Wang, Xingxing Zhang, Kuo Yang, Long Long Yu, Chongxuan Li, Lanqing Hong, Shifeng
 711 Zhang, Zhenguo Li, Yi Zhong, and Jun Zhu. Memory replay with data compression for continual
 712 learning. *ArXiv*, abs/2202.06592, 2022a. URL <https://api.semanticscholar.org/CorpusID:246823055>.

713 Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual learning:
 714 Theory, method and application. *IEEE Transactions on Pattern Analysis and Machine Intelligence*,
 715 2024a.

716 Xuan Wang, Zhong Ji, Yunlong Yu, Yanwei Pang, and Jungong Han. Model attention expansion for
 717 few-shot class-incremental learning. *IEEE Transactions on Image Processing*, 2024b.

718 Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren,
 719 Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for
 720 rehearsal-free continual learning. In *European conference on computer vision*, pp. 631–648.
 721 Springer, 2022b.

722 Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent
 723 Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In *Proceedings*
 724 *of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 139–149, 2022c.

725 Shipeng Yan, Jiangwei Xie, and Xuming He. Der: Dynamically expandable representation for class
 726 incremental learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 727 *recognition*, pp. 3014–3023, 2021.

728 Gengwei Zhang, Liyuan Wang, Guoliang Kang, Ling Chen, and Yunchao Wei. Slca: Slow learner
 729 with classifier alignment for continual learning on a pre-trained model. In *Proceedings of the*
 730 *IEEE/CVF International Conference on Computer Vision*, pp. 19148–19158, 2023.

731 Yu Zhang and Qiang Yang. An overview of multi-task learning. *National Science Review*, 5(1):
 732 30–43, 2018.

733 Yu Zhang and Qiang Yang. A survey on multi-task learning. *IEEE transactions on knowledge and*
 734 *data engineering*, 34(12):5586–5609, 2021.

735 Linglan Zhao, Xuerui Zhang, Ke Yan, Shouhong Ding, and Weiran Huang. Safe: Slow and fast
 736 parameter-efficient tuning for continual learning with pre-trained models. *Advances in Neural*
 737 *Information Processing Systems*, 37:113772–113796, 2024a.

738 Xuyang Zhao, Huiyuan Wang, Weiran Huang, and Wei Lin. A statistical theory of regularization-
 739 based continual learning. *arXiv preprint arXiv:2406.06213*, 2024b.

740 Guodong Zheng, Peng Wang, and Li Shen. Towards understanding memory buffer based continual
 741 learning. 2024.

742 Da-Wei Zhou, Hai-Long Sun, Jingyi Ning, Han-Jia Ye, and De-Chuan Zhan. Continual learning with
 743 pre-trained models: A survey. In *IJCAI*, 2024.

744 Da-Wei Zhou, Zi-Wen Cai, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu. Revisiting class-incremental
 745 learning with pre-trained models: Generalizability and adaptivity are all you need. *International*
 746 *Journal of Computer Vision*, 133(3):1012–1032, 2025.

747

756 A ADDITIONAL ANALYSIS AND SUPPORT LEMMAS
757758 A.1 EXTENDED ANALYSIS ON CIFAR100 BY STRONG CONTINUAL LEARNING BASELINES
759

Methods	2000	4000	6000	8000	10000
EWC	86.20	84.60	83.17	81.91	80.11
LwF	73.35	73.86	72.92	73.90	74.76
iCaRL	84.59	82.98	81.59	80.89	80.19
DER	73.87	73.57	72.40	72.86	72.40
FOSTER	79.48	84.71	84.35	83.95	83.10
MEMO	68.10	66.78	66.01	65.56	65.16
CSReL	73.29	68.20	68.13	67.96	60.59

760
761 As shown in the table, as the replay scale increases, the average accuracy on the current task decreases
762 for most algorithms, and CSReL exhibits a more pronounced decline, while DER and MEMO
763 decrease more slowly. This may be due to CSReL’s use of an additional network to constrain model
764 loss, which can introduce extra interference to current task learning. We then analyze how forgetting
765 rates vary across these methods with increasing rehearsal size. The experimental results are as follows.
766

775 A.2 EXTENDED ANALYSIS ON IMAGENET-R BY STRONG CONTINUAL LEARNING BASELINES
776

Methods	2000	4000	6000
EWC(+Rehearsal)	53.053	51.476	49.690
iCaRL	53.567	50.893	49.992
DER	46.211	45.839	44.209
FOSTER	29.473	40.846	44.229
MEMO	19.256	17.608	16.218

784 As shown in the table, the model’s accuracy on the current task gradually declines as the replay scale
785 increases, demonstrating the negative impact on the model’s adaptability.
786

787 A.3 EXTENSION EXPERIMENTS ON THE IMAGENET-R DATASET
788

Buffer Size	High similarity	Medium similarity	Low similarity
0	7.721	9.192	11.725
200	5.673	6.639	6.908
600	6.687	6.367	7.150
800	6.795	6.707	7.320
1200	7.148	6.964	7.903
1600	6.917	7.105	7.580
2000	7.381	6.995	7.751
Average	6.903	7.138	8.048

799 As shown in the table, introducing replay initially improves performance. However, as the number
800 of replays increases, the benefit for memory performance diminishes, and memory errors can even
801 increase. The experimental results comparing the continual learning baselines are as follows.
802

803 A.4 EXTENSION EXPERIMENTS ON THE CUB200 DATASET
804

Tasks	T3	T6	T12	T16	T20	Avg.
0%	2.146	2.153	2.329	2.437	2.270	2.267
5%	2.125	1.735	2.310	2.522	2.739	2.286
10%	2.309	2.054	4.513	5.270	5.267	3.882
50%	2.296	2.009	2.373	2.333	2.427	2.287

810
811 As shown in the table, adaptation error on the current task increases as the replay buffer grows, with
812 the largest difference observed when replaying 10% of the samples.
813

814 Buffer Size	815 High similarity	816 Medium similarity	817 Low similarity
818 0	819 4.518	820 5.721	821 5.895
822 200	823 4.085	824 4.748	825 5.106
826 400	827 5.049	828 5.683	829 5.495
830 600	831 5.933	832 5.097	833 6.420
834 800	835 6.127	836 5.811	837 6.421
838 1000	839 6.363	840 5.897	841 6.400
842 Average	843 5.346	844 5.493	845 5.956

823 As shown in the table, memory error exhibited a noticeable decrease when replay samples were
824 initially introduced. However, further increasing the number of replay samples leads to a rise in
825 memory error. Additionally, for high similarity tasks, the model achieves better memory performance.
826
827

828 A.5 VERIFICATION OF CONVERGENCE OF GRADIENT DESCENT FOR NORMS 829

830 Epoch	831 Train Loss	832 Solution Norm	833 Difference	834 Relative Error
835 50	836 4.2465	837 7.3235	838 2.4340	839 29.53%
840 100	841 0.9057	842 7.8090	843 1.3898	844 16.86%
845 250	846 0.0706	847 8.1575	848 0.5051	849 6.13%
850 300	851 0.0390	852 8.1872	853 0.3873	854 4.70%
855 350	856 0.0226	857 8.2052	858 0.3008	859 3.65%
860 500	861 0.0051	862 8.2293	863 0.1465	864 1.78%
865 800	866 0.0003	867 8.2409	868 0.0369	869 0.45%
870 850	871 0.0002	872 8.2416	873 0.0294	874 0.36%
875 900	876 0.0001	877 8.2421	878 0.0235	879 0.28%
880 950	881 0.0001	882 8.2424	883 0.0187	884 0.23%
885 992(ES)	886 0.0001	887 8.2427	888 0.0155	889 0.0019%
890 1000	891 0.0001	892 8.2427	893 0.0155	894 0.0019%

844
845 As shown by the experimental results, although the norm of the gradient descent solution does
846 not exactly match the minimum-norm solution in continual learning scenario, the gap decreases
847 progressively with more training epochs. The gradient-updated solution continues to converge toward
848 the small-norm trend, and future work will extend this analysis to more complex scenarios.
849

850 A.6 ADAPTIVE ERROR UNDER DIFFERENT SAMPLING STRATEGIES 851

852 Methods	853 0	854 5%	855 10%	856 50%
857 Random	858 16.945	859 3.602	860 2.131	861 0.767
862 Reservoir	863 17.415	864 3.314	865 1.549	866 0.386
867 Herding	868 17.255	869 4.816	870 3.624	871 3.389
872 GSS	873 17.748	874 5.085	875 4.035	876 3.810
877 CSReL	878 18.049	879 11.287	880 11.080	881 8.245

860
861 As shown in the table, under different sampling strategies, increasing the buffer size reduces memory
862 error to some extent, with more performance improvements in the initial stages. As replay size
863 increases, the performance gains gradually diminish. Under the Herding sampling, replaying 50% of
864 the samples reduces the error by only 0.235 compared to replaying 10% of the samples.

Methods	0	5%	10%	50%
Random	11.819	2.820	1.849	0.954
Reservoir	12.121	2.609	1.422	0.799
Herding	12.014	3.049	2.838	2.762
GSS	9.942	3.083	2.542	2.700
CSReL	10.081	6.467	6.468	4.851

As shown in the table, under different sampling strategies, the model’s generalization error decreases to varying degrees as the replay size increases. This effect is particularly pronounced for Herding sampling, Random sampling, and Reservoir sampling strategies.

A.7 ANALYSIS OF THEORETICAL ASSUMPTION LIMITATIONS

In continual learning, the Gaussian assumption leverages properties such as orthogonal projection and closed-form solutions to separate factors affecting performance and quantify results. However, it often struggles to capture the nonlinear nature of deep networks and the structural distribution of noise. The fixed design assumption treats the input data matrix as fixed or non-random; analyzing the geometric structure of data across tasks can reveal interference between tasks but neglects the inherent randomness in real data distributions. The fourth-moment assumption accommodates broader data distributions and enables analysis of noise and data perturbations, but it often fails to capture structural noise and does not yield explicit closed-form expressions. Therefore, each assumption has distinct strengths and limitations. Selecting the appropriate theoretical framework for research context is therefore essential to effectively address diverse research topics under continual learning.

A.8 THEORETICAL PROOF UNDER RELAXED ASSUMPTIONS

Under the relaxed Assumption 2, assuming the sample size and noise satisfying $n_1 \neq n_2 \neq \dots \neq n_T$ and $\sigma_1 \neq \sigma_2 \neq \dots \neq \sigma_T$, the optimization objective under the underparameterized regime is given by: $\hat{\mathbf{w}}_t^{(\text{Reh})} := \arg \min_{\mathbf{w}} \|\mathbf{X}_t^\top \mathbf{w} - \mathbf{y}_t\|^2 + \sum_{i=1}^{t-1} \|\mathbf{Z}_i^\top \mathbf{w} - \mathbf{g}_i\|^2$. Let $L(\mathbf{w}) = \|\mathbf{X}_t^\top \mathbf{w} - \mathbf{y}_t\|^2 + \sum_{i=1}^{t-1} \|\mathbf{Z}_i^\top \mathbf{w} - \mathbf{g}_i\|^2$, and we have

$$\begin{aligned}
& \|\mathbf{X}_t^\top \mathbf{w} - \mathbf{y}_t\|^2 + \sum_{i=1}^{t-1} \|\mathbf{Z}_i^\top \mathbf{w} - \mathbf{g}_i\|^2 \\
&= (\mathbf{X}_t^\top \mathbf{w} - \mathbf{y}_t)^\top (\mathbf{X}_t^\top \mathbf{w} - \mathbf{y}_t) + \sum_{i=1}^{t-1} (\mathbf{Z}_i^\top \mathbf{w} - \mathbf{g}_i)^\top (\mathbf{Z}_i^\top \mathbf{w} - \mathbf{g}_i) \\
&= \mathbf{w}^\top \mathbf{X}_t \mathbf{X}_t^\top \mathbf{w} - \mathbf{y}_t^\top \mathbf{X}_t \mathbf{w} - \mathbf{w}^\top \mathbf{X}_t \mathbf{y}_t - \mathbf{y}_t^\top \mathbf{y}_t \\
&\quad + \sum_{i=1}^{t-1} (\mathbf{w}^\top \mathbf{Z}_i \mathbf{Z}_i^\top \mathbf{w} - \mathbf{g}_i^\top \mathbf{Z}_i \mathbf{w} - \mathbf{w}^\top \mathbf{Z}_i \mathbf{g}_i - \mathbf{g}_i^\top \mathbf{g}_i)
\end{aligned}$$

By setting the derivative to zero, we can have

$$\begin{aligned}
\mathbf{w}_t &= (\mathbf{X}_t \mathbf{X}_t^\top + \sum_{i=1}^{t-1} \mathbf{Z}_i \mathbf{Z}_i^\top)^{-1} (\mathbf{X}_t \mathbf{y}_t + \sum_{i=1}^{t-1} \mathbf{Z}_i \mathbf{g}_i) \\
&= (\mathbf{X}_t \mathbf{X}_t^\top + \sum_{i=1}^{t-1} \mathbf{Z}_i \mathbf{Z}_i^\top)^{-1} [\mathbf{X}_t (\mathbf{X}_t^\top \mathbf{w}^* + \boldsymbol{\varepsilon}_t) + \sum_{i=1}^{t-1} \mathbf{Z}_i (\mathbf{Z}_i^\top \mathbf{w}^* + \boldsymbol{\varepsilon}_i)] \\
&= \mathbf{w}_t^* + (\mathbf{X}_t \mathbf{X}_t^\top + \sum_{i=1}^{t-1} \mathbf{Z}_i \mathbf{Z}_i^\top)^{-1} (\mathbf{X}_t \boldsymbol{\varepsilon}_t + \sum_{i=1}^{t-1} \mathbf{Z}_i \boldsymbol{\varepsilon}_i)
\end{aligned}$$

For notational convenience, let $\mathbf{U}_t = [\mathbf{X}_t \ \mathbf{Z}_1 \ \mathbf{Z}_2 \ \dots \ \mathbf{Z}_{t-1}] \in \mathbb{R}^{p \times (n+s)}$ by concatenating the matrices along the second dimension and let $\mathbf{Y}_t = [\mathbf{y}_t \ \mathbf{g}_1 \ \mathbf{g}_2 \ \dots \ \mathbf{g}_{t-1}]^\top \in \mathbb{R}^{n+s}$ denotes the

918 corresponding concatenated response vector. Then we can calculate the expected ℓ_2 -norm as
 919

$$\begin{aligned}
 920 \quad \mathbb{E}[L_i(\mathbf{w}_t)] &= \mathbb{E}\|\mathbf{w}_t - \mathbf{w}_i^*\|^2 \\
 921 \quad &= \mathbb{E}\|\mathbf{w}_t^* + (\mathbf{X}_t \mathbf{X}_t^\top + \sum_{i=1}^{t-1} \mathbf{Z}_i \mathbf{Z}_i^\top)^{-1}(\mathbf{X}_t \boldsymbol{\varepsilon}_t + \sum_{i=1}^{t-1} \mathbf{Z}_i \boldsymbol{\varepsilon}_i) - \mathbf{w}_i^*\|^2 \\
 922 \quad &= \mathbb{E}\|\mathbf{w}_t^* - \mathbf{w}_i^*\|^2 + \mathbb{E}\|(\mathbf{X}_t \mathbf{X}_t^\top + \sum_{i=1}^{t-1} \mathbf{Z}_i \mathbf{Z}_i^\top)^{-1}(\mathbf{X}_t \boldsymbol{\varepsilon}_t + \sum_{i=1}^{t-1} \mathbf{Z}_i \boldsymbol{\varepsilon}_i)\|^2 \\
 923 \quad &= \|\mathbf{w}_t^* - \mathbf{w}_i^*\|^2 + \mathbb{E}[\mathbf{z}_t^\top \mathbf{U}_t^\top (\mathbf{U}_t \mathbf{U}_t^\top)^{-1} (\mathbf{U}_t \mathbf{U}_t^\top)^{-1} \mathbf{U}_t \mathbf{z}_t] \\
 924 \quad &= \|\mathbf{w}_t^* - \mathbf{w}_i^*\|^2 + \mathbb{E}[tr\{\mathbf{U}_t^\top (\mathbf{U}_t \mathbf{U}_t^\top)^{-1} (\mathbf{U}_t \mathbf{U}_t^\top)^{-1} \mathbf{U}_t \mathbf{z}_t \mathbf{z}_t^\top\}] \\
 925 \quad &= \|\mathbf{w}_t^* - \mathbf{w}_i^*\|^2 + \sigma^2 \mathbb{E}[tr\{(\mathbf{U}_t \mathbf{U}_t^\top)^{-1}\}] \\
 926 \quad &= \|\mathbf{w}_t^* - \mathbf{w}_i^*\|^2 + \frac{p\sigma_t^2}{n+s-p-1} \\
 927 \quad &= \|\mathbf{w}_t^* - \mathbf{w}_i^*\|^2 + \frac{p\sigma_t^2}{n+s-p-1}
 \end{aligned}$$

928 Then we can obtain the adaptation error
 929

$$\begin{aligned}
 930 \quad \mathbb{E}[A(\mathbf{w}_t)] &= \mathbb{E}\|\mathbf{w}_t - \mathbf{w}_t^*\|^2 \\
 931 \quad &= \mathbb{E}\|\mathbf{w}_t^* + (\mathbf{X}_t \mathbf{X}_t^\top + \sum_{i=1}^{t-1} \mathbf{Z}_i \mathbf{Z}_i^\top)^{-1}(\mathbf{X}_t \boldsymbol{\varepsilon}_t + \sum_{i=1}^{t-1} \mathbf{Z}_i \boldsymbol{\varepsilon}_i) - \mathbf{w}_t^*\|^2 \\
 932 \quad &= \mathbb{E}\|(\mathbf{U}_t \mathbf{U}_t^\top)^{-1} \mathbf{U}_t \mathbf{z}_t\|^2 \\
 933 \quad &= \frac{p\sigma_t^2}{n+s-p-1}
 \end{aligned} \tag{5}$$

934 Moreover, we can calculate the memory error
 935

$$\begin{aligned}
 936 \quad \mathbb{E}[\mathcal{M}(\mathbf{w}_t)] &= \mathbb{E}\left[\frac{1}{t-1} \sum_{k=1}^{t-1} (\|\mathbf{w}_t - \mathbf{w}_k^*\|^2 - \|\mathbf{w}_k - \mathbf{w}_k^*\|^2)\right] \\
 937 \quad &= \frac{1}{t-1} \sum_{k=1}^{t-1} \left[\|\mathbf{w}_t^* - \mathbf{w}_k^*\|^2 + \frac{p\sigma_t^2}{n_t+s-p-1} - \|\mathbf{w}_k^* - \mathbf{w}_k^*\|^2 - \frac{p\sigma_k^2}{n_k+s-p-1} \right] \\
 938 \quad &= \frac{1}{t-1} \sum_{k=1}^{t-1} \left[\|\mathbf{w}_t^* - \mathbf{w}_k^*\|^2 + \frac{p\sigma_t^2}{n_t+s-p-1} - \frac{p\sigma_k^2}{n_k+s-p-1} \right]. \\
 939 \quad &= \frac{1}{t-1} \sum_{k=1}^{t-1} \|\mathbf{w}_t^* - \mathbf{w}_k^*\|^2 - \frac{1}{t-1} \sum_{k=1}^{t-1} \frac{p\sigma_k^2}{n_k+s-p-1} + \frac{p\sigma_t^2}{n_t+s-p-1}
 \end{aligned} \tag{6}$$

940 Finally, the generalization error can be calculated as
 941

$$\begin{aligned}
 942 \quad \mathbb{E}[\mathcal{G}(\mathbf{w}_t)] &= \mathbb{E}\left[\frac{1}{t} \sum_{k=1}^t \|\mathbf{w}_t - \mathbf{w}_k^*\|^2\right] \\
 943 \quad &= \frac{1}{t} \sum_{k=1}^t \mathbb{E}\|\mathbf{w}_t^* + (\mathbf{X}_t \mathbf{X}_t^\top + \sum_{i=1}^{t-1} \mathbf{Z}_i \mathbf{Z}_i^\top)^{-1}(\mathbf{X}_t \boldsymbol{\varepsilon}_t + \sum_{i=1}^{t-1} \mathbf{Z}_i \boldsymbol{\varepsilon}_i) - \mathbf{w}_k^*\|^2 \\
 944 \quad &= \frac{1}{t} \sum_{k=1}^t \left[\|\mathbf{w}_t^* - \mathbf{w}_k^*\|^2 + \frac{p\sigma_t^2}{n_t+s-p-1} \right]
 \end{aligned} \tag{7}$$

945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957

972 **Lemma A.1.** Consider continual linear regression models, where the data $\mathcal{D}_t := (\mathbf{X}_t, \mathbf{y}_t)$ of each
 973 task t consist of a feature matrix $\mathbf{X}_t \in \mathbb{R}^{p \times n}$ and a response vector $\mathbf{y}_t \in \mathbb{R}^n$. When GD/SGD
 974 converges to zero mean squared error, the convergence point corresponds to the minimum ℓ_2 -norm
 975 solution that lies nearest to the previous task's parameters in parameter space.

976 *Proof.* Let \mathbf{w}_t be the parameter for the current task, we can calculate the gradient for the i -th training
 977 sample as $\partial(y_i - \mathbf{x}_i^\top \mathbf{w})^2 / \partial \mathbf{w} = -2(y_i - \mathbf{x}_i^\top \mathbf{w})\mathbf{x}_i$. Since the parameter change in each iteration is
 978 located in the column space of \mathbf{X} , we can always find $\mathbf{a} \in \mathbb{R}^n$ such that $\mathbf{w} - \mathbf{w}_{t-1} = \mathbf{X}\mathbf{a}$. For the
 979 convergence point that makes the training loss become zero, we have $\mathbf{X}^\top \mathbf{w} = \mathbf{y}$. Then we have
 980

$$\mathbf{X}^\top \mathbf{w} = \mathbf{X}^\top (\mathbf{w}_{t-1} + \mathbf{X}\mathbf{a}) = \mathbf{X}^\top \mathbf{w}_{t-1} + \mathbf{X}^\top \mathbf{X}\mathbf{a}. \quad (15)$$

981 Then, we can calculate \mathbf{a} and subsequently derive a dynamic expression for \mathbf{w} :

$$\begin{aligned} \mathbf{w} &= \mathbf{w}_{t-1} + \mathbf{X}\mathbf{a} \\ &= \mathbf{w}_{t-1} + \mathbf{X}(\mathbf{X}^\top \mathbf{X})^{-1}(\mathbf{y} - \mathbf{X}^\top \mathbf{w}_{t-1}) \\ &= (\mathbf{I} - \mathbf{X}(\mathbf{X}^\top \mathbf{X})^{-1}\mathbf{X}^\top)\mathbf{w}_{t-1} + \mathbf{X}(\mathbf{X}^\top \mathbf{X})^{-1}\mathbf{y}, \end{aligned} \quad (16)$$

982 which is exactly the minimum ℓ_2 -norm solution of the continual linear regression:

$$\arg \min_{\mathbf{w}} \|\mathbf{w} - \mathbf{w}_{t-1}\|^2, \text{ st. } \mathbf{X}^\top \mathbf{w} = \mathbf{y}. \quad (17)$$

983 **Lemma A.2.** Let each element of random matrix $\mathbf{U} \in \mathbb{R}^{p \times n}$ be drawn i.i.d. from a standard normal
 984 distribution $\mathcal{N}(0, 1)$ and $p > n + 1$. There exists a fixed vector $\mathbf{w} \in \mathbb{R}^p$ and a normal distribution
 985 random vector $\mathbf{z} \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_n)$ satisfying the following equation:

$$\mathbb{E}[(\mathbf{U}^\top \mathbf{U})^{-1}] = \frac{\mathbf{I}_{n \times n}}{p - n - 1}, \quad (18)$$

$$\mathbb{E}\left\|\mathbf{U}(\mathbf{U}^\top \mathbf{U})^{-1}\mathbf{U}^\top \mathbf{w}\right\|^2 = \frac{n}{p}\|\mathbf{w}\|^2, \quad (19)$$

$$\mathbb{E}\left\|\mathbf{U}(\mathbf{U}^\top \mathbf{U})^{-1}\mathbf{\epsilon}\right\|^2 = \frac{n\sigma^2}{p - n - 1}. \quad (20)$$

1003 *Proof.* According to the definition of matrix \mathbf{U} , we have $(\mathbf{U}^\top \mathbf{U})^{-1}$ follows the inverse-Wishart
 1004 distribution with identity scale matrix $\mathbf{I} \in \mathbb{R}^{n \times n}$ and p degrees-of-freedom, Therefore, for $p > n + 1$,
 1005 we have $\mathbb{E}[(\mathbf{U}^\top \mathbf{U})^{-1}] = \frac{\mathbf{I}_{n \times n}}{p - n - 1}$ and the first equation holds. Let $\mathbf{\Pi} := \mathbf{U}(\mathbf{U}^\top \mathbf{U})^{-1}\mathbf{U}^\top$, it can
 1006 be shown that $\mathbf{\Pi}$ is a orthogonal projection matrix that projects a p -dim vector to the column space of
 1007 \mathbf{U} and satisfies $\mathbf{\Pi}^2 = \mathbf{\Pi}$. Since each element of \mathbf{U} is i.i.d. following standard Gaussian, we have
 1008 $\mathbb{E}[\|\mathbf{\Pi}\mathbf{w}\|^2] = \frac{n}{p}\|\mathbf{w}\|^2$ by rotational symmetry of the standard normal distribution. We can get
 1009

$$\begin{aligned} \|\mathbf{U}(\mathbf{U}^\top \mathbf{U})^{-1}\mathbf{\epsilon}\|^2 &= \mathbf{\epsilon}^\top (\mathbf{U}^\top \mathbf{U})^{-1}(\mathbf{U}^\top \mathbf{U})(\mathbf{U}^\top \mathbf{U})^{-1}\mathbf{\epsilon} \\ &= \text{tr}((\mathbf{U}^\top \mathbf{U})^{-1}(\mathbf{U}^\top \mathbf{U})(\mathbf{U}^\top \mathbf{U})^{-1}\mathbf{\epsilon}\mathbf{\epsilon}^\top) \\ &= \text{tr}((\mathbf{U}^\top \mathbf{U})^{-1}\mathbf{\epsilon}\mathbf{\epsilon}^\top). \end{aligned} \quad (21)$$

1014 By computing the expectation of the above equation, we derive

$$\begin{aligned} \mathbb{E}[\|\mathbf{U}(\mathbf{U}^\top \mathbf{U})^{-1}\mathbf{\epsilon}\|^2] &= \mathbb{E}[\text{tr}((\mathbf{U}^\top \mathbf{U})^{-1}\mathbf{\epsilon}\mathbf{\epsilon}^\top)] \\ &= \text{tr}(\mathbb{E}[(\mathbf{U}^\top \mathbf{U})^{-1}\mathbf{\epsilon}\mathbf{\epsilon}^\top]) \\ &= \text{tr}(\mathbb{E}[(\mathbf{U}^\top \mathbf{U})^{-1}]\mathbb{E}[\mathbf{\epsilon}\mathbf{\epsilon}^\top]) \\ &= \sigma^2 \text{tr}(\mathbb{E}[(\mathbf{U}^\top \mathbf{U})^{-1}]) \\ &= \frac{n\sigma^2}{p - n - 1}. \end{aligned} \quad (22)$$

1024 **Lemma A.3.** Consider the oracle estimator described in Appendix E. We construct $\mathbf{X}_{1T} \in \mathbb{R}^{p \times nT}$
 1025 by concatenating the data matrices from \mathbf{X}_1 to \mathbf{X}_T along the second dimension, i.e. $\mathbf{X}_{1T} =$
 1026 $[\mathbf{X}_1 \ \mathbf{X}_2 \ \dots \ \mathbf{X}_T]$, and \mathbf{y}_{1T} denotes the corresponding concatenated response vector. The solution to

1026 the corresponding optimization problem for the oracle estimator takes different forms depending on
 1027 the parameterization regime. In the overparameterized regime, the solution is given by
 1028

$$1029 \hat{\mathbf{w}}_T^{(Ora)} = \left(\mathbf{I} - \mathbf{X}_{1T} (\mathbf{X}_{1T}^\top \mathbf{X}_{1T})^{-1} \mathbf{X}_{1T}^\top \right) \mathbf{w}_0 + \mathbf{X}_{1T} (\mathbf{X}_{1T}^\top \mathbf{X}_{1T})^{-1} \mathbf{y}_{1T}. \quad (23)$$

1031 In the underparameterized regime, the solution is given by the following expression
 1032

$$1033 \hat{\mathbf{w}}_T^{(Ora)} = (\mathbf{X}_{1T} \mathbf{X}_{1T}^\top)^{-1} \mathbf{X}_{1T} \mathbf{y}_{1T}. \quad (24)$$

1035 *Proof.* When underparameterized, the optimization problem for the oracle estimator can be formulated
 1036 as: $\arg \min_{\mathbf{w}} \|\mathbf{X}_{1T}^\top \mathbf{w} - \mathbf{y}_{1T}\|^2$. Let $L(\mathbf{w}) = \|\mathbf{X}_{1T}^\top \mathbf{w} - \mathbf{y}_{1T}\|^2$ denotes a function of \mathbf{w} and we have
 1037

$$1038 L(\mathbf{w}) = \|\mathbf{X}_{1T}^\top \mathbf{w} - \mathbf{y}_{1T}\|^2 = (\mathbf{X}_{1T}^\top \mathbf{w} - \mathbf{y}_{1T})^\top (\mathbf{X}_{1T}^\top \mathbf{w} - \mathbf{y}_{1T}). \quad (25)$$

1040 By computing the derivative of L with respect to \mathbf{w} and setting it to zero, we must have
 1041

$$1042 \mathbf{X}_{1T} \mathbf{X}_{1T}^\top \hat{\mathbf{w}} = \mathbf{X}_{1T} \mathbf{y}_{1T} \Rightarrow \hat{\mathbf{w}} = (\mathbf{X}_{1T} \mathbf{X}_{1T}^\top)^{-1} \mathbf{X}_{1T} \mathbf{y}_{1T}. \quad (26)$$

1044 When overparameterized, the optimization problem can be formalized as: $\arg \min_{\mathbf{w}} \|\mathbf{w} - \mathbf{w}_0\|^2$, st.
 1045 $\mathbf{X}_{1T}^\top \mathbf{w} = \mathbf{y}_{1T}$. Using the Lagrange multipliers, we can get the objective function
 1046

$$1047 \arg \min_{\mathbf{w}, \boldsymbol{\lambda}} \frac{1}{2} \|\mathbf{w} - \mathbf{w}_0\|_2^2 + \boldsymbol{\lambda}^\top (\mathbf{X}_{1T}^\top \mathbf{w} - \mathbf{y}_{1T}). \quad (27)$$

1049 By setting the derivative with respect to \mathbf{w} and $\boldsymbol{\lambda}$ to 0, it directly follows that
 1050

$$1051 \hat{\mathbf{w}} - \mathbf{w}_0 + \mathbf{X}_{1T} \boldsymbol{\lambda} = 0 \Rightarrow \hat{\mathbf{w}} = -\mathbf{X}_{1T} \boldsymbol{\lambda} + \mathbf{w}_0, \quad (28)$$

$$1053 \boldsymbol{\lambda} = (\mathbf{X}_{1T}^\top \mathbf{X}_{1T})^{-1} \mathbf{X}_{1T}^\top \mathbf{w}_0 - (\mathbf{X}_{1T}^\top \mathbf{X}_{1T})^{-1} \mathbf{y}_{1T}. \quad (29)$$

1055 By substituting Equation(27) into Equation(26), we obtain the following result
 1056

$$1057 \hat{\mathbf{w}} = \left(\mathbf{I} - \mathbf{X}_{1T} (\mathbf{X}_{1T}^\top \mathbf{X}_{1T})^{-1} \mathbf{X}_{1T}^\top \right) \mathbf{w}_0 + \mathbf{X}_{1T} (\mathbf{X}_{1T}^\top \mathbf{X}_{1T})^{-1} \mathbf{y}_{1T}. \quad (30)$$

1059 B PROOF OF THEOREM 1

1061 Define $\mathbf{U}_t = [\mathbf{X}_t \ \mathbf{Z}_1 \ \mathbf{Z}_2 \ \dots \ \mathbf{Z}_{t-1}] \in \mathbb{R}^{p \times (n+s)}$, and define $\mathbf{Y}_t = [\mathbf{y}_t \ \mathbf{g}_1 \ \mathbf{g}_2 \ \dots \ \mathbf{g}_{t-1}]^\top \in \mathbb{R}^{n+s}$.
 1062 In the overparameterized regime (where $p > n + s$), the optimization problem can be represented by
 1063 the following expression, describing the solution structure and constraints involved, as
 1064

$$1065 \arg \min_{\mathbf{w}} \|\mathbf{w} - \mathbf{w}_{t-1}\|^2, \text{s.t. } (\mathbf{X}_t)^\top \mathbf{w} = \mathbf{y}_t, (\mathbf{Z}_i)^\top \mathbf{w} = \mathbf{g}_i (i = 1, 2, \dots, t-1), \quad (31)$$

1067 and we can reformulate it as: $\arg \min \|\mathbf{w} - \mathbf{w}_{t-1}\|^2$, s.t. $\mathbf{U}_t^\top \mathbf{w} = \mathbf{Y}_t$. We can define
 1068

$$1069 L(\mathbf{w}, \boldsymbol{\lambda}) = \frac{1}{2} \|\mathbf{w} - \mathbf{w}_{t-1}\|^2 + \boldsymbol{\lambda}^\top (\mathbf{U}_t^\top \mathbf{w} - \mathbf{Y}_t). \quad (32)$$

1071 Using the Lagrange multipliers and set the derivative w.r.t. \mathbf{w} and $\boldsymbol{\lambda}$ to 0, we can get
 1072

$$1073 \mathbf{w} - \mathbf{w}_{t-1} + \mathbf{U}_t \boldsymbol{\lambda} = 0 \Rightarrow \mathbf{w} = -\mathbf{U}_t \boldsymbol{\lambda} + \mathbf{w}_{t-1}, \quad (33)$$

$$1075 \boldsymbol{\lambda} = (\mathbf{U}_t^\top \mathbf{U}_t)^{-1} \mathbf{U}_t^\top \mathbf{w}_{t-1} - (\mathbf{U}_t^\top \mathbf{U}_t)^{-1} \mathbf{Y}_t, \quad (34)$$

$$1076 \mathbf{w} = (\mathbf{I} - \mathbf{U}_t (\mathbf{U}_t^\top \mathbf{U}_t)^{-1} \mathbf{U}_t^\top) \mathbf{w}_{t-1} + \mathbf{U}_t (\mathbf{U}_t^\top \mathbf{U}_t)^{-1} \mathbf{Y}_t. \quad (35)$$

1078 Therefore, for the t -th task, the parameters to be optimized can be represented as
 1079

$$1079 \mathbf{w}_t = (\mathbf{I} - \mathbf{U}_t (\mathbf{U}_t^\top \mathbf{U}_t)^{-1} \mathbf{U}_t^\top) \mathbf{w}_{t-1} + \mathbf{U}_t (\mathbf{U}_t^\top \mathbf{U}_t)^{-1} \mathbf{Y}_t \quad (36)$$

Then, we compute the expected ℓ_2 -norm between the optimized parameters of the $t + 1$ -th task and the optimal parameters of the i -th task, providing a measure of their difference in parameter space.

$$\begin{aligned}
& \mathbb{E}[\|\mathbf{w}_{t+1} - \mathbf{w}_i^*\|^2] \\
&= \mathbb{E}[\|(\mathbf{I} - \mathbf{U}_{t+1}(\mathbf{U}_{t+1}^\top \mathbf{U}_{t+1})^{-1} \mathbf{U}_{t+1}^\top) \mathbf{w}_t + \mathbf{U}_{t+1}(\mathbf{U}_{t+1}^\top \mathbf{U}_{t+1})^{-1} \mathbf{Y}_{t+1} - \mathbf{w}_i^*\|^2] \\
&= \mathbb{E}[\|(\mathbf{I} - \mathbf{U}_{t+1}(\mathbf{U}_{t+1}^\top \mathbf{U}_{t+1})^{-1} \mathbf{U}_{t+1}^\top) \mathbf{w}_t + \mathbf{U}_{t+1}(\mathbf{U}_{t+1}^\top \mathbf{U}_{t+1})^{-1} (\mathbf{U}_{t+1}^\top \mathbf{w}_{t+1}^* + \mathbf{z}_{t+1}) - \mathbf{w}_i^*\|^2] \\
&= \mathbb{E}[\|(\mathbf{I} - \mathbf{U}_{t+1}(\mathbf{U}_{t+1}^\top \mathbf{U}_{t+1})^{-1} \mathbf{U}_{t+1}^\top)(\mathbf{w}_t - \mathbf{w}_i^*) + \mathbf{U}_{t+1}(\mathbf{U}_{t+1}^\top \mathbf{U}_{t+1})^{-1} \mathbf{U}_{t+1}^\top (\mathbf{w}_{t+1}^* - \mathbf{w}_i^*) \\
&\quad + \mathbf{U}_{t+1}(\mathbf{U}_{t+1}^\top \mathbf{U}_{t+1})^{-1} \mathbf{z}_{t+1}\|^2] \\
&= \mathbb{E}[\|(\mathbf{I} - \mathbf{U}_{t+1}(\mathbf{U}_{t+1}^\top \mathbf{U}_{t+1})^{-1} \mathbf{U}_{t+1}^\top)(\mathbf{w}_t - \mathbf{w}_i^*) + \mathbf{U}_{t+1}(\mathbf{U}_{t+1}^\top \mathbf{U}_{t+1})^{-1} \mathbf{U}_{t+1}^\top (\mathbf{w}_{t+1}^* - \mathbf{w}_i^*)\|^2] \\
&\quad + 2\mathbb{E}[\langle (\mathbf{I} - \mathbf{U}_{t+1}(\mathbf{U}_{t+1}^\top \mathbf{U}_{t+1})^{-1} \mathbf{U}_{t+1}^\top)(\mathbf{w}_t - \mathbf{w}_i^*) + \mathbf{U}_{t+1}(\mathbf{U}_{t+1}^\top \mathbf{U}_{t+1})^{-1} \mathbf{U}_{t+1}^\top (\mathbf{w}_{t+1}^* - \mathbf{w}_i^*), \\
&\quad \mathbf{U}_{t+1}(\mathbf{U}_{t+1}^\top \mathbf{U}_{t+1})^{-1} \mathbf{z}_{t+1} \rangle] + \mathbb{E}[\|\mathbf{U}_{t+1}(\mathbf{U}_{t+1}^\top \mathbf{U}_{t+1})^{-1} \mathbf{z}_{t+1}\|^2]
\end{aligned} \tag{37}$$

For notational convenience, we define $\boldsymbol{\Pi}_t := \mathbf{U}_t(\mathbf{U}_t^\top \mathbf{U}_t)^{-1}\mathbf{U}_t^\top$. It can be shown that $\boldsymbol{\Pi}$ is a orthogonal projection matrix that projects a p -dim vector to the column space of \mathbf{U} , and it satisfies $\boldsymbol{\Pi}_t^2 = \boldsymbol{\Pi}_t$. Therefore, the Equation (37) can be equivalently expressed as follows

$$\begin{aligned}
& \mathbb{E}[\|w_{t+1} - w_i^*\|^2] \\
&= \mathbb{E}[\|(I - \Pi_{t+1})(w_t - w_i^*) + \Pi_{t+1}(w_{t+1}^* - w_i^*)\|^2] + \mathbb{E}[\|U_{t+1}(U_{t+1}^\top U_{t+1})^{-1} z_{t+1}\|^2] \\
&\quad + 2\mathbb{E}[\langle (I - \Pi_{t+1})(w_t - w_i^*) + \Pi_{t+1}(w_{t+1}^* - w_i^*), U_{t+1}(U_{t+1}^\top U_{t+1})^{-1} z_{t+1} \rangle] \\
&= (1 - \frac{n+s}{p})\mathbb{E}[\|w_t - w_i^*\|^2] + \frac{n+s}{p}\|w_{t+1}^* - w_i^*\|^2 + \frac{(n+s)\sigma^2}{p-n-s-1}, \tag{38}
\end{aligned}$$

where $\mathbb{E}[\|\Pi_{t+1}(\mathbf{w}_{t+1}^* - \mathbf{w}_i^*)\|^2] = \frac{n+s}{p}\|\mathbf{w}_{t+1}^* - \mathbf{w}_i^*\|^2$ as established in Lemma A.2, and

$$\begin{aligned}
& \mathbb{E}[\langle (\mathbf{I} - \boldsymbol{\Pi}_{t+1})(\mathbf{w}_t - \mathbf{w}_i^*) + \boldsymbol{\Pi}_{t+1}(\mathbf{w}_{t+1}^* - \mathbf{w}_i^*), \mathbf{U}_{t+1}(\mathbf{U}_{t+1}^\top \mathbf{U}_{t+1})^{-1} \mathbf{z}_{t+1} \rangle] \\
&= \mathbb{E}[\langle (\mathbf{I} - \boldsymbol{\Pi}_{t+1})(\mathbf{w}_t - \mathbf{w}_i^*), \mathbf{U}_{t+1}(\mathbf{U}_{t+1}^\top \mathbf{U}_{t+1})^{-1} \mathbf{z}_{t+1} \rangle] \\
&\quad + \mathbb{E}[\langle \boldsymbol{\Pi}_{t+1}(\mathbf{w}_{t+1}^* - \mathbf{w}_i^*), \mathbf{U}_{t+1}(\mathbf{U}_{t+1}^\top \mathbf{U}_{t+1})^{-1} \mathbf{z}_{t+1} \rangle] \\
&= \mathbb{E}[\langle (\mathbf{U}_{t+1}(\mathbf{U}_{t+1}^\top \mathbf{U}_{t+1})^{-1})^\top \boldsymbol{\Pi}_{t+1}(\mathbf{w}_{t+1}^* - \mathbf{w}_i^*), \mathbf{z}_{t+1} \rangle] = 0
\end{aligned} \tag{39}$$

Regarding the calculation of the noise term, we have the following expression

$$\begin{aligned}
& \mathbb{E}[\| \mathbf{U}_{t+1} (\mathbf{U}_{t+1}^\top \mathbf{U}_{t+1})^{-1} \mathbf{z}_{t+1} \|^2] \\
&= \mathbb{E}[tr((\mathbf{U}_{t+1}^\top \mathbf{U}_{t+1})^{-1} (\mathbf{U}_{t+1}^\top \mathbf{U}_{t+1}) (\mathbf{U}_{t+1}^\top \mathbf{U}_{t+1})^{-1} \mathbf{z}_{t+1} \mathbf{z}_{t+1}^\top)] \\
&= \mathbb{E}[tr((\mathbf{U}_{t+1}^\top \mathbf{U}_{t+1})^{-1} \mathbf{z}_{t+1} \mathbf{z}_{t+1}^\top)] = tr[\mathbb{E}[(\mathbf{U}_{t+1}^\top \mathbf{U}_{t+1})^{-1} \mathbf{z}_{t+1} \mathbf{z}_{t+1}^\top]] \\
&= \sigma^2 tr(\mathbb{E}[(\mathbf{U}_{t+1}^\top \mathbf{U}_{t+1})^{-1}]) \\
&= \frac{(n+s)\sigma^2}{p-n-s-1}
\end{aligned} \tag{40}$$

Therefore, the expression for $\mathbb{E}[\|w_t - w_i^*\|^2]$ can be computed iteratively. (Let $w_0 = 0$)

$$\begin{aligned}
& \mathbb{E}[\|\mathbf{w}_t - \mathbf{w}_i^*\|^2] \\
&= \left(\frac{p-n-s}{p}\right) \mathbb{E}[\|\mathbf{w}_{t-1} - \mathbf{w}_i^*\|^2] + \frac{n+s}{p} \|\mathbf{w}_t^* - \mathbf{w}_i^*\|^2 + \frac{(n+s)\sigma^2}{p-n-s-1} \\
&= \left(\frac{p-n-s}{p}\right)^t \|\mathbf{w}_i^*\|^2 + \sum_{k=1}^t \left(\frac{p-n-s}{p}\right)^{t-k} \frac{n+s}{p} \|\mathbf{w}_k^* - \mathbf{w}_i^*\|^2 \\
&\quad + \frac{(n+s)\sigma^2}{p-n-s-1} \sum_{k=1}^t \left(\frac{p-n-s}{p}\right)^{t-k}
\end{aligned} \tag{41}$$

1134 Therefore, based on the previous derivations, we can calculate the adaptation error
 1135

$$\begin{aligned}
 1136 \quad & \mathbb{E}[\mathcal{A}(\mathbf{w}_t)] = \mathbb{E} \|\mathbf{w}_t - \mathbf{w}_t^*\|^2 \\
 1137 \quad & = \left(\frac{p-n-s}{p} \right)^t \|\mathbf{w}_t^*\|^2 + \sum_{k=1}^t \left(\frac{p-n-s}{p} \right)^{t-k} \frac{n+s}{p} \|\mathbf{w}_k^* - \mathbf{w}_t^*\|^2 \\
 1138 \quad & + \frac{(n+s)\sigma^2}{p-n-s-1} \sum_{k=1}^t \left(\frac{p-n-s}{p} \right)^{t-k} \\
 1139 \quad & = \left(\frac{p-n-s}{p} \right)^t \|\mathbf{w}_t^*\|^2 + \sum_{k=1}^t \left(\frac{p-n-s}{p} \right)^{t-k} \frac{n+s}{p} \|\mathbf{w}_k^* - \mathbf{w}_t^*\|^2 \\
 1140 \quad & + \frac{(1 - (\frac{p-n-s}{p})^t)p\sigma^2}{(p-n-s-1)} \\
 1141 \quad & \\
 1142 \quad & \\
 1143 \quad & \\
 1144 \quad & \\
 1145 \quad & \\
 1146 \quad & \\
 1147 \quad & \\
 1148 \quad & \\
 1149 \quad & \\
 1150 \quad & \\
 1151 \quad & \\
 1152 \quad & \\
 1153 \quad & \\
 1154 \quad & \\
 1155 \quad & \\
 1156 \quad & \\
 1157 \quad & \\
 1158 \quad & \\
 1159 \quad & \\
 1160 \quad & \\
 1161 \quad & \\
 1162 \quad & \\
 1163 \quad & \\
 1164 \quad & \\
 1165 \quad & \\
 1166 \quad & \\
 1167 \quad & \\
 1168 \quad & \\
 1169 \quad & \\
 1170 \quad & \\
 1171 \quad & \\
 1172 \quad & \\
 1173 \quad & \\
 1174 \quad & \\
 1175 \quad & \\
 1176 \quad & \\
 1177 \quad & \\
 1178 \quad & \\
 1179 \quad & \\
 1180 \quad & \\
 1181 \quad & \\
 1182 \quad & \\
 1183 \quad & \\
 1184 \quad & \\
 1185 \quad & \\
 1186 \quad & \\
 1187 \quad &
 \end{aligned} \tag{42}$$

In the underparameterized regime ($p < n + s$), the optimization problem can be reformulated as $\arg \min_{\mathbf{w}} \|\mathbf{U}_t^\top \mathbf{w} - \mathbf{Y}_t\|^2$. In this situation, the optimization problem admits a unique solution, the model parameters are independent of those from the previous tasks. Define objective function

$$\begin{aligned}
 1152 \quad & L(\mathbf{w}) = \|\mathbf{U}_t^\top \mathbf{w} - \mathbf{Y}_t\|^2 \\
 1153 \quad & = (\mathbf{U}_t^\top \mathbf{w} - \mathbf{Y}_t)^\top (\mathbf{U}_t^\top \mathbf{w} - \mathbf{Y}_t) \\
 1154 \quad & = \mathbf{w}^\top \mathbf{U}_t \mathbf{U}_t^\top \mathbf{w} - \mathbf{Y}_t^\top \mathbf{U}_t^\top \mathbf{w} - \mathbf{w}^\top \mathbf{U}_t \mathbf{Y}_t + \mathbf{Y}_t^\top \mathbf{Y}_t
 \end{aligned} \tag{43}$$

By setting the derivative w.r.t. \mathbf{w} to 0, it follows that

$$\begin{aligned}
 1158 \quad & \mathbf{w} = (\mathbf{U}_t \mathbf{U}_t^\top)^{-1} \mathbf{U}_t \mathbf{Y}_t = (\mathbf{U}_t \mathbf{U}_t^\top)^{-1} \mathbf{U}_t (\mathbf{U}_t^\top \mathbf{w}^* + \mathbf{z}_t) \\
 1159 \quad & = \mathbf{w}^* + (\mathbf{U}_t \mathbf{U}_t^\top)^{-1} \mathbf{U}_t \mathbf{z}_t.
 \end{aligned} \tag{44}$$

Then we can calculate the expected ℓ_2 -norm, which is given by

$$\begin{aligned}
 1161 \quad & \mathbb{E}[L_i(\mathbf{w}_t)] \\
 1162 \quad & = \mathbb{E} \|\mathbf{w}_t - \mathbf{w}_i^*\|^2 \\
 1163 \quad & = \mathbb{E} \|\mathbf{w}_t^* + (\mathbf{U}_t \mathbf{U}_t^\top)^{-1} \mathbf{U}_t \mathbf{z}_t - \mathbf{w}_i^*\|^2 \\
 1164 \quad & = \mathbb{E} \|\mathbf{w}_t^* - \mathbf{w}_i^*\|^2 + \frac{p\sigma^2}{n+s-p-1} \\
 1165 \quad & = \mathbb{E} \|\mathbf{w}_t^* - \mathbf{w}_i^*\|^2 + \frac{p\sigma^2}{n+s-p-1}
 \end{aligned} \tag{45}$$

Therefore, the adaptation error can be expressed as

$$\begin{aligned}
 1171 \quad & \mathbb{E}[\mathcal{A}(\mathbf{w}_t)] \\
 1172 \quad & = \mathbb{E} \|\mathbf{w}_t^* + (\mathbf{U}_t \mathbf{U}_t^\top)^{-1} \mathbf{U}_t \mathbf{z}_t - \mathbf{w}_t^*\|^2 \\
 1173 \quad & = \mathbb{E} \|(\mathbf{U}_t \mathbf{U}_t^\top)^{-1} \mathbf{U}_t \mathbf{z}_t\|^2 \\
 1174 \quad & = \frac{p\sigma^2}{n+s-p-1}
 \end{aligned} \tag{46}$$

C PROOF OF THEOREM 2

In the overparameterized regime ($p > n + s$), according to Equation (41), we have

$$\begin{aligned}
 1182 \quad & \mathbb{E}[\|\mathbf{w}_t - \mathbf{w}_i^*\|^2] \\
 1183 \quad & = \left(\frac{p-n-s}{p} \right)^t \|\mathbf{w}_i^*\|^2 + \sum_{k=1}^t \left(\frac{p-n-s}{p} \right)^{t-k} \frac{n+s}{p} \|\mathbf{w}_k^* - \mathbf{w}_i^*\|^2 \\
 1184 \quad & + \frac{(n+s)\sigma^2}{p-n-s-1} \sum_{k=1}^t \left(\frac{p-n-s}{p} \right)^{t-k},
 \end{aligned} \tag{47}$$

1188 and by setting $t = i$, we have
 1189

$$\begin{aligned}
 1190 \quad & \mathbb{E}[\|\mathbf{w}_i - \mathbf{w}_i^*\|^2] \\
 1191 \quad & = \left(\frac{p-n-s}{p}\right)^i \|\mathbf{w}_i^*\|^2 + \sum_{k=1}^i \left(\frac{p-n-s}{p}\right)^{i-k} \frac{n+s}{p} \|\mathbf{w}_k^* - \mathbf{w}_i^*\|^2 \\
 1192 \quad & + \frac{(n+s)\sigma^2}{p-n-s-1} \sum_{k=1}^i \left(\frac{p-n-s}{p}\right)^{i-k} \\
 1193 \quad & \\
 1194 \quad & \\
 1195 \quad & \\
 1196 \quad & \\
 1197 \quad &
 \end{aligned} \tag{48}$$

1198 Thus, through calculation, we derive the expression for the memory error as
 1199

$$\begin{aligned}
 1200 \quad & \mathbb{E}[\mathcal{M}(\mathbf{w}_t)] = \frac{1}{t-1} \sum_{i=1}^{t-1} \mathbb{E}[\|\mathbf{w}_t - \mathbf{w}_i^*\|^2 - \|\mathbf{w}_i - \mathbf{w}_i^*\|^2] \\
 1201 \quad & = \frac{1}{t-1} \sum_{i=1}^{t-1} \left[\left(\frac{p-n-s}{p}\right)^t \|\mathbf{w}_i^*\|^2 + \sum_{k=1}^t \left(\frac{p-n-s}{p}\right)^{t-k} \frac{n+s}{p} \|\mathbf{w}_k^* - \mathbf{w}_i^*\|^2 \right. \\
 1202 \quad & + \frac{(n+s)\sigma^2}{p-n-s-1} \sum_{k=1}^t \left(\frac{p-n-s}{p}\right)^{t-k} \\
 1203 \quad & - \left(\frac{p-n-s}{p}\right)^i \|\mathbf{w}_i^*\|^2 - \sum_{k=1}^i \left(\frac{p-n-s}{p}\right)^{i-k} \frac{n+s}{p} \|\mathbf{w}_k^* - \mathbf{w}_i^*\|^2 \\
 1204 \quad & \left. - \frac{(n+s)\sigma^2}{p-n-s-1} \sum_{k=1}^i \left(\frac{p-n-s}{p}\right)^{i-k} \right] \\
 1205 \quad & = \frac{1}{t-1} \sum_{i=1}^{t-1} \left\{ \left[\left(\frac{p-n-s}{p}\right)^t - \left(\frac{p-n-s}{p}\right)^i \right] \|\mathbf{w}_i^*\|^2 \right. \\
 1206 \quad & + \sum_{k=i+1}^t \frac{n+s}{p} \left(\frac{p-n-s}{p}\right)^{t-k} \|\mathbf{w}_k^* - \mathbf{w}_i^*\|^2 + \frac{(n+s)\sigma^2}{p-n-s-1} \sum_{k=1}^i \left[\left(\frac{p-n-s}{p}\right)^{t-k} - \left(\frac{p-n-s}{p}\right)^{i-k} \right] \\
 1207 \quad & + \frac{(n+s)\sigma^2}{p-n-s-1} \sum_{k=i+1}^t \left(1 - \frac{n+s}{p}\right)^{t-k} + \sum_{k=1}^i \frac{n+s}{p} \left[\left(\frac{p-n-s}{p}\right)^{t-k} - \left(\frac{p-n-s}{p}\right)^{i-k} \right] \|\mathbf{w}_k^* - \mathbf{w}_i^*\|^2 \left. \right\} \\
 1208 \quad & = \frac{1}{t-1} \sum_{i=1}^{t-1} \left\{ \left[\left(\frac{p-n-s}{p}\right)^t - \left(\frac{p-n-s}{p}\right)^i \right] \|\mathbf{w}_i^*\|^2 + \frac{(n+s)\sigma^2}{p-n-s-1} \sum_{k=1}^i \left[\left(\frac{p-n-s}{p}\right)^{t-k} - \left(\frac{p-n-s}{p}\right)^{i-k} \right] \right. \\
 1209 \quad & + \sum_{j>i}^t u_{kj} \|\mathbf{w}_i^* - \mathbf{w}_j^*\|^2 + \frac{(n+s)\sigma^2}{p-n-s-1} \sum_{k=i+1}^t \left(\frac{p-n-s}{p}\right)^{t-k} \left. \right\} \\
 1210 \quad & = \frac{1}{t-1} \sum_{i=1}^{t-1} \left\{ \left[\left(\frac{p-n-s}{p}\right)^t - \left(\frac{p-n-s}{p}\right)^i \right] \|\mathbf{w}_i^*\|^2 + \sum_{j>i}^t u_{kj} \|\mathbf{w}_i^* - \mathbf{w}_j^*\|^2 \right. \\
 1211 \quad & + \frac{(n+s)\sigma^2}{p-n-s-1} \left[\sum_{k=1}^t \left(\frac{p-n-s}{p}\right)^{t-k} - \sum_{k=1}^i \left(\frac{p-n-s}{p}\right)^{i-k} \right] \left. \right\} \\
 1212 \quad & = \frac{1}{t-1} \sum_{k=1}^{t-1} (\lambda^t - \lambda^k) \|\mathbf{w}_k^*\|^2 + \frac{1}{t-1} \sum_{k=1}^{t-1} \sum_{j>k}^t \frac{n+s}{p} u_{kj} \|\mathbf{w}_j^* - \mathbf{w}_k^*\|^2 \\
 1213 \quad & + \frac{1}{t-1} \sum_{k=1}^{t-1} \frac{p\sigma^2}{p-n-s-1} (\lambda^k - \lambda^t) \\
 1214 \quad &
 \end{aligned} \tag{49}$$

In the underparameterized regime ($p < n + s$), according to Equation (45), we have

$$\mathbb{E}[L_i(\mathbf{w}_t)] = \|\mathbf{w}_t^* - \mathbf{w}_i^*\|^2 + \frac{p\sigma^2}{n+s-p-1} \quad (50)$$

Thus, we can derive the expression for the memory error as

$$\begin{aligned}
\mathbb{E}[\mathcal{M}(\mathbf{w}_t)] &= \mathbb{E} \left[\frac{1}{t-1} \sum_{k=1}^{t-1} (\|\mathbf{w}_t - \mathbf{w}_k^*\|^2 - \|\mathbf{w}_k - \mathbf{w}_k^*\|^2) \right] \\
&= \frac{1}{t-1} \sum_{k=1}^{t-1} (\mathbb{E}\|\mathbf{w}_t - \mathbf{w}_k^*\|^2 - \mathbb{E}\|\mathbf{w}_k - \mathbf{w}_k^*\|^2) \\
&= \frac{1}{t-1} \sum_{k=1}^{t-1} \left[\|\mathbf{w}_t^* - \mathbf{w}_k^*\|^2 + \frac{p\sigma^2}{n+s-p-1} \right. \\
&\quad \left. - \|\mathbf{w}_k^* - \mathbf{w}_k^*\|^2 - \frac{p\sigma^2}{n+s-p-1} \right] \\
&= \frac{1}{t-1} \sum_{k=1}^{t-1} \|\mathbf{w}_t^* - \mathbf{w}_k^*\|^2.
\end{aligned} \tag{51}$$

D PROOF OF THEOREM 3

In the overparameterized regime ($p > n + s$), we have

$$\begin{aligned}
& \mathbb{E}[\|\mathbf{w}_t - \mathbf{w}_k^*\|^2] \\
&= \left(\frac{p-n-s}{p} \right)^t \|\mathbf{w}_k^*\|^2 + \sum_{j=1}^t \left(\frac{p-n-s}{p} \right)^{t-j} \frac{n+s}{p} \|\mathbf{w}_k^* - \mathbf{w}_j^*\|^2 \\
&\quad + \frac{(n+s)\sigma^2}{p-n-s-1} \sum_{i=1}^t \left(1 - \frac{n+s}{p} \right)^{t-i}
\end{aligned} \tag{52}$$

Thus, we can derive the expression for the foresight error as

$$\begin{aligned}
& \mathbb{E}[\mathcal{G}(\mathbf{w}_t)] = \mathbb{E}\left[\frac{1}{t} \sum_{k=1}^t \|\mathbf{w}_t - \mathbf{w}_k^*\|^2\right] \\
& = \frac{1}{t} \sum_{k=1}^t \mathbb{E} \|\mathbf{w}_t - \mathbf{w}_k^*\|^2 \\
& = \frac{1}{t} \sum_{k=1}^t \left[\left(\frac{p-n-s}{p} \right)^t \|\mathbf{w}_k^*\|^2 + \sum_{j=1}^t \left(\frac{p-n-s}{p} \right)^{t-k} \frac{n+s}{p} \|\mathbf{w}_k^* - \mathbf{w}_j^*\|^2 \right. \\
& \quad \left. + \frac{(n+s)\sigma^2}{p-n-s-1} \sum_{i=1}^t \left(1 - \frac{n+s}{p} \right)^{t-i} \right] \\
& = \frac{1}{t} \sum_{k=1}^t \left(\frac{p-n-s}{p} \right)^t \|\mathbf{w}_k^*\|^2 + \frac{1}{t} \sum_{k=1}^t \sum_{j=1}^t \left(\frac{p-n-s}{p} \right)^{t-k} \frac{n+s}{p} \|\mathbf{w}_k^* - \mathbf{w}_j^*\|^2 \\
& \quad + \frac{p\sigma^2}{p-n-s-1} \left[1 - \left(\frac{p-n-s}{p} \right)^t \right] \\
& = \frac{1}{t} \sum_{k=1}^t \lambda^t \|\mathbf{w}_k^*\|^2 + \frac{1}{t} \sum_{k=1}^t \sum_{j=1}^t \frac{n+s}{p} \lambda^{t-k} \|\mathbf{w}_k^* - \mathbf{w}_j^*\|^2 \\
& \quad + \frac{p\sigma^2}{p-n-s-1} (1 - \lambda^t)
\end{aligned} \tag{53}$$

1296 In the underparameterized regime ($p < n + s$), we have
 1297

$$\mathbb{E}[L_i(\mathbf{w}_t)] = \|\mathbf{w}_t^* - \mathbf{w}_i^*\|^2 + \frac{p\sigma^2}{n + s - p - 1} \quad (54)$$

1300 Thus, we can derive the expression for the foresight error as
 1301

$$\begin{aligned} \mathbb{E}[\mathcal{G}(\mathbf{w}_t)] &= \mathbb{E}\left[\frac{1}{t} \sum_{k=1}^t \|\mathbf{w}_t - \mathbf{w}_k^*\|^2\right] \\ &= \frac{1}{t} \sum_{k=1}^t \mathbb{E}\|\mathbf{w}_t - \mathbf{w}_k^*\|^2 \\ &= \frac{1}{t} \sum_{k=1}^t \|\mathbf{w}_t^* - \mathbf{w}_k^*\|^2 + \frac{p\sigma^2}{n + s - p - 1}. \end{aligned} \quad (55)$$

1311 D.1 PROOF OF PROPOSITION 1

1312 Under overparameterization ($p > n + s$), the expression for the foresight error for $T = 2$ is given by
 1313

$$\mathbb{E}[\mathcal{G}(\hat{\mathbf{w}}_2)] = \frac{1}{2}(1 - \lambda^2) \|\mathbf{w}_2^* - \mathbf{w}_1^*\|^2 + \frac{1}{2}\lambda^2(\|\mathbf{w}_1^*\|^2 + \|\mathbf{w}_2^*\|^2) + \frac{p\sigma^2(1 - \lambda^2)}{p - n - s - 1} \quad (56)$$

1316 and then we have
 1317

$$\begin{aligned} 2\mathbb{E}[\mathcal{G}(\hat{\mathbf{w}}_2)] &= (1 - \lambda^2) \|\mathbf{w}_2^* - \mathbf{w}_1^*\|^2 + \lambda^2(\|\mathbf{w}_1^*\|^2 + \|\mathbf{w}_2^*\|^2) + \frac{2p\sigma^2(1 - \lambda^2)}{p - n - s - 1} \\ &= (1 - \lambda^2 + \lambda - \lambda) \|\mathbf{w}_2^* - \mathbf{w}_1^*\|^2 + \lambda^2 \|\mathbf{w}_1^*\|^2 + \lambda^2 \|\mathbf{w}_2^*\|^2 + \frac{2p\sigma^2(1 - \lambda^2)}{p - n - s - 1} \\ &= (\lambda - \lambda^2) \|\mathbf{w}_2^* - \mathbf{w}_1^*\|^2 + (1 - \lambda) \|\mathbf{w}_2^* - \mathbf{w}_1^*\|^2 + \lambda^2 \|\mathbf{w}_1^*\|^2 \\ &\quad + \lambda^2 \|\mathbf{w}_2^*\|^2 + \frac{2p\sigma^2(1 - \lambda^2)}{p - n - s - 1} \\ &= (1 - \lambda) \|\mathbf{w}_2^* - \mathbf{w}_1^*\|^2 + \lambda^2 \|\mathbf{w}_1^*\|^2 + \mathbb{E}[\mathcal{A}(\hat{\mathbf{w}}_2)] + \frac{p\sigma^2(1 - \lambda^2)}{p - n - s - 1} \\ &= (1 - \lambda) \|\mathbf{w}_2^* - \mathbf{w}_1^*\|^2 + (\lambda^2 + \lambda - \lambda) \|\mathbf{w}_1^*\|^2 + \mathbb{E}[\mathcal{A}(\hat{\mathbf{w}}_2)] \\ &\quad + \frac{p\sigma^2(1 - \lambda^2 + \lambda - \lambda)}{p - n - s - 1} \\ &= (1 - \lambda) \|\mathbf{w}_2^* - \mathbf{w}_1^*\|^2 + (\lambda^2 - \lambda) \|\mathbf{w}_1^*\|^2 + \lambda \|\mathbf{w}_1^*\|^2 \\ &\quad + \mathbb{E}[\mathcal{A}(\hat{\mathbf{w}}_2)] + \frac{p\sigma^2(\lambda - \lambda^2)}{p - n - s - 1} + \frac{p\sigma^2(1 - \lambda)}{p - n - s - 1} \\ &= \lambda \|\mathbf{w}_1^*\|^2 + \frac{p\sigma^2(1 - \lambda)}{p - n - s - 1} + \mathbb{E}[\mathcal{M}(\hat{\mathbf{w}}_2)] + \mathbb{E}[\mathcal{A}(\hat{\mathbf{w}}_2)] \end{aligned} \quad (57)$$

1338 Based on the parameter iteration formula in the overparameterized regime, we have
 1339

$$\begin{aligned} \mathbf{w}_t &= (\mathbf{I} - \mathbf{U}_t(\mathbf{U}_t^\top \mathbf{U}_t)^{-1}\mathbf{U}_t^\top)\mathbf{w}_{t-1} + \mathbf{U}_t(\mathbf{U}_t^\top \mathbf{U}_t)^{-1}\mathbf{Y}_t \\ &= (\mathbf{I} - \mathbf{U}_t(\mathbf{U}_t^\top \mathbf{U}_t)^{-1}\mathbf{U}_t^\top)\mathbf{w}_{t-1} + \mathbf{U}_t(\mathbf{U}_t^\top \mathbf{U}_t)^{-1}(\mathbf{U}_t^\top \mathbf{w}_t^* + \mathbf{z}_t) \end{aligned} \quad (58)$$

1342 And then we have
 1343

$$\begin{aligned} \mathbb{E} \|\mathbf{w}_1 - \mathbf{w}_1^*\|^2 &= \mathbb{E} \|(\mathbf{I} - \mathbf{U}_1(\mathbf{U}_1^\top \mathbf{U}_1)^{-1}\mathbf{U}_1^\top)\mathbf{w}_0 + \mathbf{U}_1(\mathbf{U}_1^\top \mathbf{U}_1)^{-1}(\mathbf{U}_1^\top \mathbf{w}_1^* + \mathbf{z}_1) - \mathbf{w}_1^*\|^2 \\ &= \mathbb{E} \|(\mathbf{I} - \mathbf{U}_1(\mathbf{U}_1^\top \mathbf{U}_1)^{-1}\mathbf{U}_1^\top)\mathbf{w}_0 + \mathbf{U}_1(\mathbf{U}_1^\top \mathbf{U}_1)^{-1}\mathbf{U}_1^\top \mathbf{w}_1^* \\ &\quad + \mathbf{U}_1(\mathbf{U}_1^\top \mathbf{U}_1)^{-1}\mathbf{z}_1 - \mathbf{w}_1^*\|^2 \\ &= \lambda \|\mathbf{w}_1^*\|^2 + \frac{p\sigma^2(1 - \lambda)}{p - n - s - 1} \end{aligned} \quad (59)$$

1348 It follows from the combination of Equation (57) and (59) that the proposition holds.
 1349

1350 **E ADDITIONAL RELATED WORKS**
1351

1352 Recently, continual learning leveraging pre-trained models have achieved strong empirical performance
 1353 (Wang et al. (2022b); McDonnell et al. (2023); Zhao et al. (2024a); Tran et al. (2025)). Unlike
 1354 traditional approaches that train from randomly initialized weights, these methods exploit the repre-
 1355 sentational power of pre-trained models via prompting or adapters for lightweight fine-tuning. For
 1356 instance, L2P (Wang et al. (2022c)) uses a prompt pool to store prior knowledge; DualPrompt (Wang
 1357 et al. (2022b)) separates public and task-specific knowledge; SLCa (Zhang et al. (2023)) adapts
 1358 tasks by dynamically adjusting learning rates. Despite these advances, rehearsal remains widely used,
 1359 yet its theoretical implications are still underexplored. A systematic understanding of how rehearsal
 1360 influence continual learning, including their operation and constraints, is hence needed.

1361 Moreover, we provide a detailed comparison and analysis of several rehearsal-based continual
 1362 learning studies. Compared to Lin et al. (2023), both works adopt Gaussian linear regression, but
 1363 they focuses on generalization and forgetting in regularization-based methods, emphasizing task
 1364 ordering and benign overfitting in overparameterized models. Compared to Deng et al. (2025),
 1365 they studied replay strategies, showing that sequential replay outperforms concurrent replay when
 1366 tasks are dissimilar. Compared to Ding et al. (2024), they provide upper and lower bounds for
 1367 the forgetting error from the perspective of stochastic gradient descent, investigating the impact of
 1368 iteration step size and task ordering on forgetting performance. Compared to Zheng et al. (2024),
 1369 they analyzed sampling strategies, finding that reservoir sampling requires larger models to reduce
 1370 forgetting and that generalization improves with task similarity. It is worth noting that some of our
 1371 theoretical findings regarding task similarity and model dimensions similar to their discoveries under
 1372 overparameterization (e.g., “generalization capabilities may be weakened when tasks are dissimilar”).
 1373 This is because we investigate a unified rehearsal-based method, rather than being confined to specific
 1374 sampling strategies. Moreover, these findings are merely byproducts of our theoretical analysis.
 1375 We primary focus on examining how rehearsal differs under parameterization mechanisms and the
 1376 trade-offs between adaptability, memorability, and generalization. Furthermore, we observe that
 1377 retrieval practice does not adhere to the conventional “more is better” principle; even for mitigating
 1378 forgetting, there exists a lower bound on error reduction. The effectiveness of rehearsal in improving
 1379 adaptability also varies significantly between underparameterized and overparameterized settings.
 1380 Finally, influencing factors such as rehearsal size and task similarity were validated through simulation
 1381 experiments, and the deep neural network experiments further extended our theoretical findings.

1382 **F ORACLE AND REHEARSAL-BASED ESTIMATOR**
1383

1384 The oracle estimator assumes that all data are available simultaneously, enabling global optimization
 1385 over the entire dataset (Zhang & Yang, 2018; 2021; Bhattacharjee et al., 2022). Assume that
 1386 $\bar{n} = \sum_{t=1}^T n_t$ represents the total number of training samples, the training process will converge
 1387 to a solution $\hat{w}^{(\text{Ora})}$ that minimizes this training loss, i.e., $\hat{w}^{(\text{Ora})} := \arg \min_w \sum_{t=1}^T \|\mathbf{X}_t^\top \mathbf{w} - \mathbf{y}_t\|^2$.
 1388 When $p > \bar{n}$ (overparameterized), there exist multiple solutions that can make the training loss zero
 1389 (with probability 1). In this situation, we choose the smallest ℓ_2 -norm which is defined as the solution
 1390 of the following optimization problem: $\arg \min_w \|\mathbf{w}\|^2$ subject to $(\mathbf{X}_{1T})^\top \mathbf{w} = \mathbf{y}_{1T}$, where \mathbf{X}_{1T}
 1391 and \mathbf{y}_{1T} are obtained by stacking feature vectors and response variables from all tasks. Without
 1392 sequence learning or memory constraints, the optimal parameter \mathbf{w}^* can be estimated by directly
 1393 solving the offline optimization problem (Zhao et al., 2024b; Shi et al., 2022). We further analyze
 1394 the connection between the oracle and the rehearsal-based estimator in AppendixB. This serves as
 1395 an ideal baseline for evaluating continual learning algorithms, which are considered optimal if they
 1396 achieve performance comparable to the oracle estimator (Chavan et al., 2024; Bhat et al., 2024).

1397 Although rehearsal-based continual learning methods have been proven effective in many practical
 1398 applications, their theoretical understanding is still limited. Further, the introduction of additional
 1399 memory complicates the analysis of continual learning. Our work provides explicit expressions
 1400 of adaptation error, memory error, and foresight error for rehearsal-based continual learning. We
 1401 explain the effectiveness of the rehearsal mechanism using linear regression models under both
 1402 underparameterized and overparameterized regimes, which allows us to gain a comprehensive
 1403 understanding of the factors that influence continual learning performance.

1404

Scheme 1 Oracle Estimator**Initialization:** $\hat{\mathbf{w}}_0^{(\text{ora})} = 0$ **Find the optimization problem for all tasks:****if** $p < \bar{n}$ (Underparameterized) **then**

Solving the optimization problem results in a unique solution:

$$\hat{\mathbf{w}}_T^{(\text{Ora})} := \arg \min_{\mathbf{w}} \left\{ \sum_{t=1}^T \|\mathbf{X}_t^T \mathbf{w} - \mathbf{y}_t\|^2 \right\}$$

else if $p > \bar{n}$ (Overparameterized) **then**Select the smallest ℓ_2 -norm solution among all overfitted solutions:

$$\hat{\mathbf{w}}_T^{(\text{Ora})} := \arg \min_{\mathbf{w}} \|\mathbf{w}\|^2,$$

$$\text{s.t. } (\mathbf{X}_{1T})^\top \mathbf{w} = \mathbf{y}_{1T}$$

end if**Return** $\hat{\mathbf{w}}_T$

1425

1426

G ADDITIONAL THEORETICAL ANALYSIS

1429

Better adaptation of the model to the current task under the overparameterized regime requires higher inter-task similarity, which is not the case under the underparameterized regime. Specifically, under overparameterization, the coefficient of Term A1 is positive in Equation (5). At this point, when tasks are dissimilar to each other (i.e., $\|\mathbf{w}_k^* - \mathbf{w}_T^*\|^2$ is large), the corresponding $\mathbb{E}[\mathcal{A}(\hat{\mathbf{w}}_T)]$ increases, making it detrimental to learn the current task and impairing the model’s plasticity. In contrast, under the underparameterized regime in Equation (6), the optimization problem has a unique solution (see Section 3), and the task is learned independently of previous tasks, meaning that inter-task similarity no longer influences the learning of the current task. In Figure 2(c), the average adaptation error varies with model parameters for different cosine similarities between task-optimal parameters. The error is unaffected by similarity under underparameterization, while higher task similarity (e.g., red and blue curves with markers “ \times ” and inverted “Y”, respectively) reduces adaptation error under overparameterization.

1441

The overparameterized regime help mitigate the effects of dissimilarity between tasks and noise effects on model’s adaptation performance. Under underparameterization, $\mathbb{E}[\mathcal{A}(\hat{\mathbf{w}}_T)]$ increases as σ increases and the value is at least $\frac{\sigma^2}{n+s}$, indicating that larger noise is detrimental to learning the current task. However, under overparameterization, when p increase to ∞ , Term A1 and Term a_{noise} will decrease to zero. At this point, the negative effect of task dissimilarity and noise level is eliminated through more parameters even when tasks are not similar, i.e., $\|\mathbf{w}_k^* - \mathbf{w}_T^*\|^2$ is large. The blue curve in Figure 2(a) depicts how the adaptation error varies with model parameters when $\sigma = 3$. when underparameterized, larger σ raises the adaptation error, while it gradually converges as p increases when overparameterized, indicating reduced sensitivity to noise. A similar trend is observed in Figure 2(c), showing that the effects of task dissimilarity diminish under overparameterization.

1451

1452

1453

1454

1455

1456

1457

More parameters exerts stronger influence than rehearsal in the overparameterized regime, further enhancing the model’s memory performance. For the overparameterized regime result in Equation (7), When $p \rightarrow \infty$ and thus $\lambda^t - \lambda^i$ is close to zero, causing both Term M1, Term M2 and m_{noise} will approach zero. This indicates that under the overparameterized regime, the model exhibits minimal forgetting as p increases to ∞ . Intuitively, models with more parameters are better at capturing data features and handling diverse inputs, allowing the model to retain and integrate more task-relevant information, thus exhibiting stronger memory capacity. Figure 2(d) shows the average memory error versus parameter size under different noise levels. Larger σ results in higher

Scheme 2 Rehearsal-based Continual learning Estimator**Initialization:** $\hat{\mathbf{w}}_0^{(\text{reh})} = 0$ **Iterative update for each task $t \in T$:****if** $p < n + s$ (Underparameterized) **then**

Solving the optimization problem results in a unique solution:

$$\arg \min_{\mathbf{w}} \|\mathbf{X}_t^T \mathbf{w} - \mathbf{y}_t\|^2 + \sum_{i=1}^{t-1} \|\mathbf{Z}_i^T \mathbf{w} - \mathbf{g}_i\|^2$$

else if $p > n + s$ (Overparameterized) **then**Select the smallest ℓ_2 -norm solution among all overfitted solutions:

$$\hat{\mathbf{w}}_t^{(\text{Reh})} := \arg \min_{\mathbf{w}} \|\mathbf{w} - \mathbf{w}_{t-1}\|^2,$$

$$\text{s.t. } (\mathbf{X}_t)^\top \mathbf{w} = \mathbf{y}_t, (\mathbf{Z}_i)^\top \mathbf{w} = \mathbf{g}_i, i = 1, \dots, t-1$$

end if**Return** $\hat{\mathbf{w}}_t$

1458 memory error in the overparameterized regime. As p increases, the error for all σ values gradually
 1459 approaches zero, highlighting the positive effect of model parameters.
 1460

1461 **Increased task similarity improves memory performance in the underparameterized regime,
 1462 while it may be detrimental in the overparameterized regime.** Specifically, For the underparameterized
 1463 regime result in Equation (8), the $\mathbb{E}[\mathcal{M}(\hat{w}_T)]$ becomes smaller when $\sum_{k=1}^{T-1} \|\mathbf{w}_T^* - \mathbf{w}_k^*\|^2$ is
 1464 smaller. In the special case where $\mathbf{w}_1^* = \mathbf{w}_2^* = \dots = \mathbf{w}_T^*$, $\mathbb{E}[\mathcal{M}(\hat{w}_T)]$ approaches zero. Intuitively,
 1465 smaller differences between tasks require fewer parameter adjustments, facilitating the retention of
 1466 prior knowledge. In contrast, for the overparameterized regime result in Equation (7), let $k = 1$,
 1467 $j = 2$, $\lambda = \frac{1}{3}$ and $T = 4$, we have $u_{kj} = \lambda^3 - \lambda + \lambda^2 < 0$, leading to a negative coefficient for Term
 1468 M1. In this situation, increasing task similarity results in larger memory error. In Figure 2(f), the
 1469 average memory error varies with model parameters for different cosine similarities between task
 1470 optimal parameters. Under underparameterization, higher task similarity leads to smaller memory
 1471 error. While under overparameterization, high similarity can worsen memory performance when
 1472 changes in task order cause negative coefficients in Equation (7), as detailed in Appendix H.

1473 **Increased task similarity enhances model’s generalization performance under both underpa-
 1474 rameterized and overparameterized regimes.** For the overparameterized result in Equation (11),
 1475 the coefficient of Term G1 is always positive, leading to a decrease in $\mathbb{E}[\mathcal{G}(\hat{w}_T)]$ as the similarity
 1476 between tasks increases. For the underparameterized result in Equation (12), when the difference
 1477 between tasks is small, the $\mathbb{E}[\mathcal{G}(\hat{w}_T)]$ decreases accordingly. The green curve with markers “+”
 1478 in Figure 3(c) depicts how the average generalization error varies with model parameters when
 1479 tasks are partially similar. Higher task similarity (e.g., the blue curves with inverted “Y” markers)
 1480 is associated with lower generalization error in both regimes, highlighting its positive impact on
 1481 generalization performance.

1482 **Increased parameters under overparameterization weaken the impact of rehearsals and task
 1483 similarity on generalization performance.** For the underparameterized result in Equation (12),
 1484 both rehearsal size and task similarity have a stronger impact on generalization performance, i.e.,
 1485 the $\mathbb{E}[\mathcal{G}(\hat{w}_T)]$ decreases with increasing task similarity and larger rehearsal size. In contrast, for
 1486 the overparameterized result in Equation (11), when $p \rightarrow \infty$, we have $\lambda^T \rightarrow 1$, causing both Term
 1487 G1 and g_{noise} approach zero, meaning that the influence of rehearsal size and task similarity is
 1488 significantly diminished. Figure 3(a) and Figure 3(c) show how the generalization error varies with
 1489 model parameters p when changing the noise σ or task similarity. As p increases, the effects of noise
 1490 and task dissimilarity diminish in the overparameterized regime, validating the earlier insights.

H ADDITIONAL EXPERIMENTAL RESULTS

1493 **Experimental details.** For experiments on deep neural networks, we use a four-layer network with
 1494 two convolutional layers and two fully-connected layers. Relu is applied to the first three layers
 1495 and log-softmax to the output. The first convolutional layer is followed by a 2D maximum pooling
 1496 operation. Adaptation, memory, and foresight errors are computed using Equation (2)-(4), where
 1497 $\mathcal{L}(\hat{w})$ is defined as Log-Likelihood Loss. We use stochastic gradient descent to learn each task.

1498 **Computational resources.** All experiments were conducted on a GPU server running Ubuntu
 1499 20.04.6 LTS. The server was equipped with an Intel Core i9-14900k processor and utilized a single
 1500 NVIDIA GeForce RTX 4090 GPU. The implementation was built using the PyTorch 2.7.0.

1501
 1502 Table 6: Explanation of Notations
 1503

1504 Notation used in theorems	1505 Meaning of the notation
1506 T	Number of tasks
1507 p	Number of model parameters
1508 n	Number of training samples for the current task
1509 s	Number of training samples in the replay buffer
1510 \bar{n}	The total number of training samples
1511 \mathbf{w}_t^*	Optimal parameters for the t -th task
σ^2	Variance of the noise

Figures 6 and 7 illustrate adaptation error and memory error when tasks are highly dissimilar (i.e., optimal parameters are orthogonal) and the noise level is large. In contrast, Figures 2 and 3 illustrate scenarios with more similar tasks and lower noise levels, unless otherwise specified. When the tasks are dissimilar, rehearsal mechanism has less effect on adaptation error under overparameterization, while the negative impact on memory error becomes more pronounced. Moreover, with larger noise level, increasing the number of model parameters helps further reduce adaptation error.

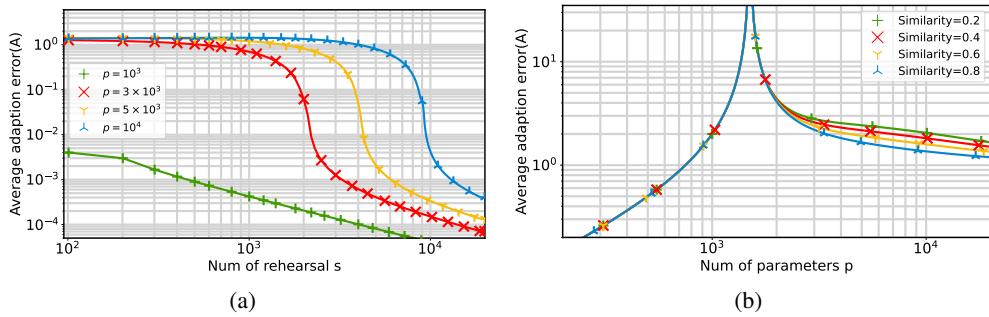


Figure 6: The trend of average adaptation error w.r.t. the number of rehearsal samples or model parameters, with $T = 8$, $n = 1000$ and $\|\mathbf{w}_t^*\|^2 = 1$ for all $t \in T$. Subfigure settings: (a): tasks are orthogonal; (b): $\sigma = 1$.

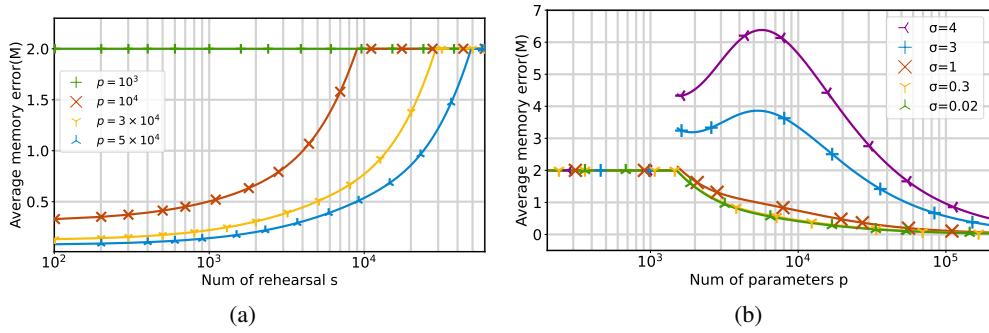


Figure 7: The trend of average memory error w.r.t. the number of rehearsal samples or model parameters when task-optimal parameters are orthogonal, with $T = 8$, $n = 1000$ and $\|\mathbf{w}_t^*\|^2 = 1$ for all $t \in T$.

Noted that our theoretical analysis shows that higher task similarity under overparameterization does not necessarily reduce forgetting. While such effects are uncommon in deep neural networks, recent empirical studies (Doan et al., 2021; Ramasesh et al., 2021) support this observation, showing that maximum forgetting occurs at moderate task similarity. To investigate this, we conducted experiments controlling the class overlap between the first and second tasks across four continual training tasks. In Table 7, results reveal that forgetting error initially increases and then decreases with task similarity, peaking at moderate similarity levels, consistent with empirical findings in (Evron et al., 2022).

Table 7: The forgetting error as task similarity increases under different task orderings on CIFAR-10

Task Sequences	Order 1	Order 2	Order 3
Low Similarity	3.651 ± 0.074	4.099 ± 0.025	3.429 ± 0.029
Medium Similarity	4.274 ± 0.066	3.227 ± 0.033	3.805 ± 0.044
High Similarity	4.096 ± 0.052	2.917 ± 0.046	3.738 ± 0.010

Additionally, we investigated CNNs of varying depths to assess the impact of model dimensionality under overparameterization, shown in Table 8. Both memory error and generalization error decrease

1566 as network depth increases. Within the same architecture, these errors gradually rise as the number
 1567 of learned classes grows, though the rate of increase slows over time. These findings confirm the
 1568 beneficial effect of greater network depth on rehearsal-based continual learning.
 1569

1570 Table 8: Memory error and generalization error at different depths of CNN networks
 1571

1572	Architecture	T1	T2	T3	T4	T5
1573	Conv.2	Memory Error /	1.58 ± 0.03	3.82 ± 0.05	4.44 ± 0.16	4.56 ± 0.07
	Generalization	0.12 ± 0.004	1.05 ± 0.01	2.81 ± 0.04	3.56 ± 0.12	3.86 ± 0.05
1575	Conv.3	Memory Error /	0.94 ± 0.03	2.66 ± 0.20	3.56 ± 0.18	3.40 ± 0.12
	Generalization	0.12 ± 0.002	0.74 ± 0.02	2.05 ± 0.13	2.90 ± 0.13	2.94 ± 0.10
1578	Conv.4	Memory Error /	0.67 ± 0.05	2.01 ± 0.03	3.34 ± 0.12	3.51 ± 0.15
	Generalization	0.11 ± 0.002	0.67 ± 0.02	1.67 ± 0.03	2.79 ± 0.08	3.07 ± 0.13

1580
 1581 Apart from class similarity, we also introduce semantic and distribution similarity metrics. Semantic
 1582 similarity partitions the dataset into tasks with distinct semantic classes, while distribution similarity
 1583 is adjusted through different levels of color perturbation. In Table 9, higher task similarity generally
 1584 improves memorability. Interestingly, under both semantic and distribution similarities, negative
 1585 memorization errors occur, reflecting positive knowledge transfer induced by high task similarity.
 1586

1587 Table 9: Memory errors under different similarity metrics as the buffer size increases on CIFAR10
 1588

1589	Similarity Metrics	2000	4000	6000	8000	
1591	Class Similarity	Low	1.06 ± 0.04	0.61 ± 0.02	0.53 ± 0.03	0.55 ± 0.02
		Medium	0.92 ± 0.07	0.54 ± 0.03	0.51 ± 0.00	0.52 ± 0.02
		High	0.79 ± 0.09	0.37 ± 0.02	0.34 ± 0.01	0.32 ± 0.01
1594	Distribution Similarity	Low	-0.05 ± 0.00	-0.04 ± 0.00	-0.03 ± 0.00	-0.02 ± 0.01
		Medium	-0.07 ± 0.01	-0.04 ± 0.01	-0.05 ± 0.01	-0.05 ± 0.02
		High	-0.05 ± 0.01	-0.05 ± 0.01	-0.05 ± 0.01	-0.05 ± 0.00
1597	Semantic Similarity	Low	0.39 ± 0.02	0.32 ± 0.01	0.31 ± 0.02	0.32 ± 0.01
		Medium	0.48 ± 0.04	0.27 ± 0.01	0.24 ± 0.02	0.25 ± 0.01
		High	-0.05 ± 0.00	-0.04 ± 0.01	-0.04 ± 0.00	-0.03 ± 0.01

1601 I USE OF LARGE LANGUAGE MODELS

1602 The Large language models (LLMs) were used only as general-purpose writing and editing assistants
 1603 to improve clarity and readability. The scientific ideas, results, and analyses were developed entirely
 1604 by the authors. The LLM did not contribute to research design or result interpretation.
 1605

1608 J ETHICS STATEMENT

1610 The authors have read and adhered to the code of ethics. This work does not involve human subjects
 1611 or sensitive data. All datasets used are publicly available and were processed in accordance with
 1612 standard ethical guidelines. The methods and experiments introduce no harmful applications, conflicts
 1613 of interest, and comply with all relevant legal and research standards throughout this research.
 1614

1615 K REPRODUCIBILITY STATEMENT

1616 Every effort has been made to ensure the reproducibility of the results. The model architectures,
 1617 experimental settings, and the proofs of the theoretical results are provided in the appendix, while
 1618 data preprocessing and evaluation protocols are documented in supplementary materials.
 1619