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ABSTRACT

Large Language models (LLMs) suffer from forgetting of upstream data when
fine-tuned. Despite efforts on mitigating forgetting, few have investigated whether,
and how forgotten upstream examples are dependent on and associated with newly
learned tasks. Insights on such associations enable efficient and targeted mitigation
of forgetting. In this paper, we empirically analyze forgetting (measured in log-
perplexity increase) that occurs in N upstream examples of language modeling
or instruction-tuning after fine-tuning LLMs on one of M new tasks, visualized
in M × N matrices. We demonstrate that the matrices display simple low-rank
patterns, often well-approximated with multiplicative scalar effects of upstream
examples and newly learned tasks. We also examine fine-grained associations with
visualization and statistics. Leveraging the low-rank nature of the associations, we
predict forgetting of upstream examples when fine-tuning on unseen tasks with
matrix completion over the empirical associations. This enables fast identification
of most forgotten examples without expensive inference on the entire upstream
data. The approach, despite simplicity, outperforms prior approaches that learn
semantic relationships of learned tasks and upstream examples with LMs for
predicting forgetting. We demonstrate the practical utility of our analysis by
showing statistically significantly reduced forgetting as we upweight predicted
examples for replay at fine-tuning.

1 INTRODUCTION

There has been growing need for promptly updating LLMs to mitigate harmful behaviors, update
outdated knowledge, and expand the set of application domains. Although fine-tuning allows efficient
and incremental updates of models, it risks catastrophic forgetting (McCloskey & Cohen, 1989;
Goodfellow et al., 2014) of upstream knowledge learned in the pre-training or instruction-tuning
phase, causing unintended prediction changes over known information. This is problematic for
the stability of online deployed LLM systems, limiting the feasibility of continual fine-tuning in
practice (Raffel, 2023; Shi et al., 2024).

While extensive works have developed algorithms to mitigate forgetting (Wu et al., 2024), the
increasing scale of the model and data necessitates more efficient and targeted approaches. A key
aspect of the challenge is understanding when and what LLMs forget, prompting analysis into the
patterns of frequently forgotten examples (Toneva et al., 2019; Maini et al., 2022; Zhang & Wu, 2024),
and the impacts of models and hyperparameters on forgetting (Mirzadeh et al., 2022; Kalajdzievski,
2024; Que et al., 2024; Ibrahim et al., 2024). However, how the associations between learned tasks
and upstream examples inform forgetting remains under-explored. Understanding such associations
creates potential for targeted mitigation of forgetting over specific upstream examples when a new
task is learned. While theoretical and empirical study indicate associations between learned and
forgotten tasks in shallower neural networks (Lee et al., 2021; Goldfarb et al., 2024; Ramasesh
et al., 2021), the associations are under-explored for LLMs, or measured regarding upstream data of
language modeling or instruction-tuning.

In this paper, we empirically study the associations between learned tasks and forgotten upstream
examples of language modeling or instruction-tuning. We experiment with OLMo-1B, OLMo-7B,
OLMo-7B-Instruct (Groeneveld et al., 2024) and MPT-7B (Team, 2023) models where upstream data
is open-source. We analyze forgetting (in log perplexity increase) over N upstream examples, after
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Figure 1: The problem setup of analyzing the associations between learned tasks and forgotten
upstream examples as we fine-tune LLMs on one of unseen new tasks. Over total N upstream
examples and M unseen tasks, we measure and record forgetting in a M ×N matrix and analyze the
statistical properties of the associations.

fine-tuning the model on one of M unseen instruction-tuning tasks, and represent the results in a
M ×N matrix. Afterwards, we visualize the matrices and fit the observations with statistical models
to analyze the associations. Figure 1 illustrates the analysis setup.

Our findings suggest that the associations between learned tasks and forgotten examples are usually
simple and display a low-rank pattern, as simple regression models can decently fit of the associations.
We extract more fine-grained associations with visualization and statistics, showing cases where
specific upstream examples are forgotten when learning a new task. We demonstrate that forgetting
does not correlate with many predefined similarity metrics of learned tasks and upstream examples,
such as token overlap or gradient dot-products, making these metrics poor predictors of forgetting.
Inspired by the findings, we directly utilize statistics of forgetting to predict example forgetting
on unseen tasks by solving a matrix completion problem over the association matrices, analogical
to collaborative filtering (Sarwar et al., 2001) in recommender systems, achieving both efficiency
and interpretability. Our k-nearest neighbor (KNN) model outperforms prior approaches that learn
semantic relations of two examples with LMs (Jin & Ren, 2024) . We verify the benefit of prediction
by upweighting examples with higher predicted forgetting during replay as we fine-tune LLMs on
new instruction-tuning tasks, achieving statistically significant improvement in alleviating forgetting
compared to replaying random examples.

To summarize, the contributions of this paper are (1) an empirical analysis on how forgotten examples
are associated with learned tasks in representative 1B and 7B language models, and (2) a novel
approach of predicting example forgetting by solving a matrix completion problem over the empirical
associations, and (3) a practical and efficient algorithm to mitigate forgetting during LLM fine-tuning
by upweighting upstream examples for replay according to the predicted forgetting.

2 PROBLEM AND ANALYSIS SETUP

In this section, we start by formally defining the metrics of forgetting and set up the problem
formulation of analyzing the associations between learned tasks and forgotten examples. We then
introduce models and datasets used for collecting the statistics.

2.1 COLLECTING STATISTICS OF FORGETTING

Upstream examples and learned tasks. Large Language models (LLMs) are commonly pre-trained
with language modeling objectives over a massive collection for corpora, with some LLMs further
post-trained (instruction-tuned) to better follow human instructions. We use upstream data to refer to
language modeling or instruction tuning training data used at the pre-training or post-training phase
of LLMs. For upstream data of language modeling, we define each upstream example xj ∈ x1..N as
a chunk of document (e.g., a Wikipedia article) of a model-specific maximum number of tokens. For
instruction tuning, each xj ∈ x1..N corresponds to a pair of instructions and ground truth responses.

Measuring forgetting. We fine-tune an LLM (or an instruction-tuned LLM) on one unseen
instruction-tuning task Ti from a collection of tasks T1..M . This results in M separately fine-tuned
models f1..M . We then evaluate performance degradation on each upstream example xi ∈ x1..N . We
measure log perplexity as the performance metric as they are applicable to both language modeling
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and instruction tuning, and are known to correlate well with other dataset-specific metrics (Hoffmann
et al., 2022). For language modeling, log perplexity of an example xi is averaged over all tokens in the
example; for instruction tuning, we average log perplexity over the ground truth response tokens only.
We measure forgetting zij that occurs on an upstream example xj ∈ x1..N as increase (degradation)
in log perplexity after fine-tuning the LM on a new task Ti ∈ T1..M . We record forgetting zij in an
association matrix Z ∈ RM×N .

2.2 MODELS AND DATASETS

Our analysis requires access to upstream data of LLMs for measuring their log perplexity changes
occurred after fine-tuning. We experiment with OLMo-1B, OLMo-7B, OLMo-7B-Instruct, and
MPT-7B where upstream data of language modeling and instruction-tuning is open-source.

OLMo-1B and 7B. OLMo models are pre-trained on Dolma (Soldaini et al., 2024), a massive
collection of text covering diverse domains such as Wikipedia and news articles. We fine-tune LMs
over 66 tasks from FLAN-V2 (Longpre et al., 2023), 11 tasks from Tulu V2 (Ivison et al., 2023),
and 8 tasks from Dolly (Conover et al., 2023), obtaining 85 fine-tuned models. The collections
cover diverse instruction-tuning tasks such as reading comprehension, math reasoning, and safety
alignment. We then evaluate log perplexity increase on a 1% subset of Dolma-v1.6-Sample. Each
upstream example is a maximum 2,048-token document from Dolma, resulting in 141,816 examples.
For 7B models, We perform either full-parameter fine-tuning or LoRA adapter tuning (Hu et al.,
2022) only, noted as OLMo-7B (Full FT) or OLMo-7B (LoRA) respectively.

OLMo-7B-Instruct. OLMo-7B-Instruct models are instruction-tuned on Tulu V2. In our exper-
iments, we few-shot fine-tune OLMo-7B-Instruct over new task data from MMLU (Hendrycks
et al., 2021), BBH (Suzgun et al., 2022), TruthfulQA (Lin et al., 2022), and Dolly, and evaluate log
perplexity increase over a stratified sample of 10,718 examples from Tulu v2 as upstream examples.
The number of training examples in these datasets are smaller (on the scale of tens to hundreds of
examples), making the setup closer to LLM error editing (Yao et al., 2023; Zhang et al., 2024). We
perform either full-parameter fine-tuning or LoRA fine-tuning.

MPT-7B. MPT models are pre-trained on a diverse collection of corpora. We fine-tune the LM over
the same 85 instruction-tuning tasks as OLMo models and evaluate forgetting on Redpajama (Com-
puter, 2023), involved as a part of the pretraining corpora of MPT. We sample 10,000 maximum
2,048 token documents from Redpajama as upstream examples.

We use a learning rate of 2e−6 for full-parameter fine-tuning and 1e−4 for LoRA fine-tuning. We
include the other training details in Appendix A.

3 ASSOCIATIONS BETWEEN LEARNED TASKS AND FORGOTTEN EXAMPLES

In this section, we address the research questions regarding the associations between learned tasks
and forgotten upstream examples represented in the M × N association matrices Z. We start by
examining how complicated are the associations represented by the matrices Z (Sec. 3.1). We then
extract and analyze more fine-grained associations in Z (Sec. 3.2), and examine how the associations
correlate with similarity measures of learned tasks and upstream examples (Sec.3.3).

3.1 HOW COMPLICATED ARE THE ASSOCIATIONS?

In a hypothetical extreme case, the associations between the learned tasks and forgotten examples
can be very simple, e.g., where upstream examples are forgotten regardless of learned tasks; or it
can be highly complicated, e.g., where different new tasks cause very specific subsets of upstream
examples to be forgotten. Figure 1 (right) illustrates how such simple or complicated associations
may display in visualized matrices. To understand the actual associations, we start by visualizing the
association matrix Z collected in the setups described in Sec. 2.2, and perform quantitative analysis
as we examine whether simple regression models can fit Z with low error.

Analysis on the visualized association matrices. We visualize the association matrices Z in
Figure 2 for OLMo-1B, OLMo-7B, OLMo-7B-Instruct as we perform full-parameter fine-tuning.
The matrices of MPT and LoRA fine-tuning of OLMo-7B and OLMo-7B-Instruct are presented
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(a) OLMo-1B; forgetting over Dolma after full-parameter fine-tuning on FLAN and Tulu.
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(c) OLMo-7B-Instruct; forgetting over Tulu after full-parameter fine-tuning on unseen instruction-tuning tasks.

Figure 2: Visualized matrices of associations between learned tasks and forgotten examples. We plot
forgetting (log-perplexity increase) that occurs on an upstream example (in x-axis) after learning a
new task (in y-axis). Log-perplexity increase can be zero or negative, which implies no forgetting.

in Figure 7 in Appendix. We see Z generally displays a neat and simple pattern. We notice that
certain upstream are more prone to forgetting, while some are never forgotten (displayed as all-zero
columns). Nevertheless, in some cases, upstream examples that are never forgotten elsewhere are
forgotten by learning specific new tasks (e.g. wizardlm examples are almost only forgotten after
learning tasks from TruthfulQA in Figure 2(c)). It implies the association is a mixture of simple and
more complicated patterns.

Quantitative evaluation of simplicity of the associations. We quantitatively measure how well
the association matrices Z can be approximated with simple regression models with a small number
of learnable parameters. We consider (1) additive linear models, where zij = b + αi + βj + ϵ,
where αi and βj are learnable parameters associated with each new task or upstream example. (2)
multiplicative models (SVD with rank r=1), where zij = sαiβj + ϵ. Both models involve M +N
learnable parameters plus a bias term. We then measure R2 as the metrics of determining how well
the regression models fit the association matrices Z. Let fij be the fitted value, R2 is defined as
1−

∑
i,j(zij − fij)

2/
∑

i,j(zij − Z̄)2. R2 ranges between 0 and 1, indicating the portion of total
variance in Z that is explained by the regression models. We report R2 of additive and multiplicative
models under different setups in Figure 3 (a).

Multiplicative models fit the associations better. In 5 out of 6 setups presented in Figure 3 (a),
the multiplicative model achieves a better fit than additive models at the same number of trainable
parameters. An interpretation of the multiplicative models is that each upstream example is associated
with their tendency of being forgotten (βj); the learned tasks trivially determine how fast all upstream
examples are forgotten (with αi). This also creates cases where certain upstream are never forgotten
(βj ≈ 0), or learn certain tasks causing little forgetting on any upstream examples (αi ≈ 0).

A large portion of the variance in the association can be explained by the multiplicative model.
We notice the multiplicative models achieve R2 between 0.43 to 0.72 in different setups despite their
simplicity, suggesting generally simple associations between learned tasks and forgotten examples.
This finding is emphasized by the diversity of the learned tasks we considered (spanning from reading
comprehension, coding, to safety alignment) and the broad coverage of domains in upstream language
modeling and instruction-tuning data. Nevertheless, we also notice the R2 scores are relatively lower
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Figure 3: R2 of fitting the associations between learned tasks and forgotten examples with (a) simple
additive linear or multiplicative models, or (b) progressively more expressive models.

(0.4 to 0.5) on OLMo-7B and OLMo-7B-Instruct, implying more complicated associations than the
other setups (OLMo-1B, MPT-7B, and LoRA fine-tuning of OLMo-7B models), which elicits our
next research question.

3.2 WHAT ARE MORE FINE-GRAINED ASSOCIATIONS?

Figure 4: Patterns in associations captured by k-th
component in SVD of the assoication matrix Z, exempli-
fied with OLMo-7B-Instruct (full-parameter tuning, also
in Fig. 2(c)). The highlighted regions display patterns
that TruthfulQA tasks cause more forgetting (k = 2)
and MMLU causes more forgetting on certain tasks in
FLAN v2 and Open-Orca (k = 3).

We extract more fine-grained associations where
fine-tuning on a task causes a specific set of up-
stream examples to be forgotten. We perform
Singular Value Decomposition (SVD) over the
association matrices Z and progressively recon-
struct Z with up to r-th singular values and vec-
tors as Zr =

∑r
k=1 skαkβ

T
k . Zr is also the

optimal rank-r matrix that minimizes the Frobe-
nius norm ||Z −Zr||F and the R2 score accord-
ing to the property of SVD. The first component
Z1 corresponds to the multiplicative model we
examined in Sec. 3.1; the rest of components
Z2..M captures fine-grained associations in Z.

SVD reveals fine-grained associations. We
present R2 of fitting the assoication with Zr

with progressively larger rank r in Figure 3 (b).
We notice that for OLMo-7B and OLMo-7B-
Instruct (full-parameter fine-tuning), R2 quickly
increases to 0.69 and 0.78 with Z3 (reconstruc-
tion with up to the third component). We visual-
ize the matrices reconstructed from each component skαkβ

T
k in SVD of Z. Figure 4 provides an

example of patterns captured by the k-th component in OLMo-7B-Instruct. We demonstrate how the
visualization extracts patterns of forgetting that is conditional on the learned tasks. In Appendix D,
we further examine interpretable patterns in the decomposition of Z in OLMo-1B and 7B.

3.3 HOW DO THE SIMILARITY MEASURES INTERPRET THE ASSOCIATIONS?

We examine whether the associations between learned tasks and forgotten examples are interpretable
from the similarity between the learned tasks and upstream examples. We consider (1) heuristic
similarity measures, such as textual similarity, and (2) theoretically grounded approximations, such
as inner products of gradients.

Textual similarity. We measure textual cosine similarity ztext
ij between learned tasks and forgotten

examples with TF-IDF vectorized features over each pair of learned tasks Ti and upstream examples
xj . We also measure text representation similarity with final layer representations of OLMo-1B.

Inner products between projected gradients and model weight updates. The increase of the
log perplexity zij (also known as the cross-entropy loss) can be approximated with inner products
zg-w
ij = ⟨∇θf(xj), θTi

− θ0⟩ under first-order Taylor expansion (Lee et al., 2019; Doan et al., 2020),
where ∇θf(xj) is the gradient of the loss of xj at the initial model before fine-tuning, and θTi − θ0
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are the updates in the model weights after fine-tuning. Following Park et al. (2023); Xia et al. (2024),
we use a random projection matrix P ∼ N|θ|×d(0, 1) to reduce the dimension of the gradients or the
weight changes to save the cost of storing pre-computed statistics, which preserves the inner products
with high probability (Johnson & Lindenstrauss, 1984).

Inner products between projected gradients. We also measure the negative inner products of the
loss gradients between the upstream example xj and a learned task Ti, z

g-g
ij = −⟨∇θf(xj),∇θf(Ti)⟩,

as an approximation of forgetting (Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2019).

Table 1: Correlations between various measures of sim-
ilarity and the actual forgetting on upstream examples
after fine-tuning on a task.

Pearson ρ Spearman ρ

Textual (TF-IDF) -0.049 -0.035
Textual (Representation) 0.021 0.017
Gradient-Weight Diff. zg-w -0.003 -0.009
Gradient-Gradient Diff. zg-g 0.061 0.052

Forgetting correlates poorly with similarity
measures of learned tasks and upstream ex-
amples. We evaluate correlations between the
actual forgetting zij and the various similarity
measures {ztext

ij , zg-w
ij , zg-g

ij } on OLMo-1B and
summarize the results in Table 1. We notice
that none of the similarity measures correlates
with the actual forgetting, with a correlation
|ρ| < 0.1. An interpretation of the low cor-
relation is that the model weights deviate from
the initial weights after fine-tuning to a region
where first-order approximation of forgetting
does not hold. We further visualize the matrices of zg-w

ij and zg-g
ij in Fig. 8 in Appendix and provide a

side-by-side comparison with the matrices of forgetting Z. The visualization displays distinct patterns
among the three matrices. These results imply that although the association matrices Z display a
simple pattern, they are not well-interpreted with common similarity measures of learned tasks and
forgotten examples.

4 PREDICTING EXAMPLE FORGETTING WITH ASSOCIATION MATRIX
COMPLETION

We utilize our findings in Sec. 3 to predict example forgetting as the model learns a new task, a
problem also studied in prior works (Jin & Ren, 2024). Finding out the most forgotten examples
allows better spot of the behavior changes of the models, enabling efficient and targeted approaches
to mitigate forgetting, e.g., by replaying these examples (Aljundi et al., 2019a; Wang et al., 2024).
Although the ground truth forgetting can be directly obtained by running inference with the fine-tuned
model over the upstream data, this requires extensive computational resources. We restrict the
prediction methods to be computationally efficient.

Our analysis in Sec. 3 suggests that (1) the associations between learned tasks and forgotten examples
display simple statistical patterns, while (2) the associations correlate poorly with many similarity
metrics. Therefore, we hypothesize that leveraging the statistics of forgetting allows more effective
prediction of forgetting than leveraging the contents of the tasks and examples. Following this
intuition, we formulate prediction of example forgetting as a matrix completion problem over the
empirical associations Z, analogical to collaborative filtering in recommender systems (Sarwar
et al., 2001), where scalable approaches are studied extensively. We start by setting up the problem
formulation of predicting example forgetting, and evaluate the performance of prediction of different
approaches. We present reduced forgetting by utilizing the prediction outcomes during fine-tuning.

4.1 TRAINING AND EVALUATION OF FORGETTING PREDICTION

Our goal is to accurately predict forgetting zij over upstream examples x1..M when the model is
fine-tuned on an unseen task Tj with a prediction model g, without running expensive LLM inference
on all x1..M . To evaluate this, we create training and test splits by partitioning the set of fine-tuning
tasks (noted as Ttrain and Ttest) and the rows of the association matrices Z. We further control whether
the Ttrain and Ttest are from the same category of the tasks to test both in-domain and out-of-domain
generalization ability of the prediction models. For OLMo-1B and 7B experiments, we use FLAN
and the in-domain tasks and Tulu and Dolly as out-of-domain testing tasks. For OLMo-7B-Instruct
experiments, we use MMLU and BBH as in-domain tasks and use TruthfulQA and Dolly as out-
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Table 2: RMSE of predicting example forgetting over a held-out set of upstream examples after
fine-tuning LMs on unseen new tasks. We report averaged performance over different seed sets (S)
of upstream examples with known ground truth forgetting beforehand.

In-Domain Out-of-Domain

OLMo-1B OLMo-7B MPT-7B OLMo-7B-Inst. OLMo-1B OLMo-7B MPT OLMo-7B-Inst.

Full FT Full FT LoRA Full FT Full FT LoRA Full FT Full FT LoRA Full FT Full FT LoRA

Additive 2.81 7.40 3.50 13.33 15.57 6.12 2.81 5.83 7.01 10.02 38.90 21.22
SVD 2.80 7.14 3.48 10.41 13.74 5.89 2.82 5.76 6.80 7.03 40.47 20.23
KNN 2.79 7.33 3.45 12.80 14.30 5.54 2.84 5.83 6.83 7.71 38.77 20.82

Similarity 3.84 9.29 5.45 14.00 16.23 6.19 3.93 7.64 8.52 10.97 42.38 23.47

of-domain testing tasks. Details about the tasks included in the training, in-domain testing, and
out-of-domain testing sets are discussed in Tables 7 and 8 in Appendix B.

𝒯!"#$%

𝒯!&'( ?

Seed  𝑧𝒮

Upstream Examples

Learned Tasks

Figure 5: The training and testing
setup of predicting example forgetting
with association matrix completion.

To apply matrix completion for predicting forgetting, a few
entries zij should be known when a new fine-tuning task Ti ∈
Ttest (row i) is introduced. We therefore assume access to the
ground truth forgetting zij of a tiny random set S (|S| = 30) of
upstream examples for Ti ∈ Ttest, noted as seed forgetting zSi =
{zij |xj ∈ S}. Obtaining seed forgetting typically takes only
a few seconds by running inference with the model fine-tuned
on Ti over S; we then predict forgetting of the rest 10k− 100k
upstream examples. Figure 5 illustrates an example of the train-
test partition, seed forgetting, and the forgetting to be predicted.
We use Root Mean Squared Error (RMSE) over the Ttest as the
metrics of predicting example forgetting.

Matrix completion approaches. We run matrix completion
algorithms including additive linear, SVD, and k-nearest neigh-
bors (KNN) models. The additive linear and the SVD models
are introduced earlier in Sec. 3. Given the seed forgetting zSi of
a task Ti ∈ Ttest, KNN finds tasks from Ttrain that have similar patterns of forgetting over the seed
upstream examples S. KNN computes an average of forgetting of top-k similar tasks from Ttrain
weighted by their similarity as the prediction of forgetting caused by Ti ∈ Ttest on the upstream
examples x1..M .

Comparators of predicting forgetting. We compare with a prior approach by Jin & Ren (2024)
that leverages learned similarity between learned tasks and upstream examples by a trainable LM to
predict forgetting. This prior work, however, focuses on predicting forgetting while fixing one single
error in LM predictions; we extend the approach to predicting forgetting after fine-tuning models
over a task (i.e., a set of examples). The extended approach encodes upstream examples xj and the
training examples of the learned task x1..Ni

i ∈ Ti with a trainable LM encoder h(·) to obtain their
representations. The final prediction is made with a regression head over the inner products of two
representations ⟨h(xj),

1
Ni

∑
Ni

h(xi)⟩.

We leave the implementation details of matrix completion approaches and the learned similarity
approach in Appendix B.

4.2 MITIGATING FORGETTING WITH PREDICTED FORGETTING

Leveraging predicted forgetting for mitigating forgetting. We examine the practical utility of
predicting forgetting as we sparsely replay upstream examples during forgetting following Jin &
Ren (2024). Sparse replay of upstream examples is known as an effective and model-agnostic
way to mitigate forgetting (de Masson D’Autume et al., 2019; Ibrahim et al., 2024). We replay
one mini-batch of upstream examples every 32 training steps while fine-tuning on a new task. We
perform targeted mitigation of forgetting by prioritizing examples that are predicted to suffer more
from forgetting. This is achieved with weighted sampling of upstream examples xj proportional to
exp (ẑij/τ), where ẑij are the predicted forgetting and τ is a temperature hyperparameter set as 0.1.
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Figure 6: Log perplexity over upstream data as replay upstream examples selected by different
approaches after fine-tuning OLMo or OLMo-Instruct models over in-domain or out-of-domain test
tasks. The solid horizontal lines indicate the log perplexity before fine-tuning (i.e., no forgetting).
The dash lines show the log perplexity achieved by upweighting upstream examples according to
their ground truth forgetting. * and ** indicate statistical significance of improvement (p < 0.05 or
p < 0.005) compared to replaying random examples in paired t-tests over all fine-tuning tasks.

As we have discussed in Sec. 4.1, predicting forgetting with matrix completion requires seed forgetting
zS to be evaluated. We consider an offline and an online variant of the approach. The offline variant
performs a replay-free run of fine-tuning on the task Ti, after which the seed forgetting will be
evaluated. We then perform another run of fine-tuning while replaying examples with the predicted
forgetting. This creates computational overhead equivalent to one extra run of fine-tuning, but is still
efficient when the training set of fine-tuning is considerably smaller than the upstream data. The
online variant instead replays random examples for first 10% of fine-tuning steps, after which it
evaluates seed forgetting and determine examples to be replayed in the rest of 90% steps. Compared
to the offline variant, this mitigates the extra overhead of fine-tuning by trading off the prediction
accuracy of forgetting.

Baselines of mitigating forgetting. We compare with diverse strategies of selecting upstream
examples for sparse replay. We primarily examine whether weighted sampling with predicted
forgetting statistically significantly improves over random sampling of upstream examples (Random).
We also compare with Maximally Interfered Retrieval (MIR) (Aljundi et al., 2019a), a selection
strategy sharing the similar notion of importance that forgotten examples should be selected for
replay. The approach performs bi-level sampling by selecting the most forgotten examples from a
small random subset of upstream data (set as |S| = 30). In addition, we apply strategies that consider
different definitions of upstream example importance. We examine an approach based on perplexity
thresholds (PPL) (Marion et al., 2023), which samples upstream data of which the perplexity is around
the median of the distribution. For OLMo-1B, we also sample replayed examples proportional to the
gradient inner products (Grad-Prod) we evaluated in Sec. 3.3, in a similar vein to coreset selection
approaches that utilize gradient information (Park et al., 2023; Xia et al., 2024). As a reference,
we also experiment with upweighting upstream examples with ground truth forgetting zij , which,
however, can face computational efficiency issues in practice.

Metrics. We measure log-perplexity increase over a held-out subset of 10,000 examples from the
upstream data. This ensures none of the test examples are selected for replay by any of the example
selection strategies.

4.3 RESULTS OF PREDICTING AND MITIGATING FORGETTING

Results of predicting example forgetting. Table 2 summarizes the error of predicting example
forgetting over tasks from the in-domain and out-of-domain test splits. We see matrix completion
approaches consistently outperform the learned similarity model in the prior work. Among the three
matrix completion approaches, we notice that SVD models in general achieve the lowest prediction
error. Besides, KNN in general outperforms additive linear and learned similarity models while being
highly computationally efficient. Given this finding, we primarily leverage predictions given by the
KNN and SVD models to reduce forgetting during fine-tuning.

Mitigating forgetting with the predicted forgetting. We leverage the online or offline predicted
forgetting by the KNN and SVD models to reweight examples during replay following our procedure
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in Sec. 4.2. Figure 6 summarizes log perplexity after fine-tuning over the held-out (never replayed)
upstream data as we apply different upstream example selection approaches. We visualize the relative
comparisons of these approaches to no forgetting of upstream examples (log perplexity before fine-
tuning). We notice that example selection based on gradient inner products (Grad) or perplexity
threshold (PPL), mainly applied for identifying important training data for a task in prior works,
does not show improvement in mitigating forgetting compared to replaying random examples. This
implies that the notions of example importance in these works are different from how easily the
examples are forgotten. We also notice that MIR does not improve over random sampling in our
setup, likely because of the small size of the retrieval candidates relative to the upstream examples.
Upweighting examples with ground truth forgetting (GT) consistently reduces forgetting compared
to random examples. By utilizing predicted forgetting by offline SVD and KNN we statistically
significantly reduce forgetting compared to random examples in 4 out of 5 tested setups. The nuanced
differences between SVD and KNN in forgetting mitigation align with their in-domain prediction
accuracy of forgetting in Table 2, where SVD outperforms KNN by most on OLMo-7B models.
Utilizing online-predicted forgetting also statistically significantly improves over replaying random
examples in 3 of the setups. The gaps between online and offline variants are closer on 7B models
than 1B models.

Effects on downstream task performance measured with task-specific metrics. We evaluate
fine-tuned OLMo-7B or OLMo-7B-Instruct on unseen LLM leaderboard tasks and present the results
in Appendix B. We notice the performance stays stable or improves on some downstream tasks while
degrades on others, indicating forgetting. Although we observe slightly improved performance of
Offline-KNN to random or no replay on most forgotten tasks (e.g., Sciq on OLMo-7B and IFEval on
OLMo-7B-Instruct), we do not see statistical significance. We leave effective algorithms to mitigate
downstream task forgetting with predicted forgetting as future work.

Table 3: Computational cost of replay-based ap-
proaches as a summation of fine-tuning costs FT (·),
inference costs over upstream examples EV (·), and ma-
trix completion costs MC.

Method Cost

Random FT (Y )
Ground Truth 2FT (Y ) + EV (N)
Offline SVD, KNN 2FT (Y ) + EV (S) +MC
Online SVD, KNN FT (Y ) + EV (S) +MC

MIR 2FT (Y ) + Y · EV (S)
PPL,GradProd FT (Y )

Computational Efficiency. Table 3 summa-
rizes the computation cost of the approaches as
a function FT (·) of fine-tuning steps, a func-
tion EV (·) of upstream examples whose per-
plexity is evaluated, and the cost of matrix com-
pletion (MC) that is much smaller than LLM
inference or training. We note the total number
of upstream examples as N , the size of seed
examples as S, and the number of fine-tuning
steps as Y . As S is much smaller than M , the
majority of computational costs arise from fine-
tuning FT (Y ) and EV (N). Replaying with
ground truth forgetting is the most costly, as it
introduces an additional run of fine-tuning (after
which forgetting will be evaluated) and infer-
ence over potentially very large-scale upstream data. As offline prediction of forgetting only mitigates
the need for inference, the approach saves computations when the cost of fine-tuning FT (Y ) is
notably smaller than EV (N), i.e., over small fine-tuning datasets and massive upstream data. Online
prediction of forgetting is always efficient, requiring only one run of fine-tuning and without the need
to evaluate over massive upstream data.

5 RELATED WORKS

Factors that affect forgetting. In this paper, we primarily studied how the associations between
learned and forgotten examples inform forgetting. Prior works have studied various factors that affect
forgetting of the models, such as (1) type and size of the LM (Mehta et al., 2021; Scialom et al., 2022;
Kalajdzievski, 2024; Mirzadeh et al., 2022) (2) trainable parts of the model (e.g., LoRA, soft prompts,
or full-model tuning) (Biderman et al., 2024a; Razdaibiedina et al., 2023) (3) hyperparameters such
as learning rate (Ibrahim et al., 2024; Winata et al., 2023), dropout (Goodfellow et al., 2014), number
of training steps (Biderman et al., 2024b; Kleiman et al., 2023) (4) optimizer (Lesort et al., 2023) and
training algorithms (e.g., various continual learning algorithms) (Shi et al., 2024; Wu et al., 2024), (5)
the upstream examples or the knowledge themselves (Toneva et al., 2019; Zhang & Wu, 2024). Future
works can study how various factors affect the associations between learned tasks and forgotten
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examples. We consider empirical and theoretical study on the effect of task similarity on forgetting
to be most relevant to ours. Ostapenko et al. (2022) empirically study relationships between task
similarity and forgetting in foundation models over a sequence of newly learned tasks; our work
instead focuses on forgetting of upstream data of LLMs. Theoretical study by Doan et al. (2020);
Ding et al. (2024); Evron et al. (2022) dissects effects of the learned tasks on forgetting in linear
models or around model initialization. We believe research on interpretations of forgetting (Tao et al.,
2023; Zhao et al., 2023; Kotha et al., 2024) is complementary to ours and can potentially explain in
the future why the associations in Z are often simple, and in which circumstances the associations
become more complicated.

Data selection and data attribution. Related to our work, data attribution studies faithful algorithms
to find training examples that account for a prediction (Koh & Liang, 2017; Ilyas et al., 2022) from a
pool of training examples. Park et al. (2023); Xia et al. (2024); Li et al. (2024); Liu et al. (2024) study
the problem of selecting a subset of training data that maximizes performance on a given domain
or task at a fixed budget for LLMs. Feldman & Zhang (2020); Tirumala et al. (2022); Biderman
et al. (2024b); Swayamdipta et al. (2020) identify memorized, important, or forgetful training data.
However, the notion of data importance in these works is different from how likely the upstream
examples will be forgotten during fine-tuning. Furthermore, a systematical study on how such
importance is dependent on newly learned tasks is still absent. Prior works represented by Aljundi
et al. (2019a); Wang et al. (2024); Aljundi et al. (2019b) study selection strategies of examples for
replay-based continual learning algorithms.

Predicting model behaviors. A number of works show LLMs can display a hybrid pattern of
unpredictable to highly predictable behaviors (Ganguli et al., 2022; Wei et al., 2022). Ye et al.
(2023); Xia et al. (2020); Schram et al. (2023) study prediction of task performance across datasets
and training setups. We perform prediction at the example level which is more fine-grained and
under-explored.

6 CONCLUSIONS

In this paper, we empirically analyzed the associations between learned and forgotten examples in
LM fine-tuning. We showed the association displays a low rank pattern across different setups. We
showed the example associations alone offer useful information to predict example forgetting when
fine-tuning LMs on new tasks. We demonstrated the practical utility of our analysis by showing
reduced forgetting as we reweight examples for replay with predicted forgetting. Future works can
extend the study to a continual learning setup where new domains or tasks are sequentially learned
while predicting forgetting of upstream examples online.

Limitations. In our research process, we tried to control confounding factors such as model size,
learning rate, or the number of training steps. However, we did not systematically study how the
associations between learned tasks and forgotten upstream examples depend on these factors. For
example, although we presented results of 1B and 7B models from the same family (OLMo) and
observe differences in their association statistics (such as R2 scores in Sec. 3.1), it is unclear how the
associations will appear in smaller or larger models. Besides, our empirical findings raise questions
about interpretability of the associations, i.e., why certain examples are more prone to forgetting
while learning a new task, and whether there exist more human-interpretable patterns behind the
associations. Finally, we limited our experiments to fine-tuning on a single task at a time. Predicting
and mitigating forgetting in sequentially learned tasks is left as future work.

REPRODUCIBILITY STATEMENT

All models and datasets used in our experiments are open-source with permissive licenses (see
Appendix A for details). We will release code and statistics of forgetting collected in this study.
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(c) OLMo-7B-Instruct (LoRA); forgetting over Tulu after full-parameter fine-tuning on unseen instruction-tuning
tasks.

Figure 7: Additional visualized matrices of associations between learned tasks and forgotten examples.
We plot forgetting (log-perplexity increase) that occurs on an upstream example (in x-axis) after
learning a new task (in y-axis). Log-perplexity increase can be zero or negative, indicating no
forgetting.

A DATASET, MODEL, AND LM TRAINING DETAILS

Models. We use OLMo-7B1 of the version pretrained on Dolma v1.6; and OLMo-7B-Instruct2,
which is tuned on Tulu v2 and other human feedback datasets.

Learned new tasks and their categorization. We summarize the list and the categorization of newly
learned tasks in Tables 7 and 8 in our experiments. We also include the number of training examples
and forgetting caused by each task averaged over all upstream examples.

Training and evaluation details. For full-parameter fine-tuning of OLMo-1B and 7B, we train the
model for 1,000 steps with an effective batch size of 8 and a linearly decaying learning rate of 2e−6.
For LoRA fine-tuning, we set the rank of adapters as 64 in all our experiments and use a rate of
10−4. We train the models for 625 steps with an effective batch size of 8. For OLMo-7B-Instruct and
MMLU, BBH, TruthfulQA, considering the small size of the training sets, we train the models only
for 37 steps with an effective batch size of 8. We use HuggingFace Transformers library for training
and VLLM library for efficient inference. The statistics of forgetting are obtained in a single run.

Dataset licenses. MMLU and BBH are released under MIT license. Truthful QA, Dolma, Redpajama,
OLMo models, and MPT models are released under Apache 2.0 license. Tulu V2 is released under
ODC-By license. Dolly is released under CC BY-SA 3.0 license.

B DETAILS OF FORGETTING PREDICTION AND REPLAY

Data Splits for Predicting Example Forgetting. We mark the tasks used as in-domain test splits for
predicting example forgetting (Sec. 4) in Tables 7 and 8. The train-test split for the in-domain tasks is
randomly generated.

1https://huggingface.co/allenai/OLMo-7B
2https://huggingface.co/allenai/OLMo-7B-Instruct
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Figure 8: A side-by-side comparison between the matrices of forgetting, inner products of gradients
and weight differences (zg-w

ij ), and the negative inner products of gradients (zg-g
ij ) we examines in

Sec. 3.3.

Training and evaluation details. We use Surprise Library 1.1.33 for additive linear, SVD, and
KNN prediction models. For SVD, we set the dimension of the learnable features as 5. We train the
regression models for 100 epochs over the association matrices. The other hyperparameters are left
as default.

For in-domain test splits, we randomly sample 30 upstream examples and assume the ground truth
forgetting is known for these examples. This is required for predicting forgetting on the rest of
upstream examples by additive linear, SVD, and KNN methods. We repeat the experiment 10 times
and report the mean and standard deviation in Table 2.

We used OLMo-1B models as the trainable example encoders in the implementation of the prediction
method by Jin & Ren (2024) that relies on inner products of trained example representations. At
inference, given an upstream example, we compute the averaged dot-product with all examples in the
learned task. We note that at inference time the approach does not require ground truth forgetting of a
small number of examples. For a fair comparison with other matrix completion methods, we replace
the prediction of the approach with ground truth forgetting on these examples.

Replaying upstream examples in fine-tuning. We sparsely replay 1 mini-batch of 8 upstream
examples every 32 steps of model update while fine-tuning on new tasks. Given predicted or
ground truth forgetting zi,1..J on upstream examples x1..J when learning a new task Ti, we sample
upstream examples to replay from a categorical distribution where p(xj) ∝ exp(zi,j/τ), where τ is
a temperature hyperparameter set as 0.1. The hyperparameter τ is tuned on a single validation task
by using ground truth forgetting Z.
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Figure 9: Reconstruction of Z in OLMo-7B experiments with k-th singular value and vectors. Higher
values of k capture finer-grained details in Z.

Table 4: Downstream task performance of OLMo-7B models before and after fine-tuning on dolly
tasks.

ARC-Easy ARC-Challenge Boolq Hellaswag Openbookqa Piqa Sciq Winogrande

Metrics Acc-norm Acc-norm Acc Acc-norm Acc-norm Acc-norm Acc-norm Acc

Before FT 68.77 40.36 72.41 75.65 42.20 79.54 88.60 66.29

No Replay 67.34 42.28 74.82 76.89 44.65 80.05 84.09 67.89
Random 67.48 42.43 74.33 77.26 44.88 79.97 84.77 67.33
KNN-Offline 67.49 42.24 74.33 77.07 44.30 80.09 84.91 67.54
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Table 5: Downstream task performance of OLMo-7B-Instruct models before and after fine-tuning on
dolly tasks.

MMLU-Pro BBH IF-Eval MUSR GPQA

Metrics 5-shot Acc 3-shot Acc-norm 0-shot Inst 0-shot Acc-norm 0-shot Acc-norm

Before FT 18.2 20.27 39.93 20.65 14.34

No Replay 17.51 20.26 17.72 22.01 14.37
Random 17.45 20.02 18.19 21.90 14.41
KNN-Offline 17.45 20.19 18.28 21.90 14.42

Table 6: Semantic meaning of k-th component in the SVD of the association matrix Z. We identify
top relevant learned tasks and upstream example domains to k-th component in the SVD of the
association matrix Z.

OLMo-1B OLMo-7B

Learned Tasks More Forgotten Domain Learned Tasks More Forgotten Domain

flan/paws_wiki flan/squad_v2
k = 1 flan/glue_mrpc None flan/fix_punct None

flan/story_cloze tulu/open_orca

flan/opinion_abstracts_idebate flan/mnli_matched
k = 2 dolly/general_qa StackOverflow flan/mnli_mismatched None

flan/story_cloze flan/snli

flan/story_cloze flan/squad_v2
k = 3 flan/fix_punct None flan/quac None

flan/true_case flan/fix_punct

math_dataset flan/rte
k = 4 dolly/general_qa None flan/opinion_abstracts_idebate None

flan/opinion_abstracts_idebate flan/story_cloze

C DOWNSTREAM TASK EVALUATION WITH TASK-SPECIFIC METRICS

We evaluate downstream task performance of LMs before and after fine-tuning on 8 tasks from Dolly
with LM-Evaluation-Harness framework (Gao et al., 2024). For OLMo-7B models, we evaluate
on the same set of downstream tasks in OLMo technical report (Groeneveld et al., 2024). For
OLMo-7B-Instruct models, we evaluate on Open LLM Leaderboard tasks4. For fine-tuned models,
we compare no replay, replaying random examples, and replaying with forgetting predicted by offline
KNN. Tables 4 and 5 summarize the results.

We notice that fine-tuning OLMo-7B on Dolly improves downstream performance on most of the
downstream tasks. This aligns well with the purpose of fine-tuning a LM that is not instruction-tuned.
Nevertheless, we notice performance degradation on two of the tasks, namely ARC-Easy and Sciq,
which indicates forgetting. Although offline KNN achieves higher accuracy scores on these two tasks
compared to no-replay (67.48 to 67.34, 84.91 to 84.09), we do not find the improvement statistically
significant. For OLMo-7B-Instruct, fine-tuning on Dolly only improves performance on MUSR. The
models clearly suffer from forgetting on the other tasks such as IFEval. Offline KNN achieves higher
scores than random or no replay on IFEval (18.28 compared to 18.19 and 17.72), but we could not
conclude about the significance of the improvement.

To summarize, we do not see clear performance improvement in downstream task performance
(evaluated with task-specific metrics) by replaying random or chosen examples. We conjecture that
replay-based approaches are not sufficient to mitigate forgetting on their own, and can be combined
with other approaches such as careful learning rate scheduling or parameter regularization. We leave
more effective algorithms to mitigate downstream task forgetting with predicted forgetting as future
works.
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D TOWARDS INTERPRETING FINE-GRAINED ASSOCIATIONS

We visualize progressive reconstruction with k-th singular value and singular vectors for OLMo
experiments in Figure 9. The visualization exemplifies complicated associations that is not captured
by the simple multiplicative model (k = 1). For example, on OLMo-7B (LoRA) and when k = 2,
we see a single row and column with significantly larger forgetting than the others.

Semantic meanings of k-th component in the SVD of the association matrix Z. We perform
further analysis into the patterns captured by the k-th singular value and singular vectors by identifying
the most relevant learned tasks and upstream example domain to the component. For each k and
its corresponding component Ẑk = skαkβ

T
k , we extract top 3 rows with the highest mean (i.e.,

top 3 relevant learned tasks Ti). We also extract top 50 columns with highest mean (i.e. top 50
relevant upstream examples) and the domain where these upstream examples are drawn from. For
OLMo models, the domains are one of C4, common-crawl, Gutenberg books, Reddit, Science,
StackOverFlow, and Wikipedia. We compare the distribution of domains in the top 50 upstream
examples, and perform a z-test to determine upstream example domain that is significantly more
forgotten compared to a prior domain distribution of top 50 most forgotten upstream examples
(colunms with highest mean in Z). The results are summarized in Table 6.

We highlight some notable patterns in Table 6. (1) Some component Zk highlights forgetting patterns
of upstream examples from certain domains. On OLMo-1B, the second component (k = 2) highlights
patterns where StackOverFlow examples are forgotten. (2) Some component Zk highlight forgetting
when learning specific types of tasks. For example, the second component (k = 2) on OLMo-
7B highlights forgetting patterns after learning NLI tasks (mnli_matched, mnli_mismatched, snli).
This also exemplifies how learning similar tasks cause a similar set of upstream examples to be
more forgotten. We believe a more comprehensive interpretation of the patterns of forgetting is an
interesting and challenging future work.

3https://github.com/NicolasHug/Surprise/tree/v1.1.3
4https://huggingface.co/docs/leaderboards/open_llm_leaderboard/about
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Task Category Task Task Category Task

FLAN/Classification aeslc FLAN/QA arc_challenge*
ag_news_subset arc_easy*
imdb_reviews bool_q
sentiment140 coqa*
sst2 cosmos_qa
trec* math_dataset*
yelp_polarity_reviews* natural_questions*

FLAN/Linguistic cola openbookqa*
definite_pronoun_resolution* piqa
fix_punct* trivia_qa*
true_case FLAN/Summarization cnn_dailymail
word_segment gigaword
wsc* multi_news

FLAN/Generation common_gen samsum
copa wiki_lingua_english_en
dart FLAN/Translation para_crawl_enes
e2e_nlg* wmt14_enfr
hellaswag wmt16_translate_csen
opinion_abstracts_idebate* wmt16_translate_deen
opinion_abstracts_rotten_tomatoes wmt16_translate_fien
story_cloze wmt16_translate_roen
web_nlg_en wmt16_translate_ruen*

FLAN/MRC drop wmt16_translate_tren*
multirc Tulu open_orca
quac oasst1
record lima
squad_v1 code_alpaca
squad_v2 gpt4_alpaca

FLAN/NLI anli_r1 cot
anli_r2 science
anli_r3 flan_v2
cb* sharegpt
mnli_matched hard_coded
mnli_mismatched wizardlm
qnli* Dolly brainstorming
rte closed_qa
snli information_extraction
wnli classification

FLAN/Paraphrase glue_mrpc open_qa
glue_qqp* general_qa
paws_wiki creative_writing
stsb summarization
wic*

Table 7: The list of learned tasks in our experiments on OLMo-1B, OLMo-7B and MPT-7B. * notes
for tasks used as the in-domain test split in forgetting prediction experiments in Sec. 4.
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Task Category Task Task Category Task

MMLU abstract_algebra BBH boolean_expressions*
anatomy causal_judgement
astronomy date_understanding
business_ethics disambiguation_qa
clinical_knowledge dyck_languages*
college_biology* formal_fallacies*
college_chemistry geometric_shapes
college_computer_science hyperbaton*
college_mathematics logical_deduction_five_objects*
college_medicine* logical_deduction_seven_objects
college_physics logical_deduction_three_objects
computer_security movie_recommendation*
conceptual_physics* multistep_arithmetic_two
econometrics navigate
electrical_engineering object_counting*
elementary_mathematics penguins_in_a_table
formal_logic reasoning_about_colored_objects
global_facts* ruin_names
high_school_biology* salient_translation_error_detection
high_school_chemistry snarks
high_school_computer_science sports_understanding
high_school_european_history* temporal_sequences
high_school_geography tracking_shuffled_objects_five_objects
high_school_government_and_politics tracking_shuffled_objects_seven_objects
high_school_macroeconomics tracking_shuffled_objects_three_objects
high_school_mathematics web_of_lies
high_school_microeconomics word_sorting
high_school_physics* TruthfulQA Nutrition
high_school_psychology Stereotypes
high_school_statistics Confusion
high_school_us_history* Psychology
high_school_world_history Language
human_aging* Sociology
human_sexuality* Finance
international_law Indexical Error
jurisprudence Science
logical_fallacies* Misconceptions
machine_learning Economics
management* Education
marketing* Proverbs
medical_genetics Conspiracies
miscellaneous Religion
moral_disputes Statistics
moral_scenarios* Misquotations
nutrition Subjective
philosophy* Law
prehistory History
professional_accounting Fiction
professional_law Mandela Effect
professional_medicine* Politics
professional_psychology Misinformation
public_relations* Logical Falsehood
security_studies Distraction
sociology* Weather
us_foreign_policy* Myths and Fairytales
virology Superstitions
world_religions Advertising

Paranormal
Health

Table 8: The list of learned tasks in our experiments on OLMo-7B-Instruct. * notes for tasks used as
the in-domain test split in forgetting prediction experiments in Sec. 4.
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