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ABSTRACT

Recent studies have indicated that Graph Convolutional Networks (GCNs) act as
a low pass filter in spectral domain and encode smoothed node representations. In
this paper, we consider their opposite, namely Graph Deconvolutional Networks
(GDNs) that reconstruct graph signals from smoothed node representations. We
motivate the design of Graph Deconvolutional Networks via a combination of in-
verse filters in spectral domain and de-noising layers in wavelet domain, as the
inverse operation results in a high pass filter and may amplify the noise. Based
on the proposed GDN, we further propose a graph autoencoder framework that
first encodes smoothed graph representations with GCN and then decodes accu-
rate graph signals with GDN. We demonstrate the effectiveness of the proposed
method on several tasks including unsupervised graph-level representation , social
recommendation and graph generation.

1 INTRODUCTION

Autoencoders have demonstrated excellent performance on tasks such as unsupervised representa-
tion learning (Bengio, 2009) and de-noising (Vincent et al., 2010). Recently, several studies (Zeiler
& Fergus, 2014; Long et al., 2015) have demonstrated that the performance of autoencoders can
be further improved by encoding with Convolutional Networks and decoding with Deconvolutional
Networks (Zeiler et al., 2010). Notably, Noh et al. (2015) present a novel symmetric architec-
ture that provides a bottom-up mapping from input signals to latent hierarchical feature space with
{convolution, pooling} operations and then maps the latent representation back to the input space
with {deconvolution, unpooling} operations. While this architecture has been successful when pro-
cessing features with structures existed in the Euclidean space (e.g., images), recently there has been
a surging interest in applying such a framework on non-Euclidean data like graphs. However, ex-
tending this autoencoder framework to graph-structured data requires Graph Deconvolutional opera-
tions, which remains open-ended and hasn’t been well-studied as opposed to the large body of works
that have already been proposed for Graph Convolutional Networks (Defferrard et al., 2016; Kipf
& Welling, 2017). In this paper, we study the characteristics of Graph Deconvolutional Networks
(GDNs), and observe de-noising to be the key for effective deconvolutional operations. Therefore,
we propose a wavelet-based module (Hammond et al., 2011) that serves as a de-noising mechanism
after the signals reconstructed in the spectral domain (Shuman et al., 2013) for deconvolutional
networks.

Most GCNs proposed by prior arts, e.g., Cheby-GCN (Defferrard et al., 2016) and GCN (Kipf &
Welling, 2017), exploit spectral graph convolutions (Shuman et al., 2013) and Chebyshev poly-
nomials (Hammond et al., 2011) to retain coarse-grained information and avoid explicit eigen-
decomposition of the graph Laplacian. Until recently, Wu et al. (2019) and Donnat et al. (2018)
have noticed that GCN acts as a low pass filter in spectral domain and retains smoothed represen-
tations. Inspired by prior arts in the domain of signal deconvolution (Kundur & Hatzinakos, 1996),
we propose to design a GDN by using high pass filters as the counterpart of low pass filters embod-
ied in GCNs. Due to the nature of signal deconvolution being ill-posed, several prior arts (Donoho
& Johnstone, 1994; Figueiredo & Nowak, 2003) rely on transforming these signals into another
domain (e.g., spectral domain) where the problem can be better posed and resolved. Furthermore,
Neelamani et al. (2004) observe inverse filters in spectral domain may amplify the noise, and we
observe the same phenomenon for GDNs. Therefore, inspired by their proposed hybrid spectral-
wavelet method—inverse signal reconstruction in spectral domain followed by a de-noising step in
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wavelet domain—we introduce a spectral-wavelet GDN to decode the smoothed representations into
the input graph signals. The proposed spectral-wavelet GDN employs spectral graph convolutions
with a high pass filter to obtain inversed signals and then de-noises the inversed signals in wavelet
domain. In addition, we apply Maclaurin series as a fast approximation technique to compute both
high pass filters and wavelet kernels (Donnat et al., 2018).

With the proposed spectral-wavelet GDN, we further propose a graph autoencoder (GAE) frame-
work that resembles the symmetric fashion of architectures (Noh et al., 2015). We then evaluate
the effectiveness of the proposed GAE framework with three popular and important tasks: unsuper-
vised graph-level representation (Sun et al., 2020), social recommendation (Jamali & Ester, 2010)
and graph generation. In the first task, the proposed GAE outperforms the state-of-the-arts on graph
classification in an unsupervised fashion, along with a significant improvement on running time. In
the second task, the performance of our proposed GAE is on par with the state-of-the-arts on the rec-
ommendation accuracy; at the meantime, the proposed GAE demonstrates strong robustness against
rating noises and achieves the best recommendation diversification (Ziegler et al., 2005). In the third
task, our proposed GDN can enhance the generation performance of popular variational autoencoder
frameworks including VGAE (Kipf & Welling, 2016) and Graphite (Grover et al., 2019).

2 RELATED WORK

Deconvolutional networks The area of signal deconvolution (Kundur & Hatzinakos, 1996) has
a long history in the signal processing community and is about the process of estimating the true
signals given the degraded or smoothed signal characteristics (Banham & Katsaggelos, 1997). Later
deep learning studies (Zeiler et al., 2010; Noh et al., 2015) consider deconvolutional networks as
the opposite operation for Convolutional Neural Networks (CNNs) and have mainly focused on
Euclidean structures, e.g., image. Some work (Dumoulin & Visin, 2016) notices Zeiler et al. (2010)
is in essence a transposed convolution network as it differs from what is used in the signal processing
community. For deconvolutional networks in non-Euclidean structures like graphs, the study is still
sparse. Feizi et al. (2013) propose the network deconvolution as inferring the true network given
partially observed structure. It relies on explicit eigen-decomposition and cannot be used as the
counterpart for GCN. Yang & Segarra (2018) formulate the deconvolution as a pre-processing step
on the observed signals, in order to improve classification accuracy. Zhang et al. (2020) consider
recovering graph signals from the latent representation. However, it just adopts the filter design used
in GCN and sheds little insight into the internal operation of GDN.

Graph autoencoders Since the introduction of Graph Neural Networks (GNNs) (Kipf & Welling,
2017; Defferrard et al., 2016) and autoencoders (AEs), many studies (Kipf & Welling, 2016; Grover
et al., 2019) have used GNNs and AEs to encode to and decode from latent representations. Recently
graph pooling has emerged as a research topic that also contributes to the development of graph
autoencoders. Common practices include DIFFPOOL (Ying et al., 2018), SAGPool (Lee et al.,
2019), MinCut-Pool (Bianchi et al., 2020). Although some encouraging progress has been achieved,
there is still no work about graph deconvolution that can up-sample latent feature maps to restore
their original resolutions (Gao & Ji, 2019). In this regard, current graph autoencoders bypass the
difficulty via (1) non-parameterized decoders (Kipf & Welling, 2016; Deng et al., 2020; Li et al.,
2020), (2) GCN decoders (Grover et al., 2019; Gao & Ji, 2019), and (3) multilayer perceptron (MLP)
decoders (Simonovsky & Komodakis, 2018).

3 GRAPH AUTOENCODER FRAMEWORK

Formally, we are given an undirected, unweighted graph G = (V,A,X). V is the node set and N =
|V | denotes the number of nodes. The adjacency matrix A ∈ RN×N represents the graph structure.
The feature matrix X ∈ RN×d represents the node attributes. Our goal is to learn an encoder and
a decoder to map between the space of graph G and their latent factors Gpool = (V pool, Apool, Z).
We show a schematic diagram of our proposed framework in Figure 1.
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Figure 1: Schematic diagram of the proposed graph autoencoder framework. We plot graphs in
spatial domain together with their signal coefficients in spectral domain. In the encoding stage, we
run a GCN model to derive smoothed node representations and obtain coarse-grained graph via a
pool layer. In the decoding stage, we upscale the coarsened graph back and reconstruct the graph
signal via a GDN model.

3.1 ENCODER

Our encoder consists of several layers of Graph Convolutional Networks (GCNs) (Kipf & Welling,
2017) and a pooling layer, to produce coarser representations of the input graphs.

Convolution The convolutional layers are used to derive smoothed node representations, such that
nodes that are similar in topological space should be close enough in Euclidean space.

H = GCN(A,X), (1)
where H ∈ RN×v denotes smoothed node representations. Specifically, Wu et al. (2019) show that
GCN is a low pass filter in spectral domain with gc(λi) = 1−λi, where {λi}Ni=1 are the eigenvalues
of the normalized Laplacian matrix Lsym = D−

1
2LD−

1
2 , L and D are the Laplacian and degree

matrices of the input graph A respectively.

Pooling We follow Lee et al. (2019) and Li et al. (2019) by using the self attention mechanism to
pool the fine-grained graph into coarse-grained representations,

S = softmax
(
tanh(HW1)W2

)
, (2)

where W1 ∈ Rv×d and W2 ∈ Rd×K are two weight matrices, W1 is used for feature transformation
and W2 is used to infer the membership of each node with respect to each cluster Vk.

Similar to Ying et al. (2018), we compute the coarsed graph structure Apool ∈ RK×K and feature
representation Z ∈ RK×v as follows:

Z = S>H; Apool = S>AS. (3)
Note here (Z,Apool) is size invariant and permutation invariant, as pointed out by Li et al. (2019).

3.2 DECODER

Our decoder consists of an unpooling layer and several layers of Graph Deconvolutional Networks
(GDNs), to produce fine-grained graphs from the encoded Gpool.

Unpooling We follow Bianchi et al. (2020) to upscale the coarsened graph back to its original size,
H ′ = SZ; A′ = SApoolS>. (4)

Deconvolution The deconvolutional layers are used to recover the original graph features given
smoothed node representations,

X ′ = GDN(A′, H ′), (5)
where X ′ ∈ RN×d denotes the recovered graph features. We shall further discuss our design of
GDN in Section 4.
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3.3 THE LOSS FUNCTION

The overall reconstruction loss is a weighted sum of structure reconstruction loss and feature recon-
struction loss.

L = λAf(A,A′) + λXf(X,X ′), (6)
where f(·, ·) denotes a differential distance metric, e.g., f(·, ·) = MSE(·, ·) for continuous input,
and MSE(·, ·) represents mean squared error.

4 GRAPH DECONVOLUTIONAL NETWORKS

In this section, we present our design of Graph Deconvolutional Networks (GDNs). A naive de-
convolutional nets can be obtained using the inverse operator g−1c (λi) = 1

1−λi
in spectral domain.

Unfortunately, inverse operation results in a high pass filter and may amplify the noise (Donoho
& Johnstone, 1994; Figueiredo & Nowak, 2003). In this regard, we propose an efficient, hybrid
spectral-wavelet deconvolutional network that performs inverse signal recovery in spectral domain
first, and then conducts a de-noising step in wavelet domain to remove the amplified noise (Neela-
mani et al., 2004).

4.1 INVERSE OF GCN

In order to recover graph signals from the latent representation computed by GCN encoder, we
proposed a naive approach–inverse GCN with the inverse filter as g−1c (λi) = 1

1−λi
in spectral

domain. The spectral graph convolution on a signal x ∈ RN is defined as:

g−1c ∗ x = Udiag(g−1c (λ1), . . . , g−1c (λN ))U>x = Ug−1c (Λ)U>x, (7)

where U is the eigenvector matrix of the normalized graph Laplacian Lsym = UΛU>. Then, we
apply Maclaurin series approximation on g−1c (Λ) =

∑∞
n=0 Λn and get a fast algorithm as below:

g−1c ∗ x = U
∑∞
n=0 ΛnU>x =

∑∞
n=0 L

n
symx. (8)

As in GCN (Kipf & Welling, 2017), when the first order approximation is used to address overfitting,
we derive a spectral filter with g−1c (λi) = 1 + λi, which is apparently a high pass filter.

Following GCN (Kipf & Welling, 2017), a feature transformation is applied to increase filter
strength. Recap the GDN in Section 3.2, the inverse version of GCN can be written as:

M = (IN + L′sym)H ′W3, (9)

where L′sym is the corresponding normalized graph Laplacian matrix for A′, H ′ is the smoothed
representations and W3 is the parameter set to be learned.

Compared with directly using GCN for signal reconstruction in Zhang et al. (2020), the proposed
inverse GCN demonstrates its efficacy in recovering the high frequency signals of the graph, as
shown in Figure 2 (b) and (d). We shall further discuss this point in Section 4.3.

4.2 WAVELET DE-NOISING

The proposed inverse GCN may over-amplifies the high frequency signals and introduce undesir-
able noise into the output graph. Thus, a de-noising process is necessary to separate the useful
information and the noise. Wavelet-based methods have a strong impact on the field of de-noising,
especially in image restoration when noise is amplified by inverse filters (Neelamani et al., 2004).
Notably, coefficients in wavelet domain could allow the noise to be easily separated from the useful
information, while transformation into spaces such as spectral domain does not share the same char-
acteristics. In the literature, many wavelet de-noising methods have been proposed, e.g., SureShrink
(Donoho & Johnstone, 1994), BayesShrink (Chang et al., 2000), and they differ in how they estimate
the separating threshold. Our method generalizes these threshold ideas and automatically separates
the noise from the useful information with a learning-based approach.

Consider a set of wavelet bases Ψs = (Ψs1, . . . ,ΨsN ), where each one Ψsi denotes a signal on
graph diffused away from node i and s is a scaling parameter (Xu et al., 2019a), the wavelet bases
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Figure 2: Low-order Maclaurin Series well approximate wavelet kernel and inverse wavelet kernel
with s = 1.

can be written as Ψs = Ugs(Λ)U> and gs(·) is a filter kernel. Following previous works GWNN
(Xu et al., 2019a) and GRAPHWAVE (Donnat et al., 2018), we use the heat kernel gs(λi) = e−sλi ,
as heat kernel admits easy calculation of inverse wavelet transform with g−1s (λi) = esλi . In addition,
we can apply Maclaurin series approximation on heat kernel and neglect explicit eigendecomposi-
tion by:

Ψs = U
∑
n

(−1)n
n! snΛnU> =

∑∞
n=0

(−1)n
n! snLnsym, (10)

Ψ−1s = U
∑
n
sn

n! Λ
nU> =

∑∞
n=0

sn

n!L
n
sym, (11)

Usually truncated low order approximation is used in practice with n ≤ 3 (Defferrard et al., 2016).

To cope with the noise threshold estimation problem, we introduce a parameterized matrix W2 in
wavelet domain and eliminate these noise coefficients via a ReLU function, in the hope of learning
a separating threshold from the data itself. Take the noised representation M raised in Section 4.1
into consideration, we derive the reconstructed signal as:

X ′ = ΨsReLU(Ψ−1s MW4)W5. (12)

where W4 and W5 are trainable parameters.

We then contrast the difference between Wavelet Neural Network (WNN) in this work and other
related WNNs including GWNN (Xu et al., 2019a) and GRAPHWAVE (Donnat et al., 2018).

Scalability An important issue in WNN is that one needs to avoid explicit eigendecomposition
to compute wavelet bases for large graphs. Both GRAPHWAVE and GWNN, though try to avoid
eigendecomposition by exploiting Chebyshev polynomials, still rely integral operations (see Ap-
pendix D in Xu et al. (2019a)) and there is no clear way that we can scale up. Differently, we use
Maclaurin series to approximate wavelet bases, which has explicit polynomial coefficients and can
resemble the heat kernel well when n = 3. Please refer to Figure 2 for more details.

De-noising The purpose of both GWNN and GRAPHWAVE is to derive node presentations with
localized graph convolution and flexible neighborhood, such that downstream tasks like classifica-
tion can be simplified. On the contrary, our work implements wavelet neural network in the purpose
of detaching the useful information and the noise amplified by inverse GCN. Due to the different
purpose, our work applies the activation function in wavelet domain while GWNN in the original
vertex domain.

4.3 VISUALIZATION

In Figure 3, we illustrate the difference between GDN and each component inside by visualizing
the reconstructed road occupancy rates in a traffic network. The traffic network targets District 7
of California collected from Caltrans Performance Measurement System (PeMS)1. We select 4438

1http://pems.dot.ca.gov/
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(a) original (b) inverse GCN

(c) our model (d) GCN

Figure 3: Illustration of road occupancy rates decoded by different approaches at 5pm on June 24,
2020 in District 7 of California. A darker color implies a higher road occupancy rate. In each
figure above, we plot the reconstructed signal in spatial domain together with coefficients in spectral
domain. (a) the original, (b) inverse GCN (RMSE = 0.11), (c) GDN/our model (RMSE = 0.07), (d)
GCN (RMSE = 0.09).

sensor stations as the node set V and collect their road average occupancy rates at 5pm on June 24,
2020. Following Li et al. (2018), we construct an adjacency matrix A by denoting Aij = 1 if sensor
station vj and vi are adjacent on a freeway along the same direction. We reconstruct road occupancy
rate of each sensor station with three decoder variants: (b) inverse GCN, (c) GDN, (d) GCN. Here
the three variants share the same encoders defined in Section 3.1.

As can be seen, while both GDN and GCN decoders can resemble the input signal in low frequency,
GDN decoder retains more high frequency information. For inverse GCN decoder, although keeping
much high frequency information (mixed with noise), it drops lots of low frequencies, making the
decoded signals less similar to the input in Euclidean space.

5 EXPERIMENTS

We first validate both the proposed graph autoencoder framework and GDN in two tasks including
unsupervised graph-level representation (Sun et al., 2020; Hassani & Khasahmadi, 2020) and social
recommendation (Jamali & Ester, 2010; Monti et al., 2017; Berg et al., 2018), we then test GDN in
graph generation tasks (Kipf & Welling, 2016; Grover et al., 2019).

5.1 UNSUPERVISED GRAPH-LEVEL REPRESENTATION

Following recent methods (Sun et al., 2020; Hassani & Khasahmadi, 2020), we evaluate the effec-
tiveness of the unsupervised graph-level representations on downstream graph classification tasks.
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Table 1: Mean 10-fold cross validation accuracy on five graph datasets for kernel and unsupervised
methods

Datasets IMDB-BIN IMDB-MULTI REDDIT-BIN PROTEINS DD

K
er

ne
l

RW (Gärtner et al., 2003) 50.7 ±0.3 34.7 ±0.2 - 74.2 ±0.4 -
SP (Borgwardt & Kriegel, 2005) 55.6 ±0.2 38.0 ±0.3 64.1 ±0.1 75.07 ±0.5 78.7 ±3.9
GK (Shervashidze et al., 2009) 65.9 ±1.0 43.9 ±0.4 77.3 ±0.2 71.67 ±0.6 74.9 ±3.8
WL (Shervashidze et al., 2011) 72.3 ±3.4 47.0 ±0.5 68.8 ±0.4 72.92 ±0.6 76.4 ±2.4

DGK (Yanardag & Vishwanathan, 2015) 67.0 ±0.6 44.6 ±0.5 78.0 ±0.4 75.7 ±0.5 -
MLG (Kondor & Pan, 2016) 66.6 ±0.3 41.2 ±0.0 - 76.3 ±0.7 -

Su
pe

rv
is

ed GCN (Kipf & Welling, 2017) 74.0 ±3.4 51.9 ±3.8 50.0 ±0.0 76.0 ±3.2 -
GAT (Veličković et al., 2018) 70.5 ±2.3 47.8 ±3.1 85.2 ±3.3 - -

GIN-0 (Xu et al., 2019b) 75.1 ±5.1 52.3 ±2.8 92.4 ±2.5 76.2 ±2.8 -
GIN-ε (Xu et al., 2019b) 74.3 ±5.1 52.1 ±3.6 92.2 ±2.3 75.9 ±3.8 -

U
ns

up
er

vi
se

d

VGAE (Kipf & Welling, 2016) 64.9±0.38 38.9±0.46 - 72.4±0.42 76.3±0.34
SUB2VEC (Adhikari et al., 2018) 55.3 ±1.5 36.7 ±0.8 71.5 ±0.4 - -

GRAPH2VEC (Narayanan et al., 2017) 71.1 ±0.5 50.4 ±0.9 75.8 ±1.0 73.3 ±2.1 -
INFOGRAPH (Sun et al., 2020) 73.0 ±0.9 49.7 ±0.5 82.5 ±1.4 75.0 ±1.3 76.9 ±1.3

MVGRL (Hassani & Khasahmadi, 2020) 74.2 ±0.7 51.2 ±0.5 84.5 ±0.6 75.9 ±1.9 78.3 ±1.7
ALATION-INVERSE-GCN 73.2 ±1.9 50.4 ±1.3 83.9 ±1.3 75.0 ±1.2 77.8 ±1.3

ALATION-GCN 74.2 ±1.4 49.6 ±1.2 84.6 ±1.2 74.9 ±1.2 77.9 ±1.0
OURS 76.0 ±1.3 51.5 ±1.4 86.0 ±1.7 76.1 ±1.4 79.1 ±1.5

Data and baselines We use five graph classification benchmarks including IMDB-Binary, IMDB-
Multi, Reddit-Binary, PROTEINS and DD (Narayanan et al., 2017; Ying et al., 2018). For the
detailed statistics, please refer to Table 4. We compare with six graph kernels: Random Walk (RW)
(Gärtner et al., 2003), Shortest Path Kernel (SP) (Borgwardt & Kriegel, 2005), Graphlet Kernel
(GK) (Shervashidze et al., 2009), Weisfeiler-Lehman Sub-tree Kernel (WL) (Shervashidze et al.,
2011), Deep Graph Kernels (DGK) (Yanardag & Vishwanathan, 2015) and Multi-Scale Laplacian
Kernel (MLG) (Kondor & Pan, 2016). In addition, we compare with four unsupervised graph-level
representation learning methods: SUB2VEC (Adhikari et al., 2018), GRAPH2VEC (Narayanan
et al., 2017), INFOGRAPH (Sun et al., 2020) and MVGRL (Hassani & Khasahmadi, 2020). We
also include the results of recent supervised graph classification models: GCN (Kipf & Welling,
2017), GAT (Veličković et al., 2018), GIN (Xu et al., 2019b). We denote our framework using (1)
GCN (Kipf & Welling, 2017) in the decoders as ALATION-GCN2, (2) inverse of GCN in Section
4.1 in the decoders as ALATION-INVERSE-GCN.

Setup We adopt the same procedure of previous works (Sun et al., 2020; Hassani & Khasahmadi,
2020) and report the mean 10-fold cross validation accuracy with standard deviation after 5 runs
using LIBSVM (Chang & Lin, 2011). We report results from previous papers with the same setup
if available. For the datasets PROTEINS and DD, we implement strong baselines including INFO-
GRAPH and MVGRL, with a hyperparameter search according the papers.

We train our model using minibatch based Adam optimizer with a learning rate of 0.01. We use the
cross-entropy loss to reconstruct the features. In our encoders, the best variants of GNN are chosen
from GCN (Kipf & Welling, 2017) and Heatts (Li et al., 2020). For Heatts, we let s = 1 for all
experiments. For detailed hyperparameter settings, please refer to Appendix C.

Results The classification accuracies on the five benchmarks are shown in Table 4. MLG, as a
kernel method, performs well on PROTEINS. However, it suffers from a long run time and takes
more than 1 day on two larger datasets, as observed in INFOGRAPH. Our method achieves the
best results in 4 out of 5 datasets compared with both kernel and unsupervised models, e.g., it
achieves 1.5% improvement over previous state-of-the-art on Reddit-Binary, and 1.8% improvement
on IMDB-Binary, which shows the superiority of our methods. When compared with supervised
graph classification models, ours beats the best supervised classification model GIN on IMDB-BIN,
on-par with GIN on PROTEINS, IMDB-MULTI, and only loses on REDDIT.

2note ALATION-GCN coincides with Zhang et al. (2020).
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Table 2: Comparison of different methods on social recommendation tasks

Datasets Ciao Douban
- ILS RMSE ILS RMSE

sRGCNN (Monti et al., 2017) 1.63% 1.183 6.03% 0.801
GC-MC (Berg et al., 2018) 1.09% 1.061 3.90% 0.734
GraphRec (Fan et al., 2019) 1.24% 1.062 8.27% 0.754

OURS 0.48% 1.071 2.65% 0.745

Ablation study We investigate the role of each component in our GDN. We let the three variants
share the same depth of layers and parameter size. As observed in Table 4, when decoding by pure
inverse of GCN, the performance is just comparable to that of GCN decoders and outperformed by
our GDN decoders in all 5 datasets, indicating the effectiveness of this hybrid design.

Running time We observe that our model runs significantly faster than INFOGRAPH and MV-
GRL. Our model takes 10s to train one epoch of PORTEINS on Tesla P40 24G, while INFOGRAPH
needs 127s and MVGRL needs 193s. This is because our model neglects the tedious process of neg-
ative sampling used in both INFOGRAPH and MVGRL.

5.2 SOCIAL RECOMMENDATION

In our model, we consider social recommendation as feature recovery on graphs, i.e., user-item
ratings are represented as the feature matrix and a social network among users is represented as the
graph structure. The model is trained on an incomplete version of feature matrix (training data) and
is used to infer the potential ratings (test data).

Data and baselines We use two social recommendation benchmark datasets: Douban and Ciao3.
Both datasets consist of user ratings for items and incorporate a social network among users. For
Douban, we use the preprocessed dataset provided by Monti et al. (2017). For Ciao, we use a sub-
matrix of 7,317 users and 1,000 items. Dataset statistics are summarized in Table 5 in the Appendix.
We compare with three baselines: sRGCNN (Monti et al., 2017), GC-MC (Berg et al., 2018), and
GraphRec (Fan et al., 2019). Following Candes & Plan (2010), we consider the few available entries
(training data) should be corrupted with noise in reality, and add random ratings to the training data
at different level p ∈ {0, 0.1, . . . , 1}, where p = 0 denotes no noise is added.
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Figure 4: Comparison of different methods on social recommendation tasks. The x-axis denotes the
noise level while the y-axis denotes RMSE on {Ciao,Douban}.

Setup For social recommendation, we neglect pooling and unpooling operations as the predictive
task is within a single graph. We use the Mean Squared Error (MSE) loss to reconstruct the rat-
ings. Same as in GC-MC (Berg et al., 2018), we stack the output of the first GCN layer and the
second GCN layer in our encoders, and use left normalization to preprocess adjacency matrix. For

3https://www.ciao.co.uk/
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Table 3: The effect of GDN with various graph generation methods

Datasets MUTAG PTC-MR ZINC
- log p(A|Z) AUC AP log p(A|Z) AUC AP log p(A|Z) AUC AP

VGAE (Kipf & Welling, 2016) -1.156 0.869 0.645 -1.366 0.566 0.433 -1.033 0.551 0.288
VGAE with GDN -1.114 0.880 0.678 -1.351 0.760 0.602 -0.997 0.862 0.613

Graphite (Grover et al., 2019) -1.140 0.868 0.632 -1.362 0.564 0.437 -1.043 0.559 0.288
Graphite with GDN -1.104 0.882 0.681 -1.347 0.773 0.613 -0.989 0.851 0.593

recommendation accuracy, we report Root Mean Squared Error (RMSE). For recommendation di-
versification (Ziegler et al., 2005), we report Intra-List Similarity (ILS). For the definition of ILS
and detailed hyperparameter settings, please refer to Appendix C.

Results The recommendation RMSE and ILS on the two benchmarks (p = 0) are shown in Table
2. Our method performs on a par with state-of-the-art methods on RMSE, with only lose to the best
model GC-MC by 0.01 on Ciao and 0.011 on Douban. As for ILS, our method performs the best,
e.g., it beats the second best model GC-MC by 0.61% on Ciao and 1.25% on douban, which shows
the superiority of our methods on recommendation diversification. The recommendation RMSE
with respect to different noise level is shown in Figure 4. As can be seen, our method performs
the best with respect to different noise level (p > 0), e.g., it achieves 0.04 improvement over the
second best model GC-MC on Ciao when p = 1, and 0.014 improvement over the second best model
sRGCNN on Douban, which shows the superiority when user-item interactions are noisy.

5.3 GRAPH GENERATION

Data and baselines We use three molecular graphs: MUTAG (Kriege & Mutzel, 2012) contain-
ing mutagenic compounds, PTC-MR (Kriege & Mutzel, 2012) containing compounds tested for
carcinogenicity and ZINC (Irwin et al., 2012) containing druglike organic molecules, to evaluate the
performance of GDN on graph generation. As our proposed autoencoder framework is not suitable
for graph generation task, we test GDN on two popular variational autoencoder framework includ-
ing VGAE (Kipf & Welling, 2016) and Graphite (Grover et al., 2019). Our purpose is to validate if
GDN helps with the generation performance.

Setup For VGAE and Graphite, we reconstruct the graph structures using their default methods
and the features using GDN. The two reconstructions share the same encoders and sample from
the same latent distributions. We train for 200 iterations with a learning rate of 0.01. The output
dimension of the first hidden layer is 32 and that of the second-layer is 16. For MUTAG and PTC-
MR, we use all the graph samples. For ZINC, we target test datasets (See Table 6 in the Appendix
for the details). We use 50% samples as train set and the remaining 50% as test set.

Results Evaluating the sample quality of generative models is challenging (Theis et al., 2016). In
this work, we validate the generative performance with the log-likelihood (log p(A|Z)), area under
the receiver operating characteristics curve (AUC) and average precision (AP). As shown in Table
3, GDN can improve the generative performance of both VGAE and Graphite in general, e.g., it
improve the AP score of Graphite by 4.9% on MUTAG , the AUC score of VGAE by 19.4% on
PTC-MR and log p(A|Z) of VGAE by 5.4% on ZINC, which shows the superiority of GDN.

6 CONCLUSION

In this paper, we present a symmetric graph autoencoder framework in an unsupervised way. The
proposed framework relies on Graph Deconvolutional Networks (GDNs), the opposite of GCNs
that recover graph signals from smoothed representations. The introduced GDN uses spectral graph
convolutions with a high pass filter to obtain inversed signals and then de-noises the inversed signals
in wavelet domain. The effectiveness of the proposed method is validated on unsupervised graph-
level representation, social recommendation and graph generation tasks.

9



Under review as a conference paper at ICLR 2021

REFERENCES

Bijaya Adhikari, Yao Zhang, Naren Ramakrishnan, and B Aditya Prakash. Sub2vec: Feature learn-
ing for subgraphs. In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp.
170–182. Springer, 2018.

Mark R Banham and Aggelos K Katsaggelos. Digital image restoration. IEEE signal processing
magazine, 14(2):24–41, 1997.

Yoshua Bengio. Learning deep architectures for AI. Now Publishers Inc, 2009.

Rianne van den Berg, Thomas N Kipf, and Max Welling. Graph convolutional matrix completion.
SIGKDD, 2018.

Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral clustering with graph neural
networks for graph pooling. In Proceedings of the 37th international conference on Machine
learning, pp. 2729–2738. ACM, 2020.

K. M. Borgwardt and H.-P. Kriegel. Shortest-path kernels on graphs. In ICDM, pp. 74–81, 2005.

Emmanuel J Candes and Yaniv Plan. Matrix completion with noise. Proceedings of the IEEE, 98
(6):925–936, 2010.

Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library for support vector machines. ACM trans-
actions on intelligent systems and technology (TIST), 2(3):1–27, 2011.

S Grace Chang, Bin Yu, and Martin Vetterli. Adaptive wavelet thresholding for image denoising and
compression. IEEE transactions on image processing, 9(9):1532–1546, 2000.
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Table 4: Statistics of the datasets used in graph classification

Datasets IMDB-BIN IMDB-MULTI REDDIT-BIN PROTEINS DD
(No.Graphs) 1000 1500 2000 1113 1178
(No.Classes) 2 3 2 2 2
(Avg.Nodes) 19.8 13.0 508.5 39.1 284.3
(Avg.Edges) 193.1 65.9 497.8 72.8 715.7

Table 5: Statistics of the datasets used in social recommendation

Dataset Users Items Train/Test Ratings Rating Density Social Connections Social Density
Douban 3,000 3,000 123,202/13,689 1.52% 2,690 0.03%

Ciao 7,317 1,000 39,279/16,892 0.77% 111,781 0.21%

A DETAILED MODEL CONFIGURATION

For the unsupervised graph-level representation experiments, we use the original graph structure in
the decoders of the proposed graph autoencoder framework. The C parameter of LIBSVM (Chang &
Lin, 2011) is selected from {10−3, 10−2, . . . , 102, 103}. The depth of GNN layers in the encoders is
set to 2. The output dimension of the first layer is chosen from {64, 128, 256}. The output dimension
of the second layer is chosen from {16, 32}. The number of clustersK is chosen from {16, 32}. The
number of epochs is chosen from [15, 20]. The batch size is set to 1. We set λA = 0 and λX = 1.
We don’t use Dropout as it does not improve the performance. For all methods, the embedding
dimension is set to 512 and parameters of downstream classifiers are independently tuned using
cross validation on training folds of data, in order to have a fair comparison with previous works.
The best average classification accuracy is reported for all methods.

For social recommendation, we train our model using Adam optimizer with a learning rate of
{0.005, 0.002}. We use the original graph structure in the decoders of the proposed graph au-
toencoder framework. The output dimension of the first layer is 256. The output dimension of the
second layer is 128. The number of epochs is 200. We use full-batch size. We don’t use Dropout as
it does not improve the performance. Intra-List Similarity (ILS) of one user is defined as:

ILSu =
1

2

∑
im∈L

∑
in∈L

sim(im, in), (13)

where L is the item list for the user and it is equal with the top-10 items in this work. sim(·, ·) is the
similarity function and is set to cosine similarity. For the representation of items, we use the input
user rating vectors.

B MORE RELATED WORKS

Unsupervised graph-level representations Unsupervised graph-level representation techniques
can be generally classified into three groups. The first group is graph kernels. Representative works
include Random Walk (Gärtner et al., 2003), Shortest Path Kernel (Borgwardt & Kriegel, 2005),
Graphlet Kernel (Shervashidze et al., 2009), Weisfeiler-Lehman Sub-tree Kernel (Shervashidze
et al., 2011), Deep Graph Kernels (Yanardag & Vishwanathan, 2015) and Multi-Scale Laplacian
Kernel (Kondor & Pan, 2016). This group of techniques works on finding informative sub-structures
and computes similarities based on these sub-structures. The second group is contrastive methods.
Representative works include SUB2VEC (Adhikari et al., 2018), GRAPH2VEC (Narayanan et al.,
2017), INFOGRAPH (Sun et al., 2020) and MVGRL (Hassani & Khasahmadi, 2020). This group
employs a scoring function, e.g., mutual information (Veličković et al., 2019), to train a model that
can increase the score on positive examples and decrease the score on negative samples. It thus
depends on the sophisticated positive/negative sampling strategy to boost the performance. The
third group is graph autoencoders (Kipf & Welling, 2016; Grover et al., 2019). Due to the lack of
powerful decoders, the performance of this kind is still underestimated.
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Table 6: Statistics of the datasets used in graph generation

Datasets MUTAG PTC-MR ZINC
(No.Graphs) 188 344 5000
(Avg.Nodes) 17.9 14.3 23.1
(Avg.Edges) 19.8 14.7 49.7

Social recommendation Social recommendations assume a social network among users and these
user-user interactions are helpful in boosting the recommendation performance (Jamali & Ester,
2010). As GNNs have been proven to be capable of learning on graph data, recently recommenda-
tion methods based on GNNs have shown impressive results on recommendation accuracy. Repre-
sentative works include sRGCNN (Monti et al., 2017), GC-MC (Berg et al., 2018), and GraphRec
(Fan et al., 2019). Specifically, GC-MC (Berg et al., 2018) models recommendations as link predic-
tions using graph autoencoder. Though successful, GC-MC uses an MLP decoder and fails to deal
with noisy ratings (Candes & Plan, 2010).

C DERIVATIVE OF INVERSE GCN

g−1c (λi) =
1

1− λi
=

∞∑
n=0

(
1

1−λi

)(n)
λi=0

n!
λni (14)

=

∞∑
n=0

(−1)nn!(−1)n

n!
λni =

∞∑
n=0

λni

where (n) denotes the n-th order derivative. Thus, Eq.(8) can be obtained as:

g−1c ∗ x = Udiag(

∞∑
n=0

λn1 , . . . ,

∞∑
n=0

λnN )U>x = U

∞∑
n=0

ΛnU>x (15)
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