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ABSTRACT

Continual learning, which aims to learn from dynamically changing data distribu-
tions, has garnered significant attention in recent years. However, most existing
theoretical work focuses on regularization-based methods, while theoretical under-
standing of the rehearsal mechanism in continual learning remains limited. In this
paper, we provide a closed-form analysis of adaptation, memory and generalization
errors for rehearsal-based continual learning within a linear-Gaussian regression
framework, covering both underparameterized and overparameterized regimes.
We derive explicit formulae linking factors such as rehearsal size to each error
component, and obtain several insightful findings. Firstly, more rehearsal does
not always better for memorability, and there exists a decreasing floor for memory
error when tasks are similar and noise levels are low. Secondly, rehearsal enhances
adaptability under underparameterization, but can be provably detrimental under
overparameterization. Moreover, enlarging the rehearsal size can raise peaks in
generalization error when slightly overparameterized, and may further degrade
generalization when tasks are dissimilar or noise is high. Finally, numerical simula-
tions validate these theoretical insights and we further extend the analysis to neural
networks on MNIST, CIFAR-10, CIFAR-100 and Tiny-ImageNet. The empirical
curves closely follow with the predicted trends, indicating that our linear analysis
captures phenomena that persist in modern deep continual learning models.

1 INTRODUCTION

Intelligent systems need to acquire, update, and accumulate knowledge throughout their lifecycle to
adapt to the dynamically changing real world, a capability known as continual learning (Thrun &
Mitchell, 1995; Schlimmer & Fisher, 1986). Typically, continual learning machines are challenged by
catastrophic forgetting (McCloskey & Cohen, 1989; Goodfellow et al., 2013; Ramasesh et al., 2021),
where performance on previous tasks degrades dramatically due to parameter updates when learning
new tasks. As new knowledge replaces previous knowledge, the model’s adaptation performance
improves while memorability diminishes (Abraham & Robins, 2005; Lin et al., 2022; Kim et al.,
2023). Earlier efforts have attempted to address this problem by preserving previously learned
knowledge (Lopez-Paz & Ranzato, 2017; Yan et al., 2021; Sun et al., 2023). However, recent work
has focused more on facilitating the adaptability of new knowledge and the generalizability of models
(Raghavan & Balaprakash, 2021; Simon et al., 2022; Lin et al., 2023). These efforts have deepened
the understanding of continual learning: an ideal continual learning learner should strike an effective
balance between retaining previous learned knowledge and acquiring new knowledge, while also
being sufficiently predictable to accommodate differences in unseen data distributions.

In biological systems, hippocampal replay (Davidson et al., 2009; Mallory et al., 2025) has been
proposed as a system-level mechanism that consolidates memories and improves the generalization
by reactivating previously experienced scenes. Although biological and artificial systems differ
significantly, they exhibit intriguing parallels: both consolidate knowledge and accelerate learning
from past experiences (Shin et al., 2017; Van de Ven et al., 2020; Shi et al., 2025). Similar to biological
systems, the rehearsal mechanism performs better in continual learning to resist catastrophic forgetting
(Castro et al., 2018; Tiwari et al., 2022; Gao & Liu, 2023; Bellitto et al., 2024; Van de Ven et al., 2020).
Despite recent advances in the empirical performance of rehearsal-based continual learning, the
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Figure 1: Continual learning addresses sequential tasks by progressively learning a unified model, and an ideal
continual learning system should strike a delicate balance among the adaptation of newly acquired knowledge,
the memorization of previously learned knowledge, and the generalization of unseen data distributions.

theoretical understanding of how the rehearsal mechanism impacts continual learning, even in simple
models, is not yet fully understood: How is knowledge of previously learned tasks consolidated and
learned through playback? When does a continual learning model benefit from rehearsal mechanism?
Will replay samples potentially adversely affect generalization performance of the model?

In this paper, we attempt to theoretically understand rehearsal mechanisms in continual learning
by answering the above questions. We establish a theoretical characterization of rehearsal-based
continual learning within a linear regression framework, taking into account key factors such as
rehearsal size, parameter size, and optimal parameter similarity. Furthermore, we provide a unified
three-dimensional closed-form expression that captures the model’s adaptability, memorability, and
generalizability. Specifically, our main contributions can be summarized as follows.

• We derive explicit expressions for memory, adaptation, and generalization errors for
rehearsal-based continual learning under both underparameterized and overparameterized
regimes, providing insights into key factors and their impact on performance.

• We demonstrate that increasing rehearsal size does not always lead to better performance, as
additional rehearsal samples can impair adaptation in the overparameterized regime, while
there is a decreasing floor in memory error as rehearsal size increases.

• We conducted numerical simulations and deep neural network experiments to validate and
extend our theoretical findings. The results on the effects of rehearsal size, parameter size,
and optimal parameter similarity are also consistent with our analysis.

2 RELATED WORK

Prior research on catastrophic forgetting in continual learning has primarily focused on empirical
studies. These methods can be broadly categorized into three main categories: rehearsal-based
methods (Lopez-Paz & Ranzato, 2017; Van de Ven et al., 2020; Bellitto et al., 2024), where a portion
of the previous task data is stored and replayed to mitigate forgetting while learning new tasks.
Expansion-based methods (Rusu et al., 2016; Gao et al., 2022; Douillard et al., 2022; Wang et al.,
2024b) allocate separate network parameters to learn new tasks without interfering with previously
learned ones, and recent research leverages pre-trained models with lightweight adaptations such as
prompting or adapters (Zhou et al., 2025; Zhang et al., 2023; Wang et al., 2022c; Zhou et al., 2024).
Regularization-based methods (Kirkpatrick et al., 2017; Akyürek et al., 2021; Song et al., 2023)
constrain the parameters crucial to previous tasks when learning new tasks.

Recent theoretical studies on continual learning mainly focus on elucidating its dynamic evolutionary
mechanisms through diverse frameworks and establishing links to related domains (Wang et al.,
2024a; Evron et al., 2023; Zhao et al., 2024b). Kim et al. (2022) reformulates continual learning
as a combination of within-task prediction and task-id prediction, with links to out-of-distribution
detection. Peng et al. (2023) proposes a general formulation of ideal continual learning, linking it to
related areas and providing generalization bounds for replayed samples. Lin et al. (2023) focuses
on regularization-based continual learning estimators and demonstrates the phenomenon of benign
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overfitting in continual learning. Connections between continual learning and alternating projections
or Kaczmarz methods have also been explored, leading to worst-case forgetting bounds (Evron et al.,
2022). The trade-off between forgetting and generalization is also modeled as a two-player game
solved via dynamic programming (Raghavan & Balaprakash, 2021). Li et al. (2023) studies continual
ridge regression with non-random features, focusing on the role of regularization parameters.

The most relevant work is Banayeeanzade et al. (2024), as both examine rehearsal-based continual
learning methods. However, there are two key differences. Firstly, their work focuses on network
width under overparameterization, highlighting the benefits of model dimensionality for multi-task
and continual learning. In contrast, we focus on achieving a balance among adaptability, memorability,
and generalizability under different parameterization regimes, thereby uncovering several interesting
phenomena. Secondly, they assume an infinitely expanding memory buffer, which is unrealistic under
storage constraints. In contrast, we consider a fixed-capacity memory with proportional sampling,
enabling explicit analysis of error dynamics and prediction across arbitrary task numbers.

Recent studies have explored model performance under different sampling or rehearsal strategies
(Deng et al., 2025; Zheng et al., 2024) and the effects of step size and network width (Ding et al., 2024;
Goldfarb & Hand, 2023). While some of these studies also use the linear Gaussian model, they focus
on different aspects of continual learning. In contrast, our work examines the dynamic equilibrium of
rehearsal across three dimensions—adaptability, memorability, and generalization—and its behavior
under underparameterized and overparameterized regimes. We show that increased rehearsal size
does not always improve memorability, as a lower bound exists for error reduction, and that rehearsal
affects adaptability differently depending on the parameterization regime. To our knowledge, this
theoretical insight remains unexplored in prior literature. We further validated these findings through
numerical simulations and deep neural network experiments on multiple real-world datasets.

3 PRELIMINARIES

Data. We consider a standard continual learning problem where tasks are introduced sequentially,
indexed by t = 1, 2, ..., T . Suppose that each task t holds a dataset Dt = {(xt,i, yt,i) ∈ Rp × R}nt

i=1,
where nt denotes its sample size. Here, xt,i denotes the feature vector and yt,i denotes the corre-
sponding response variable. Assume that {(xt,i, yt,i)}nt

i=1 are i.i.d sampled from a linear regression
model, meaning each pair (xt,i, yt,i) follows the linear model yt = x⊤

t w
∗
t + ϵt, where ϵt is random

noise and w∗
t represents the optimal parameter of the t-th task specific model. The equation above

can be rewritten into a compact matrix equation for training samples:

yt = X⊤
t w∗

t + ϵt, (1)

where Xt := [xt,1, xt,2, ..., xt,nt
] ∈ Rp×nt , yt := [yt,1, yt,2, ..., yt,nt

]⊤ ∈ Rnt , and ϵt :=
[ϵt,1, ϵt,2, ..., ϵt,nt

]⊤ ∈ Rnt . For analytical tractability, we adopt Gaussian features and noise, as
formally stated in the following assumption.

Assumption 1. For all t ∈ T , each element of Xt follows i.i.d standard Gaussian N (0, 1). Similarly,
the noise ϵt is independently drawn from Gaussian N(0, σ2

t Int
), where σt ≥ 0 denotes noise level.

In Assumption 1, the Gaussian model is used to exploit the favorable properties of orthogonal
projection matrices (Raventós et al., 2023; Li et al., 2025), and the work of Li et al. (2023) assumes
fixed features. As we will demonstrate, in the random design setting, our analysis reveals interesting
statistical properties of rehearsal-based continual learning methods that were previously unknown.

Assumption 2. For all t ∈ T , the sample size satisfies nt = n, and the noise level satisfies σt = σ.

In Assumption 2, each task has the same number of training samples and the same noise level. This
simplification facilitates our analysis, making the theoretical results more interpretable. Furthermore,
our analysis can be extended to scenarios where Assumption 2 does not hold.

Note that we focus on rehearsal-based continual learning from the perspective of the linear Gaussian
model, as analyzing this model provides a critical first step toward understanding deep neural
networks, as shown in recent studies (Evron et al., 2022; Ji et al., 2023; Lin et al., 2023). And
these theoretical insights are further extended through deep neural network experiments on multiple
real-world datasets, incorporating longer task sequences and deeper architectures in Section 5.
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Evaluation metrics. Our goal is to estimate w∗
t in continual learning setting. For any estimator

ŵ, we denote its estimation error by L(ŵ) = ∥ŵ −w∗∥2. Based on L(ŵ), the adaptation error(A),
generalization error(G) and memory error(M) can be defined respectively as

A (ŵt, t = 1, . . . , T ) := ∥ŵt −w∗
t ∥

2
, (2)

G (ŵt, t = 1, . . . , T ) :=
1

t

t∑
i=1

∥ŵt −w∗
i ∥

2
, (3)

M (ŵt, t = 1, . . . , T ) :=
1

t− 1

t−1∑
i=1

[
∥ŵt −w∗

i ∥
2 − ∥ŵi −w∗

i ∥
2
]
, (4)

for each t ∈ T , where ŵt denotes the parameters of the continual learning algorithm after task t has
been learned. A continual learning algorithm obtains increasing performance on previous tasks if, for
each t ∈ T , the forgetting measure satisfies M (ŵt) < 0.

Rehearsal-based Continual Learning Estimator. The rehearsal-based continual estimator assumes
tasks arrive sequentially and preserves knowledge of previous tasks by storing a subset of their sam-
ples (Parisi et al., 2019; De Lange et al., 2021; Rolnick et al., 2018; Wang et al., 2022a; Jeeveswaran
et al., 2023). For each task t = 2, ..., T , assume that a total of s samples are stored. Specifically,
we assume that the feature vector matrix of the i-th previous task ( i = 1, 2, ..., t− 1 ) stored in the
memory buffer is Zi ∈ Rp× s

t−1 , with the corresponding response variable denoted as gi ∈ R
s

t−1 .
The training process converges to the optimal solution by minimizing the training loss, formulated
as the following optimization problem: ŵ(Reh)

t := argmin
w

∥∥X⊤
t w − yt

∥∥2 +∑t−1
i=1

∥∥Z⊤
i w − gi

∥∥2.

When p > n + s (overparameterized), multiple solutions exist that achieve zero training loss.
In this case, we select the solution with the minimum ℓ2-norm , i.e., the optimization problem:
argmin

w

{
∥w −wt−1∥2 , s.t.(Xt)

⊤w = yt, (Zi)
⊤w = gi, i = 1, . . . , t− 1

}
. Among all overfit-

ting solutions, we focus on the minimum ℓ2-norm solution and demonstrate that, in continual learning,
it corresponds to the convergence point of stochastic gradient descent or gradient descent ( proven in
Appendix A ). In Section 4, we provide theoretical results for rehearsal-based continual learner.

Striking a balance among adaptability, memorability, and generalizability. The adaptation error
quantifies the model’s fitting performance for the current task, while the memory error measures the
extent to which the model’s performance on previous tasks deteriorates after learning a new task.
Complementary to these, the generalization error assesses the model’s ability to generalize to new
tasks. An ideal continual learning learner should strike a balance between adaptability, memorability,
and generalizability. We further explore the connection between these three aspects in Section 4.

4 MAIN RESULTS FOR REHEARSAL-BASED CONTINUAL LEARNING

In this section, we present the main results. For rehearsal-based continual learning methods, we
establish three theorems that characterize the adaptation error, memory error, and generalization error
of the model under both overparameterized and underparameterized regimes.

Theorem 1 (Adaptation error). Suppose that Assumption 1 and Assumption 2 hold. Then the
adaptation error of the rehearsal-based continual learning model is formally given by

E[A(ŵT )] =


λT ∥w∗

T ∥
2
+

T∑
k=1

λT−k n+ s

p
∥w∗

k −w∗
T ∥

2

︸ ︷︷ ︸
Term A1

+anoise, for p > n+ s+ 1, (5)

pσ2

n+ s− p− 1
, for n+ s > p+ 1. (6)

where λ := p−n−s
p and anoise :=

(1−λT )pσ2

(p−n−s−1) , with larger λ indicating greater overparameterization.

The proof is provided in Appendix B. It describes the model’s ability to fit the current task, forming
the basis for analyzing how it learns new knowledge and retains previous knowledge.
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Increasing the rehearsal size enhances the model’s adaptation ability under underparameteriza-
tion, whereas it can be detrimental under overparameterization. Specifically, when n+s > p+1
in Equation (6), E[A(ŵT )] decreases as s increases, indicating that more playback samples con-
tribute to better adaptation performance. When slightly overparameterized in Equation (5), we have
p ≈ n + s and thus λ ≈ 0. At this point, Term A1 and the denominator in Term anoise approach
zero when tasks are similar, and thus anoise dominates and causes E[A(ŵT )] to be increasing w.r.t.
s. When heavily overparameterized in Equation (5), Term A1 is close to zero, and thus E[A(ŵT )]
decreases as s increases when the σ is low. Intuitively, when tasks are similar, the model can leverage
replay samples more effectively, leading to improvements in performance on the current task.

The impact of rehearsal size was also verified through numerical simulations in Figure 2(b), where
average adaptation error is plotted against rehearsal size for different model parameters. The red
curve marked with ”×”, decreases in the underparameterized regime (s > p− n) but first decreases
and then increases in the overparameterized regime (s < p− n), which validates our earlier insights.

Beyond analyzing the impact of rehearsal size, we also examined the effects of inter-task similarity
and model parameters. We found that under overparameterization, models require higher inter-task
similarity to better adapt to the current task, whereas this does not hold in underparameterized settings
(Figure 2(c)). Moreover, the overparameterization helps mitigate the impact of task variability and
noise effects on model adaptability, as illustrated in Figure 2(a) and Figure 2(c). Due to space
constraints, a more detailed discussion of these factors is provided in Appendix G.
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Figure 2: Adaptation performance and memory performance of rehearsal-based continual learning under different
setups, where T = 8, n = 1000 and ∥w∗

t ∥2 = 1 for all t ∈ T . The discrete points indicated by markers
are calculated by simulation and are the average of 100 random simulation runs. Additional settings for each
subfigure are as follows: (a) and (d) : s = 500; (b) and (e) : σ = 0.02; (c) and (f) : s = 500, σ = 0.02.

Theorem 2 (Memory error). Under Assumption 1 and Assumption 2, the memory error of the
rehearsal-based continual learning model is formally given by

E[M(ŵT )] =



1

T − 1

T−1∑
k=1

T∑
j>k

n+ s

p
ukj

∥∥w∗
j −w∗

k

∥∥2
︸ ︷︷ ︸

Term M1

+
1

T − 1

T−1∑
i=1

(
λT − λi

)
∥w∗

i ∥
2

︸ ︷︷ ︸
Term M2

+mnoise,

for p > n+ s+ 1, (7)

1

T − 1

T−1∑
k=1

∥w∗
T −w∗

k∥
2
, for n+ s > p+ 1. (8)
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where ukj := λT−k − λj−k + λT−j and mnoise := 1
T−1

∑T−1
i=1

pσ2

p−n−s−1

(
λi − λT

)
. Specifically,

when the number of tasks T = 2, the Equation (7) can be reformulated as

E[M(ŵ2)] =
n+ s

p
∥w∗

2 −w∗
1∥

2 − (n+ s)(p− n− s)

p2
∥w∗

1∥
2
+

(n+ s)(p− n− s)σ2

(p− n− s− 1)p
, (9)

Similarly, the corresponding case in Equation (8) can be reformulated as

E[M(ŵ2)] = ∥w∗
2 −w∗

1∥
2
. (10)

The detailed proof is provided in Appendix C. Based on Theorems 2, we further explore their analyti-
cal insights and examine the influence of factors such as rehearsal size, as well as the performance
differences observed under both overparameterized and underparameterized regimes.

Increasing the rehearsal size does not always lead to better memory performance in continual
learning models in the overparameterized regime. Specifically, we consider the case where
T = 2. For the overparameterized regime result in Equation (9), when tasks are similar and σ
is low, the second term dominates and causes E[M(ŵT )] first decreases and then increases as s
increases, indicating the existence of decreasing floor. For the underparameterized regime result
in Equation (10), rehearsal no longer contributes to memory performance. In this situation, the
E[M(ŵT )] depends solely on the inherent similarity between tasks (i.e. ∥w∗

T −w∗
k∥

2 ), meaning
that the memory error is fully determined by similarity between the final task and preceding ones.

In Figure 2(e), the yellow curve marked ” Y ” clearly illustrates how the average memory error varies
with rehearsal size when p = 3× 104. In the overparameterized regime (s < p− n), the memory
error first decreases and then increases, indicating the existence of a decreasing performance floor. In
contrast, in the underparameterized regime (s > p− n), the error remains unaffected by rehearsal
size, and zero forgetting is achieved when the task-optimal parameters remain consistent.

Apart from rehearsal size, we also examined additional factors. For example, increasing task
similarity enhances memory performance under underparameterization but can have adverse effects
under overparameterization. In the overparameterized regime, parameter size influences memory
performance more strongly than noise (Figure 2(d)). Further analysis is provided in Appendix G.
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Figure 3: The trend of average generalization error w.r.t. the number of model parameters or rehearsal samples,
with T = 8, n = 1000 and ∥w∗

t ∥2 = 1 for all t ∈ T . Discrete points denote averages over 100 random
simulations for each setting. Subfigure settings: (a) : s = 500; (b) : σ = 0.02; (c) : s = 500, σ = 0.02.

Theorem 3 (Generalization error). Under Assumption 1 and Assumption 2, the generalization error
of the rehearsal-based continual learning model is formally given by

E[G(ŵT )] =



1

T

T∑
k=1

T∑
j=1

n+ s

p
λT−k

∥∥w∗
k −w∗

j

∥∥2
︸ ︷︷ ︸

Term G1

+
1

T

T∑
k=1

λT ∥w∗
k∥

2

︸ ︷︷ ︸
Term G2

+gnoise,

for p > n+ s+ 1, (11)

1

T

T∑
k=1

∥w∗
T −w∗

k∥
2
+

pσ2

n+ s− p− 1
, for n+ s > p+ 1, (12)
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where gnoise(ŵT ) := pσ2

p−n−s−1

(
1− λT

)
. Specifically, when the number of tasks T = 2, we

reformulate Equation (11) to provide a clearer interpretation of the error form , resulting in

E[G(ŵ2)] =
1

2
(1− λ2) ∥w∗

2 −w∗
1∥

2
+

1

2
λ2(∥w∗

1∥
2
+ ∥w∗

2∥
2
) +

pσ2(1− λ2)

p− n− s− 1
, (13)

Similarly, in the case when the number of tasks T = 2, we can reformulate Equation (12) as

E[G(ŵ2)] =
1

2
∥w∗

2 −w∗
1∥

2
+

pσ2

n+ s− p− 1
. (14)

Increasing rehearsal size can degrade generalization performance under overparameterization,
especially when tasks are dissimilar. Consider the case where T = 2. When slightly overparam-
eterized in Equation (13), the second term approaches zero, the denominator p− n− s− 1 in the
third term approaches zero, and thus this term dominates. In this situation, increasing the rehearsal
size raises the peak generalization error. In contrast, when heavily overparameterized in Equation
(13), the second term dominates and decreases as s increases when tasks are similar and σ is low.
Moreover, the E[G(ŵT )] decreases as s increases in Equation (14), indicating that larger rehearsal
size consistently enhances generalization performance under underparameterization.

In Figure 3(b), average generalization error varies with rehearsal size under different model param-
eters, with optimal parameters being orthogonal. The yellow curve with markers “ Y ” decreases
when underparameterized (s > p − n), but increases with rehearsal size when overparameterized
(s < p − n), confirming these insights. Additionally, we examined other factors under different
parameterization regimes. As shown in Figure 3(c), increasing similarity enhances generalization
in both underparameterized and overparameterized settings. However, enlarging the parameter size
reduces the influence of rehearsal and inter-task similarity on generalization (Figures 3(a), 3(c)).

In conclusion, we derive expressions for adaptation, memory, and generalization errors, and analyze
key factors. The following proposition reveals the connection among adaptability, memorability and
generalizability for T = 2, and presents conditions for effective generalization performance.

Proposition 1. Assuming that Assumptions 1 and 2 hold. For T = 2, the generalization error
E[G(ŵT )] increases with the error on initial task when ∥w∗

2 −w∗
1∥ is low. Minimizing error requires

small memory and adaptation errors while maintaining performance on the initial task.

The detailed proof is provided in Appendix D. As indicated by Proposition 1, better generalization
performance requires excelling at the current task while retaining knowledge from previous tasks. In
addition, performance on the initial task is also crucial, consistent with the empirical analyses by Shi
et al. (2022); Wang et al. (2024a). From the perspective of model’s memorability, failing to learn the
initial task well can lead to error accumulation if knowledge retention is overemphasized.

5 EMPIRICAL VALIDATION ON DEEP NEURAL NETWORKS

Thus far, we have explored different aspects influencing the performance of rehearsal-based continual
learning. To validate whether our theoretical insights from linear models under overparameterization
extend to deep neural networks, we conduct experiments on real datasets. After training each task,
adaptation, memory, and generalization errors were evaluated. The experiments were conducted on
MNIST (LeCun et al., 1989) , CIFAR-10 (Krizhevsky et al., 2009) , CIFAR-100 (Krizhevsky et al.,
2009), and Tiny-ImageNet (Le & Yang, 2015). All experiments were repeated at least three times,
and average results are reported, with additional experimental details provided in Appendix H.

More rehearsal is not always better for memory performance. The impact of rehearsal size on
memory error is illustrated in Figures 4(e)–(f) and Figure 5(a). The MNIST, CIFAR-10, CIFAR-100,
and Tiny-ImageNet datasets were partitioned into 2, 2, 10, and 20 tasks, respectively, with each task
containing 5, 5, 10, and 20 categories. As shown in the figures, the memory error initially decreases
but then increases as the rehearsal size grows, with this effect being more pronounced when class
overlap is two. These observations suggest that larger rehearsal sizes do not always lead to better
performance, and that further gains become marginal once rehearsal reaches a certain level.
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Figure 4: Impact of rehearsal size and task similarity on adaptation, memory, and generalization errors in deep
neural networks trained on MNIST, CIFAR-10 and CIFAR-100. Subfigures (a)-(b) show how accumulated
classes affect adaptation error under different buffer sizes; (c)-(d) illustrate how overlapping classes affect all
three errors; (e)-(f) illustrate how rehearsal size affects memory error for varying similarity levels.

Different sampling strategies. To evaluate sam-
pling strategies, we compared model errors un-
der Random, Herding, and Reservoir methods
(Table 1). Herding achieved the lowest error by
selecting samples near class centers, offering bet-
ter representation of previous tasks.
Various network architectures. We further ana-
lyzed performance across different architectures
(Table 2). Deeper networks yielded lower aver-
age errors, especially in memory and generaliza-
tion, suggesting that larger models capture richer
features and better mitigate forgetting.
Longer training sequences. The analysis was
further extended to the Tiny-ImageNet dataset
with more training tasks shown in Table 4. The
results indicate that adaptation error increases
with larger rehearsal size, highlighting the ad-
verse effect of the rehearsal mechanism.

Table 1: The adaptation error across increasing buffer
sizes under various sampling strategies on CIFAR-10.

Methods 0% 5% 10% 50%

Random 0.196 0.212 0.257 0.382
Reservoir 0.201 0.222 0.289 0.613
Herding 0.195 0.203 0.207 0.218

Table 2: Average adaptation, memory, and generaliza-
tion errors across different architectures on CIFAR-10.

Arch. Adapt. Memo. Gener.

CNN 0.21 3.60 2.28
ResNet18 0.18 2.40 1.48
ResNet50 0.17 2.17 1.44

Table 3: Comparison of model errors and traditional metrics with increasing training tasks on CIFAR-10.

Training Tasks T1 T2 T3 T4 T5

Adaptation Error 0.13±0.00 0.40±0.00 0.28±0.00 0.11±0.00 0.16±0.00
Memory Error – 1.54±0.03 3.90±0.05 4.24±0.16 4.66±0.07
Generalization Error 0.13±0.00 1.04±0.01 2.87±0.04 3.41±0.12 3.94±0.05
Forgetting Ratio – 7.30±0.63 22.35±0.54 27.23±0.43 38.38±0.14
Average Accuracy 95.05±0.26 65.78±0.34 39.20±0.41 35.78±0.18 32.06±0.33

In deep neural network experiments, model performance on continual learning is evaluated using
adaptation, memory, and generalization errors rather than accuracy or forgetting rate, consistent with
the theoretical analysis. Similar metrics are also used in research by Zhao et al. (2024b); Evron et al.
(2022). Additionally, we also report accuracy and forgetting rate (Table 3). As shown in the table,
average accuracy and generalization error reflect overall generalization, with accuracy gradually
decreasing as training classes increase. And forgetting rate and memory error indicate the ability to
retain previous knowledge, both rising during training to demonstrate the phenomenon of forgetting.
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Table 4: Adaptation error across varying buffer sizes on Tiny-ImageNet

Tasks T3 T6 T12 T16 T20
0% 1.120 ± 0.025 0.959 ± 0.027 0.888 ± 0.023 0.991 ± 0.022 1.012 ± 0.014
5% 1.180 ± 0.019 1.018 ± 0.030 0.909 ± 0.024 1.031 ± 0.003 1.050 ± 0.019
10% 1.257 ± 0.037 1.055 ± 0.022 0.938 ± 0.021 1.103 ± 0.017 1.115 ± 0.013
50% 1.454 ± 0.033 1.220 ± 0.051 1.085 ± 0.069 1.208 ± 0.039 1.271 ± 0.023

Rehearsal mechanism may impair adaptation performance. To examine the impact of the number
of training classes under different buffer sizes, we divided the ten classes in MNIST and CIFAR-10
into five tasks, each containing two classes. The division scheme used in CIFAR-100 and Tiny-
ImageNet follows the previous settings. In Figures 4(a)–(b) and Figure 5(b), the adaptation error
varies with the number of training classes at different rehearsal sizes. As observed, the error increases
with larger rehearsal sizes (e.g., the red curves in the figures). This observation indicates that rehearsal
may impair the model’s adaptation performance, consistent with our analysis of linear models.
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Figure 5: Impact of rehearsal size on adaptation error and memory error in deep neural networks trained on
Tiny-ImageNet. Subfigures (a) illustrate how rehearsal size affects memory error for varying similarity levels.
Subfigures (b) show how accumulated classes affect adaptation error under different buffer sizes.

The impact of task similarity on memory performance is most pronounced. We regulate task
similarity by adjusting the number of overlapping classes between tasks. Specifically, for MNIST
and CIFAR-10 datasets, the first task’s classes remain fixed while number of overlap classes with the
second task varies. For CIFAR-100 and Tiny-ImageNet datasets, similarity is adjusted between the
first task and subsequent tasks. Beyond class similarity metric, we also evaluate different similarity
metrics (Appendix H). As shown in Figures 4(c)–(d), adaptation, memory, and generalization errors
all decrease as similarity level increases, with memory error dropping most sharply (e.g., the blue
curves in the figures), reflecting that stronger task similarity enhances knowledge retention.

6 CONCLUSION

In this work, we investigate rehearsal-based continual learning under both underparameterized
and overparameterized regimes, formulating each task as a linear regression problem. We derive
explicit expressions for memory, adaptation, and generalization errors, providing a foundational
understanding of rehearsal-based continual learning. In contrast to common views, more rehearsal is
not always beneficial; even for mitigating forgetting, there exists a lower bound on error reduction.
Moreover, the rehearsal mechanism affects model adaptability differently in underparameterized and
overparameterized scenarios. These findings provide valuable insights into the role and limitations of
rehearsal mechanism. Furthermore, we validate these theoretical understanding through numerical
simulations and further extend the analysis from linear models to deep neural networks. Experiments
on MNIST, CIFAR-10, CIFAR-100, and Tiny-ImageNet further explore longer task sequences, deeper
architectures, and various sampling strategies, supporting and extending these theoretical insights.
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A SUPPORT LEMMAS

Lemma A.1. Consider continual linear regression models, where the data Dt := (Xt,yt) of each
task t consist of a feature matrix Xt ∈ Rp×n and a response vector yt ∈ Rn. When GD/SGD
converges to zero mean squared error, the convergence point corresponds to the minimum ℓ2-norm
solution that lies nearest to the previous task’s parameters in parameter space.

Proof. Let wt be the parameter for the current task, we can calculate the gradient for the i-th training
sample as ∂(yi − x⊤

i w)2/∂w = −2(yi − x⊤
i w)xi. Since the parameter change in each iteration is

located in the column space of X, we can always find a ∈ Rn such that w −wt−1 = Xa. For the
convergence point that makes the training loss become zero, we have X⊤w = y. Then we have

X⊤w = X⊤(wt−1 +Xa) = X⊤wt−1 +X⊤Xa. (15)

Then, we can calculate a and subsequently derive a dynamic expression for w:

w = wt−1 +Xa

= wt−1 +X(X⊤X)−1(y −X⊤wt−1)

= (I −X(X⊤X)−1X⊤)wt−1 +X(X⊤X)−1y,

(16)

which is exactly the minimum ℓ2-norm solution of the continual linear regression:

argmin
w

∥w −wt−1∥2, st. X⊤w = y. (17)

Lemma A.2. Let each element of random matrix U ∈ Rp×n be drawn i.i.d. from a standard normal
distribution N (0, 1) and p > n+ 1. There exists a fixed vector w ∈ Rp and a normal distribution
random vector z ∼ N (0, σ2In) satisfying the following equation:

E
[
(U⊤U)−1

]
=

In×n

p− n− 1
, (18)

E
∥∥∥U (

U⊤U
)−1

U⊤w
∥∥∥2 =

n

p
∥w∥2 , (19)

E
∥∥U(U⊤U)−1ϵ

∥∥2 =
nσ2

p− n− 1
. (20)

Proof. According to the definition of matrix U , we have (U⊤U)−1 follows the inverse-Wishart
distribution with identity scale matrix I ∈ Rn×n and p degrees-of-freedom, Therefore, for p > n+1,
we have E

[
(U⊤U)−1

]
= In×n

p−n−1 and the first equation holds. Let Π := U
(
U⊤U

)−1
U⊤, it can

be shown that Π is a orthogonal projection matrix that projects a p-dim vector to the column space of
U and satisfies Π2 = Π. Since each element of U is i.i.d. following standard Gaussian, we have
E[∥Πw∥2] = n

p ∥w∥2 by rotational symmetry of the standard normal distribution. We can get

∥U(U⊤U)−1ϵ∥2 = ϵ⊤(U⊤U)−1(U⊤U)(U⊤U)−1ϵ

= tr((U⊤U)−1(U⊤U)(U⊤U)−1ϵϵ⊤)

= tr((U⊤U)−1ϵϵ⊤).

(21)

By computing the expectation of the above equation, we derive

E[∥U(U⊤U)−1ϵ∥2] = E
[
tr
(
(U⊤U)−1ϵϵ⊤

)]
= tr

(
E
[
(U⊤U)−1ϵϵ⊤

])
= tr

(
E
[
(U⊤U)−1

]
E
[
ϵϵ⊤

])
= σ2 tr

(
E
[
(U⊤U)−1

])
=

nσ2

p− n− 1
.

(22)

Lemma A.3. Consider the oracle estimator described in Appendix E. We construct X1T ∈ Rp×nT

by concatenating the data matrices from X1 to XT along the second dimension, i.e. X1T =
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[X1 X2 ... XT ], and y1T denotes the corresponding concatenated response vector. The solution to
the corresponding optimization problem for the oracle estimator takes different forms depending on
the parameterization regime. In the overparameterized regime, the solution is given by

ŵ
(Ora)
T =

(
I −X1T

(
X⊤

1TX1T

)−1
X⊤

1T

)
w0 +X1T

(
X⊤

1TX1T

)−1
y1T . (23)

In the underparameterized regime, the solution is given by the following expression

ŵ
(Ora)
T =

(
X1TX

⊤
1T

)−1
X1Ty1T . (24)

Proof. When underparameterized, the optimization problem for the oracle estimator can be formulated
as: argmin

w

∥∥XT
1Tw − y1T

∥∥2. Let L(w) =
∥∥X⊤

1Tw − y1T

∥∥2 denotes a function of w and we have

L(w) = ∥X⊤
1Tw − y1T ∥2 = (X⊤

1Tw − y1T )
⊤(X⊤

1Tw − y1T ). (25)

By computing the derivative of L with respect to w and setting it to zero, we must have

X1TX
⊤
1T ŵ = X1Ty1T ⇒ ŵ =

(
X1TX

⊤
1T

)−1
X1Ty1T . (26)

When overparameterized, the optimization problem can be formalized as: argmin
w

∥w −w0∥2, st.

X⊤
1Tw = y1T . Using the Lagrange multipliers, we can get the objective function

argmin
w,λ

1

2
∥w −w0∥22 + λ⊤(X⊤

1Tw − y1T ). (27)

By setting the derivative with respect to w and λ to 0, it directly follows that

ŵ −w0 +X1Tλ = 0 ⇒ ŵ = −X1Tλ+w0, (28)

λ = (X⊤
1TX1T )

−1X⊤
1Tw0 − (X⊤

1TX1T )
−1y1T . (29)

By substituting Equation(27) into Equation(26), we obtain the following result

ŵ =
(
I −X1T

(
X⊤

1TX1T

)−1
X⊤

1T

)
w0 +X1T

(
X⊤

1TX1T

)−1
y1T . (30)

B PROOF OF THEOREM 1

Define Ut = [Xt Z1 Z2 ... Zt−1] ∈ Rp×(n+s), and define Yt = [yt g1 g2 ... gt−1]
⊤ ∈ Rn+s.

In the overparameterized regime (where p > n+ s), the optimization problem can be represented by
the following expression, describing the solution structure and constraints involved, as

argmin
w

∥w −wt−1∥2 , s.t.(Xt)
⊤w = yt, (Zi)

⊤w = gi(i = 1, 2, ..., t− 1), (31)

and we can reformulate it as: argmin ∥w −wt−1∥2, s.t.U⊤
t w = Yt. We can define

L(w, λ) =
1

2
∥w −wt−1∥2 + λT (U⊤

t w − Yt). (32)

Using the Lagrange multipliers and set the derivative w.r.t. w and λ to 0, we can get

w −wt−1 +Utλ = 0 ⇒ w = −Utλ+wt−1, (33)

λ = (U⊤
t Ut)

−1U⊤
t wt−1 − (U⊤

t Ut)
−1Yt, (34)

w = (I −Ut(U
⊤
t Ut)

−1U⊤
t )wt−1 +Ut(U

⊤
t Ut)

−1Yt. (35)

Therefore, for the t-th task, the parameters to be optimized can be represented as

wt = (I −Ut(U
⊤
t Ut)

−1U⊤
t )wt−1 +Ut(U

⊤
t Ut)

−1Yt (36)
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Then, we compute the expected ℓ2-norm between the optimized parameters of the t+ 1-th task and
the optimal parameters of the i-th task, providing a measure of their difference in parameter space.

E[∥wt+1 −w∗
i ∥2]

=E[∥(I −Ut+1(U
⊤
t+1Ut+1)

−1U⊤
t+1)wt +Ut+1(U

⊤
t+1Ut+1)

−1Yt+1 −w∗
i ∥2]

=E[∥(I −Ut+1(U
⊤
t+1Ut+1)

−1U⊤
t+1)wt +Ut+1(U

⊤
t+1Ut+1)

−1(U⊤
t+1w

∗
t+1 + zt+1)−w∗

i ∥2]
=E[∥(I −Ut+1(U

⊤
t+1Ut+1)

−1U⊤
t+1)(wt −w∗

i ) +Ut+1(U
⊤
t+1Ut+1)

−1U⊤
t+1(w

∗
t+1 −w∗

i )

+Ut+1(U
⊤
t+1Ut+1)

−1zt+1∥2]
=E[∥(I −Ut+1(U

⊤
t+1Ut+1)

−1U⊤
t+1)(wt −w∗

i ) +Ut+1(U
⊤
t+1Ut+1)

−1U⊤
t+1(w

∗
t+1 −w∗

i )∥2]
+ 2E[⟨(I −Ut+1(U

⊤
t+1Ut+1)

−1U⊤
t+1)(wt −w∗

i ) +Ut+1(U
⊤
t+1Ut+1)

−1U⊤
t+1(w

∗
t+1 −w∗

i ),

Ut+1(U
⊤
t+1Ut+1)

−1zt+1⟩] + E[∥Ut+1(U
⊤
t+1Ut+1)

−1zt+1∥2]
(37)

For notational convenience, we define Πt := Ut(U
⊤
t Ut)

−1U⊤
t . It can be shown that Π is a

orthogonal projection matrix that projects a p-dim vector to the column space of U , and it satisfies
Π2

t = Πt. Therefore, the Equation (37) can be equivalently expressed as follows

E[∥wt+1 −w∗
i ∥2]

=E[∥(I −Πt+1)(wt −w∗
i ) +Πt+1(w

∗
t+1 −w∗

i )∥2] + E[∥Ut+1(U
⊤
t+1Ut+1)

−1zt+1∥2]
+ 2E[⟨(I −Πt+1)(wt −w∗

i ) +Πt+1(w
∗
t+1 −w∗

i ), Ut+1(U
⊤
t+1Ut+1)

−1zt+1⟩]

=(1− n+ s

p
)E[∥wt −w∗

i ∥2] +
n+ s

p
∥w∗

t+1 −w∗
i ∥2 +

(n+ s)σ2

p− n− s− 1
,

(38)

where E[∥Πt+1(w
∗
t+1 −w∗

i )∥2] = n+s
p ∥w∗

t+1 −w∗
i ∥2 as established in Lemma A.2, and

E[⟨(I −Πt+1)(wt −w∗
i ) +Πt+1(w

∗
t+1 −w∗

i ), Ut+1(U
⊤
t+1Ut+1)

−1zt+1⟩]
=E[⟨(I −Πt+1)(wt −w∗

i ), Ut+1(U
⊤
t+1Ut+1)

−1zt+1⟩]
+ E[⟨Πt+1(w

∗
t+1 −w∗

i ), Ut+1(U
⊤
t+1Ut+1)

−1zt+1⟩]
=E[⟨(Ut+1(U

⊤
t+1Ut+1)

−1)⊤Πt+1(w
∗
t+1 −w∗

i ), zt+1⟩] = 0

(39)

Regarding the calculation of the noise term, we have the following expression

E[∥Ut+1(U
⊤
t+1Ut+1)

−1zt+1∥2]
=E[tr((U⊤

t+1Ut+1)
−1(U⊤

t+1Ut+1)(U
⊤
t+1Ut+1)

−1zt+1z
⊤
t+1)]

=E[tr((U⊤
t+1Ut+1)

−1zt+1z
⊤
t+1)] = tr[E[(U⊤

t+1Ut+1)
−1zt+1z

⊤
t+1]]

=σ2tr(E[(U⊤
t+1Ut+1)

−1])

=
(n+ s)σ2

p− n− s− 1

(40)

Therefore, the expression for E[∥wt −w∗
i ∥2] can be computed iteratively.(Let w0 = 0)

E[∥wt −w∗
i ∥2]

=(
p− n− s

p
)E[∥wt−1 −w∗

i ∥2] +
n+ s

p
∥w∗

t −w∗
i ∥2 +

(n+ s)σ2

p− n− s− 1

=

(
p− n− s

p

)t

∥w∗
i ∥2 +

t∑
k=1

(
p− n− s

p

)t−k
n+ s

p
∥w∗

k −w∗
i ∥2

+
(n+ s)σ2

p− n− s− 1

t∑
k=1

(
p− n− s

p

)t−k

(41)
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Therefore, based on the previous derivations, we can calculate the adaptation error

E[A(wt)] = E ∥wt −w∗
t ∥

2

=

(
p− n− s

p

)t

∥w∗
t ∥2 +

t∑
k=1

(
p− n− s

p

)t−k
n+ s

p
∥w∗

k −w∗
t ∥2

+
(n+ s)σ2

p− n− s− 1

t∑
k=1

(
p− n− s

p

)t−k

=

(
p− n− s

p

)t

∥w∗
t ∥

2
+

t∑
k=1

(
p− n− s

p

)t−k
n+ s

p
∥w∗

k −w∗
t ∥

2

+
(1− (p−n−s

p )t)pσ2

(p− n− s− 1)

(42)

In the underparameterized regime (p < n + s), the optimization problem can be reformulated as
argmin

w

∥∥U⊤
t w − Yt

∥∥2. In this situation, the optimization problem admits a unique solution, the

model parameters are independent of those from the previous tasks. Define objective function

L(w) = ∥U⊤
t w − Yt∥2

= (U⊤
t w − Yt)

⊤(U⊤
t w − Yt)

= w⊤UtU
⊤
t w − Y ⊤

t U⊤
t w −w⊤UtYt + Y ⊤

t Yt

(43)

By setting the derivative w.r.t. w to 0, it follows that

w = (UtU
⊤
t )−1UtYt = (UtU

⊤
t )−1Ut(U

⊤
t w∗ + zt)

= w∗ + (UtU
⊤
t )−1Utzt.

(44)

Then we can calculate the expected ℓ2-norm, which is given by
E[Li(wt)]

=E∥wt −w∗
i ∥2

=E∥w∗
t + (UtU

⊤
t )−1Utzt −w∗

i ∥2

=E∥w∗
t −w∗

i ∥2 +
pσ2

n+ s− p− 1

=∥w∗
t −w∗

i ∥2 +
pσ2

n+ s− p− 1

(45)

Therefore, the adaptation error can be expressed as
E[A(wt)]

=E
∥∥w∗

t + (UtU
⊤
t )−1Utzt −w∗

t

∥∥2
=E

∥∥(UtU
⊤
t )−1Utzt

∥∥2
=

pσ2

n+ s− p− 1

(46)

C PROOF OF THEOREM 2

In the overrparameterized regime(p > n+ s), according to Equation (41), we have

E[∥wt −w∗
i ∥2]

=

(
p− n− s

p

)t

∥w∗
i ∥2 +

t∑
k=1

(
p− n− s

p

)t−k
n+ s

p
∥w∗

k −w∗
i ∥2

+
(n+ s)σ2

p− n− s− 1

t∑
k=1

(
p− n− s

p

)t−k

,

(47)
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and by setting t = i, we have

E[∥wi −w∗
i ∥2]

=

(
p− n− s

p

)i

∥w∗
i ∥2 +

i∑
k=1

(
p− n− s

p

)i−k
n+ s

p
∥w∗

k −w∗
i ∥2

+
(n+ s)σ2

p− n− s− 1

i∑
k=1

(
p− n− s

p

)i−k

(48)

Thus, through calculation, we derive the expression for the memory error as

E[M(wt)] =
1

t− 1

t−1∑
i=1

E
[
∥wt −w∗

i ∥
2 − ∥wi −w∗

i ∥
2
]

=
1

t− 1

t−1∑
i=1

[(
p− n− s

p

)t

∥w∗
i ∥

2
+

t∑
k=1

(
p− n− s

p

)t−k
n+ s

p
∥w∗

k −w∗
i ∥

2

+
(n+ s)σ2

p− n− s− 1

t∑
k=1

(
p− n− s

p

)t−k

−
(
p− n− s

p

)i

∥w∗
i ∥

2 −
i∑

k=1

(
p− n− s

p

)i−k
n+ s

p
∥w∗

k −w∗
i ∥

2

− (n+ s)σ2

p− n− s− 1

i∑
k=1

(
p− n− s

p

)i−k ]

=
1

t− 1

t−1∑
i=1

{[(
p− n− s

p

)t

−
(
p− n− s

p

)i
]
∥w∗

i ∥2

+

t∑
k=i+1

n+ s

p

(
p− n− s

p

)t−k

∥w∗
k −w∗

i ∥
2
+

(n+ s)σ2

p− n− s− 1

i∑
k=1

[(
p− n− s

p

)t−k

−
(
p− n− s

p

)i−k
]

+
(n+ s)σ2

p− n− s− 1

t∑
k=i+1

(
1− n+ s

p

)t−k

+

i∑
k=1

n+ s

p

[(
p− n− s

p

)t−k

−
(
p− n− s

p

)i−k
]
∥w∗

k − w∗
i ∥2

}

=
1

t− 1

t−1∑
i=1

{[(
p− n− s

p

)t

−
(
p− n− s

p

)i
]
∥w∗

i ∥2 +
(n+ s)σ2

p− n− s− 1

i∑
k=1

[(
p− n− s

p

)t−k

−
(
p− n− s

p

)i−k
]

+

t∑
j>i

ukj∥w∗
i −w∗

j ∥2 +
(n+ s)σ2

p− n− s− 1

t∑
k=i+1

(
p− n− s

p

)t−k


=
1

t− 1

t−1∑
i=1


[(

p− n− s

p

)t

−
(
p− n− s

p

)i
]
∥w∗

i ∥2 +
t∑

j>i

ukj∥w∗
i − w∗

j ∥2

+
(n+ s)σ2

p− n− s− 1

[
t∑

k=1

(
p− n− s

p

)t−k

−
i∑

k=1

(
p− n− s

p

)i−k
]}

=
1

t− 1

t−1∑
k=1

(
λt − λi

)
∥w∗

i ∥
2
+

1

t− 1

t−1∑
k=1

t∑
j>k

n+ s

p
ukj

∥∥w∗
j −w∗

k

∥∥2
+

1

t− 1

t−1∑
k=1

pσ2

p− n− s− 1

(
λi − λt

)
(49)
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In the underparameterized regime (p < n+ s), according to Equation (45), we have

E[Li(wt)] = ∥w∗
t −w∗

i ∥2 +
pσ2

n+ s− p− 1
(50)

Thus, we can derive the expression for the memory error as

E[M(wt)] = E

[
1

t− 1

t−1∑
k=1

(
∥wt −w∗

k∥2 − ∥wk −w∗
k∥2

)]

=
1

t− 1

t−1∑
k=1

(
E∥wt −w∗

k∥2 − E∥wk −w∗
k∥2

)
=

1

t− 1

t−1∑
k=1

[
∥w∗

t −w∗
k∥2 +

pσ2

n+ s− p− 1

−∥w∗
k −w∗

k∥2 −
pσ2

n+ s− p− 1

]
=

1

t− 1

t−1∑
k=1

∥w∗
t −w∗

k∥2.

(51)

D PROOF OF THEOREM 3

In the overparameterized regime (p > n+ s), we have

E[∥wt −w∗
k∥2]

=

(
p− n− s

p

)t

∥w∗
k∥2 +

t∑
j=1

(
p− n− s

p

)t−j
n+ s

p
∥w∗

k −w∗
j ∥2

+
(n+ s)σ2

p− n− s− 1

t∑
i=1

(
1− n+ s

p

)t−i

(52)

Thus, we can derive the expression for the forsight error as

E[G (wt)] =E[
1

t

t∑
k=1

∥wt −w∗
k∥

2
]

=
1

t

t∑
k=1

E ∥wt −w∗
k∥

2

=
1

t

t∑
k=1

(p− n− s

p

)t

∥w∗
k∥2 +

t∑
j=1

(
p− n− s

p

)t−k
n+ s

p
∥w∗

k −w∗
j ∥2

+
(n+ s)σ2

p− n− s− 1

t∑
i=1

(
1− n+ s

p

)t−i
]

=
1

t

t∑
k=1

(
p− n− s

p

)t

∥w∗
k∥2 +

1

t

t∑
k=1

t∑
j=1

(
p− n− s

p

)t−k
n+ s

p
∥w∗

k −w∗
j ∥2

+
pσ2

p− n− s− 1

[
1−

(
p− n− s

p

)t
]

=
1

t

t∑
k=1

λt ∥w∗
k∥

2
+

1

t

t∑
k=1

t∑
j=1

n+ s

p
λt−k

∥∥w∗
k −w∗

j

∥∥2
+

pσ2

p− n− s− 1

(
1− λt

)

(53)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

In the underparameterized regime (p < n+ s), we have

E[Li(wt)] = ∥w∗
t −w∗

i ∥2 +
pσ2

n+ s− p− 1
(54)

Thus, we can derive the expression for the forsight error as

E[G (wt)] = E

[
1

t

t∑
k=1

∥wt −w∗
k∥2

]

=
1

t

t∑
k=1

E∥wt −w∗
k∥2

=
1

t

t∑
k=1

∥w∗
t −w∗

k∥2 +
pσ2

n+ s− p− 1
.

(55)

D.1 PROOF OF PROPOSITION 1

Under overparameterization (p > n+ s), the expression for the foresight error for T = 2 is given by

E[G(ŵ2)] =
1

2
(1− λ2) ∥w∗

2 −w∗
1∥

2
+

1

2
λ2(∥w∗

1∥
2
+ ∥w∗

2∥
2
) +

pσ2(1− λ2)

p− n− s− 1
(56)

and then we have

2E[G(ŵ2)] = (1− λ2) ∥w∗
2 −w∗

1∥
2
+ λ2(∥w∗

1∥
2
+ ∥w∗

2∥
2
) +

2pσ2(1− λ2)
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2
+ λ2 ∥w∗

1∥
2
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2
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2
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2
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2
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2
+ E[A(ŵ2)] +
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2 −w∗

1∥
2
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2 −w∗

1∥
2
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= λ ∥w∗
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2
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(57)

Based on the parameter iteration formula in the overparameterized regime, we have

wt = (I −Ut(U
⊤
t Ut)

−1U⊤
t )wt−1 +Ut(U

⊤
t Ut)

−1Yt

= (I −Ut(U
⊤
t Ut)

−1U⊤
t )wt−1 +Ut(U

⊤
t Ut)

−1(U⊤
t w∗

t + zt)
(58)

And then we have

E ∥w1 −w∗
1∥

2
= E

∥∥(I −U1(U
⊤
1 U1)

−1U⊤
1 )w0 +U1(U

⊤
1 U1)

−1(U⊤
1 w∗

1 + z1)−w∗
1

∥∥2
= E

∥∥(I −U1(U
⊤
1 U1)

−1U⊤
1 )w0 +U1(U

⊤
1 U1)

−1U⊤
1 w∗

1

+U1(U
⊤
1 U1)

−1z1 −w∗
1 ∥2

= λ ∥w∗
1∥

2
+

pσ2(1− λ)

p− n− s− 1

(59)

It follows from the combination of Equation (57) and (59) that the proposition holds.
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E ADDITIONAL RELATED WORKS

Recently, continual learning leveraging pre-trained models have achieved strong empirical perfor-
mance (Wang et al. (2022b); McDonnell et al. (2023); Zhao et al. (2024a); Tran et al. (2025)). Unlike
traditional approaches that train from randomly initialized weights, these methods exploit the repre-
sentational power of pre-trained models via prompting or adapters for lightweight fine-tuning. For
instance, L2P (Wang et al. (2022c)) uses a prompt pool to store prior knowledge; DualPrompt (Wang
et al. (2022b)) separates public and task-specific knowledge; SLCA (Zhang et al. (2023)) adapts
tasks by dynamically adjusting learning rates. Despite these advances, rehearsal remains widely used,
yet its theoretical implications are still underexplored. A systematic understanding of how rehearsal
influence continual learning, including their operation and constraints, is hence needed.

Moreover, we provide a detailed comparison and analysis of several rehearsal-based continual
learning studies. Compared to Lin et al. (2023), both works adopt Gaussian linear regression, but
they focuses on generalization and forgetting in regularization-based methods, emphasizing task
ordering and benign overfitting in overparameterized models. Compared to Deng et al. (2025),
they studied replay strategies, showing that sequential replay outperforms concurrent replay when
tasks are dissimilar. Compared to Ding et al. (2024), they provide upper and lower bounds for
the forgetting error from the perspective of stochastic gradient descent, investigating the impact of
iteration step size and task ordering on forgetting performance. Compared to Zheng et al. (2024),
they analyzed sampling strategies, finding that reservoir sampling requires larger models to reduce
forgetting and that generalization improves with task similarity. It is worth noting that some of our
theoretical findings regarding task similarity and model dimensions similar to their discoveries under
overparameterization (e.g., “generalization capabilities may be weakened when tasks are dissimilar”).
This is because we investigate a unified rehearsal-based method, rather than being confined to specific
sampling strategies. Moreover, these findings are merely byproducts of our theoretical analysis.
We primary focus on examining how rehearsal differs under parameterization mechanisms and the
trade-offs between adaptability, memorability, and generalization. Furthermore, we observe that
retrieval practice does not adhere to the conventional “more is better” principle; even for mitigating
forgetting, there exists a lower bound on error reduction. The effectiveness of rehearsal in improving
adaptability also varies significantly between underparameterized and overparameterized settings.
Finally, influencing factors such as rehearsal size and task similarity were validated through simulation
experiments, and the deep neural network experiments further extended our theoretical findings.

F ORACLE AND REHEARSAL-BASED ESTIMATOR

The oracle estimator assumes that all data are available simultaneously, enabling global optimization
over the entire dataset (Zhang & Yang, 2018; 2021; Bhattacharjee et al., 2022). Assume that
n̄ =

∑T
t=1 nt represents the total number of training samples, the training process will converge

to a solution ŵ(Ora) that minimizes this training loss, i.e., ŵ(Ora) := argmin
w

∑T
t=1

∥∥X⊤
t w − yt

∥∥2.

When p > n̄ (overparameterized), there exist multiple solutions that can make the training loss zero
(with probability 1). In this situation, we choose the smallest ℓ2-norm which is defined as the solution
of the following optimization problem: argmin

w
∥w∥2 subject to (X1T )

⊤w = y1T , where X1T

and y1T are obtained by stacking feature vectors and response variables from all tasks. Without
sequence learning or memory constraints, the optimal parameter w∗ can be estimated by directly
solving the offline optimization problem (Zhao et al., 2024b; Shi et al., 2022). We further analyze
the connection between the oracle and the rehearsal-based estimator in AppendixB. This serves as
an ideal baseline for evaluating continual learning algorithms, which are considered optimal if they
achieve performance comparable to the oracle estimator (Chavan et al., 2024; Bhat et al., 2024).

Although rehearsal-based continual learning methods have been proven effective in many practical
applications, their theoretical understanding is still limited. Further, the introduction of additional
memory complicates the analysis of continual learning. Our work provides explicit expressions
of adaptation error, memory error, and foresight error for rehearsal-based continual learning. We
explain the effectiveness of the rehearsal mechanism using linear regression models under both
underparameterized and overparameterized regimes, which allows us to gain a comprehensive
understanding of the factors that influence continual learning performance.
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Scheme 1 Oracle Estimator

Initialization: ŵ
(ora)
0 = 0

Find the optimization problem for all tasks:

if p < n̄ (Underparameterized) then
Solving the optimization problem results

in a unique solution:

ŵ
(Ora)
T := argmin

w

{
T∑

t=1

∥∥XT
t w − yt

∥∥2}
else if p > n̄ (Overparameterized) then

Select the smallest ℓ2-norm solution
among all overfitted solutions:

ŵ
(Ora)
T := argmin

w
∥w∥2 ,

s.t.(X1T )
⊤w = y1T

end if
Return ŵT

Scheme 2 Rehearsal-based Continual learning
Estimator

Initialization: ŵ
(reh)
0 = 0

Iterative update for each task t ∈ T :
if p < n+ s (Underparameterized) then

Solving the optimization problem results
in a unique solution:

argmin
w

∥∥XT
t w − yt

∥∥2+t−1∑
i=1

∥∥ZT
i w − gi

∥∥2
else if p > n+ s (Overparameterized) then

Select the smallest ℓ2-norm solution
among all overfitted solutions:

ŵ
(Reh)
t := argmin

w
∥w −wt−1∥2 ,

s.t.(Xt)
⊤w = yt, (Zi)

⊤w = gi, i = 1, ..., t−1

end if
Return ŵt

G ADDITIONAL THEORETICAL ANALYSIS

Better adaptation of the model to the current task under the overparameterized regime requires
higher inter-task similarity, which is not the case under the underparameterized regime. Specifi-
cally, under overparameterization, the coefficient of Term A1 is positive in Equation (5). At this point,
when tasks are dissimilar to each other(i.e., ∥w∗

k −w∗
T ∥

2 is large), the corresponding E[A(ŵT )]
increases, making it detrimental to learn the current task and impairing the model’s plasticity. In
contrast, under the underparameterized regime in Equation (6), the optimization problem has a
unique solution (see Section 3), and the task is learned independently of previous tasks, meaning that
inter-task similarity no longer influences the learning of the current task. In Figure 2(c), the average
adaptation error varies with model parameters for different cosine similarities between task-optimal
parameters. The error is unaffected by similarity under underparameterization, while higher task
similarity (e.g., red and blue curves with markers ”×” and inverted ” Y ”, respectively) reduces
adaptation error under overparameterization.

The overparameterized regime help mitigate the effects of dissimilarity between tasks and noise
effects on model’s adaptation performance. Under underparameterization, E[A(ŵT )] increases
as σ increases and the value is at least σ2

n+s , indicating that larger noise is detrimental to learning
the current task. However, under overparameterization, when p increase to ∞, Term A1 and Term
anoise will decrease to zero. At this point, the negative effect of task dissimilarity and noise level is
eliminated through more parameters even when tasks are not similar, i.e., ∥w∗

k −w∗
T ∥

2 is large. The
blue curve in Figure 2(a) depicts how the adaptation error varies with model parameters when σ = 3.
when underparameterized, larger σ raises the adaptation error, while it gradually converges as p
increases when overparameterized, indicating reduced sensitivity to noise. A similar trend is observed
in Figure 2(c), showing that the effects of task dissimilarity diminish under overparameterization.

More parameters exerts stronger influence than rehearsal in the overparameterized regime,
further enhancing the model’s memory performance. For the overparameterized regime result
in Equation (7), When p → ∞ and thus λt − λi is close to zero, causing both Term M1, Term M2
and mnoise will approache zero. This indicates that under the overparameterized regime, the model
exhibits minimal forgetting as p increases to ∞. Intuitively, models with more parameters are better
at capturing data features and handling diverse inputs, allowing the model to retain and integrate
more task-relevant information, thus exhibiting stronger memory capacity. Figure 2(d) shows the
average memory error versus parameter size under different noise levels. Larger σ results in higher
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memory error in the overparameterized regime. As p increases, the error for all σ values gradually
approaches zero, highlighting the positive effect of model parameters.

Increased task similarity improves memory performance in the underparameterized regime,
while it may be detrimental in the overparameterized regime. Specifically, For the underparame-
terized regime result in Equation (8), the E[M(ŵT )] becomes smaller when

∑T−1
k=1 ∥w∗

T −w∗
k∥

2 is
smaller. In the special case where w∗

1 = w∗
2 = · · · = w∗

T , E[M(ŵT )] approaches zero. Intuitively,
smaller differences between tasks require fewer parameter adjustments, facilitating the retention of
prior knowledge. In contrast, for the overparameterized regime result in Equation (7), let k = 1,
j = 2, λ = 1

3 and T = 4, we have ukj = λ3 −λ+λ2 < 0, leading to a negative coefficient for Term
M1. In this situation, increasing task similarity results in larger memory error. In Figure 2(f), the
average memory error varies with model parameters for different cosine similarities between task
optimal parameters. Under underparameterization, higher task similarity leads to smaller memory
error. While under overparameterization, high similarity can worsen memory performance when
changes in task order cause negative coefficients in Equation (7), as detailed in Appendix H.

Increased task similarity enhances model’s generalization performance under both underpa-
rameterized and overparameterized regimes. For the overparameterized result in Equation (11),
the coefficient of Term G1 is always positive, leading to a decrease in E[G(ŵT )] as the similarity
between tasks increases. For the underparameterized result in Equation (12), when the difference
between tasks is small, the E[G(ŵT )] decreases accordingly. The green curve with markers “+”
in Figure 3(c) depicts how the average generalization error varies with model parameters when
tasks are partially similar. Higher task similarity (e.g., the blue curves with inverted ” Y ” markers)
is associated with lower generalization error in both regimes, highlighting its positive impact on
generalization performance.

Increased parameters under overparameterization weaken the impact of rehearsal and task
similarity on generalization performance. For the underparameterized result in Equation (12),
both rehearsal size and task similarity have a stronger impact on generalization performance, i.e.,
the E[G(ŵT )] decreases with increasing task similarity and larger rehearsal size. In contrast, for
the overparameterized result in Equation (11), when p → ∞, we have λT → 1, causing both Term
G1 and gnoise approach zero, meaning that the influence of rehearsal size and task similarity is
significantly diminished. Figure 3(a) and Figure 3(c) show how the generalization error varies with
model parameters p when changing the noise σ or task similarity. As p increases, the effects of noise
and task dissimilarity diminish in the overparameterized regime, validating the earlier insights.

H ADDITIONAL EXPERIMENTAL RESULTS

Experimental details. For experiments on deep neural networks, we use a four-layer network with
two convolutional layers and two fully-connected layers. Relu is applied to the first three layers
and log-softmax to the output. The first convolutional layer is followed by a 2D maximum pooling
operation. Adaptation, memory, and foresight errors are computed using Equation (2)-(4), where
L(ŵ) is defined as Log-Likelihood Loss. We use stochastic gradient descent to learn each task.

Computational resources. All experiments were conducted on a GPU server running Ubuntu
20.04.6 LTS. The server was equipped with an Intel Core i9-14900k processor and utilized a single
NVIDIA GeForce RTX 4090 GPU. The implementation was built using the PyTorch 2.7.0.

Table 5: Explanation of Notations

Notation used in theorems Meaning of the notation
T Number of tasks
p Number of model parameters
n Number of training samples for the current task
s Number of training samples in the replay buffer
n̄ The total number of training samples
w∗

t Optimal parameters for the t-th task
σ2 Variance of the noise
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Figures 6 and 7 illustrate adaptation error and memory error when tasks are highly dissimilar (i.e.,
optimal parameters are orthogonal) and the noise level is large. In contrast, Figures 2 and 3 illustrate
scenarios with more similar tasks and lower noise levels, unless otherwise specified. When the tasks
are dissimilar, rehearsal mechanism has less effect on adaptation error under overparameterization,
while the negative impact on memory error becomes more pronounced. Moreover, with larger noise
level, increasing the number of model parameters helps further reduce adaptation error.
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Figure 6: The trend of average adaptation error w.r.t. the number of rehearsal samples or model parameters, with
T = 8, n = 1000 and ∥w∗

t ∥2 = 1 for all t ∈ T . Subfigure settings: (a): tasks are orthogonal; (b): σ = 1.
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Figure 7: The trend of average memory error w.r.t. the number of rehearsal samples or model parameters when
task-optimal parameters are orthogonal, with T = 8, n = 1000 and ∥w∗

t ∥2 = 1 for all t ∈ T .

Noted that our theoretical analysis shows that higher task similarity under overparameterization does
not necessarily reduce forgetting. While such effects are uncommon in deep neural networks, recent
empirical studies (Doan et al., 2021; Ramasesh et al., 2021) support this observation, showing that
maximum forgetting occurs at moderate task similarity. To investigate this, we conducted experiments
controlling the class overlap between the first and second tasks across four continual training tasks. In
Table 6, results reveal that forgetting error initially increases and then decreases with task similarity,
peaking at moderate similarity levels, consistent with empirical findings in (Evron et al., 2022).

Table 6: The forgetting error as task similarity increases under different task orderings on CIFAR-10

Task Sequences Order 1 Order 2 Order 3

Low Similarity 3.651 ± 0.074 4.099 ± 0.025 3.429 ± 0.029
Medium Similarity 4.274 ± 0.066 3.227 ± 0.033 3.805 ± 0.044
High Similarity 4.096 ± 0.052 2.917 ± 0.046 3.738 ± 0.010

Additionally, we investigated CNNs of varying depths to assess the impact of model dimensionality
under overparameterization, shown in Table 7. Both memory error and generalization error decrease
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as network depth increases. Within the same architecture, these errors gradually rise as the number
of learned classes grows, though the rate of increase slows over time. These findings confirm the
beneficial effect of greater network depth on rehearsal-based continual learning.

Table 7: Memory error and generalization error at different depths of CNN networks

Architecture T1 T2 T3 T4 T5

Conv.2 Memory Error / 1.58 ± 0.03 3.82 ± 0.05 4.44 ± 0.16 4.56 ± 0.07
Generalization 0.12 ± 0.004 1.05 ± 0.01 2.81 ± 0.04 3.56 ± 0.12 3.86 ± 0.05

Conv.3 Memory Error / 0.94 ± 0.03 2.66 ± 0.20 3.56 ± 0.18 3.40 ± 0.12
Generalization 0.12 ± 0.002 0.74 ± 0.02 2.05 ± 0.13 2.90 ± 0.13 2.94 ± 0.10

Conv.4 Memory Error / 0.67 ± 0.05 2.01 ± 0.03 3.34 ± 0.12 3.51 ± 0.15
Generalization 0.11 ± 0.002 0.67 ± 0.02 1.67 ± 0.03 2.79 ± 0.08 3.07 ± 0.13

Apart from class similarity, we also introduce semantic and distribution similarity metrics. Semantic
similarity partitions the dataset into tasks with distinct semantic classes, while distribution similarity
is adjusted through different levels of color perturbation. In Table 8, higher task similarity generally
improves memorability. Interestingly, under both semantic and distribution similarities, negative
memorization errors occur, reflecting positive knowledge transfer induced by high task similarity.

Table 8: Memory errors under different similarity metrics as the buffer size increases on CIFAR10

Similarity Metrics 2000 4000 6000 8000

Class Similarity
Low 1.06 ± 0.04 0.61 ± 0.02 0.53 ± 0.03 0.55 ± 0.02
Medium 0.92 ± 0.07 0.54 ± 0.03 0.51 ± 0.00 0.52 ± 0.02
High 0.79 ± 0.09 0.37 ± 0.02 0.34 ± 0.01 0.32 ± 0.01

Distribution Similarity
Low -0.05 ± 0.00 -0.04 ± 0.00 -0.03 ± 0.00 -0.02 ± 0.01
Medium -0.07 ± 0.01 -0.04 ± 0.01 -0.05 ± 0.01 -0.05 ± 0.02
High -0.05 ± 0.01 -0.05 ± 0.01 -0.05 ± 0.01 -0.05 ± 0.00

Semantic Similarity
Low 0.39 ± 0.02 0.32 ± 0.01 0.31 ± 0.02 0.32 ± 0.01
Medium 0.48 ± 0.04 0.27 ± 0.01 0.24 ± 0.02 0.25 ± 0.01
High -0.05 ± 0.00 -0.04 ± 0.01 -0.04 ± 0.00 -0.03 ± 0.01

I USE OF LARGE LANGUAGE MODELS

The Large language models (LLMs) were used only as general-purpose writing and editing assistants
to improve clarity and readability. The scientific ideas, results, and analyses were developed entirely
by the authors. The LLM did not contribute to research design or result interpretation.

J ETHICS STATEMENT

The authors have read and adhered to the code of ethics. This work does not involve human subjects
or sensitive data. All datasets used are publicly available and were processed in accordance with
standard ethical guidelines. The methods and experiments introduce no harmful applications, conflicts
of interest, and comply with all relevant legal and research standards throughout this research.

K REPRODUCIBILITY STATEMENT

Every effort has been made to ensure the reproducibility of the results. The model architectures,
experimental settings, and the proofs of the theoretical results are provided in the appendix, while
data preprocessing and evaluation protocols are documented in supplementary materials.

25


	Introduction
	Related Work
	Preliminaries
	Main Results for Rehearsal-based Continual Learning
	Empirical Validation on Deep Neural Networks
	Conclusion
	Support Lemmas
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Proposition 1

	Additional Related Works
	Oracle and Rehearsal-based Estimator
	Additional Theoretical Analysis
	Additional Experimental Results
	Use of Large Language Models
	Ethics Statement
	Reproducibility Statement

