
CSPG: Crossing Sparse Proximity Graphs for
Approximate Nearest Neighbor Search

Ming Yang, Yuzheng Cai, Weiguo Zheng
School of Data Science, Fudan University, China

{ yangm24, yuzhengcai21 } @m.fudan.edu.cn zhengweiguo@fudan.edu.cn

Abstract
The state-of-the-art approximate nearest neighbor search (ANNS) algorithm builds
a large proximity graph on the dataset and performs a greedy beam search, which
may bring many unnecessary explorations. We develop a novel framework, namely
corssing sparse proximity graph (CSPG), based on random partitioning of the
dataset. It produces a smaller sparse proximity graph for each partition and routing
vectors that bind all the partitions. An efficient two-staged approach is designed
for exploring CSPG, with fast approaching and cross-partition expansion. We
theoretically prove that CSPG can accelerate the existing graph-based ANNS
algorithms by reducing unnecessary explorations. In addition, we conduct extensive
experiments on benchmark datasets. The experimental results confirm that the
existing graph-based methods can be significantly outperformed by incorporating
CSPG, achieving 1.5x to 2x speedups of QPS in almost all recalls.

1 Introduction
Nearest Neighbor Search (NNS) aims to find some vectors in a set of high-dimensional vectors with
the smallest distance to a query vector. It is becoming increasingly popular in various application
domains [1–7], such as information retrieval [8, 9], pattern recognition [10, 11], recommendation
systems [12, 13], and retrieval augmented generation (RAG) [14, 15]. However, it is costly to find the
exact nearest neighbors in practice, thus recent studies have focused on Approximate Nearest Neighbor
Search (ANNS), which targets efficiency while mildly relaxing accuracy constraints [16, 17].

Existing ANNS algorithms can be divided into four categories [16], including tree-based approaches
[1, 18–22], hashing-based approaches [23–27], quantization-based approaches [28–31], and graph-
based approaches [6, 32–35]. Among these approaches, graph-based ANNS algorithms stand out
with the high answer quality and low latency [16], by constructing a Proximity Graph (shorted as
PG) on the given vector dataset. As shown in Figure 1, each vector is represented by a node in the
graph, and each node is connected to its nearby neighbors.

For the greedy beam search over the proximity graph, it is observed that the distance computation
dominates the overall time cost [36, 37]. Since at each step, all neighbors of the current node
are pushed into the candidate set according to the computed distance. The number of distance
computations can be calculated as σ multiplied by the number of explored nodes [6], where σ is the
average degree of the graph. Intuitively, searching within a smaller graph requires less exploration
and thus reduces the overall cost, which has been proved for a particular type of proximity graph, i.e.,
Monotonic Search Network (MSNET) [6, 38]. However, for most proximity graphs, it is very likely
to degrade the answer quality when the graph is smaller.

In this paper, we present a novel and effective framework, namely Crossing Sparse Proximity Graph
(CSPG), enabling efficient search while not sacrificing answer quality. The basic idea is to reduce the
number of explored vectors by searching in the much smaller graphs. Specifically, we randomly divide
the whole dataset into several partitions, and for each partition, we construct a proximity graph that is
smaller than the proximity graph built on the whole dataset. These partitions share a set of routing

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

(a) An example dataset of vectors (b) A Relative Neighborhood Graph (RNG) [39].

Figure 1: An example dataset of vectors and its proximity graph.

vectors (Section 3.1) that allow the greedy search to travel across different partitions dynamically.
The query process involves two stages, i.e., fast approaching and cross-partition expansion. The first
stage conducts the greedy search within one partition, using a small candidate set to quickly approach
the nearby regions of the query vector. Then, the second stage continues the greedy search with a
larger candidate set, allowing it to travel across different partitions for more precise results.

We theoretically prove that the expected number of explored vectors when searching across these
small graphs is the same as searching on the small proximity graph for one of the partitions. Hence, by
random partitioning with randomly sampled routing vectors, we can reduce the number of explored
vectors compared with the traditional proximity graph built on the whole dataset, thus reducing the
number of distance computations. By integrating CSPG with various graph-based ANNS algorithms,
extensive experiments show that it significantly speeds up the query performance on benchmark
datasets, and the detailed empirical results also align with our theoretical analysis.

Contributions. In summary, we make the following contributions in this paper.
• To improve the query performance by reducing the number of explored vectors, we propose a

general framework, namely Crossing Sparse Proximity Graph (CSPG), through random partitioning
and random routing vectors. This framework can integrate with and enhance the existing graph-
based ANNS indexes.

• We develop an efficient two-staged search paradigm over the CSPG, including fast approaching
and cross-partition expansion.

• We theoretically prove that CSPG can benefit the existing graph-based ANNS algorithms by
introducing Approximate Monotonic Search Network (AMSNET) that considers the distance
backtracking in the search path.

• Extensive experiments confirm that by integrating the CSPG, the existing graph-based algorithms
can be speeded up significantly under the same answer quality.

2 Background
2.1 Problem definition
Let D = {v1, v2, ..., vn} denote the dataset of n vectors, where vi represents a vector in the d-
dimensional Euclidean space Rd. The L2 distance between any two vectors p ∈ Rd and q ∈ Rd is
denoted as δ(p, q). The task of k-nearest neighbor search (k-NNS) can be defined as follows.
Definition 1 (k-Nearest Neighbor Search, shorted as k-NNS). Given a dataset D and a query vector
q, k-NNS returns a subset of k vectors, denoted by T ⊆ D, such that for any t ∈ T and v ∈ D \ T ,
we have δ(v, q) ≥ δ(t, q).
Definition 2 (k-Approximate Nearest Neighbor Search, shorted as k-ANNS). Given a dataset D
and a query vector q, k-ANNS returns a subset of k vectors, denoted by S ⊆ D, such that |S ∩ T |
is as large as possible, where T is the answer set to k-NNS w.r.t. the query q. For simplicity, k is
omitted when k = 1.
In other words, the task of k-ANNS returns k approximate closest vectors of the query vector, not
guaranteeing all the exact top-k nearest vectors, to improve query efficiency.

2.2 Graph-based ANNS algorithms
As discussed above, graph-based ANNS algorithms conduct a best-first greedy beam search on the
proximity graphs to approach the closest nodes for a query vector. Their built proximity graphs can
be classified into four categories [16, 40] as follows. Please refer to Appendix A for more details.

2

Delaunay Graph (DG) [41, 42]. It ensures that for any edge, no other vectors will be situated within
the hypersphere defined by an edge connecting two vectors, where the hypersphere is centered at the
midpoint of the edge and the length of the edge is the diameter.
Relative Neighborhood Graph (RNG) [39]. It guarantees that for any edge between p and q, no
other vectors will reside within the lune(p, q) = {u ∈ Rd | δ(u, p) ≤ δ(p, q) ∧ δ(u, q) ≤ δ(p, q)}.
RNG imposes stricter restrictions on its edges, thus decreasing the average degree [43].
K-Nearest Neighbor Graph (KNNG) [44]. In KNNG, neighbors of each vector v ∈ D are its top-k
nearest neighbors in D. NN-Descent [44] proposes a method for constructing KNNG.
Minimum Spanning Tree (MST) Graph [45]. The MST utilizes distances between vectors as edge
weights. Then, it performs hierarchical clustering on the dataset multiple times randomly, adding
some edges to the edge set. MST can establish global connectivity with a minimal number of edges.

2.3 Monotonic Search Network
Monotonic Search Network provides theoretical results to understand the costs of greedy search.
Definition 3 (Monotonic Path, shorted as MP [38]). Given a proximity graph built on dataset D, for
two nodes p and u in the graph, a path from p to u is denoted as p ⇝ u = {v1, v2, ..., vt}, where
p = v1 and u = vt. It is a monotonic path iff it satisfies that δ(v1, u) > δ(v2, u) > ... > δ(vt−1, u).
Definition 4 (Monotonic Search Network, shorted as MSNET [38]). Given a dataset D consisting
of n vectors in the space Rd, a proximity graph built on D is called a monotonic search network iff
there exists at least one monotonic path from p to u for any two nodes p and u in D.
When running a greedy beam search in an MSNET, we will continuously approach the query vector
since the distance strictly decreases at each step, i.e., distance backtracking can be avoided [38].
Let C denote the smallest convex hull that can cover a set of n d-dimensional vectors D, and let
R represent the maximum distance between two vectors in D. Denote the volume of C as VC and
let VB(·, R) represent the volume of a sphere with radius R. For an MSNET built on D, when
there exists a constant κ s.t. κVC ≥ VB(·, R), which implies that the distribution of vectors should
be relatively uniform (never in some extremely special shape), the search length expectation of an
MSNET (denoted as EM) is O

(
n

1
d log n

1
d /∆r

)
as proved in [6], where

∆r = min
v1,v2,v3∈D

{|δ (v1, v2)− δ (v1, v3)| , |δ (v1, v2)− δ (v2, v3)| , |δ (v1, v3)− δ (v2, v3)|} .

In other words, ∆r is the minimum distance difference for any non-isosceles triangle on D. As n
increases, ∆r decreases and approaches a constant value when n is large [6].

3 Crossing Sparse Proximity Graphs
3.1 CSPG: Crossing Sparse Proximity Graphs
An effective approach to the k-ANNS problem is expected to identify more vectors that are closest to
the query with a minimal cost. A straightforward approach is to relax edge selection by allowing
a vector to connect with both nearby and relatively distant neighbors. To guarantee efficiency, the
node degree cannot be increased too much, making it challenging to maintain both nearby and distant
neighbors. To address the problem, we propose a method to maximize the number of vectors searched
near the query without increasing average node degrees. The basic idea is randomly partitioning the
dataset D into multiple groups that share some common vectors, called routing vectors. Then a sparse
proximity graph (shorted SPG) is built for each group of vectors. Since these SPGs are sparser than
that built for the whole dataset D, allowing larger steps to approach the query quickly. Moreover, the
routing vectors across multiple SPGs enable efficient fine-grained search. For ease of presentation,
let PG(D) denote the proximity graph built on the dataset D.
Definition 5 (Random Partition). Given a vector dataset D, the group of subsets P1,P2, · · · ,Pm

constitute a random partition of D such that (1) P1∪P2∪· · ·∪Pm = D, (2) P1∩P2∩· · ·∩Pm = C,
and (3) (Pi\C) ∩ (Pi\C) = ∅ for i ̸= j, where Pi is randomly sampled from D and C is the common
vectors shared by all the subsets (also called routing vectors).
Definition 6 (Crossing Sparse Proximity Graphs, shorted as CSPG). Given a vector dataset
D, its CSPG(D) consists of multiple proximity graphs G1,G2, · · · ,Gm for D’s random partition
P1,P2, · · · ,Pm, respectively, i.e., Gi = PG(Pi).
Note that Pi is sparser than D as it is randomly sampled from D. Thus, the average edge length
(i.e., the distance between two vectors) of the resultant proximity graph Gi is larger than that of the

3

Figure 2: An example of CSPG index, where the proximity graphs are built using relative neighbor-
hood graph G1 and G2 (with very similar degree to Figure 1b.

proximity graph for D. Generally, any existing graph-based index can be used to build the proximity
graphs in CSPG. Since the partitions share routing vectors, the corresponding proximity graphs are
interrelated through these routing vectors. Hence, the routing vectors serve to navigate the greedy
search across different proximity graphs. Let vij denote that vector vj belongs to graph Gi.

Example 1. For the dataset D = {v1, v2, ..., v9} in Figure 1, we build the CSPG in Fig-
ure 2, by randomly sampling 2 routing vectors C = {v4, v7}. And there are two partitions
P1 = {v1, v3, v4, v5, v7, v9} and P2 = {v2, v4, v6, v7, v8}, where routing vectors are highlighted in
red, with the green graph representing G1 and the blue graph representing G2.

3.2 Novelty of CSPG
Comparison with Inverted File Index (IVF). Generally, IVF uses clustering algorithms (e.g., k-
means) to divide the dataset into buckets. During the search, it selects some buckets with the closest
centroids w.r.t. the query, after which vectors in such buckets will be scanned for final results. The
buckets of IVF index disrupt the distribution of vectors in the original dataset. In contrast, CSPG
preserves the original distribution by random partition, which diffuses all vectors, and the routing
vectors are used for connecting all proximity graphs from different partitions.
Comparison with PG(D). The CSPG index is built based on random partitions, with the help
of routing vectors for connectivity. When the number of partitions m = 1, CSPG falls into the
special case that builds a PG index over all vectors, which is consistent with most state-of-the-art
graph-based ANNS algorithms. Some existing PG index [46, 47] also utilized similar ideas of using
data partition and redundancy. Existing studies [46, 47] uses k-means or other methods to divide the
dataset, and obtain some redundant vectors. Then, such algorithms also construct proximity graphs in
each partition separately, which are eventually merged into a large PG as the final proximity graph
covering all vectors. Such existing techniques are developed to deal with a huge amount of vectors,
making it feasible to handle large datasets. In contrast, the CSPG methods aim at building several
proximity graphs to speed up query answering.
Comparison with HNSW. (1) From the perspective of redundancy, the lower level of HNSW contains
all vectors from the upper level. But in CSPG, there is a common overlap between partitions, and
the remaining points of different partitions are distinct. (2) From the perspective of structure, HNSW
is a hierarchical structure. In contrast, CSPG serves as a framework rather than a specific structure
(hierarchical or flat), allowing to enhance query performance across a broad range of mainstream
graph indices. HNSW transitions from top level to bottom level unidirectionally, while CSPG builds
horizontally with smaller, sparser proximity graphs. (3) From the perspective of searching, HNSW
can only unidirectionally search each level from top to bottom, and the final results are obtained from
the bottom-level graph. But CSPG can traverse back and forth between different sparse proximity
graphs, collecting final results from various partitions. The performance of HNSW is closely tied
to the quality of the bottom-level graph, while CSPG generates more diverse and robust answers by
leveraging cross-partition traversal and result collection.

3.3 CSPG index construction and updates
Algorithm 2 presents the process for CSPG index construction. It first samples the routing vectors
RV from dataset D, then the other vectors D\RV are randomly assigned to m partitions. Finally, for
each partition Pi, we construct the proximity graph by applying the graph-based ANNS algorithm.

Since CSPG is a framework based on mainstream proximity graphs, current updating methods of the
underlying graph index are applicable. Moreover, the random partitioning makes it highly flexible for
vector insertion and deletion. Details are presented in Algorithms 3 and 4 of Appendix B.

4

Algorithm 1 Search on CSPG index
Require: CSPG index G = {G1,G2, ...,Gm}, query vector q, parameters ef1 and ef2
Ensure: k nearest neighbors of q
1: L ← { selected entry vector p ∈ P1}, visited← {p} ▷ First stage starts
2: while |L| ≠ 0 do
3: (r, h)← the closest vector w.r.t. q in L
4: for all unvisited neighbor u of r in G1 do
5: L ← L ∪ {(u, 1)}, visited← visited ∪ {u}
6: if |L| > ef1 then remove the farthest vectors w.r.t. q to keep |L| = ef1

7: p← the closest vector w.r.t. q in visited ▷ Second stage starts
8: L ← {(p, 1)},visited← {p}
9: while |L| ̸= 0 do

10: (r, h)← the closest vector w.r.t. q in L
11: for all unvisited neighbor u of r in Gh do
12: L ← L ∪ {(u, h)}, visited← visited ∪ {u}
13: if u is a routing vector then L ← L ∪ {(u, i) | i ∈ {1, 2, ...,m} ∧ i ̸= h}
14: if |L| > ef2 then remove the farthest vectors w.r.t. q to keep |L| = ef2

15: return top-k closest vectors w.r.t. q in visited

Time and space complexity. For dataset D with n vectors, the time and space cost of building
index are O(T (n)) and O(S(n)), respectively. As each partition has n(1−λ)

m + λn vectors, CSPG

consumes O
(
m · T

(
n(1−λ)

m + λn
))

time and O
(
m · S

(
n(1−λ)

m + λn
))

space, which is at the
same order of magnitude comparing with the original costs for most graph-based ANNS algorithms.

4 Two-stage search on CSPG
The search process of CSPG is divided into two stages, i.e., fast approaching and precise search.
Specifically, the first stage aims to quickly approach the query vector by using only one proximity
graph, while the second stage will carefully search around by considering all partitions for the
final closest vectors. Traditional beam search on a single proximity graph maintains a fixed-size
candidate set. In contrast, CSPG uses different sizes ef1 and ef2 for the two stages respectively,
where ef1 < ef2. Algorithm 1 outlines the procedure of searching on the CSPG index.

4.1 The First Stage: exploring single partition for fast approaching
In the first stage, the algorithm quickly approaches the query nearby with a shorter search length and
fewer neighbor expansions. As shown in Algorithm 1, it conducts a greedy beam search discussed in
Section 1 on the graph G1.
Example 2. Given a dataset D and a query vector ⊗, We build CSPG and conduct the first stage
search (ef1 = 1) to approach the nearby region of the query within just 1 step (Figure 2).
Each proximity graph in CSPG(D) is smaller and sparser than the proximity graph for the whole
dataset D (denoted as PG(D)). This sparsity allows the first stage search to use larger steps and
fewer moves to approximate the query. On the other hand, CSPG uses a smaller candidate size ef1,
eliminating some expansions that do not contribute to the final results.

4.2 The Second Stage: cross-partition expansion for precise search
After the greedy search in the first stage, the candidate set contains the closest vector delivered in the
first stage from the first partition P1 w.r.t. the query vector. As shown in Algorithm 1, after resetting
the visited set, it continues the greedy beam search with a size ef2 for the candidate set L. In the
second stage, the significant difference from the first stage lies in line 13. Specifically, if the expanded
neighbor u is a routing vector, all its instances in all partitions will be pushed into L. This approach
allows the search process to dynamically traverse different proximity graphs, maximizing the search
space to include as many potential closest vectors as possible.
Example 3. This example continues the search from Example 2. For comparison, let us consider the
traditional greedy beam search within PG(D). As shown in Figure 1b, it takes 6 steps to approach
the nearest neighbor v9 (with a fixed candidate set size ef = 3). For CSPG, it first conducts the first
stage, then switches the candidate set size from ef1 = 1 to ef2 = 3 and enters the second stage for a

5

more precise search in the query nearby as shown in Figure 2 (the two stages have 4 steps in total).
In the second stage, CSPG expands the neighbors of v13 , N (v13) = {v14}, in G1. Since v4 is a routing
vector, both v24 and v14 are added to L. Next, the algorithm expands v24 , updating L to {v17 , v27 , v14} as
v7 is also a routing vector. Then, by expanding v17 , we reach the closest node v19 in G1.
Due to the sparsity of each proximity graph in CSPG, the search on CSPG(D) approaches the query
results faster than PG(D). Moreover, some expansions may be removed. For example, with a
candidate size of ef2 = 2, the candidate set in Step 2 would be {v17 , v27}, removing v14 due to the
limited size, ignoring the unnecessary expansion to v15 .

In PG(D), redundant vectors are mainly used to merge graphs. In contrast, CSPG leverages the
distribution of routing vectors to ensure that the expansion of one graph aids in reducing expansions
in other graphs. This means a position reached by one graph can be accessed by other graphs without
additional expansion. For example, moving from v24 to v27 in G2 allows continuing the search from v17
to v19 in G1. The search across multiple graphs in the second stage appears as though it is conducted
within a single proximity graph. The total number of steps to traverse the query nearby is 3, fewer than
the 4 steps in PG(D) while maintaining the same precision. In practice, with appropriate partitioning,
CSPG outperforms traditional PG algorithms, as discussed in Section 6.

5 Analysis of search efficiency
For most graph-based ANNS algorithms, calculating the distance between two vectors usually
dominates the overall search time. In this section, we focus on the number of distance computations
during query processing, denoted by C. We will show that the expected cost E[C] for the proposed
CSPG method is lower than the traditional PG under certain constraints.

5.1 The expected number of distance computations
Following the setting of previous work [6], assume that the start vector p and query vector q are
randomly selected from the d-dimensional vector dataset. On the proximity graph G built on the
dataset, the greedy search sequence is denoted by p ⇝ q = {v1, v2, ..., vt}, where v1 = p, vt = q.
Denote |p ⇝ q| as its length. The search sequence length of an MSNET equals its search path
length, as the search consistently approaches the query without backtracking. Recall that when
exploring each node, all its unvisited neighbors are pushed into the candidate set, and their distance
to q is computed. By assuming that the average degree of G is σ, the expected number of distance
computation is E[C] = σE [|p⇝ q|].

5.2 Expected search sequence length on Monotonic Search Network
As introduced in Section 2.3, for a Monotonic Search Network (MSNET), the expected length of
the search sequence EM [|p⇝ u|] = O

(
n

1
d log n

1
d /∆r

)
[6]. In CSPG schema, assume that there

are m partitions (m ≪ n), and the proximity graph Gi on each partition Pi is a MSNET. Since we
randomly select routing vectors RV and then randomly divide the other vectors into m partitions, the
distribution of vectors is the same in each partition. Then, we have the following theorem.
Theorem 1. Given a start vector s ∈ RV and a query vector q ∈ RV , by performing greedy beam
search from s on each MSNET Gi independently, we can obtain m monotonic paths si ⇝ qi, where
si, qi ∈ Gi. It holds that EGi [|si ⇝ qi|] = EGj [|sj ⇝ qj |] for 1 ≤ i, j ≤ m.
Proof. Since the distribution of vectors in each graph Gi are the same, the assumptions for deriving
the expected path length in [6] remain unchanged, thus they have the same expected path length.

By starting the search on a random entry vector p in proximity graph G1, the routing vectors help
us to travel across different partitions Pi in the second stage. Thus, the search sequence of CSPG is
composed of several sub-sequences from different graphs Gi. The following theorem reveals that the
expected search sequence length of CSPG is the same as the case of searching on the PG(G1).
Theorem 2. Denote ECSPG[|p⇝ q|] as the expected length of search sequence in CSPG. Denote
EGi [|p⇝ q|] as the expected sequence length when searching only on the graph Gi. It holds that

ECSPG[|p⇝ q|] = EGi [|p⇝ q|].
Please refer to Appendix C for the detailed proofs. Based on Theorem 2, when the proximity graphs
in CSPG are MSNET, the expected search path length is

ECSPG [|p⇝ q|] = EGi [|p⇝ q|] = O

((
λn+

n(1− λ)

m

) 1
d

log

(
λn+

n(1− λ)

m

) 1
d

/∆r

)
.

6

5.3 Approximate Monotonic Search Network
Most proximity graphs in practice are the approximation of MSNET, where the search path may have
detours due to the lack of some necessary monotonic paths, resulting in distance backtracking. Given
a query vector q, we say that vector u conquers q iff ∃v ∈ N (u), δ(v, q) < δ(u, q), denoted by u ≻ q
(u ̸= q). For a certain vector u in the search path p⇝ q, distance backtracking is avoided iff u ≻ q,
since when exploring u, we can visit v to strictly decrease the distance w.r.t. q.

Intuitively, for the proximity graph G, when the degree of every vector u is large enough, u ≻ q is
likely to be met for any query vector q ∈ G, which help to avoid distance backtracking. However,
since the average degree is usually limited in practical proximity graphs, there is a probability that
vector u conquers a random query vector q ∈ G, formally defined as ρ(u) =

∑
q∈G I(u≻q)

n ,. where
I(u ≻ q) = 1 iff u ≻ q. Next, we introduce the Approximate Monotonic Search Network (AMSNET),
which reduces distance backtracking by maximizing ρ(u) of each vector u.
Definition 7 (Approximate Monotonic Search Network, shorted as AMSNET). Given a dataset D of
n vectors, a proximity graph G built on D is called an approximate monotonic search network iff for
every vector u ∈ D, its neighbor set N (u) satisfies that |N (u)| ≤ σ while maximizing ρ(u).
Theorem 3. For datasets with the same distribution, as the number of vectors n decreases, ρ(u) is
monotonically non-decreasing.
Please refer to Appendix C for detailed proofs. Since AMSNET allows distance backtracking,
there exists a detour factor w > 1 for the expected search sequence length. Specifically, when
the underlying proximity graphs of CSPG are AMSNETs, the expected search sequence length

is ÊCSPG [|p⇝ q|] = O
(
w
(
λn+ n(1−λ)

m

) 1
d
log
(
λn+ n(1−λ)

m

) 1
d
/∆r

)
. Moreover, according to

Theorem 3, for every vector u, as dataset size n decreases, ρ(u) is non-decreasing. In other words,
the probability of distance backtracking at every vector is non-increasing as n decreases, thus w is
non-increasing as n decreases. We confirm the monotonicity of w in Section 6.4.

5.4 Speedup analysis for CSPG
For the dataset D of n vectors, we have the following assumptions as discussed above: (1) ∃κ, κVC ≥
VB (·, R). (2) m > 1, λ < 1, and the vector distribution of each partition Pi is the same as D. (3)
The proximity graphs built in PG and CSPG are AMSNETs with a degree upper bound of σ.

When the proximity graph is AMSNET, the expected path length for PG method is ÊPG[|p ⇝
q|] = O(n

1
d log n

1
d /∆rPG), where ∆rPG is the minimum distance difference for any non-isosceles

triangle on D. Similarly, ∆rCSPG is defined for each partition Pi in CSPG. And the detour factor w
for PG and CSPG are denoted as wPG and wCSPG, respectively. Thus, considering the expected
number of distance computations, the speedup ratio of CSPG over PG is

Speedup =
σ × ÊPG[|p⇝ q|]

σ × ÊCSPG[|p⇝ q|]
=

(
wPG

wCSPG
× ∆rCSPG

∆rPG

)
× n

1
d logn

1
d(

λn+ n(1−λ)
m

) 1
d
log
(
λn+ n(1−λ)

m

) 1
d

Define α = wPG

wCSPG × ∆rCSPG

∆rPG . Since each proximity graph in CSPG are smaller than that in PG,
and Section 5.3 shows that w is non-increasing as n decreases, wPG ≥ wCSPG. Also, since ∆r
decreases as n increases [6], we have ∆rCSPG ≥ ∆rPG. Thus, it holds that α ≥ 1. Next, we
consider β = n

1
d logn

1
d(

λn+
n(1−λ)

m

) 1
d log

(
λn+

n(1−λ)
m

) 1
d

. In CSPG, each partition has less than n vectors when

m > 1 and λ < 1, i.e., λn+ n(1−λ)
m < n and β > 1. Thus, Speedup = αβ > 1, which ensures that

CSPG always outperforms PG when using AMSNET. As the dataset size n increases, β is decreasing

and we have lim
n→∞

Speedup = α
(

m
(m−1)λ+1

) 1
d

. Moreover, when n → ∞ and d is increasing, β is
also decreasing and limd→∞ Speedup = α.

6 Evaluation
6.1 Experimental setup

As summarized in Table 3, four benchmark datasets are used in our experiments, which are the most
commonly used public datasets come from Ann-benchmarks [48].

7

Table 1: Comparison for index construction cost, in which DS is the data size (MB), IS is the graph
index size (MB), and IT is the index construction time (s)

index SIFT1M GIST1M DEEP1M SIFT10M
DS IS IT DS IS IT DS IS IT DS IS IT

PG
HNSW

488

253 33

3,662

254 237

366

251 28

1,221

2,596 416
Vamana 126 97 120 388 128 90 1296 1,122
HCNNG 44 85 53 390 54 79 633 742

CSPG
HNSW 389 50 380 382 387 48 3,894 627
Vamana 195 145 186 608 192 136 1,938 1,627
HCNNG 77 131 81 465 86 119 934 1,128

0.80 0.85 0.90 0.95 1.00
Recall@10

0.0

0.5

1.0

1.5

QP
S

1e5 SIFT1M

0.80 0.85 0.90 0.95 1.00
Recall@10

2

4

6
1e3 GIST1M

0.80 0.85 0.90 0.95 1.00
Recall@10

0.0

0.5

1.0

1.5

1e5 DEEP1M

0.80 0.85 0.90 0.95 1.00
Recall@10

2.5

5.0

7.5

1e4 SIFT10M
HNSW CSPG-HNSW Vamana CSPG-Vamana HCNNG CSPG-HCNNG

Figure 3: QPS v.s. recall curves for comparing query performance

Three well-known graph-based ANNS algorithms HNSW [2], Vamana [46], and HCNNG [45] are
selected as baselines, which achieved competitive performance on previous studies [16, 49]. Also,
we integrate each of them in the proposed CSPG method, resulting in three methods CSPG-HNSW,
CSPG-Vamana, and CSPG-HCNNG. During the query phase, we set k = 10 and the quality of query
results is evaluated by recall@10. The detailed index construction and query processing parameters
are listed in Appendix D. The efficiency of an algorithm is measured by Queries Per Second (QPS),
which is defined as the number of queries processed per second. And the answer quality is evaluated
by recall@k = |S∩T |

|T | , which measures the overlap between the retrieved results S and the ground
truth T .All experiments are conducted on a machine with Intel Xeon Gold 6136 CPU @3.00GHz
and 128GB memory. We use 24 threads for both index construction and query processing. All our
source codes are available at https://github.com/PUITAR/CSPG.

6.2 Evaluating query performance

Figure 3 presents the QPS-recall curve of the CSPG method built upon each graph-based ANNS
algorithm, comparing it with the corresponding traditional PG implementation. For all these datasets
and graph-based algorithms, CSPG method consistently improves the overall query performance.
Specifically, CSPG helps the Vamana and HCNNG indices to achieve at least 1.5x speedup at a
fixed recall of 0.9 on all the datasets. Such acceleration is due to the significantly reduced number
of distance computations, as illustrated by Figure 10. The practical superior query performance of
CSPG also aligns with the theoretical analysis in Section 5.

6.3 Evaluating index construction

By default, we use a sampling ratio of λ = 0.5 to divide the data into m = 2 partitions. Thus, the
total number of vectors in the two proximity graphs is (1−λ)n+λnm = 1.5n. As shown in Table 1,
for each graph-based ANNS algorithm, the index construction time and index size of CSPG is roughly
1.5x of the traditional PG version. Though CSPG has a larger index size, it is still affordable since
the memory consumption of the vector raw data is much larger than the indices.

6.4 Impact of factors and parameters

In this section, we investigate how potential factors and parameters affect the query performance.

Varying the dataset size. Take dataset SIFT10M as an example, we randomly sample 0.1, 0.2, 0.5, 2,
and 5 million vectors and build the graph-based ANNS indices and the corresponding CSPG method,
using the default parameter settings. As shown in Figure 4, CSPG always achieves better performance
compared with original algorithms over all the sampled datasets. For each graph-based ANNS
algorithm, though CSPG always helps to improve the performance, such improvement becomes less
obvious. It aligns with our theoretical results in Section 5.4, which shows that as n increases, the
speedup ratio decreases but converges to a value larger than 1.

8

https://github.com/PUITAR/CSPG

0.80 0.85 0.90 0.95 1.00
Recall@10

0

2

4

6
QP

S

1e5 SIFT0.1M

0.80 0.85 0.90 0.95 1.00
Recall@10

0

1

2

3
1e5 SIFT0.2M

0.80 0.85 0.90 0.95 1.00
Recall@10

0

1

2

1e5 SIFT0.5M

0.80 0.85 0.90 0.95 1.00
Recall@10

0.0

0.5

1.0

1.5

1e5 SIFT2M

0.80 0.85 0.90 0.95 1.00
Recall@10

0.0

0.5

1.0

1e5 SIFT5M
HNSW CSPG-HNSW Vamana CSPG-Vamana HCNNG CSPG-HCNNG

Figure 4: Query performance when varying the dataset size n

0.80 0.85 0.90 0.95 1.00
Recall@10

0.5

1.0

1.5

QP
S

(S
IF

T1
M

)

1e5 CSPG-HNSW

0.80 0.85 0.90 0.95 1.00
Recall@10

0.5

1.0

1.5
1e5 CSPG-Vamana

0.80 0.85 0.90 0.95 1.00
Recall@10

0.25

0.50

0.75

1.00

1e5 CSPG-HCNNG
m=1 m=2 m=4 m=8 m=16

Figure 5: Query performance when varying the number of partitions m

0.80 0.85 0.90 0.95 1.00
Recall@10

0.5

1.0

QP
S

(S
IF

T1
M

)

1e5 CSPG-HNSW

0.80 0.85 0.90 0.95 1.00
Recall@10

0.5

1.0

1.5
1e5 CSPG-Vamana

0.80 0.85 0.90 0.95 1.00
Recall@10

0.25

0.50

0.75

1.00

1e5 CSPG-HCNNG
=0.1 =0.2 =0.3 =0.4 =0.5

Figure 6: Query performance when varying the sampling ratio λ

Varying the number of partitions. Since the number of partitions m affects the CSPG index quality,
we conduct experiments for evaluating the query performance with m = 1, 2, 4, 8, 16 partitions, in
which m = 1 indicates the original graph-based ANNS algorithm without partition. Note that the
other parameters are the same as the default settings. Intuitively, larger m results in fewer vectors
in each partition, and CSPG seems to achieve better performance. However, large m may decrease
the similarity of vector distribution among different partitions, which contradicts the assumptions of
the same vector distribution discussed in Section 5.4. Therefore, for different datasets with various
distributions, choosing an appropriate parameter m is crucial. As shown in Figure 5, for SIFT1M
dataset, dividing all vectors into 2 or 4 partition results in better QPS-recall curves. Figure 11 shows
that the optimal value of m for the other datasets ranges from 2 to 8.

Varying the sampling ratio. When constructing the CSPG schema, the sampling ratio λ is used
to randomly sample λn routing vectors before dataset partition. By using the default values of all
the other parameters, Figure 6 reveals that for SIFT1M dataset, larger λ tends to improve the query
performance of CSPG. And it also holds for other datasets, as shown in Figure 12. This is because
more routing vectors help to navigate the search traveling across different partitions efficiently. Also,
more routing vectors result in more shared vectors in each partition, increasing the similarity of
vector distribution among different partitions, which is more aligned with the assumptions of the
same vector distribution discussed in Section 5.4.

Varying the candidate set sizes. CSPG has two parameters ef1 and ef2 for searching, limiting
the size of the candidate set in the two stages, respectively. As shown in Figure 7 and Figure 13,
we try different ef1 = 1, 2, 4, 8, 16 and obtain 5 QPS v.s. recall curves. The marks in each curve
are obtained by varying the value of ef2 uniformly picked from [10, 300]. In most cases, ef1 = 1
provides the best query performance, which aligns with our goal of the first stage fast approaching.

Statistics for detour factor. We randomly sample 0.1, 0.2, 0.5, 2, and 5 million vectors from
SIFT10M dataset. By using CSPG with the default parameter settings, at different Recall@k, we
obtain the empirical detour factor w = length of search sequence

length of search sequence−number of distance backtracking averaged for all

9

0.80 0.85 0.90 0.95 1.00
Recall@10

0.5

1.0
QP

S
(S

IF
T1

M
)

1e5 CSPG-HNSW

0.80 0.85 0.90 0.95 1.00
Recall@10

0.5

1.0

1.5

1e5 CSPG-Vamana

0.80 0.85 0.90 0.95 1.00
Recall@10

0.25

0.50

0.75

1.00

1.25
1e5 CSPG-HCNNG

ef1=1 ef1=2 ef1=4 ef1=8 ef1=16

Figure 7: Query performance when varying the candidate set size ef1 in the first stage

0.7 0.8 0.9 1.0
Recall@10

1.6

1.8

w

CSPG-HNSW

0.7 0.8 0.9 1.0
Recall@10

1.6

1.7

1.8

1.9

CSPG-Vamana

0.7 0.8 0.9 1.0
Recall@10

1.7

1.8

1.9

CSPG-HCNNG
SIFT0.1M SIFT0.2M SIFT0.5M SIFT2M SIFT5M

Figure 8: Detour factor when varying the dataset size n

search paths. As shown in Figure 8, larger n results in larger w at a fixed Recall@k, which aligns
with our discussion in Section 5.3 that w is non-increasing as n decreases.

6.5 Hyperparameter grid search and evaluation with ANN-Benchmarks
To show the Pareto frontiers with the optimal hyperparameters, we conduct a grid search experiment
to identify the most effective hyperparameter combinations for each baseline on SIFT1M dataset. As
presented in Appendix D, we summarise the parameter selection sets for different indices in Table 4,
and the results of the grid search experiment are illustrated in Figure 14.

Next, we conduct a more comprehensive
evaluation using the ANN-Benchmarks
[48], which is a widely used bench-
marking environment. For each algo-
rithm, we choose the optimal param-
eters from the grid search experiment
with the highest QPS when Recall@10
= 0.9 ± 5e−3 on SIFT1M dataset. As
shown in Figure 9, enhanced with the
proposed CSPG framework, representa-
tive algorithms such as HCNNG, HNSW,
Vamana and NSG can achieve better per-
formance on SIFT1M dataset.

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall@10

103

104

QP
S

(S
IF

T1
M

)

HCNNG
CSPG-HCNNG
Vamana
CSPG-Vamana
HNSW
CSPG-HNSW
NSG
CSPG-NSG
faiss-ivfpqfs
faiss-ivf

Figure 9: QPS v.s. Recall@10 curve on SIFT1M with
the optimal parameters in ANN-Benchmarks

7 Conclusion

We proposed a novel graph-based indexing schema named CSPG for Approximate Nearest Neighbor
Search (ANNS), which is compatible with the current leading graph-based approaches in high-recall
scenarios. Furthermore, we propose a novel search algorithm for the CSPG schema, which uses a
two-stage strategy and a cross-partition expansion to reduce meaningless expansion during the graph
search and make the process more focused on the parts related to the answer. Next, we analyze the
expectation of CSPG’s search amount, establish a speedup model, and prove that CSPG can always
have an advantage. Finally, we investigate the advantages of CSPG through experiments and carry
out a more detailed evaluation of the key factors affecting the performance of CSPG.

10

Acknowledgments and Disclosure of Funding

This work was substantially supported Key Projects of the National Natural Science Foundation of
China (Grant No. U23A20496) and Shanghai Science and Technology Innovation Action Plan (Grant
No. 21511100401). Weiguo Zheng is the corresponding author.

References
[1] Akhil Arora, Sakshi Sinha, Piyush Kumar, and Arnab Bhattacharya. Hd-index: Pushing the

scalability-accuracy boundary for approximate knn search in high-dimensional spaces. arXiv
preprint arXiv:1804.06829, 2018.

[2] Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest neighbor search
using hierarchical navigable small world graphs. IEEE transactions on pattern analysis and
machine intelligence, 42(4):824–836, 2018.

[3] Kazuo Aoyama, Kazumi Saito, Hiroshi Sawada, and Naonori Ueda. Fast approximate similarity
search based on degree-reduced neighborhood graphs. In Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 1055–1063, 2011.

[4] Minjia Zhang and Yuxiong He. Zoom: Ssd-based vector search for optimizing accuracy, latency
and memory. arXiv preprint arXiv:1809.04067, 2018.

[5] Rentong Guo, Xiaofan Luan, Long Xiang, Xiao Yan, Xiaomeng Yi, Jigao Luo, Qianya Cheng,
Weizhi Xu, Jiarui Luo, Frank Liu, et al. Manu: a cloud native vector database management
system. Proceedings of the VLDB Endowment, 15(12):3548–3561, 2022.

[6] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. Fast approximate nearest neighbor search
with the navigating spreading-out graph. arXiv preprint arXiv:1707.00143, 2017.

[7] Wenhui Zhou, Chunfeng Yuan, Rong Gu, and Yihua Huang. Large scale nearest neighbors
search based on neighborhood graph. In 2013 International Conference on Advanced Cloud
and Big Data, pages 181–186. IEEE, 2013.

[8] Chun Jiang Zhu, Tan Zhu, Haining Li, Jinbo Bi, and Minghu Song. Accelerating large-scale
molecular similarity search through exploiting high performance computing. In 2019 IEEE
International Conference on Bioinformatics and Biomedicine (BIBM), pages 330–333. IEEE,
2019.

[9] Myron Flickner, Harpreet Sawhney, Wayne Niblack, Jonathan Ashley, Qian Huang, Byron Dom,
Monika Gorkani, Jim Hafner, Denis Lee, Dragutin Petkovic, et al. Query by image and video
content: The qbic system. computer, 28(9):23–32, 1995.

[10] Atsutake Kosuge and Takashi Oshima. An object-pose estimation acceleration technique for
picking robot applications by using graph-reusing k-nn search. In 2019 First International
Conference on Graph Computing (GC), pages 68–74. IEEE, 2019.

[11] Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE transactions on
information theory, 13(1):21–27, 1967.

[12] Yitong Meng, Xinyan Dai, Xiao Yan, James Cheng, Weiwen Liu, Jun Guo, Benben Liao,
and Guangyong Chen. Pmd: An optimal transportation-based user distance for recommender
systems. In Advances in Information Retrieval: 42nd European Conference on IR Research,
ECIR 2020, Lisbon, Portugal, April 14–17, 2020, Proceedings, Part II 42, pages 272–280.
Springer, 2020.

[13] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based collaborative
filtering recommendation algorithms. In Proceedings of the 10th international conference on
World Wide Web, pages 285–295, 2001.

[14] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

11

[15] Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun,
and Haofen Wang. Retrieval-augmented generation for large language models: A survey. arXiv
preprint arXiv:2312.10997, 2023.

[16] Mengzhao Wang, Xiaoliang Xu, Qiang Yue, and Yuxiang Wang. A comprehensive survey and
experimental comparison of graph-based approximate nearest neighbor search. arXiv preprint
arXiv:2101.12631, 2021.

[17] Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Mingjie Li, Wenjie Zhang, and Xuemin Lin.
Approximate nearest neighbor search on high dimensional data—experiments, analyses, and
improvement. IEEE Transactions on Knowledge and Data Engineering, 32(8):1475–1488,
2019.

[18] Keinosuke Fukunaga and Patrenahalli M. Narendra. A branch and bound algorithm for comput-
ing k-nearest neighbors. IEEE transactions on computers, 100(7):750–753, 1975.

[19] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. The r*-tree: An
efficient and robust access method for points and rectangles. In Proceedings of the 1990 ACM
SIGMOD international conference on Management of data, pages 322–331, 1990.

[20] Chanop Silpa-Anan and Richard Hartley. Optimised kd-trees for fast image descriptor matching.
In 2008 IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8. IEEE, 2008.

[21] Jon Louis Bentley. Multidimensional binary search trees used for associative searching. Com-
munications of the ACM, 18(9):509–517, 1975.

[22] Hosagrahar V Jagadish, Beng Chin Ooi, Kian-Lee Tan, Cui Yu, and Rui Zhang. idistance: An
adaptive b+-tree based indexing method for nearest neighbor search. ACM Transactions on
Database Systems (TODS), 30(2):364–397, 2005.

[23] Qiang Huang, Jianlin Feng, Yikai Zhang, Qiong Fang, and Wilfred Ng. Query-aware locality-
sensitive hashing for approximate nearest neighbor search. Proceedings of the VLDB Endow-
ment, 9(1):1–12, 2015.

[24] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. Similarity search in high dimensions via
hashing. In Vldb, pages 518–529, 1999.

[25] Jinyang Gao, Hosagrahar Visvesvaraya Jagadish, Wei Lu, and Beng Chin Ooi. Dsh: data
sensitive hashing for high-dimensional k-nnsearch. In Proceedings of the 2014 ACM SIGMOD
international conference on Management of data, pages 1127–1138, 2014.

[26] Yingfan Liu, Jiangtao Cui, Zi Huang, Hui Li, and Heng Tao Shen. Sk-lsh: an efficient index
structure for approximate nearest neighbor search. Proceedings of the VLDB Endowment, 7(9):
745–756, 2014.

[27] Yair Weiss, Antonio Torralba, and Rob Fergus. Spectral hashing. Advances in neural information
processing systems, 21, 2008.

[28] Fabien André, Anne-Marie Kermarrec, and Nicolas Le Scouarnec. Cache locality is not
enough: High-performance nearest neighbor search with product quantization fast scan. In
42nd International Conference on Very Large Data Bases, page 12, 2016.

[29] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. Optimized product quantization for approxi-
mate nearest neighbor search. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2946–2953, 2013.

[30] Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor
search. IEEE transactions on pattern analysis and machine intelligence, 33(1):117–128, 2010.

[31] Jianyang Gao and Cheng Long. Rabitq: Quantizing high-dimensional vectors with a theoretical
error bound for approximate nearest neighbor search. Proceedings of the ACM on Management
of Data, 2(3):1–27, 2024.

12

[32] Yury Malkov, Alexander Ponomarenko, Andrey Logvinov, and Vladimir Krylov. Approximate
nearest neighbor algorithm based on navigable small world graphs. Information Systems, 45:
61–68, 2014.

[33] Sunil Arya and David M Mount. Approximate nearest neighbor queries in fixed dimensions. In
SODA, volume 93, pages 271–280. Citeseer, 1993.

[34] Yubao Wu, Ruoming Jin, and Xiang Zhang. Fast and unified local search for random walk
based k-nearest-neighbor query in large graphs. In Proceedings of the 2014 ACM SIGMOD
international conference on Management of Data, pages 1139–1150, 2014.

[35] Kiana Hajebi, Yasin Abbasi-Yadkori, Hossein Shahbazi, and Hong Zhang. Fast approximate
nearest-neighbor search with k-nearest neighbor graph. In Twenty-Second International Joint
Conference on Artificial Intelligence, 2011.

[36] Zeyu Wang, Haoran Xiong, Zhenying He, Peng Wang, et al. Distance comparison opera-
tors for approximate nearest neighbor search: Exploration and benchmark. arXiv preprint
arXiv:2403.13491, 2024.

[37] Jianyang Gao and Cheng Long. High-dimensional approximate nearest neighbor search: with
reliable and efficient distance comparison operations. Proceedings of the ACM on Management
of Data, 1(2):1–27, 2023.

[38] DW Dearholt, N Gonzales, and G Kurup. Monotonic search networks for computer vision
databases. In Twenty-Second Asilomar Conference on Signals, Systems and Computers, vol-
ume 2, pages 548–553. IEEE, 1988.

[39] Godfried T Toussaint. The relative neighbourhood graph of a finite planar set. Pattern recogni-
tion, 12(4):261–268, 1980.

[40] Yun Peng, Byron Choi, Tsz Nam Chan, Jianye Yang, and Jianliang Xu. Efficient approxi-
mate nearest neighbor search in multi-dimensional databases. Proceedings of the ACM on
Management of Data, 1(1):1–27, 2023.

[41] Franz Aurenhammer. Voronoi diagrams—a survey of a fundamental geometric data structure.
ACM Computing Surveys (CSUR), 23(3):345–405, 1991.

[42] Ben Harwood and Tom Drummond. Fanng: Fast approximate nearest neighbour graphs. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
5713–5722, 2016.

[43] Jerzy W Jaromczyk and Godfried T Toussaint. Relative neighborhood graphs and their relatives.
Proceedings of the IEEE, 80(9):1502–1517, 1992.

[44] Wei Dong, Charikar Moses, and Kai Li. Efficient k-nearest neighbor graph construction for
generic similarity measures. In Proceedings of the 20th international conference on World wide
web, pages 577–586, 2011.

[45] Javier Vargas Munoz, Marcos A Gonçalves, Zanoni Dias, and Ricardo da S Torres. Hierar-
chical clustering-based graphs for large scale approximate nearest neighbor search. Pattern
Recognition, 96:106970, 2019.

[46] Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravishankar Krishnawamy,
and Rohan Kadekodi. Diskann: Fast accurate billion-point nearest neighbor search on a single
node. Advances in Neural Information Processing Systems, 32, 2019.

[47] Jing Wang, Jingdong Wang, Gang Zeng, Zhuowen Tu, Rui Gan, and Shipeng Li. Scalable k-nn
graph construction for visual descriptors. In 2012 IEEE Conference on Computer Vision and
Pattern Recognition, pages 1106–1113. IEEE, 2012.

[48] Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. ANN-Benchmarks: A bench-
marking tool for approximate nearest neighbor algorithms. Information Systems, 87:101374,
2020.

[49] Magdalen Dobson, Zheqi Shen, Guy E Blelloch, Laxman Dhulipala, Yan Gu, Harsha Vardhan
Simhadri, and Yihan Sun. Scaling graph-based anns algorithms to billion-size datasets: A
comparative analysis. arXiv preprint arXiv:2305.04359, 2023.

13

A Related graph-based ANNS algorithms
As discussed above, graph-based ANNS algorithms conduct a best-first greedy beam search on the
proximity graphs to approach the closest nodes for a query vector. Their built proximity graphs can
be classified into four categories [16, 40] as follows.

Delaunay Graph (DG) [41, 42]. It ensures that for any edge, no other vectors will be situated within
the hypersphere defined by an edge connecting two vectors, where the hypersphere is centered at the
midpoint of the edge and the length of the edge is the diameter. But when the dimension d is large,
DG tends to become a complete graph [42], rapidly increasing the costs of greedy search.

Relative Neighborhood Graph (RNG) [39]. It guarantees that for any edge between p and q, no
other vectors will reside within the lune(p, q) = {u ∈ Rd | δ(u, p) ≤ δ(p, q) ∧ δ(u, q) ≤ δ(p, q)}.
Compared to DG, RNG imposes stricter restrictions on its edges, thus decreasing the average degree
[43]. Various works are based on RNG, including the Monotonic Relative Neighbor Graph (MRNG)
[6] and FANNG [42].

K-Nearest Neighbor Graph (KNNG) [44]. In KNNG, neighbors of each vector v ∈ D are its top-k
nearest neighbors in D, avoiding too many explored neighbors during searching. Since each node in
KNNG has only k neighbors, it cannot achieve the same level of connectivity as DG. NN-Descent
[44] proposes a method for constructing KNNG. For constructing KNNG, NN-Descent [44] was
proposed, which starts from a random graph and iteratively refines the graph towards the KNNG.

Minimum Spanning Tree (MST) Graph [45]. The MST utilizes distances between vectors as edge
weights. Then, it performs hierarchical clustering on the dataset multiple times randomly, each time
adding some edges to the edge set. MST can establish global connectivity with a minimal number of
edges but may result in detours during searching.

Most well-known graph-based ANNS algorithms, including HNSW [2], Vamana [46], HCNNG [45],
and NSG [6], do not exactly fit into one of the four categories. Instead, they usually evolve from one
or more of these proximity graphs. For example, Vamana evolved from the combination of two prior
algorithms. HNSW originated from both the DG and RNG algorithms, while NSG originated solely
from the RNG algorithm.

B Algorithms and illustrations

Algorithm 2 CSPG index construction
Require: dataset D = {v1, v2, ..., vn}, number of partitions m, and sampling ratio λ ∈ [0, 1]
Ensure: CSPG index G = {G1,G2, ...,Gm}, routing vectors RV
1: Pi ← ∅ for 1 ≤ i ≤ m, RV ← ∅
2: RV ← random ⌊n× λ⌋ samples from D
3: for each vector v in D \RV do
4: add v to a random sampled partition Pi

5: G ← construct a proximity graph Gi for each partition Pi

6: return G and RV

Algorithm 3 CSPG vector insertion
Require: CSPG index G = {G1,G2, ...,Gm}, routing vectors RV , and vector x
1: assign a random i, insert x to Gi with the insertion method of the underlying graph index
2: if x is selected as route vector then
3: insert x into RV
4: for each j ∈ {1, 2, ...,m} s.t. i ̸= j do
5: insert x to Gj with the insertion method of the underlying graph index

Algorithm 4 CSPG vector deletion
Require: CSPG index G = {G1,G2, ...,Gm}, routing vectors RV , and vector x
1: for for each i ∈ {1, 2, ...,m} s.t. x ∈ Gi do
2: remove x from Gi with the insertion method of the underlying graph index
3: if x is a route vector then
4: remove x from RV

14

Table 2: Candidate Set for the search in the query nearby (dashed parallelogram).
Step PG’s Candidate Set CSPG’s Candidate Set

0 {v3} {v13}
1 {v4} {v24 , v14}
2 {v6, v5} {v17 , v27 , v14}
3 {v7, v5} {v1

9 , v
2
7 , v

1
4}

4 {v9, v8, v5}

C Proofs for Section 5
Theorem 2. Denote ECSPG[|p⇝ q|] as the expected length of search sequence in CSPG. Denote
EGi [|p⇝ q|] as the expected sequence length when searching only on the graph Gi. It holds that

ECSPG[|p⇝ q|] = EGi [|p⇝ q|].

Proof. For the greedy search in CSPG starting from Gi, denote ϑ ∈ RV as the first routing vector
that the search sequence visits. Thus, Pr(ϑ not exists) +

∑
s∈RV Pr(ϑ = s) = 1, where ϑ not exists

indicates that the sequence never visits a routing vector before reaching the query vector q. Then, we
have

ECSPG [|p⇝ q|] =Pr(ϑ not exists)EGi

[
|p⇝ q|

∣∣∣∣ϑ not exists
]
+

∑
s∈RV

Pr(ϑ = s)ECSPG

[
|p⇝ q|

∣∣∣∣ϑ = s

]
=Pr(ϑ not exists)EGi

[
|p⇝ q|

∣∣∣∣ϑ not exists
]
+∑

s∈RV

Pr(ϑ = s)
(
EGi [|p⇝ s|] + ECSPG [|s⇝ q|]

)
.

Note that the term of ECSPG [|s⇝ q|] can be further expanded similarly. Since any search sequence
is bounded by length n, such expansion can be done iteratively in a finite number. Consider the last
expansion of

ECSPG [|s′ ⇝ q|
]
=Pr(ϑ not exists)EGi

[
|s′ ⇝ q|

∣∣∣∣ϑ not exists
]
+∑

s′′∈RV

Pr(ϑ = s′′)
(
EGi

[
|s′ ⇝ s′′|

]
+ ECSPG [|s′′ ⇝ q|

])
.

The search path s′′ ⇝ q lies in one of the graphs. According to Theorem 1, since the path s⇝ q has
the same expected length in any graph, it holds that ECSPG [|s′′ ⇝ q|] = EGi [|s′′ ⇝ q|]. Thus,

ECSPG [|s′ ⇝ q|
]
=Pr(ϑ not exists)EGi

[
|s′ ⇝ q|

∣∣∣∣ϑ not exists
]
+∑

s′′∈RV

Pr(ϑ = s′′)
(
EGi

[
|s′ ⇝ s′′|

]
+ EGi

[
|s′′ ⇝ q|

])
=Pr(ϑ not exists)EGi

[
|s′ ⇝ q|

∣∣∣∣ϑ not exists
]
+

∑
s′′∈RV

Pr(ϑ = s′′)EGi

[
|s′ ⇝ q|

∣∣∣∣ϑ = s′′
]

=EGi
[
|s′ ⇝ q|

]
.

By recursively apply such induction, we can prove that ECSPG[|p⇝ q|] = EGi [|p⇝ q|].

Theorem 3. For datasets with the same distribution, as the number of vectors n decreases, ρ(u) is
monotonically non-decreasing.

15

Proof. Given an AMSNET G build on a dataset D with n vectors, for each vector u ∈ G, ρ(u) is
the probability that u conquers a random vector in G. Consider the case that we randomly remove a
vector q∗ from D. For the AMSNET G′ built on dataset D\{q∗}, denote ρ′(u) as the probability that
u conquers a random vector in G′. Next, we show that ρ′(u) ≥ ρ(u).

In AMSNET G, since q∗ is randomly sampled from D, the probability that u ≻ q∗ is ρ(u). Consider
the following two cases.

• If u ≻ q∗ holds in G,
∑

q∈G′ I(u ≻ q) ≥
∑

q∈G I(u ≻ q) − 1. It is because G′ does not have
q∗, and for building the AMSNET G′ we can adjust the neighbors of u and u may conquer more
vectors in G′.

• If u ≻ q∗ does not hold in G,
∑

q∈G′ I(u ≻ q) =
∑

q∈G I(u ≻ q), since we can use the same
neighbors of u for both G and G′.

Therefore, we have

ρ′(u) =
ρ(u)

[∑
q∈G′ I(u ≻ q)

]
+ (1− ρ(u))

[∑
q∈G′ I(u ≻ q)

]
n− 1

≥
ρ(u)

[∑
q∈G I(u ≻ q)− 1

]
+ (1− ρ(u))

[∑
q∈G I(u ≻ q)

]
n− 1

=

∑
q∈G I(u ≻ q)− ρ(u)

n− 1
=

nρ(u)− ρ(u)

n− 1
= ρ(u).

D Experiments settings and results
The detailed index construction parameters are listed as follows, which are from previous studies
[49] and Ann-benchmarks [48].

• HNSW. The degree upper bound M = 32, and the efConstruction = 128.

• Vamana. The degree upper bound R = 32, beam size L = 128, and pruning parameter α = 1.2.

• HCNNG. The number of cluster trees T = 10, the leaf size of MST Ls = 1000, and the MST
degree s = 5.

• CSPG. For fairness, for each graph-based algorithm used in CSPG, we slightly adjust its parameters
to ensure the average degree of the built graphs is the same as the original algorithm.

The parameters ef for each baseline algorithm and the ef2 for CSPG method are uniformly picked
from [10, 300] to obtain QPS at different Recall. For CSPG method, we set parameter ef1 = 1 and
sampling ratio λ = 0.5 by default, while their impacts on performance are discussed in Section 6.4.

Table 3: Statistics of Datasets
Dataset Dimension Data type # Base # Query

SIFT1M 128 float 1,000,000 10,000

GIST1M 960 float 1,000,000 1,000

DEEP1M 96 float 1,000,000 10,000

SIFT10M 128 uint8 10,000,000 10,000

16

0.80 0.85 0.90 0.95 1.00
Recall@10

2

4

6

Di
st

an
ce

 c
om

pu
ta

tio
n 1e7 SIFT1M

0.80 0.85 0.90 0.95 1.00
Recall@10

2

4

6

8
1e6 GIST1M

0.80 0.85 0.90 0.95 1.00
Recall@10

2

4

6

8
1e7 DEEP1M

0.80 0.85 0.90 0.95 1.00
Recall@10

2.5

5.0

7.5
1e7 SIFT10M

HNSW CSPG-HNSW Vamana CSPG-Vamana HCNNG CSPG-HCNNG

Figure 10: Number of distance computation v.s. recall curves for comparing query performance

0.80 0.85 0.90 0.95 1.00

0.5

1.0

1.5

QP
S

(S
IF

T1
M

)

1e5 CSPG-HNSW

0.80 0.85 0.90 0.95 1.00

0.5

1.0

1.5
1e5 CSPG-Vamana

0.80 0.85 0.90 0.95 1.00

0.25

0.50

0.75

1.00

1e5 CSPG-HCNNG

0.80 0.85 0.90 0.95 1.00

2

4

QP
S

(G
IS

T1
M

)

1e3 CSPG-HNSW

0.80 0.85 0.90 0.95 1.00

2

4

6
1e3 CSPG-Vamana

0.80 0.85 0.90 0.95 1.00

2

4

6

1e3 CSPG-HCNNG

0.80 0.85 0.90 0.95 1.00
Recall@10

0.5

1.0

1.5

QP
S

(D
EE

P1
M

)

1e5 CSPG-HNSW

0.80 0.85 0.90 0.95 1.00
Recall@10

0.5

1.0

1.5
1e5 CSPG-Vamana

0.80 0.85 0.90 0.95 1.00
Recall@10

0.5

1.0

1.5

1e5 CSPG-HCNNG

m=1 m=2 m=4 m=8 m=16

Figure 11: Query performance when varying the number of partitions m

0.80 0.85 0.90 0.95 1.00

0.5

1.0

QP
S

(S
IF

T1
M

)

1e5 CSPG-HNSW

0.80 0.85 0.90 0.95 1.00

0.5

1.0

1.5

1e5 CSPG-Vamana

0.80 0.85 0.90 0.95 1.00

0.25

0.50

0.75

1.00

1.25
1e5 CSPG-HCNNG

0.80 0.85 0.90 0.95 1.00

2

4

6

QP
S

(G
IS

T1
M

)

1e3 CSPG-HNSW

0.80 0.85 0.90 0.95 1.00

2

4

6

1e3 CSPG-Vamana

0.80 0.85 0.90 0.95 1.00

2

4

6

1e3 CSPG-HCNNG

0.80 0.85 0.90 0.95 1.00
Recall@10

0.5

1.0

1.5

QP
S

(D
EE

P1
M

)

1e5 CSPG-HNSW

0.80 0.85 0.90 0.95 1.00
Recall@10

0.5

1.0

1.5

1e5 CSPG-Vamana

0.80 0.85 0.90 0.95 1.00
Recall@10

0.5

1.0

1.5
1e5 CSPG-HCNNG

ef1=1 ef1=2 ef1=4 ef1=8 ef1=16

Figure 13: Query performance when varying the candidate set size ef1 in the first stage

17

0.80 0.85 0.90 0.95 1.00

0.5

1.0
QP

S
(S

IF
T1

M
)

1e5 CSPG-HNSW

0.80 0.85 0.90 0.95 1.00

0.5

1.0

1.5
1e5 CSPG-Vamana

0.80 0.85 0.90 0.95 1.00

0.25

0.50

0.75

1.00

1e5 CSPG-HCNNG

0.80 0.85 0.90 0.95 1.00
1

2

3

4

5

QP
S

(G
IS

T1
M

)

1e3 CSPG-HNSW

0.80 0.85 0.90 0.95 1.00

2

3

4

5

1e3 CSPG-Vamana

0.80 0.85 0.90 0.95 1.00
1

2

3

4

5
1e3 CSPG-HCNNG

0.80 0.85 0.90 0.95 1.00
Recall@10

0.5

1.0

1.5

QP
S

(D
EE

P1
M

)

1e5 CSPG-HNSW

0.80 0.85 0.90 0.95 1.00
Recall@10

0.5

1.0

1.5

1e5 CSPG-Vamana

0.80 0.85 0.90 0.95 1.00
Recall@10

0.5

1.0

1e5 CSPG-HCNNG

=0.1 =0.2 =0.3 =0.4 =0.5

Figure 12: Query performance when varying the sampling ratio λ

Table 4: Hyperparameters selection sets
Baseline Parameters Selection Sets
Vamana R ∈ {16, 32, 64}, α ∈ {1.0, 1.2, 1.4}, efConstruction ∈ {64, 128, 256}
HNSW M ∈ {16, 32, 64}, efConstruction ∈ {64, 128, 256}
NSG R ∈ {16, 32, 64}, efConstruction ∈ {64, 128, 256}
HCNNG s ∈ {3, 5, 7}, T ∈ {5, 10, 15}, Ls ∈ {750, 1000, 1250}

0.80 0.85 0.90 0.95 1.00
Recall@10

2

4

6

8

QP
S

(S
IF

T1
M

)

1e4 HCNNG

0.80 0.85 0.90 0.95 1.00
Recall@10

0.25

0.50

0.75

1.00

QP
S

1e5 HNSW

0.80 0.85 0.90 0.95 1.00
Recall@10

2

4

6

8

QP
S

1e4 NSG

0.80 0.85 0.90 0.95 1.00
Recall@10

2

4

6

8

QP
S

1e4 Vamana

0.80 0.85 0.90 0.95 1.00
Recall@10

2

4

6

QP
S

(G
IS

T1
M

)

1e3 HCNNG

0.80 0.85 0.90 0.95 1.00
Recall@10

2

4

6

QP
S

1e3 HNSW

0.80 0.85 0.90 0.95 1.00
Recall@10

2

3

QP
S

1e3 NSG

0.80 0.85 0.90 0.95 1.00
Recall@10

1

2

3

4

QP
S

1e3 Vamana

0.80 0.85 0.90 0.95 1.00
Recall@10

0.00

0.25

0.50

0.75

1.00

QP
S

(D
EE

P1
M

)

1e5 HCNNG

0.80 0.85 0.90 0.95 1.00
Recall@10

0.25

0.50

0.75

1.00

QP
S

1e5 HNSW

0.80 0.85 0.90 0.95 1.00
Recall@10

2

4

6

8

QP
S

1e4 NSG

0.80 0.85 0.90 0.95 1.00
Recall@10

0.0

2.5

5.0

7.5

QP
S

1e4 Vamana

HCNNG
T(5),Ls(750),s(3)
T(5),Ls(750),s(5)
T(5),Ls(750),s(7)
T(5),Ls(1000),s(3)
T(5),Ls(1000),s(5)
T(5),Ls(1000),s(7)
T(5),Ls(1250),s(3)
T(5),Ls(1250),s(5)
T(5),Ls(1250),s(7)
T(10),Ls(750),s(3)
T(10),Ls(750),s(5)
T(10),Ls(750),s(7)
T(10),Ls(1000),s(3)
T(10),Ls(1000),s(5)

T(10),Ls(1000),s(7)
T(10),Ls(1250),s(3)
T(10),Ls(1250),s(5)
T(10),Ls(1250),s(7)
T(15),Ls(750),s(3)
T(15),Ls(750),s(5)
T(15),Ls(750),s(7)
T(15),Ls(1000),s(3)
T(15),Ls(1000),s(5)
T(15),Ls(1000),s(7)
T(15),Ls(1250),s(3)
T(15),Ls(1250),s(5)
T(15),Ls(1250),s(7)

HNSW
M(16),efc(64)
M(16),efc(128)
M(16),efc(256)
M(32),efc(64)
M(32),efc(128)

M(32),efc(256)
M(64),efc(64)
M(64),efc(128)
M(64),efc(256)

NSG
R(16),efc(64)
R(16),efc(128)
R(16),efc(256)
R(32),efc(64)
R(32),efc(128)

R(32),efc(256)
R(64),efc(64)
R(64),efc(128)
R(64),efc(256)

Vamana
R(16), (1.0),efc(64)
R(16), (1.0),efc(128)
R(16), (1.0),efc(256)
R(16), (1.2),efc(64)
R(16), (1.2),efc(128)
R(16), (1.2),efc(256)
R(16), (1.4),efc(64)
R(16), (1.4),efc(128)
R(16), (1.4),efc(256)
R(32), (1.0),efc(64)
R(32), (1.0),efc(128)
R(32), (1.0),efc(256)
R(32), (1.2),efc(64)
R(32), (1.2),efc(128)

R(32), (1.2),efc(256)
R(32), (1.4),efc(64)
R(32), (1.4),efc(128)
R(32), (1.4),efc(256)
R(64), (1.0),efc(64)
R(64), (1.0),efc(128)
R(64), (1.0),efc(256)
R(64), (1.2),efc(64)
R(64), (1.2),efc(128)
R(64), (1.2),efc(256)
R(64), (1.4),efc(64)
R(64), (1.4),efc(128)
R(64), (1.4),efc(256)

Figure 14: QPS v.s. Recall@10 over different parameters combination

18

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: As claimed in the abstract and introduction, this article does present a graph
index schema CSPG that can be utilized to speed up graph-based ANNS algorithms.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In our theoretical analysis (Section 5), we assume that the vector distribu-
tion of each partition in CSPG remains consistent. However, practically CSPG can still
improve query performance by random partitioning, which ensures the similarity of vector
distributions.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

19

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All the assumptions of our theoretical analysis are presented in Section 5, and
we provide all the proofs in Appendix C.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Appendix D provides all the parameters, environment settings, and the imple-
mentation details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

20

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our datasets are all commonly used datasets in previous ANNS studies. And
all our experimental codes are available with detailed guidelines for reproducing.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all the details including hyperparameters in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: Error bars are not commonly used in our research field, and we ensure that all
experimental results are measured with multiple times and we remove outliers.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All our experimental environments and hardware-related technical descriptions
are detailed in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the relevant guidelines of NeurIPS Code of Ethics carefully and
strictly follow them.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our research on ANNS can significantly enhance the efficiency and scalability
of various real-world applications, leading to improved user experiences and advancements
in technology.

22

https://neurips.cc/public/EthicsGuidelines

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our research is not related to any unsafe datasets or models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The license and terms of use are explicitly mentioned and respected. Creators
and original owners of all assets used in the paper are properly credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

23

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our research is not related to this issue.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our study for Approximate Nearest Neighbor Search and the datasets involved
are not related to this issue.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our research is not related to this issue.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

24

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

25

	Introduction
	Background
	Problem definition
	Graph-based ANNS algorithms
	Monotonic Search Network

	Crossing Sparse Proximity Graphs
	CSPG: Crossing Sparse Proximity Graphs
	Novelty of CSPG
	CSPG index construction and updates

	Two-stage search on CSPG
	The First Stage: exploring single partition for fast approaching
	The Second Stage: cross-partition expansion for precise search

	Analysis of search efficiency
	The expected number of distance computations
	Expected search sequence length on Monotonic Search Network
	Approximate Monotonic Search Network
	Speedup analysis for CSPG

	Evaluation
	Experimental setup
	Evaluating query performance
	Evaluating index construction
	Impact of factors and parameters
	Hyperparameter grid search and evaluation with ANN-Benchmarks

	Conclusion
	Related graph-based ANNS algorithms
	Algorithms and illustrations
	Proofs for Section 5
	Experiments settings and results

